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Abstract. We consider the problem of constructing protocols for secure
computation that achieve strong concurrent and composable notions of
security in the plain model. Unfortunately UC-secure secure computation
protocols are impossible in this setting, but the Angel-Based Composable
Security notion offers a promising alternative. Until now, however, under
standard (polynomial-time) assumptions, only protocols with polynomi-
ally many rounds were known to exist.
In this work, we give the first Õ(logn)-round secure computation pro-
tocol in the plain model that achieves angel-based composable security
in the concurrent setting, under standard assumptions. We do so by
constructing the first Õ(logn)-round CCA-secure commitment protocol.
Our CCA-secure commitment protocol is secure based on the minimal
assumption that one-way functions exist.
A central tool in obtaining our result is a new robust concurrent extrac-
tion lemma that we introduce and prove, based on the minimal assump-
tions that one-way functions exist. This robust concurrent extraction
lemma shows how to build concurrent extraction procedures that work
even in the context of an “external” protocol that cannot be rewound
by the extractor. We believe this lemma can be used to simplify many
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existing works on concurrent security, and is of independent interest. In
fact, our lemma when used in conjunction with the concurrent-simulation
schedule of Pass and Venkitasubramaniam (TCC’08), also yields a con-
stant round construction based additionally on the existence of quasi-
polynomial time (PQT ) secure one-way functions.

1 Introduction

The notion of secure multi-party computation protocols is central to cryptogra-
phy. Introduced in the seminal works of [Yao86, GMW87], secure multi-party
computation allows a group of (mutually) distrustful parties P1, . . . , Pn, with
private inputs x1, . . . , xn, to jointly compute any functionality f in such a man-
ner that the honest parties obtain correct outputs yet no group of malicious
parties learn anything beyond their inputs and the prescribed outputs. These
early results on secure computation [Yao86, GMW87], along with a rich body of
followup works that further refined and developed the concept [GL90, GMW91,
Bea91, MR91, Can00, PW01, Can01, Gol04], demonstrated that the delicate task
of designing secure protocols can be captured by general secure computation.

Much of the early literature on secure computation only considered the stand-
alone setting where security holds only if a single execution of the protocol takes
place, in isolation with no other cryptographic activity in the system. We call
this security stand-alone security. While stand-alone security may be sufficient
for basic purposes, it does not suffice in today’s more complex networked envi-
ronments where other cryptographic protocols might be running in the system
simultaneously.

Concurrent Security. To deal with more complex systems, the last decade
has seen a push towards obtaining protocols that have strong concurrent compos-
ability properties. For example, we could require concurrent self-composability:
the protocol should remain secure even when there are multiple copies executing
concurrently. The framework of universal composability (UC) was introduced by
Canetti [Can01] to capture a more general security requirement for a protocol
that may be executed concurrently with not only several copies of itself but also
with other protocols in an arbitrary manner.

Unfortunately, strong impossibility results have been shown ruling out the
existence of secure protocols in the concurrent setting. UC secure protocols for
most functionalities of interest have been ruled out in [CF01, CKL03]. Protocols
in even less demanding settings of concurrent security were ruled on in [Lin04,
BPS06, AGJ+12, Goy12]. We stress that, in fact, the latest sequence of these
impossibility results provide an explicit attack in the concurrent setting using
which the adversary may even fully recover the input of an honest party (see,
e.g., the chosen protocol attack in [BPS06]). Hence, designing secure protocols
in the concurrent setting is a question of great theoretical interest as well as
practical motivation.
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To overcome these impossibility results, UC secure protocols were proposed
based on various “trusted setup assumptions” such as a common random string
that is published by a trusted party [CF01, CLOS02, BCNP04, CPS07, Kat07,
CGS08]. Nevertheless, a driving goal in cryptographic research is to eliminate
the need to trust other parties. The main focus of this paper is to obtain
concurrently-secure protocols in the plain model.

Relaxing the Security Notion. To address the problem of concurrent se-
curity for secure computation in the plain model, a few candidate definitions
have been proposed, the most well studied one being that of super-polynomial
simulation [Pas03, PS04, BS05]. The notion of security with super-polynomial
simulators (SPS) [Pas03, PS04, BS05] is one where the adversary in the ideal
world is allowed to run in (fixed) super-polynomial time. Very informally, SPS
security guarantees that any polynomial-time attack in the real execution can
also be mounted in the ideal world execution, albeit in super-polynomial time.
This is directly applicable and meaningful in settings where ideal world secu-
rity is guaranteed statistically or information-theoretically (which would be the
case in most “end-user” functionalities that have been considered, from privacy-
preserving data mining to electronic voting).

Angel-based UC security. To formalize the notion of SPS security in a way that
allows modular analysis and provides composability, Prabhakaran and Sahai
[PS04] put forward the notion of angel-based composable security. Very roughly,
in the angel based security notion, the parties (including the simulator and the
adversary) are all polynomial time but have access to an angel which will perform
certain specific super-polynomial time computations. This angel-based definition
is in contrast to the case where the simulator is given direct access to super-
polynomial computation power: in this case, the resulting security notion is not
closed under composition and thus does not permit a modular protocol design
in the concurrent setting6. A construction for concurrently secure computation
in the angel based composable security model were given in [PS04, BS05], but
only based on non-standard super-polynomial hardness assumptions.

Very recently, Canetti, Lin, and Pass [CLP10] obtained the first secure com-
putation protocol that achieves angel-based composable security based on stan-
dard polynomial-time assumptions. Unfortunately, however, the improvement in
terms of assumptions comes at the cost of the round complexity of the pro-
tocol. Specifically, the protocol of [CLP10] incurs polynomial-round complexity.
A follow up work of Lin and Pass [LP12] considers the problem of designing
black-box constructions for secure computation in the concurrent setting. They
propose a protocol making only a black-box use of oblivious transfer satisfying
the angel-based composable security notion. However the round complexity of
their protocol continues to remain polynomial.

We note that the latency of sending messages back and forth has been shown
to often be the dominating factor in the running time of cryptographic pro-

6 However we note that according to this weaker SPS security notion, concurrently
secure protocols in constant rounds are now known [GGJS12].
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tocols [MNPS04, BNP08]. Indeed, round complexity has been the subject of a
good deal of research in cryptography. For example, in the context of concur-
rent zero knowledge (ZK) proofs, round complexity was improved in a sequence
of works [RK99, KP01, PRS02] from polynomial to slightly super-logarithmic
(that nearly matches the lower bound w.r.t. black-box simulation [CKPR01]).
The round complexity of non-malleable commitments in the stand-alone and con-
current settings has also been studied in several works[DDN91, Bar02, PR05b,
PR05a, LP09, Wee10, Goy11, LP11], improving the round complexity from loga-
rithmic rounds to constant rounds under minimal assumptions. We observe that
for the setting of concurrently secure computation protocols with angel-based
composable security, the situation is worse since the only known protocols that
achieves angel-based composable security based on standard assumptions incurs
polynomial-round complexity [CLP10, LP12]. This raises the following natural
question:

“Do there exists round-efficient protocols in the concurrent setting satisfying
the angel-based composable notion of security based on standard assumptions?”

Our Results. We answer the above question in the affirmative and provide
a Õ(log n) round construction of concurrently secure computation in the plain
model. Our construction satisfies the angel-based composable notion of security
[PS04, CLP10]. To obtain our result, we construct a “CCA-secure commitment”

protocol in Õ(log n) rounds, based only the assumption that one-way functions
exist. CCA secure commitments were introduced in [CLP10]; roughly speaking, a
commitment protocol is CCA-secure if it remains hiding even when the adversary
is given an oracle that can open all commitment values (except the commitment
given as a challenge to the adversary). In [CLP10], Canetti et al. show how to
construct a protocol that securely realizes any functionality—under the angel-
based composable notion of security—given an (appropriate) protocol for CCA
secure commitments (see full version of [CLP10]). Prior to our work, the best
known construction for CCA secure commitments required nε rounds [CLP10,
LP12]. In contrast, the round complexity of our protocol matches that of the best
known constructions for concurrent extractable commitment schemes [PRS02,
MOSV06].

A robust concurrent extraction lemma. A key technical tool that we in-
troduce is a lemma that allows robust extraction of secrets from an adversarial
committer A∗ in the concurrent setting. We call this lemma, the robust concur-
rent extraction lemma, which is of independent interest. Roughly speaking, the
lemma is a strengthening of the concurrent extraction mechanism for the PRS
preamble [PRS02] (we shall call this the PRS commitment), and states that con-
current extraction can be performed even in the presence of an external protocol
which cannot be rewound by the “simulator.”

More precisely, consider an adversarial committer A∗ who commits to multi-
ple values in concurrent sessions of the PRS commitment to honest receivers; let
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us label these sessions as the right sessions. Simultaneously, A∗ participates in
a left execution of an arbitrary k-round protocol, denoted Π := 〈B,A〉. Then,
the robust concurrent-extraction lemma states that for every A∗ there exists a
simulator S which, without rewinding the external party B in its execution of
Π, extracts the values committed to by A∗ in every session of the PRS commit-
ment. Furthermore, if ` is the round complexity of the PRS preamble, and T is
the running time of A∗, then S only fails with probability that is exponentially
small in `−O(k · log T ).

In order to capture correctness of extraction, we formulate our lemma by
considering a “real-world” experiment in which A∗ receives the values committed
to in every valid PRS commitment from an exponentially powerful party E ,
called the “online extractor.” The extraction of values are provided by E as soon
as a PRS session ends. Our lemma states, intuitively speaking, that both the
adversary A∗ and the exponentially powerful party E can be replaced with a
polynomial-time simulator, that still interacts with the external party B in the
external protocol Π. We remark that formulating the lemma in a generic way,
so that it can handle as general usage of the PRS commitment as we have seen
in the literature, is a delicate task. Nevertheless, we show that it is possible to
precisely capture the concurrent-extraction property of the PRS commitment in
a generic way without referring to any specific protocol that uses it.

An immediate benefit of our formulation is that when the PRS commitment is
used inside a larger protocol, the task of “concurrent extraction” can be formally
isolated from other parts of the protocol. This allows one to design hybrid experi-
ments without having to worry about the extraction. We provide two procedures
for this purpose—a simulator S and an online extraction E—and demonstrate
their use in the security proof of our protocol.

We also wish to remark that the ability to extract without rewinding B
turns out to be a very useful tool during concurrent security proofs, and we
expect this will have significant applications elsewhere. This flexibility simplifies
security proofs (of even previous works) to a great extent. For example, a situa-
tion similar to our lemma arises in previous works on concurrent non-malleable
zero-knowledge [BPS06, LPTV10], In these works, the problem is solved in an
arguably ad-hoc fashion, which stops rewindings after a certain point in the sim-
ulation during certain hybrids. This, overall, leads to a rather delicate analysis,
and the order of hybrid experiments becomes important.

By using our robust-extraction lemma, this problem can be avoided almost
directly. We note however, that in our case, it is crucial that the rewindings
not be stopped. This is because, in our situation, one needs to implement the
super-polynomial angel from the beginning in each hybrid experiment. Hence,
every session in every hybrid requires online extraction—which is possible either
by using (all) rewindings or by using super-polynomial simulation.

Technical Overview. As mentioned before, the starting point of our con-
struction is the robust extraction lemma. The basic problem encountered in
proving the lemma is that given the entire transcript of interaction between A∗
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and the honest right parties, there are various “breakpoints” in the transcript
(representing messages of the left protocol) which cannot be rewound. In ad-
dition, during rewindings (or look-ahead threads), the breakpoints can change
their location and can even come earlier than expected (at which point the cur-
rent thread must be discontinued and another one started). At a high level, we
start by considering the necessary modification of the KP/PRS simulator so that
when a breakpoint is encountered during the execution of a look-ahead thread,
the look-ahead thread is stopped and abandoned.

Our proof shows that even with this modification, the simulation still suc-
ceeds. The key observation is that each breakpoint can “spoil” at most a d =
log T number of “recursive blocks” used in the swapping argument of [PRS02].
Since there are k breakpoints, this incurs an additional loss of k · log T blocks.
However, to execute this proof strategy, it becomes crucial to use the informa-
tion learned during a “look-ahead block” in certain special sibling blocks. This
new feature of our analysis must be done carefully to maintain the correctness
of our swapping argument.

We note that we strive to obtain the best possible bounds for the round
complexity ` of PRS that is necessary to extract for a given value of k (rounds of
the left protocol). For this reason, we choose to re-analyze the proof presented
in [PRS02] (see also [PTV08])7.

For the goal of constructing CCA secure commitments, a direct application
of the robust extraction lemma will not be sufficient. This is because the number
of rounds in the left and the right interaction will be the same, and the robust ex-
traction lemma cannot work with respect to protocols with the same round com-
plexity as the PRScommitment! To construct CCA secure commitments (which
is our main technical goal), we instead build upon techniques from prior work on
concurrent non-malleable zero-knowledge (CNMZK) [BPS06, GJO10, LPTV10].
At a high level, our protocol is simple: commit to the value using a regular
commitment scheme, and then, prove the validity of the commitment using a
concurrent zero-knowledge protocol that is also simulation sound [Sah99]. We
note that we design our own protocol for this task since we strive to achieve a
construction based on one-way functions only (for CCA secure commitments).
Using techniques from [BPS06, LPTV10] is either not possible or results in
stronger assumptions such as the existence of collision-resistant hash functions.
Our protocol is presented in section 3.

7 For example, one can consider the approach of applying a pigeonhole principle ar-
gument to argue that ω(logn) slots must occur between some two breakpoints, and
then trying to apply the PRS analysis simply to these slots. However, note that
even if no breakpoints occur during these slots, look-ahead threads that are started
during these slots can still encounter breakpoints, since the adversary can choose the
scheduling adaptively. Dealing with this analytically would require further loss, and
result in a worse asymptotic bound than ours for super-constant values of k. Our
more direct approach shows how to amortize the gains made over all slots, even if
only a few slots occur between some breakpoints.
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A Constant Round Protocol from PQT One-way Functions. Our tech-
niques can be seen as a general method which reduce the task of concurrent-
extraction to that of concurrent-simulation. The method requires only a constant-
factor blow up in the round-complexity (of a given concurrent-simulation method)
and a polynomial-factor blow up in the running time of the (given) simulator. By
applying our method to the concurrent-simulator of [PV08], we obtain a constant
round protocol for CCA-secure commitments based only on the existence of one-
way functions secure against adversaries running in time super quasi-polynomial
time (PQT ) (see full version of this work [GLP+15]).

Assuming more complex, and somewhat non-standard assumptions—namely
the existence of adaptive one-way functions [PPV08]—a constant round proto-
col for CCA secure commitments is already known [PPV08]. Recent progress
on program obfuscation [GGH+13] has given rise to new non-black-box simu-
lation techniques for fully concurrent zero-knowledge [PPS15, IPS15, CLP14];
it would be interesting to explore if these techniques can also lead to improved
constructions of CCA secure commitments.

Related Works. The work of Garg, Goyal, Jain, and Sahai [GGJS12] is
closely related to our work, who provide a constant round protocol under the
non-composable SPS notion (instead of angel-based composable security). Their
work requires the existence of statistically hiding commitment. Independently
of [GGJS12], a recent work of Pass, Lin, and Venkitasubramaniam [PLV12] also
provides a constant round protocol achieving non-composable SPS security, us-
ing very different techniques.

Other security notions that deal with concurrent security were presented in
[MPR06, GGJS12] who propose the notion of input indistinguishable computa-
tion, and in [GS09, GJO10] who considered a modified ideal world that allows
the adversary to make more output queries to the ideal functionality (than just
one) per session.

2 Robust Concurrent Extraction

In this section, we will prove the robust extraction lemma. We use standard
notation. In particular, A(x; r) denotes the process of evaluating (randomized)
algorithm A on input x with random coins r, and A(x) the process of sam-
pling a uniform r and then evaluating A(x; r). We define A(x, y; r) and A(x, y)
analogously. The set of natural numbers is represented by N. Unless specified
otherwise, n ∈ N represents the security parameter available as an implicit in-
put. when necessary. All inputs are assumed to be of length at most polynomial
in n.

For two probability distributionsD1 andD2, we writeD1
c≡ D2 to mean that

D1 and D2 are computationally indistinguishable. For two interactive Turing
machines (itm) A and B, we write OUTB [A(1n, x)↔ B(1n, y)], the output of
B after an interaction with A where their inputs in the interaction are y and x
respectively, and their random tapes are independent and uniform.
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We assume familiarity with commitment schemes. Without loss of generality,
we will be using commitment schemes with non-interactive reveal phase—i.e., the
committer sends a single message (v, d) to decommit. For a commitment scheme
〈C,R〉, we denote by open〈C,R〉(c, v, d) the decommitment function. That is, the
receiver accepts v as the value committed to in the commitment-transcript c
if open〈C,R〉(c, v, d) outputs 1, and rejects otherwise. For statistically binding
commitments, v is uniquely determined given c with high probability.

2.1 The PRS Preamble

The robust extraction lemma deals with the commitment preamble of Prab-
hakaran, Rosen, and Sahai [PRS02]. This preamble has been used in many prior
works, and is often referred to as the PRS preamble. The preamble uses an under-
lying commitment scheme Com. Roughly speaking, the committer first commits
to many shares of the value v to be committed using Com. This is followed by a
several rounds where in each round, the receiver sends a random challenge, and
the committer responds with appropriate decommitments. Each round is called
a slot.

Essentially, the PRS preamble is an interactive commitment scheme, which is
statistically binding (resp. hiding) if the underlying scheme Com is statistically
binding (resp., hiding). The formal description of the PRS preamble is given in
figure 1. As before, we write openPRS(c, v, ρ) = 1, to formally mean that there
exists randomness ρ such that c is the transcript of the PRS preamble, executed
between the honest committer with input v and randomness ρ and the honest
receiver with randomness (equal to its challenges) appearing in c.

The security parameter is n, the value to be committed is v ∈ {0, 1}n,
and the round-parameter is ` := `(n).

Commitment. The committer and the receiver execute the following
steps.

1. The committer chooses n` pairs of n-bit random strings (v0i,j , v
1
i,j) for

i ∈ [n], j ∈ [`] such that (for every i, j): v0i,j ⊕ v1i,j = v. It commits
to strings v, vbi,j using the commitment scheme Com, for every b ∈
{0, 1} , i ∈ [n], j ∈ [`].

2. For j = 1 to `:
(a) the receiver sends a n-bit challenge string rj = r1,j , . . . , rn,j

(b) the committer responds by sending a decommitment to strings
v
r1,j
1,j , . . . , v

rn,j

n,j

Decommitment. The committer decommits to all remaining strings
which were not opened in the commit phase.

Fig. 1. The PRS Preamble based on Com.
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2.2 The Extraction Lemma

In this section, we present the robust extraction lemma. We will consider an ad-
versary A∗ who interacts in many sessions of the PRS preamble; simultaneously,
A∗ also participates in a single execution of a two party computation protocol
Π. The running time of A∗ is not necessarily polynomial in n. However, the
lemma becomes trivial if the hiding/binding of the underlying commitment Com
can be broken in poly(n) · T 2 time, where T = T (n) is the maximum number of
PRS preambles A∗ initiates.

Simplifying Assumption. We assume, for the clarity of presentation, that the
commitment scheme Com underlying the PRS preamble is statistically binding.
Later, we will present the general form which deals with both kinds of Com, as
well as varying round complexity of the preamble.

Protocol Π. Let Π := 〈B,A〉 be an arbitrary two-party computation protocol.
We assume w.l.o.g. that both B and A receive a parameter n ∈ N as their first
input. In addition, for a fixed n ∈ N, let domB(n) denote the domain of valid
(second) input for algorithm B, and k := k(n) denote the round complexity of
Π.

The robust-concurrent attack. Let A∗ be an interactive Turing machine,
called the adversary, n ∈ N the security parameter, and x ∈ domB(n) an input.
In the robust-concurrent attack, A∗ interacts with a special, not necessarily
polynomial time, party E called the “online extractor.” Party E simultaneously
participates in one execution of the protocol Π, and several executions of the
PRS preamble with A∗. Party E follows the (honest) algorithm B(1n, x) in the
execution of Π with A∗. Further, it follows the (honest) receiver algorithm in
each execution of the PRS preamble. If A∗ successfully completes a PRS preamble
s, E sends a string αs to A∗, together with a special message ends, to mark the
completion of the preamble.

The scheduling of all messages in all sessions—Π as well as PRS preambles—
is controlled by A∗ including starting new sessions and finishing or aborting
existing sessions. We adopt the following conventions [Ros04, PRS02]:

1. When A∗ sends a round i message of session s, it immediately receives the
next—i.e., (i + 1)-st message of s; this is without loss of generality,8 and
holds for messages of Π as well.

2. If a session s has been aborted, A∗ does not schedule any further messages
of s.

3. If A∗ starts a PRS preamble s, it also sends a special message, denoted
starts, immediately after the last message of step 1 of this preamble is com-
pleted (see figure 1). Message starts indicates that the challenge-response
phase is about to start.

8 This is because the next message can be stored and delivered whenever needed during
the attack.
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At some point, A∗ halts. We say that A∗ launches the robust-concurrent attack.

For n ∈ N, x ∈ domB(n), z ∈ {0, 1}∗, let REALA
∗

E,Π (n, x, z) denote the out-
put of the following probabilistic experiment: on input 1n and auxiliary input
z, the experiment starts an execution of A∗. Adversary A∗ launches the robust-
concurrent attack by interacting with the special party E throughout the exper-
iment, as described above. When A∗ halts, the experiment outputs the view of
A∗ which includes: all messages sent/received by A∗ to/from E , the auxiliary
input z, and the randomness of A∗. �

We are now ready to present the robust extraction lemma. Informally speak-
ing, the lemma states that there exists an interactive Turing machine—a.k.a the
robust simulator—whose output is statistically close to REALA

∗

E,Π (n, x, z) even if
the final response of E at the end of a successful PRS session is actually the value
A∗ commits to in that session. Further, the robust simulator does not “rewind”
B, and runs in time polynomial in total sessions opened by A∗.

Lemma 1 (Robust Concurrent Extraction). There exists an interactive
Turing machine S (“robust simulator”), such that for every A∗, for every Π :=
〈B,A〉, there exists a party E (“online extractor”), such that for every n ∈ N,
for every x ∈ domB(n), and every z ∈ {0, 1}∗, the following conditions hold:

1. Validity constraint. For every output ν of REALA
∗

E,Π(n, x, z), for every PRS
preamble s (appearing in ν) with transcript τs, if there exists a unique value
v ∈ {0, 1}n and randomness ρ such that openPRS(τs, v, ρ) = 1, then:

αs = v,

where αs is the value E sends at the completion of preamble s.

2. Statistical simulation. If k = k(n) and ` = `(n) denote the round com-
plexities of Π and the PRS preamble respectively, then the statistical distance
between distributions REALA

∗

E,Π (n, x, z) and OUTs

[
B(1n, x)↔ SA

∗
(1n, z)

]
is

given by:

∆(n) ≤ 2−Ω(`−k·log T (n)),

where T (n) is the maximum number of total PRS preambles between A∗ and

E.9 Further, the running time of S is poly(n) · T (n)
2
.

We prove this lemma by presenting an explicit simulator S and a corre-
sponding party E . The explicit constructions appear in subsection 2.3, and the
full proof of the lemma is given in the full version [GLP+15]. We now make some
important remarks about the lemma.

9 The lemma allows for exponential T (n) as well. However, if it is too large—e.g.,
T (n) = 22n, the PRS preamble should be modified suitably. For example, the value
v as well as the challenges in each slot, must be of length at least n+ 2 log T (n).
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Remarks.

1. The special party E is not completely defined by the lemma. In particular,
when a PRS preamble s does not commit to a unique and valid value v,
the value αs sent by E to A∗ is not defined. This can happen, e.g., when
not all shares committed to in step 1 xor to v. In such situations, E can
choose whatever value αs it wants. The only requirements on E are that
it uses honest algorithms during the robust-concurrent attack and that for
each successfully completed PRS preamble it satisfies the validity constraint.
Every E satisfying these requirements is called a valid E .

2. The PRS preamble is used in a variety of complex ways. For example, some
protocols require opening the committed PRS-value (e.g., [PRS02, BPS06,
OPV10], whereas some others may never open this value (e.g., [LPTV10,
GJO10]). To be able to capture such uses generically, we do not enforce
any consistency requirements on the PRS preambles. The choice of not fully
defining E when PRS preamble is not valid provides sufficient flexibility to
capture such generic uses of the preamble.

3. When the preamble is used in a larger protocol, a “main” simulator is used
to prove the security of the larger protocol. Typically, the main simulator
employs the rewinding strategy of [KP01, PRS02] to extract the PRS-values
and simultaneously deals with other details of the protocol. Our lemma sep-
arates the task of extracting PRS-values from other necessary actions of the
main simulator. This makes the overall proofs simpler. Party E then only
acts as mechanism to transfer the extracted PRS-values back to the main
simulator. The main simulator takes upon the role of A∗ to receive extracted
values from E , while only dealing with other details of the larger protocol.

4. A consequence of the above two remarks is that when a PRS preamble is
not consistent, we do not know what value αs actually gets extracted. Our
choice of the order of quantifiers allows E to depend on A∗ as well as S. This
essentially allows E to extract and supply the same value αs (by running
S internally) that a typical “main” simulator would extract for inconsistent
PRS preambles.

5. Requirements 1 and 2 of the lemma imply that if we sample an output of the
simulator and consider a PRS preamble s with transcript τs which contains
a unique and valid value v, and receives αs as E ’s response in the end, then
except with probability ∆(n), it holds that αs = v.

2.3 A Robust Simulator and an Online Extractor

In this section, we present an explicit construction of a robust simulator S,
and the (online extractor) party E for which (the robust extraction) lemma 1
holds. The simulator is a slight modification of [KP01, PRS02], to also deal with
messages of Π, without rewinding them. We start by defining a few terms first.

The states of A∗. Recall that the scheduling of messages in the robust-
concurrent attack is controlled by A∗, and when A∗ sends the i-th message
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of a session s (either PRS or Π), it immediately receives the next message of s,
namely the (i + 1)-st message. The state of A∗ at any given point during the
attack consists of its view up to that point : it includes all messages sent/received
by A∗, its auxiliary input z and its randomness. The starting (or original) state
of A∗—denoted throughout by st0—is its state before it receives the first mes-
sage. If st denotes the state of A∗ at some point during the robust-concurrent
attack, the set of all PRS preambles which have not completed yet is denote by
LIVE(st).

The robust simulator S. The simulator receives as input an auxiliary string
z ∈ {0, 1}∗, and the security parameter n. The simulator participates with an
external party B of Π. Let x ∈ domB(n) and γ denote the input and uniformly
chosen randomness of B. The simulator incorporates the adversary A∗ as a black-
box; let T = T (n) define the maximum number of PRS preambles that A∗ can
open during the robust-concurrent attack.

Simulator S starts by setting (1n, z) on A∗’s input tape, and a sufficiently
long uniform string on its random tape. The simulator then initiates a helper
procedure recurse as follows:

(st, T )← recurse(T, st0, ∅, 1, ∅, 0).

Throughout its execution, messages of recurse are forwarded back and forth
to B(1n, x; γ) and (the black-box) A∗ as appropriate. Finally, the output of S is
the first output of recurse, namely st; the output st is also known as the main
thread. Procedure recurse is given in figure 2, each execution of recurse is called
a block, and has a unique name denoted by id. �

The online extractor E. Formally, an execution of E begins during a robust-
concurrent attack. Let (γ, ρ) denote the random tape of E , and (n, x, z) denote
its inputs. E incorporates the program of A∗, and performs the following internal
steps before it sends out its first message in the robust-concurrent attack,

1. E proceeds identically to the robust simulator algorithm S, using ρ as its
random tape and (1n, z) as its inputs. To successfully proceed in this step, E
uses (x, γ) to simulate the honest algorithm B(1n, x; γ), as well as black-box
access to A∗.10 However, E differs from S in its actions only when a PRS
preamble s completes, in the manner described below.

2. Let s be a successfully completed PRS preamble; at this point S either ex-
tracts a value µs or reaches an ExtractFail. When this happens, E neither
sends µs nor aborts the simulation; instead it proceeds as follows. First, E
attempts to extract the actual value committed to in the preamble by in-
verting all instances of the underlying commitment Com. Then, it decides
the value αs, to be sent, as follows. If a valid and unique value vs exists, set
αs = vs. Otherwise, it has following cases:

10 Observe that although E depends on A∗ here, it still uses A∗ only as a black-box, as
remarked earlier.
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procedure recurse(t, st, T , f, aux, id):

1. If t = 1, repeat:
(a) If the next message is start, start a new session s.

– send r ← {0, 1}n as the challenge of the first slot of s.
– add entry (s : 1, r, ) to T .

(b) If the next message is the slot-i challenge of an existing session s.
– send r ← {0, 1}n as the slot-i challenge of s.
– add entry (s : i, r, ) to T .

(c) If the next message is the slot-i response, say β, of an existing
session s.
– If β is a valid message:

– update entry (s : i, ri, ) to (s : i, ri, β).
– if i = `, i.e., it is the last slot, send (end, extract(s, id, T , aux)).

– Otherwise, if β = ⊥, abort session j, and add (s : ⊥,⊥,⊥) to
T .
– Update st to be the current state of A∗

– return (st, T ).
(d) If the next message is a response from A∗ for the external protocol

Π.
– If f = 0, i.e., it is a look-ahead block, then return (st, T );
– If f = 1, i.e., it is the main thread), do the following:

– send A∗’s message to the external party of Π, return the
response to A∗.

– Update st to be the current state of A∗

– For every live session s ∈ LIVE(st), do the following:
– ×s,id = true,
– for every block id′ that contains the block id, set: ×s,id′ =

true.
2. If t > 1,

# Rewind the first half twice:
(a) (st1, T1) ← recurse(t/2, st, T , 0, aux, id ◦ 1) [look-ahead block

C′]
(b) Let aux2 = (aux, T1 \ T ),

(st2, T2)← recurse(t/2, st, T , f, aux2, id ◦ 2) [main block C]

# Rewind the second half twice:
(c) (st3, T3) ← recurse(t/2, st, T ∗, 0, aux, id ◦ 3) [look-ahead block

D′]
(d) Let T ∗ = T1 ∪ T2 and aux4 = (aux, T3 \ T ∗),

(st4, T4)← recurse(t/2, st, T ∗, f, aux4, id ◦ 4) [main block D]

(e) return (st4, T3 ∪ T4).

procedure extract(s, id, T , aux):

1. Attempt to extract a value for s from T .
2. If extraction fails, consider every block id1 for which ×s,id1 = true.

– Let id′1 be the sibling of id1, with input/output tables Tin, Tout re-
spectively.
– Attempt to extract from auxid′1 := Tout \ Tin; (included in aux).

3. If all attempts fail, abort the simulation and return ExtractFail.
Otherwise return the extracted value.

Fig. 2. Procedures recurse and extract used by the robust simulator S.
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(a) If there are more than one valid vs, proceed as follows: if µs equals to
any of them, set αs = µs, otherwise, set αs to be one of them chosen at
random.

(b) If no valid vs exists, then proceed as follows: if µs = ExtractFail, set αs
to be a random value; otherwise, set αs = µs.

3. After reaching the end of the simulation, E internally stores the randomness
ρs and the values αs for every PRS preamble s appearing on the main thread.

Having completed the steps above,11 E is now ready to interact with the (outside)
A∗ launching the robust-concurrent attack, and proceeds as follows.

– If A∗ sends a message intended for the (only) session of Π, E interacts with
A∗ by following actions of B(1n, x; γ). Likewise, if A∗ sends a messages for a
PRS preamble s, A∗ follows the honest receiver algorithm of PRS preamble
with randomness ρs already computed internally.

– If A∗ successfully completes a PRS preamble s, E sends the already stored
value αs to A∗. �

3 CCA Secure Commitments in Õ(log n) Rounds

In this section we apply our robust extraction lemma to construct a Õ(log n)-
round protocol for CCA secure commitments. We will need the generalized ver-
sion of the lemma which allows for statistically hiding PRS preamble as well;
the general version appears in 4. We will also use a non-malleable commitment
scheme, denoted NMCom, that is robust w.r.t. constant round protocols [LP09].
Constant round constructions for such protocols are now known (see the non-
malleable commitments section in the full version [GLP+15]).

The protocol has a very intuitive “commit-and-prove” structure where the
committer commits to the value v using a PRS preamble, and then proves its
consistency using what resembles a “concurrent simulation-sound” protocol. We
start by recalling the notion of CCA secure commitments from [CLP10].

3.1 CCA Secure Commitments

Let 〈C,R〉 denote a statistically binding and computationally hiding commit-
ment scheme. We assume w.l.o.g. that 〈C,R〉 has a non-interactive reveal phase—
i.e., the committer simply sends (v, d). The decommitment is verified using a
function open(c, v, d); that is, the receiver accepts v as the value committed in
the commitment-transcript c if open(c, v, d) outputs 1, and rejects otherwise.
A tag-based commitment scheme with l(n)-bit identities [PR05b, DDN91] is a
commitment-scheme where in addition to 1n, C and R also receive a “tag” (or

11 We insist that all the steps above are internal to E and that as of now it has not sent
any external message in the robust-concurrent attack. Further, it can successfully
complete these steps since it has all the required inputs.
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identity) of length l(n) as common input. We will consider schemes which are ef-
ficiently checkable: meaning that if R accepts in the interaction (with transcript
c) then there exists a decommitment pair (v, d) such that open(c, v, d) = 1.

In CCA-secure commitments, we consider an adversarial receiver A, who has
access to an oracle O, called the “decommitment oracle.” The oracle participates
with A in many concurrent sessions of (the commit phase of) 〈C,R〉, using tags
of length l(n), chosen adaptively by A. At the end of each session, if the session is
accepting, the oracle returns the (unique) value committed by A in that session;
otherwise it returns ⊥. (In case there is more than one possible decommitment,
O returns any one of them.)12

Roughly speaking, we say that a tag-based scheme 〈C,R〉 is CCA-secure
if there exists a decomitment oracle O for 〈C,R〉, such that the hiding prop-
erty of the scheme holds even for adversaries A with access to O. Formally,
let INDb(〈C,R〉,O, A, n, z) denote the output of the following probabilistic ex-
periment: on common input 1n and auxiliary input z, the ppt adversary AO

(adaptively) chooses a pair of challenge values (v0, v1) ∈ {0, 1}n and a tag

id ∈ {0, 1}l(n), and receives a commitment to vb using the tag id (note that A
interacts with O throughout the experiment as described before); finally, when
AO halts, the experiment returns the output y of AO; y is replaced by ⊥ if during
the experiment, A sends O any commitment using the tag id.

Definition 1 (CCA-secure Commitments, [CLP10]). Let 〈C,R〉 be a tag-based
commitment scheme with tag-length l(n), and O be a decommitment oracle for
it. We say that 〈C,R〉 is CCA-secure w.r.t. O, if for every ppt itm A, every
z ∈ {0, 1}∗, and every sufficiently large n, it holds that:

IND0(〈C,R〉,O, A, n, z) c≡ IND1(〈C,R〉,O, A, n, z).

We say that 〈C,R〉 is CCA-secure if there exists a decommitment oracle O′
such that 〈C,R〉 is CCA-secure w.r.t. O′.

An analogous version of the definition which considers many concurrent ex-
ecutions on left (instead of just one), is known to be equivalent to the current
definition (via a simple hybrid argument). Also note that, for this reason, this
definition implies concurrent non-malleable security for commitments [PR05a].

3.2 Our Protocol for CCA Secure Commitments

We are now ready to present our CCA secure commitment protocol, denoted
CCA-Com. The protocol employes the PRS preamble in both directions (similar
to [GJO10, LPTV10]). However, our protocol is much simpler, and admits an
easier security proof.

12 Note that since 〈C,R〉 is efficiently checkable, and the session is accepting, such a
valid decommitment always exists. In addition, note that since we only have statis-
tical binding, this value is unique except with negligible probability.
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We now provide a quick overview of our protocol. Our protocol will also use
a constant-round non-malleable commitment scheme—NMCom—that is robust
w.r.t. 4 rounds. The formal description of our protocol appears in figure 3.

Let v ∈ {0, 1}n be the value to be committed. Our commitment protocol,
CCA-Com, consists of five phases. In the first phase, the committer C commits
to v using a statistically-binding PRS preamble. We denote this instance of the
preamble by PRS1. In phase 2, the receiver R uses a statistically-hiding PRS
preamble to commit to a random value σ ∈ {0, 1}n; we denote this instance of
the PRS preamble by PRS2.

In phase 3, C commits to 0n using the robust NMCom scheme. In phase
4, R decommits to the value σ (of phase PRS2). Finally, in phase 5, C uses a
witness-indistinguishable (WI) proof system to prove that: “either there exists
a valid value v in phase 1 or the value committed in NMCom is σ.” It can use,
for example, Blum’s 3-round protocol repeated in parallel n times [Blu87]. We
remark that it is necessary to use a proof system which ensures soundness against
unbounded provers.

To decommit, C sends decommitments corresponding to the first phase,
namely PRS1. The round-complexity of both PRS preambles is ` ∈ ω(log n). We
have the following theorem, whose proof is given in the full version [GLP+15].

Theorem 1. Assuming the existence of collision-resistant hash functions, pro-
tocol CCA-Com presented in figure 3 is a Õ(log n)-round CCA secure commitment
scheme for identities of length n.

3.3 Construction based on One-way Functions

Protocol CCA-Com of the previous section requires the use of a statistically-
hiding phase PRS2. If we change the protocol so that PRS2 is statistically-
binding, we will not be able to prove that the right sessions of CCA-Com remain
statistically binding. This is because of the presence of the super-polynomial time
oracle O. Indeed, without the oracle we can make PRS2 statistically-binding and
have a protocol based on one-way functions; but in the presence of oracle, it may
happen that A∗ is able to ensure that for some right session s, ũs = σ̃s.

To avoid this problem, we must somehow remove PRS2 yet still be able to
later modify the left PRS slot-by-slot. The key observation is that in case of
commitments, there is only one left session. Therefore, we can use a different
simulation strategy which guarantees “soundness” w.r.t. unbounded committers
as well.

Based on this observation, our one-way functions based protocol does not
use PRS2. Instead it uses a CoinFlip protocol in which no unbounded prover can
succeed in “setting up a trapdoor” but a rewinding party can. Our new protocol,
denoted CCA-Com∗, appears in figure 4.

Theorem 2. Assuming the existence of one way functions, protocol CCA-Com∗

presented in figure 4 is a Õ(log n)-round CCA secure commitment scheme for
identities of length n.
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Protocol CCA-Com. The committing algorithm is denoted by C. The
receiver algorithm is denoted by R. The common input is the security
parameter n and an identity id of length n. The private input of C is the
value v ∈ {0, 1}n to be committed. The protocol proceeds in following five
phases:

– Phase 1: C commits to v using a statistically-binding PRS preamble.
This instance of the preamble is denoted by PRS1, and let τ1 be the
commitment-transcript.

– Phase 2: R commits to random σ ← {0, 1}n using a statistically-
hiding PRS preamble. This instance of the preamble is denoted by
PRS2.

– Phase 3: C commits to the all-zero string 0n using NMCom, with
common identity id. Let τ3 be the commitment-transcript.

– Phase 4: R decommits to σ, by sending the appropriate decommit-
ment strings.

– Phase 5: C proves to R, using a public coin, constant round WI proof
system (e.g., n parallel repetitions of Blum’s protocol), that either:

(a) ∃ v ∈ {0, 1}n s.t. τ1 is a valid PRS-commitment to v; OR
(b) τ3 is a valid commitment to σ as per NMCom.

Decommitment oracle O. The oracle extracts the value committed
to in transcript τ1 of the first phase, and returns it.

Fig. 3. Protocol CCA-Com.

For the proof of this theorem see appendix ??. Although the proof is very
similar to that of theorem 1, one crucial point is that we need to re-use the idea
of robust-simulation, and be careful about how we apply it.

4 Generalized Version of the Robust Extraction
Lemma

In the generalized version of the lemma, we allow A∗ to open sessions of the
PRS preambles that are statistically hiding. At the start of the preamble, it
is already understood whether it is statistically-binding or statistically-hiding.
Since statistically-hiding preambles are only computationally-binding, we require
that A∗ is a ppt machine. Furthermore, we make following new adjustments to
the robust-concurrent attack:

At the successful completion of a statistically-hiding PRS preamble s, when
A∗ receives the string αs from E , it can choose to respond with an opening
of the committed value vs. It does so by sending appropriate decommitment
strings (vs, ds). Furthermore, the scheduling of this message is decided by
A∗.
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Protocol CCA-Com∗. The committing algorithm is denoted by C. The
receiver algorithm is denoted by R. The common input is the security
parameter n and an identity id of length n. The private input of C is the
value v ∈ {0, 1}n to be committed. Com is a statistically-binding scheme.

Round parameters. Let q := q(n) be a fixed function in ω(1), and
let ` := `(n) = q(n) · logn ·ω(1). Let k ∈ O(1) be the round complexity of
NMCom.

– Phase 1: C commits to v using the PRS preamble with parameter
` ∈ ω(logn). This instance of the preamble is denoted by PRS1, and
let τ1 be the commitment-transcript.

– Phase 2: C and R execute the following CoinFlip protocol. In round
i ∈ [q]:

(a) C commits a “short” string ui ∈ {0, 1}logn using Com,
Let ci be the commitment-transcript, and di a decommitment-

string.
(b) R sends a “short” random string σi ∈ {0, 1}logn

Define u = (u1, . . . , uq), σ = (σ1, . . . , σq), and d = (d1, . . . , dq).
– Phase 3: C commits to string (u, d) using NMCom andidentity id. Let
τ3 be the commitment-transcript.

– Phase 4: C proves to R, using a public coin, constant round WI
proof —e.g., n parallel repetitions of Blum’s protocol—that either:

(a) ∃ v ∈ {0, 1}n s.t. τ1 is a valid PRS-commitment to v; OR
(b) τ3 is a valid commitment to (u, d) as per NMCom, such that

∀i ∈ [q]:
– (i) openCom(ci, ui, di) = 1, and
– (ii) ui = σi.

Decommitment oracle O. The oracle extracts the value committed
to in transcript τ1 of the first phase, and returns it.

Fig. 4. Protocol CCA-Com∗ based on one-way functions.
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Other than this, the attack remains unchanged. We now present the generalized
version of the lemma. The essence of the lemma is still the same as before. We
only need to add conditions to deal with the statistically-hiding preambles. For
such preambles, the validity constraint requires that αs be equal to the opened
value vs (if any), except with negligible probability.

Lemma 2 (Robust Extraction: General Version). There exists an inter-
active Turing machine S (“robust simulator”), such that for every ppt A∗, for
every Π := 〈B,A〉, there exists a party E (“online extractor”), such that for every
n ∈ N, for every x ∈ domB(n), and every z ∈ {0, 1}∗, the following conditions
hold:

1. Validity constraint. For every output ν of REALA
∗

E,Π(n, x, z), we have:
(a) for every statistically-binding preamble s (appearing in ν) with tran-

script τs, if there exists a unique value v ∈ {0, 1}n in the commitment-
transcript τs, then αs = v,

(b) for every statistically-hiding preamble s (appearing in ν) with transcript
τs, if there exists a valid opening (vs, ds) in the view ν, then αs = vs,

where αs is the value E sends at the completion of s.
2. Statistical simulation. If k = k(n) and ` = `(n) denote the round com-

plexities of Π and the PRS preamble respectively, then the statistical distance
between distributions REALA

∗

E,Π (n, x, z) and OUTs

[
B(1n, x)↔ SA

∗
(1n, z)

]
is

given by:
∆(n) ≤ 2−Ω(`−k·log T (n)),

where T (n) is the maximum number of total PRS preambles between A∗ and

E.13 Further, the running time of S is poly(n) · T (n)
2
.

The proof of this general version of the lemma is identical to the proof of the
original lemma and appears in the full version [GLP+15]. We only need to show
that condition 1(b) also holds. We show that if it does not then we can violate
the computational binding of the statistically-hiding PRS. Suppose that Comsh

is the underlying commitment scheme of the statistically hiding PRS. Then, if
αs is not equal to vs, look at the two opened challenges in the execution of
recurse whose xor results in αs; let they belong to slot i of this session. Both of
these strings must have been decommitted to correctly (for the scheme Comsh).
Further, since opening vs requires opening of all slots of PRS such that pairs
in each slot xor to the same vs, we have that all pairs of slot i must have
been correctly opened to strings that are different from what recurse learned.
Therefore, we must have an instance of Comsh with correct openings to two
different values. The details are standard and omitted. We note that the value
of ∆(n) in the second condition does not change since both E and S extract
value αs identically for the statistically-hiding PRS.

13 The lemma allows for exponential T (n) as well. However, if it is too large—e.g.,
T (n) = 22n, the PRS preamble should be modified suitably. For example, the value
v as well as the challenges in each slot, must be of length at least n+ 2 log T (n).
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5 Proof of Security for CCA-Com

We start by noting that the scheme is statistically-binding even against an un-
bounded cheating committer algorithm C∗. This is because of the following.
PRS2 is statistically-hiding for σ, and therefore except with negligible probabil-
ity, the value committed to in NMCom (which is statistically-binding) does not
equal σ. Then, from the soundness of the WI proof, it follows that C∗ can succeed
only when the PRS1 is consistent. It will be important to have statistical-binding
w.r.t. unbounded C∗ since we will be dealing with the super-polynomial time
oracle O in various hybrid experiments.

We now proceed to demonstrate the CCA security of our scheme. To do so,
we will directly construct a ppt simulator SIM, which simulates the view of any
CCA adversary A∗O. SIM will not have access to the decommitment oracle O,
and uses A∗ only as a black-box. Recall that O extracts the value from the
transcript of PRS1. SIM only receives 1n and auxiliary-input z for A∗, as its own
inputs.

Lemma 3. There exists a strict polynomial time machine SIM such that for
every ppt itm machine A∗, every z ∈ {0, 1}∗, every sufficiently large n, and
every b ∈ {0, 1}, it holds that:

SIMA(1n, z)
c≡ INDb(〈C,R〉,O, A, n, z).

Proof. Recall that during its execution A∗ opens one session of CCA-Com :=
〈C,R〉 on left, while simultaneously interacting in multiple concurrent sessions
of CCA-Com with O, called the right sessions. Let T = T (n) be a polynomial
upper-bounding the number of right sessions of A∗.

Algorithm SIM will use the robust simulator S guaranteed by the (general
version of) the robust-extraction lemma (see sections 2 and 4), allowing it to
extract the values committed to by A∗ in all PRS preambles. It then uses these
values to simulate the answers of O, as well as to succeed in WI proof (by
committing the extracted value in NMCom of the left session).

SIM uses two helper procedures: the robust simulator S and an “interface”
algorithm I to be described shortly. Procedure I essentially “decouples” the
PRS preambles from the rest of the CCA-Com protocol. It incorporates A∗ as a
black-box, and handles all messages of all sessions of CCA-Com internally and
honestly, except for all the PRS preambles in which A∗ acts as the committer. All
these preambles are forwarded to outside PRS-receivers. That is, I participates
in a robust-concurrent attack, interacting with the party E . It executes PRS
preambles with E , and at the end of each PRS preamble s, I expects to receive
a value αs from E . This value will be used internally.

SIM is a polynomial time machine without access to any super-polynomial
time helper. Therefore, to run I, it runs the robust-simulator S providing it black-
box access to the “adversary” procedure I. SIM outputs whatever S outputs.
Formal descriptions follow.
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Algorithm SIM(1n, z). Return the output of SI(1n, z), where procedure I—
which has black-box access to adversary A∗—is described below.

Procedure I(1n, z). Procedure I launches the robust-concurrent attack, by
committing in several PRS sessions to external receivers denoted R1, . . . , RT . At
the end of each preamble, it expects to receive a string αs. I incorporates the
CCA adversary A∗ internally, as a black-box. I initiates an execution of A∗,
simulating various sessions of CCA-Com that A∗ opens as follows.

1. If A∗ starts a new session s of CCA-Com on right, I starts by initiating a
new session of the statistically-binding PRS1 with an external receiver Rs.
Then, messages of phase-1 of s are relayed between A∗ and Rs. I simulates
all other phases of s internally by following the honest algorithm for each
phase.

2. If A∗ starts a new session s of CCA-Com on left, I initiates a new session of
the statistically-hiding preamble to be used as PRS2 of s with an external
receiver R′s. I completes various phases of s as enumerated below.
(a) Phase 1: I commits to an all zero string to A∗.
(b) Phase 2: I simply relays messages between A∗ and R′s.
(c) Phase 3: I commits to value αs using NMCom (instead of 0n). Value αs

was received from outside at the end of PRS2 of sessions s.
(d) Phase 4: If A∗ correctly opens the value in PRS2 of session s, I checks

that the opened value is equal to the “fake witness” αs. If not, it out-
puts a special symbol ExtractFail, and halts. Otherwise it continues the
execution.

(e) Phase 5: I uses αs and the randomness used in phase 3 (NMCom) to
complete the WI proof in phase 5.14

3. Oracle answers: If A∗ successfully finishes a session s of CCA-Com on right,
I sends the (already extracted) value αs to A∗.

When A∗ halts, I outputs the view of A∗, and halts. �

Proving Indistinguishability. We are now ready to prove our lemma. We
will prove this by using a series of hybrid experiments. Our hybrid experiments
will be designed my making step-by-step changes to how I communicates with
A∗ internally in various phases of the protocol. For i ∈ [7], we denote by νi the
output of hybrid Hi.

Hybrid H0: This hybrid is identical the experiment INDb(〈C,R〉,O, A, n, z).
Recall that in this experiment, A∗O receives a commitment to value vb ∈ {0, 1}n
from the honest committer C, while interacting with the oracle O. The output
of the experiment consists of the view of A∗, which is also the output of H0.

14 Note that, technically, I can use the valid witness corresponding to the PRS1 phase
s. This is since it committed to a valid value, namely 0n. However, we choose to use
αs so that SIM will in fact be a valid simulator even for our concurrent non-malleable
zero-knowledge protocols.
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Hybrid H1: This hybrid is identical to H0, except for the following differences:

(a) H1 does not forward the right sessions to O. Instead, it executes all right
sessions on its own, by playing the honest receiver strategy R. Denote by Rs
the instance of R executed in session s.

(b) When A∗ successfully completes the session Rs, H1 queries a different ora-
cle O′, which acts as follows. The query to O′ consists of only part of the
commitment-transcript PRS1 that belongs for the value to be committed.
All other messages (e.g., commitments of shares and slot-messages) are not
part of the query. In particular, if Com is non-interactive, the query will be
commitment of the value ṽs. If there is a unique value defined by the query,
O′ extracts that value, and returns it as the answer. In all other cases, it
behaves exactly as O.

Hybrid H2: This hybrid is identical to H1; we use it to set up some notation.
Define a procedure I2, which is identical to procedure I (defined above), except
that it it executes (all internal phases of) the left session honestly and that it
uses the oracle O′ as in H1. That is, it only forwards the PRS preambles received
from A∗ outside, but executes all other phases internally and honestly. Formally,
I2 is identical is identical to I except:

(a) I2 receives the value vb to be committed in left sessions of CCA-Com, as
an input. Furthermore, I2 commits to value vb in PRS1 of the left session
(instead of 0n, step 2(a)).

(b) When a session s of PRS1 ends, I2 expects to receive a value αs from out-
side. If s is a statistically-binding sessions, then I2 gives αs to A∗. If s is
statistically-hiding, it ignores the value s—there is only one such session
corresponding to the left session.

(c) I2 uses the valid witness, vb and the randomness of PRS1 to complete its
WI proof in the left session (step 2(e)). I2 does not check the validity of the
“fake witness” (step 2(d)).

Observe that I2 is essentially launching a robust-concurrent attack. It does not
perform any rewindings. Hybrid H2 simply runs the procedure IA

∗

2 , and simu-
lates PRS-receivers for it exactly as H1 does; furthermore, when a statistically-
binding session s finishes, H2 forwards its commitment to O′ and returns the
oracles answer, denoted αs, to I. On the other hand, if the statistically-hiding
session of PRS ends, H2 sends a random string αs (which, by construction, is
ignored by I2, see point (b)). The output of H2 is the view of I2 (which in turn
is the view of A∗).

Hybrid H3: For procedure I2, let E be our online extractor as defined in
section 2.3 (with addendum from section 4 to deal with statistically-hiding PRS
as well). Recall that E is a super-polynomial time machine, which facilitates
the robust-concurrent attack. In particular, it acts honest receivers in all PRS
preambles, as well as provides extractions for each one of them when they finish.
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On input (1n, vb, z), hybrid H3 starts an execution of I2(1n, vb, z), making it
interact with party E . The output of H3 is the output of the robust-concurrent
attack, which in turn consists of the view of I2 (and hence A∗). Therefore, H3

differs significantly from H2: it does not run PRS receivers and does not have
access to O′, since these are automatically done by E for H3.

From hereon, we will only be making changes to the interface procedure I2. All
future hybrids, except for the last one, differ from H2 in only that they use a
modified version of I2. Furthermore, changes are made to the phases of the left
session only, of which there is only one.

Hybrid H4: This hybrid is identical to H3 except that instead of using I2,
it uses procedure I4. Let αs be the value that I2 receives from E at the end
of statistically-hiding PRS2 of the left session. Furthermore, let σs be the value
opened by A∗ which appears internally, in the left session of CCA-Com (simulated
for A∗ by I2).

Procedure I4 is identical to I2 except that when A∗ sends σs along with valid
openings, I4 tests that αs = σs; it aborts the entire simulation if this test fails,
and outputs BindingFail. Recall that I2 simply ignores αs.

Hybrid H5: This hybrid is identical to H4 except that instead of using I4, it
uses a modified procedure I5. Procedure I5 is identical to I4 except that instead
of committing to 0n, it commits to αs in protocol NMCom of the left session s.

Hybrid H6: Identical to H5 except that instead of using I5, it uses a modified
procedure I6. Procedure I6 is identical to I5 except that it uses the“fake witness”
in the WI proof of the left session s. Recall that the “fake witness” consists of
the value αs and the randomness used in NMCom.

Hybrid H7: Identical to H6 except that instead of using I6, it uses a modified
procedure I7. Procedure I7 is identical to I6 except it does not receive the input
vb, and commits to 0n in the first phase PRS1 of the left session. Observe that
I7 is in fact identical to I.

Hybrid H8: This hybrid differs from H7 in two crucial places. First, it does not
receive the value vb as input. Therefore, its only inputs are (1n, z). In addition,
it does not use the party E . Instead, H8 simply runs the robust simulator S with
inputs (1n, z) and black-box I7. It outputs whatever S outputs. Observe that
H8 is in fact our original simulator SIM, presented earlier. �

Notation. Let ν0 denote the output of H0. Let u0 be the variable denoting the
value committed by C in NMCom in the left session, and let σ0 be the variable
denoting PRS-value opened by A∗ in (phase-4 of) the left session. Since there is
only one left session, we will not use any subscripts. Analogously, define variables
ũ0s and σ̃0

s for the s-th right session in hybrid H0. Finally, we denote by ṽ0s the
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value A∗ commits in PRS1 of the s-th right session in H0. For i ∈ {0, . . . , 8}
define values νi, ũis, σ̃

i
s and ṽis w.r.t. the hybrid Hi analogously. Identity of the

left session is referred to by id, and that of the s-th right sessions by ĩds without
mention of the hybrid. Further, unless specified otherwise, index s is in [T ], and

ĩds is not equal to id, and the probability is taken over the randomness of the
hybrid in consideration.

We start by noting that ν0 is identical to INDb(〈C,R〉,O, A, n, z). Next, we claim
the following.

Claim. For every hybrid i ∈ {0, . . . , 4} and for every right session s ∈ [T ],

ν0
s≡ ν1 ≡ ν2 s≡ ν3

s≡ ν4 (1)

Pr
[
ũis = σ̃is

]
≤ negl(n) (2)

Proof. It is seen by way of construction of hybrids H1 and H2, that ν0
s≡ ν1 ≡

ν2.15 In case of hybrid H3 party E , which also simulates PRS sessions exactly
as H2 does (since E is valid). Furthermore, E extracts the values αs in the (first
message) of the PRS preamble exactly as O′ does in H2. If a unique and valid αs
exists, the value αs returned to I2 is the same in both hybrids. However, when
the value is not unique, E uses a different decision procedure to decide the value
of αs. Nevertheless, statistical-binding of PRS ensures that this happens with
only negligible probability. It follows that the distribution of answers αs in both

hybrids is statistically close, and hence ν2
s≡ ν3.

Finally, in H4 the only difference is that I4 verifies that αs = σs (i.e., the fake
witness is correct). From the validity constraint 1(b) on E (see lemma 2, section

4) this condition fails with only negligible probability. Therefore, ν3
s≡ ν4.

We first prove the second equation for hybrid H0. Fix any right-session s of
H0. Observe that PRS2 of s is statistically-hiding. Therefore, except with negli-
gible probability, we have that value σ̃0

s is not defined until after the completion
of NMCom of session s. Since NMCom is statistically-binding, and there are ex-
ponentially many possible values for σ̃0

s , the claim follows (for hybrid H0). Now,
observe that the same argument applies for hybrids H1 and H2 as well. In case of
H3 and H4, since E simulates PRS receivers honestly, the same argument applies
to these hybrids as well. �

A corollary of the second equation is that in each of these hybrids, for every
right session s that is accepting, there exists a unique and valid16 value ṽis to
which A∗ is committed to (except with negligible probability). This is because if

15 First two hybrids are not identical since the oracle changes: O extracts from the
full PRS transcript (and therefore always checks for consistency), whereas O′ simply
extracts from the (first) committing message of PRS. Statistical-binding ensures that
this difference happens only in negligible cases.

16 Recall that v is valid if all shares xor to v; formally, there exists randomness ρ such
that openPRS(τ1, vs, ρ)=1 where τ1 is the commitment-transcript of PRS1 of s.
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the second equation holds, from the soundness of WI proof against unbounded
adversaries,17 phase PRS1 must be consistent defining a unique and valid value.
Therefore, in all future hybrids, we will continue to maintain the second equation
as an invariant.

Claim. We have that, ν4
c≡ ν5; and ∀s : Pr

[
ũ5s = σ̃5

s

]
≤ negl(n).

Proof. Both hybrids H4 and H5 use party E which is super-polynomial time.
Therefore, to prove the claim, we need to first need to eliminate the use of E .
Observe that this can be done by employing the robust simulator S. However,
since we aim to reduce the claim to the non-malleability of NMCom, we would like
one left execution and one right execution of NMCom that the robust-simulator
S does not rewind.

Recall that the only difference between H4 and H5 is that they use different
procedures: I4 and I5 respectively. The only difference between I4 and I5 is that
the first one commits to x = 0n whereas the second one commits to x = αs in
phase NMCom of the left session. Recall that αs is the value sent by E at the
conclusion of PRS2 of the left session.

We design an intermediate procedure I∗, which is identical to I4 except for
the following differences:

1. When the NMCom phase of the left session is about to begin, I∗ sends (0n, αs)
to an external committer.

2. I∗ does not execute the NMCom of the left session internally. Instead, it
expects to receive it from an external honest committer, denoted Cnm, who
either commits to 0n or αs.

3. For a randomly chosen right session j, I∗ does not execute the the NMCom
of session s internally. Instead, it forwards the messages of this NMCom to
an external honest receiver, denoted Rjnm.

Therefore, I∗ is executed several PRS preambles, and at the same time acting as a
man-in-the-middle for protocol NMCom by receiving a commitment and making
a commitment at the same time. Let B denote the party who runs algorithm
Cnm as well as Rjnm for I∗, both honestly. Observe that the number of rounds of
interaction between B and I∗ are 2k where k is the round-complexity of NMCom.
The input x to B consists of the value to be committed by Cnm.

Viewed this way, I∗ is an adversary who launches the robust-concurrent at-
tack with respect to party B, and the party E . Furthermore, if B commits to
x = 0n then the execution is identical to that of H4 with I4; on the other hand,
if x = αs, the execution is identical to that of H5 with procedure I5. That is,

ν4 ≡ REALI∗E,Π(n, 0n, z),

ν5 ≡ REALI∗E,Π(n, αs, z).

17 We need this since A∗ does have access to super-polynomial computations via O,
and we do not know what he might be learning.
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where protocol Π = (B,P2), and P2 is “converse of B—that is P2 acts as a
receiver in one NMCom in which B is acting as a committer and vice-versa in
the other.

Now, we can remove E and instead use the robust-simulator S to sample
statistically close views. That is, suppose that we run S with I∗ and consider
the output OUTs(x) := OUTs

[
B(1n, 0n)↔ SI∗(1n, z)

]
. By applying the robust

concurrent extraction lemma, we have that statistical distance between OUTs(x)
and REALI∗E,Π(n, x, z) is at most:

∆(n) ≤ 2−Ω(`−2k·log T ) ≤ negl(n),

for every x ∈ {0n, αs} since ` ∈ ω(log n), k is a constant, and T is at most a
polynomial. Using this with the equations above, we get:

ν4
s≡ OUTs(0

n) (3)

ν5
s≡ OUTs(αs) (4)

By construction, OUTs(x) is the output of SI∗ in an interaction with B on
input x. Algorithm SI∗ is a ppt man-in-the-middle adversary for NMCom who
receives a commitment to x from Cnm, and commits a value, say ũj(x), to Rjnm.
From non-malleability of NMCom w.r.t. to itself, we have that:

(ũj(0
n),OUTs(0

n))
c≡ (ũj(αs),OUTs(αs)) (5)

It immediately follows from (3), (4), and (5), that ν4
c≡ ν5. Furthermore,

suppose that the other part of the claim is false, so that for some session s ∈ [T ]
value ũ5s = σ̃5

s with noticeable probability p. Define this to be event bad5 for
hybrid H5, and analogously define bad4 for H4.

Now observe that since j was chosen uniformly from T sessions, j = s with
probability 1/T . Therefore, value ũ5s appears as the variable ũj(αs) with proba-
bility 1/T . In addition, value σ̃j(αs) is a part of OUTs(αs), and therefore, event
bad5 is efficiently observable given both (ũj(αs),OUTs(αs)); and it occurs with
probability p/T which is noticeable. By an analogous argument, event bad4 is
also efficiently observable; furthermore bad4 must occur with noticeable proba-
bility as well due to equation (5). This contradicts equation (2). Hence the claim.
�

Claim. We have that, ν5
c≡ ν6; and ∀s : Pr

[
ũ6s = σ̃6

s

]
≤ negl(n).

Proof. The proof of this claim is almost identical to the proof of claim 5. The
only difference is that instead of using non-malleability w.r.t. itself property of
NMCom, we use the fact that NMCom is robust w.r.t. every interesting 3-round
protocol (i.e., one that “hides” its input, see the non-malleable commitments
definition in the full version [GLP+15]). Since the only difference between H5

and H6 is in the WI part, the proof follows; we omit the details. �
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Claim. We have that, ν6
c≡ ν7; and ∀s : Pr

[
ũ7s = σ̃7

s

]
≤ negl(n).

Proof. Observe that in H6, since the “fake witness” is being used in the WI
part, the PRS1 phase of the left session (which commits to input value vb) does
not have to be consistent. Therefore, we proceed as follows:

1. Design `+1 intermediate hybrids H6:i for i = {0, . . . , `−1} where H6:0 = H6,
H6:` = H7.

2. Hybrid H6:i is the same as H6:i+1 except that in slot-i of PRS1 phase of the
left session, H6:i+1 commits to shares of an all-zero string.

3. Now, following the proof of claim 5 and by using the robustness of NMCom

w.r.t. the 3-round protocols, we conclude that ν6:i
c≡ ν6:i+1 and that ∀s : Pr

[
ũ6:is = σ̃6:i+1

s

]
≤

negl(n), where variables are analogously defined. The details of this part are
repetitive, and omitted.

The claim now follows. �

Completing the proof. Note that the output of H8, is statistically-close to
ν7 due to the robust-concurrent-extraction lemma. Therefore, combining all the

equations we have that ν0
c≡ ν8. Since H8 is identical tot he simulator, the lemma

follows.
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