
Richer Efficiency/Security Trade-offs in 2PC

Vladimir Kolesnikov?, Payman Mohassel, Ben Riva, and Mike Rosulek??

1 Bell Labs, kolesnikov@research.bell-labs.com
2 University of Calgary, pmohasse@cpsc.ucalgary.ca

3 Bar-Ilan University, benr.mail@gmail.com
4 Oregon State University, rosulekm@eecs.oregonstate.edu

Abstract. The dual-execution protocol of Mohassel & Franklin (PKC
2006) is a highly efficient (each party garbling only one circuit) 2PC
protocol that achieves malicious security apart from leaking an arbi-
trary, adversarially-chosen predicate about the honest party’s input. We
present two practical and orthogonal approaches to improve the security
of the dual-execution technique.
First, we show how to greatly restrict the predicate that an adversary can
learn in the protocol, to a natural notion of “only computation leaks”-
style leakage. Along the way, we identify a natural security property of
garbled circuits called property-enforcing that may be of independent
interest.
Second, we address a complementary direction of reducing the probabil-
ity that the leakage occurs. We propose a new dual-execution protocol —
with a very light cheating-detection phase and each party garbling s+ 1
circuits — in which a cheating party learns a bit with probability only
2−s. Our concrete measurements show approximately 35% reduction in
communication for the AES circuit, compared to the best combination
of state of the art techniques for achieving the same security notion.
Combining the two results, we achieve a rich continuum of practical
trade-offs between efficiency & security, connecting the covert, dual-
execution and full-malicious guarantees.

1 Introduction

Garbled circuits were initially conceived as a technique for secure computation
protocols [23]. Now they are recognized as fundamental and useful to a wide
range of cryptographic applications (see the survey in [3]). By themselves, gar-
bled circuits are generally only useful for achieving semi-honest security. For ex-
ample, in the setting of two-party secure computation, malicious security costs
approximately 40 times more than semi-honest security using current techniques.
The majority of this extra overhead is to mitigate the effects of adversarially
crafted garbled circuits.

In many circumstances, because of the high cost of achieving full malicious
security, a slight security relaxation may be acceptable, in return for performance

? Supported by the Office of Naval Research (ONR) contract N00014-14-C-0113.
?? Supported by NSF award CCF-1149647.

improvements. This was the motivation for the k-leaked model of Mohassel and
Franklin [17], covert security of Aumann and Lindell [2], and others. This work
falls into the line of research aiming to get as much security as possible, while
bringing the required resources down to, ideally, that of the semi-honest model.

Dual execution. The dual-execution 2PC protocol of Mohassel & Franklin [17]
is a natural starting point in this line; it works as follows. The parties run
two separate instances of Yao’s semi-honest protocol, so that each party is the
“sender” in one instance and “receiver” in the other. Each party evaluates a
garbled circuit to obtain their garbled output. Then the two parties run a (much
simpler and smaller) fully-secure “equality test” protocol to check whether their
outputs match; each party inputs the garbled output they computed along with
output wire labels of the garbled circuit they generated. If the outputs don’t
match, then the parties abort.

The protocol is not secure against malicious adversaries. An honest party
executes an adversarially crafted garbled circuit and then uses the garbled output
in the equality-test sub-protocol. However, since the equality test has only one
bit of output, it can be shown that the dual-execution protocol leaks at most
one (adversarially chosen) bit about the honest party’s input.

1.1 Our Results

In this section we summarize our results. In Section 2, we present at the high
level the main motivation, intuition and insights of our constructions, as well as
put all the pieces in the unifying perspective. In the subsequent corresponding
sections, we present formalizations, complete constructions, proofs and perfor-
mance analysis of each individual contribution.

Our theme is to explore and reduce the leakage allowed by the dual-execution
protocol. We develop new techniques for restricting the kinds of predicates that
the adversary can learn, as well as for reducing the probability that the adversary
succeeds in his attack. Combining the two approaches results in a more efficient
continuum of cost-security trade-offs, connecting the covert, dual-execution and
full-malicious guarantees.

Limiting Leakage Functions in Dual-Execution. The original security notion
introduced in the dual-execution paper [17], and the follow-up [7] allows the
adversary to learn an arbitrary predicate of the player’s input. We show how
to significanly limit this leakage to a conjunction of what we call “gate-local”
queries, i.e., boolean queries that only operate on the input wires to a single gate
of the original circuit. In our formalization, we follow the framework of [3] and
introduce the notion of Property-Enforcing Garbling Schemes (PEGS), which
may be of independent interest.

Reducing Leakage Probability in Dual-Execution. In a complementary research
direction, using the ε-CovIDA security notion of [18], we develop new techniques

2

for reducing the probability of leakage in the Dual-Execution framework. We im-
prove on their construction by achieving 2−s security with only s circuits for
each party, similar to state-of-the-art results of Lindell [14] and Huang, Katz
and Evans [8] from the malicious setting. However, we replace the “cheating-
recovery” computation of [14] and repeated dual-execution mechanism of [8]
with a much more lightweight procedure based on Private Set Intersection (PSI)
that provides significant gains in computation and bandwidth. We note that the
protocol of [8] has a similar high-level idea to ours: each party sends (approxi-
mately) s circuits, then the parties run a fully-secure processing phase. However,
their protocol does not achieve ε-CovIDA security. In particular, their protocol
performs separate equality checks of wire labels for each output bit of the circuit.
Hence, in the event that an adversary successfully passes the circuit-check phase
(with probability 2−s), she can learn more than one bit.5

Our concrete measurements (see Figure 8) show that our techniques yield
35% reduction in overall communication for the AES circuit (compared to pro-
tocol of [18] augmented with Lindell’s circuit reduction techniques).

Putting it Together: A Richer and Cheaper Security/Efficiency Trade-offs. Re-
stricting the leakage functions a successful adversary may evaluate, and fur-
ther limiting the probability of his success, allows for a fine-grained practical
trade-offs between security guarantees and efficiency of 2PC. This work can be
viewed as interpolating between the guarantees of covert, dual execution (i.e.
the k-leaked model [17]) and fully-malicious models. Indeed, setting s = 2, our
protocols correspond to an improved hybrid of covert and k-leaked models and
protocols. We guarantee probability of 1/2 of catching the cheating adversary,
and at the same time limit the leakage to an “only computation leaks” one-bit
functions. On the opposite end of the spectrum, setting s = 40 gives fully-secure
2PC, which, while having better latency (since parties can work in parallel and
due to a cheaper cheating recovery) than [14], should be seen as less efficient
than [14] as it sends 2s total circuits. However, in the extremely important (in
practice) set of security parameters/associated costs of s ∈ {1, . . . , 20}, our pro-
tocols provide the best “value”. Indeed, the guarantee of covert 2PC can be un-
acceptable in such scenarios as a successful adversary may learn the entire input
of the honest party with a non-negligible probability (e.g., the set of long-term
keys) making [14] less suitable, while our protocols remain attractive. Further,
as noted in Section 6, the parameter s may differ between the two players to
reflect different risk/trust assumptions.

1.2 Related Work

To the best of our knowledge, only a handful of prior work consider trading off
security for better efficiency in the context of fully-malicious 2PC. Mohassel and

5 Concretely, suppose Alice passes the circuit-check phase with malicious circuits that
compute an arbitrary (multi-bit) function g(x, y). Then Alice will learn the length
of the longest common prefix of g(x, y) and the correct output f(x, y).

3

Franklin [17] introduced the notion of k-leaked model and showed through their
dual-execution protocol, that leaking a single bit of information can yield ma-
jor improvement in efficiency. The follow-up work of [7] implemented/enhanced
their protocol, confirming the efficiency gains. The work of [9] also considers
leakage of information with the goal of designing more efficient non-interactive
secure computation protocols. In fact, they also propose a construction where
the leakage function is restricted to disjunction of intermediate wire values in
the computation. However, what mainly separates our construction from theirs
is that we focus on concrete efficiency and small constant factors for fast imple-
mentation, while their work is focused on optimal asymptotic complexity, and
results in a construction with noticeably larger constant factors (to the best of
our knowledge the exact constants have not been worked out).

In a complementary direction, Aumann and Lindell [2] introduced the no-
tion of covert security where one trades the probability of deterring malicious
behavior (i.e., making the probability non-negligible) for more efficient 2PC. The
recent work of [18] introduces the notion of ε-CovIDA security which can be seen
as a strengthening of both the covert and the k-leaked models for 2PC. We adopt
their security definition for reducing probability of leakage in dual execution.

Application specifics and hard performance requirements sometimes drive the
trade-offs. In recent works on practical private DB [10, 19] some of the execution
patterns are revealed to the adversary as a trade-off for efficient sublinear exe-
cution time. Similarly, in the setting of searchable encryption (e.g., [5]), access
patterns can often be leaked, yielding significant improvements in performance.

Besides allowing a bit of leakage, other methods have been suggested for
relaxing standard security guarantees: input-indistinguishable MPC [15] that
allows for better composability, one-sided/two-sided non-simulatability (e.g. see
[1]), superpolynomial-time simulation [20, 21, 4], and security against uniform
adversaries [12].

2 Overview of Our Approach and Constructions

Following our focus — reducing leakage power and probability in dual-execution,
— we now go a little deeper into each of our results and present their intuition
and insights.

2.1 Limiting Leakage Functions in Dual-Execution

Garbled circuits & property-enforcement. It is clear that an adversary can learn
an arbitrary predicate in the dual-execution protocol, as long as the honest party
evaluates any garbled circuit given by the other party. To limit leakage in any
way therefore requires two things:

1. The parties must perform some check of the garbled circuit they receive in
the protocol. In the extreme, parties could demand a zero-knowledge proof of
correctness of the garbled circuit, but in that case dual-execution is not even

4

needed — the protocol would already be fully-secure in the malicious setting.
In our setting it makes sense to consider only lightweight checks on the
garbled circuits. In their treatment of the dual-execution protocol, Huang,
Katz and Evans [7] mention briefly that a party could perform a “sanity
check” of the garbled circuit it received. At the same time, most simple
checks, such as verifying the circuit topology and XOR gates placement, seem
helpful, but bring little guarantees and can exclude few leakage functions due
to a simple attack we describe below.

2. Since the checks on the garbled circuit cannot guarantee complete correct-
ness, we are still in a setting involving possibly malicious garbled circuits.
Hence, we need some way of reasoning about what information is leaked when
a honest party evaluates a malicious garbled circuit. This natural problem
has not been investigated before, to the best of our knowledge. Previous
work considered all-or-nothing security from a garbled circuit (i.e., either it
is correct or not).

We suspect that our conceptual approach regarding malicious garbled cir-
cuits may be useful in many other settings, given how ubiquitous and pow-
erful the garbled circuit technique has become throughout cryptography.

To address these needs, we introduce a new security notion for garbled circuits
called property-enforcing garbling schemes (PEGS). Roughly speaking, in
a property-enfocring garbling scheme an honest user can locally verify that a
garbled circuit F indeed computes a function with a certain property.

More formally, let prop be some property of (plain) circuits: size, topology, the
circuit itself, etc. A property-enforcing garbling scheme has additional procedures
Prop and Extract. We require that, for all possibly malicious garbled circuits F , if
Extract(F)→ f (where f is a plain circuit) then (1) Prop(F) = prop(f) and (2)
F produces garbled outputs in direct correspondence with the output of f . That
is, the logic of F is “explained by” a plain circuit f with prop(f) = Prop(F). See
Section 3.2 for the formal definitions. In our actual definition, Extract requires
extra information typically only available to the simulator, whereas Prop can be
computed publicly.

Suppose we use a property-enforcing garbling scheme in the dual-execution
protocol. Both parties would ensure that Prop(F) = prop(f) for the garbled
circuit F they receive and the objective function f that is being computed. We
show that with this modification, the adversary cannot learn arbitrary predicates
of the honest party’s input, but rather only predicates (roughly) of the form

f̃(x)
?
= c where prop(f̃) = prop(f).

Achieving topology-enforcement. Intuitively, it seems that classical/standard gar-
bling schemes already give the receiver some guarantees along the lines of property-
enforcement. An honest party seems to enforce the circuit’s topology in how
it evaluates the garbled circuit; hence, standard garbling schemes should be
topology-enforcing at the least. Interestingly, this is not quite the case.

5

Imagine a classical garbled circuit for a single gate. This garbled circuit con-
sists of four ciphertexts:

EncA0,B0
(C1) EncA0,B1

(C2) EncA1,B0
(C3) EncA1,B1

(C4)

Here A0, A1, B0, B1 are wire labels of input wires. The garbler is supposed to
choose C1, . . . , C4 from among two possiblities (i.e., the two wire labels of the
output wire). Yet there is no way for the evaluator to check that these four
ciphertexts encode only two values. It is trivial to let C1, . . . , C4 be distinct.
In that case, the garbled output of this circuit reveals the entire input. The
behavior of this garbled circuit cannot be “explained” by a single-gate circuit,
so the scheme is not topology-enforcing.

Our intuition about standard/classical garbling schemes is thus not quite
right, but it is not far off either. These schemes do enforce topology in some
sense, but they do not enforce the “information bandwidth” on each wire. In
an extreme example, one can make a garbled circuit with just one output wire,
but whose garbled output reveals the entire input (in the sense that all distinct
inputs give different garbled outputs).

To achieve topology-enforcement in a more reasonable sense (i.e., the behav-
ior of a malicious garbled circuit can always be described by a boolean circuit of
the advertised topology), it suffices to simply limit the wire bandwidth to 2.6 In
our construction, the sender includes a hash of the two wire labels on each wire.
When evaluating a garbled circuit, the receiver checks its wire labels at each step
against these hashes. We prove that this construction enforces the topology of
the circuit, when the hash function is modeled as a random oracle. Furthermore,
the construction remains very practical.

Only computation leaks. “Only computation leaks” (OCL) [16] refers to a paradigm
for defining information leakage. In short, OCL means that an adversary cannot
leak jointly on two internal values x and y unless they are both computed on
simultaneously at some point. Armed with topology-enforcing garbling schemes,
we are able to restrict leakage in the dual-execution protocol to OCL-style leak-
age at the level of gates in the circuit.

More precisely, say that a query is gate-local if the query can be expressed as
a function of the two input wires to some single gate in the circuit. We are able
to restrict the dual-execution adversary to learn only a conjunction of gate-local
queries (with respect to the function f being computed).

The main idea in our construction is as follows. Dual-execution allows parties
to (roughly) check the equality of outputs of their garbled circuits. To keep a
malicious circuit from “building up” a complicated leakage expression (i.e., more
complicated than a gate-local query), we try to apply dual execution to check
equality of all intermediate values in the computation. Hence, we modify the
original circuit so that every intermediate wire is secret shared, with each party

6 Actually, we can only limit the wires to contain 0, 1, or an error, where all errors
are guaranteed to propogate forward. This turns out to be sufficient for the dual-
execution protocol.

6

receiving one of the shares. The parties then use the dual-execution mechanism
to ensure that their shares (hence, the intermediate values of the computation)
all agree.

Formalizing and proving this intuition requires some care, and we also need
to extend the dual-execution paradigm to cope with outputs known to only one
of the parties.

Overall, our modifications to the dual-execution protocol — adding topology-
enforcement to the garbling scheme, and adding secret-sharing gadgets to the
ciruict — remain quite practical. The resulting protocol has very limited 1-
bit leakage but is still much less expensive than fully malicious-secure 2PC.
Exploring the continuum of trade-offs between plain dual-execution and full
security is an interesting direction, which we address in combination with our
next contribution.

2.2 Reducing Leakage Probability in Dual-Execution

As discussed earlier, an alternative to restricting the leakage function is to restrict
the probability of occurrence of leakage. This is indeed the notion of ε-CovIDA
Security recently introduced in [18] which augments the notion of Covert Security
of [2]. Essentially, this notion requires that if a player is trying to cheat, the other
players can catch him with probability 1−ε, but even if he is not caught (i.e., with
probability ε) the cheater can only learn a single bit of extra information about
the other players’ inputs, and the correctness of the output is still guaranteed.
In other words, the leakage of the single bit of information only occurs with
probability ε. The 2−s-CovIDA security is particularly attractive for low and
medium values of s (e.g. 1 ≤ s ≤ 20) since it provides a much stronger guarantee
than covert 2PC, and is at the same time more efficient than fully-malicious 2PC
where s ≥ 40.

[18] presents two protocols that are secure in this model, requiring about 3s
garbled circuits from each player (a total of 6s) to obtain 2−s-CovIDA security.
We observe that it is possible to combine their dual-execution approach with the
underlying ideas of Lindell [14], in order to obtain a 2−s-CovIDA 2PC protocol
using only 2s garbled circuits, as opposed to 6s of [18]. The main observation that
makes this possible is that the garbler’s input consistency check of [22] can be
extended to enforce equality of a party’s input not only in the circuits he garbles
but also in those garbled by his counterparts. However, simply running [14] as a
dual execution still results in high overhead as it requires each party to execute
a relatively expensive ”cheating recovery” phase. We note that we are not aware
of the above observation having been published elsewhere, but we consider it a
natural combination of ideas in [14] and [18], and the input-consistency check
technique of [22].

Protocol Overview. We propose a new approach for designing a 2−s-CovIDA
2PC, wherein we replace the cheating recovery phase with a private set intersec-
tion protocol on the outputs. The high level idea of the protocol is as follows. We
follow the insight of Lindell [14] for achieving 2−s security with s circuits, namely

7

that cheater only can cheat if all of the evaluated circuits are incorrect, and not
just the majority. At the same time we avoid the expensive cheating-punishment
setup and execution. So, our Alice and Bob perform a simplified version of the
protocol of Lindell [14], where they skip all the steps associated with the cheating
recovery. Instead, Alice and Bob then switch roles (i.e. Bob becomes the garbler)
and perform the same steps à la dual execution. All the circuits generated by
each party have the same output labels, and we use the universal hashing circuit
of [22] in both sets of circuits in order to enforce equality of a player’s inputs not
only in the circuits he generated but also those generated by his counterpart.
There are two points to consider when using the universal hashing approach in
the two executions. First, we need to use the same hash function in both sets
of executions, and second, we need to commit both the garbler and the evalua-
tor to their inputs before generating the hash function (in standard 2PC, only
the garbler needed to commit to his input). To achieve the latter, the garbler
commits to his garbled inputs, and parties execute the oblivious transfer for the
evaluator’s input before choosing the hash function at random.

Let’s denote the output labels for the s circuits created by Alice (resp. by
Bob) by (out1A,0, out

1
A,1), . . . , (outmA,0, out

m
A,1) (resp. (out1B,0, out

1
B,1), . . . , (outmB,0, out

m
B,1)),

where m is the number of output wires in the circuit. At the end of the two ex-
ecutions up to the opening phase, Alice and Bob each create initially empty
sets TA and TB . For every circuit evaluated by Alice, if the output is valid and
equal to, say, zA = (zA1 , . . . , z

A
m), Alice computes q = out1

A,zA1
⊕ out1

B,zA1
⊕ · · · ⊕

outmA,zAm
⊕ outmB,zAm

, and lets TA = TA ∪{q}. Bob does a symmetric computation.

Each party then adds enough dummy random values to its set until its size is
the same as the number of evaluated circuits (note that the expected size of TA
will be s/2, the size of the evaluation set).

The idea is to have the parties run a fully secure two-party private set in-
tersection (PSI) protocol computing TA ∩ TB . If the intersection is empty each
party aborts, and otherwise, it uses the translation table to compute the final
output from the labels in the intersection (note that the intersection can at most
be of size one, since the circuits created by the honest party all evaluate to the
same correct output). The intuition is that as long as the malicious party did
not cheat for just one of the garbled circuits he created, the correct output of
that circuit will be the unique value in TA ∩ TB .

There are several issues to resolve for this approach to work: if we perform
the PSI before the opening/checking phase, then the output of the PSI can leak
extra information to a malicious party. For example, this leakage can happen
with probability one in case of a malicious party that garbles the same bad
circuit s times, while we want to reduce the probability of leakage to 2−s. If we
perform the PSI after the opening phase, on the other hand, we fix the above.
But we encounter a different problem, that at the end of the opening, the output
labels are revealed, and this allows a malicious party to modify his input to the
PSI and hence trick the honest party to learn an incorrect output. We address
this dilemma by using a two-stage PSI (see Section 6.2) where in the first stage
parties commit their input sets but learn nothing while in the second stage,

8

one of the parties learn the intersection. We then perform the first stage of the
PSI before the opening phase, while postponing the second stage until after the
openings.

This almost works except that all existing PSI protocol with security against
malicious adversaries only let one of the parties learn the intersection. Simply
sending the result to the other party is not secure since a malicious party can
lie and provide a wrong answer (note that since this step takes place after the
opening lying about the output is not hard). We solve this problem by having
each party randomly permute its set and commit to each element in the permuted
set, before the two-stage PSI is invoked. Then, in the final stage of exchanging
the output, in order to prove to the other party that the output is correct (i.e. the
output of one of the evaluated circuits), each party also opens the commitment to
the PSI input corresponding to the intersection (note that these commitments
where issued before the opening phase when it was not possible to forge any
output value not returned by the evaluated circuits).

The intuition behind 2−s-CovIDA security of the protocol is that with prob-
ability 1− 2−s, at least one of the outputs evaluated by the honest party is “the
correct output” and hence included in his set. On the other hand, before the
opening phase, the malicious party only learns the output labels for the correct
output and hence can only commit to the correct output in the first stage of
the PSI. Hence, with probability 1− 2−s, either the honest party aborts, or the
computed intersection of the two sets will be the correct output and among those
inputs that parties committed to, before the opening phase.

With probability 2−s, however, a malicious party can cheat in all the eval-
uated circuits and not get caught. In this scenario, whether the output of the
intersection is empty or not leaks one bit of additional information to the mali-
cious player. In either case, the correctness is guaranteed since the honest party
cannot be tricked into accepting an incorrect output.

3 Property-Enforcing Garbling Schemes

3.1 Garbling Schemes

Bellare, Hoang, and Rogaway [3] introduce the notion of a garbling scheme as
a cryptographic primitive. We refer the reader to their work for a complete
treatment and give a brief summary here.7 A garbling scheme consists of the
following algorithms: Garble takes a circuit f as input and outputs (F, e, d) where
F is a garbled circuit, e is encoding information, and d is decoding information.
Encode takes an input x and encoding information e and outputs a garbled input
X. Eval takes a garbled circuit F and garbled input X and outputs a garbled
output Y . Finally, Decode takes a garbled output Y and decoding information
d and outputs a plain circuit-output (or an error ⊥).

7 Their definitions apply to any kind of garbling, but we specify the notation for circuit
garbling.

9

3.2 Property Enforcing

We extend the definition of garbling schemes as follows. Let prop be a property
of circuits; e.g., prop(f) might output the topology of a circuit f .

A garbling scheme is prop-enforcing if it meets the following additional re-
quirements:

– The property prop is extended to garbled circuits. That is, when F is a
garbled circuit, anyone can publicly compute a value Prop(F).

– There is a deterministic procedure Extract that can “explain” any (possibly
adversarially generated) garbled circuit F as a plain circuit f ′ satisfying
prop(f ′) = Prop(F).

More formally, Extract(F, e) either outputs ⊥ or a pair (f ′, d′) where d′ is a
simple mapping of values to wire labels. We define the following security game:

Initialize:
b← {0, 1}

Finalize(b′):

return b
?
= b′

Query(F, e, x):

(f ′, d′)← Extract(F, e)
if b = 0 then

Y := Eval(F,Encode(e, x))
else ỹ := f ′(x)

Y := d′1,ỹ1‖ · · · ‖d
′
m,ỹm

return Y

Hence, the garbled output Y contains no more information about x than
f ′(x), a circuit satisfying property Prop(F).

3.3 Construction: Enforcing Topology

Definition 1. A circuit-with-abort is a standard circuit with ternary values
{0, 1,⊥} on the wires, where ⊥ values cascade. That is, for every gate G in the
circuit, G(⊥, ·) = G(·,⊥) = ⊥.

Throughout this section, we use the term “circuit” to refer to circuits with
abort.

Construction For simplicity we make minimal additions to the “Garble2” con-
struction of [3]. Our modification to achieve property-enforcement is rather sim-
ple. In Garble2, each wire i is associated with two wire labels X0

i and X1
i .

The garbled circuit then simply contains the values C[i, lsb(X0
i)] = H(X0

i) and
C[i, lsb(X1

i)] = H(X1
i), where H is a random oracle. It is straightforward that

these new values do not compromise the standard security properties.
When evaluating a gate g, the evaluator obtains a visible wire label Xg, and

now checks whether it is valid. By valid, we mean that H(Xg) = C[g, b], where
b is the select bit of wire label Xg. If this is not the case, then the evaluator
aborts.

The Extract procedure maintains the invariant that there exist at most two
valid wire labels for each wire. This is true for the input wires by definition.

10

Provided that the invariant is true for the input wires of a gate, there are at
most 4 wire label combinations that Extract needs to try to extract the logic of
this gate. If there are more than 2 valid output wire labels for this gate, then
we have obtained an explicit collision under H: an event that happens only with
negligible probability. Otherwise, the invariant holds at this gate as well.

Note that in the unmodified Garble2 scheme, the number of possible wire
labels can be made to grow exponentially at each level of the circuit. Hence, the
garbled values can encode more than 1 bit of information on a wire. The key
idea here is to limit the “bandwidth” of each wire to a single bit.

The full details of our construction are provided in Figure 1.

Garble(1k, f):

(n,m, q,A′, B′, G)← f
for i ∈ {1, . . . , n+ q} do

t
$← {0, 1}; X0

i
$← {0, 1}k−1t

X1
i

$← {0, 1}k−1t
? C[i, t]← H(X0

i); C[i, t]← H(X1
i)

for (g, i, j) ∈ {n+ 1, . . . , n+ q} × {0, 1} × {0, 1}
a← A′(g); b← B′(g)

A← Xi
a; a← lsb(A); B ← Xj

b

b← lsb(B)

T ← g‖a‖b; P [g, a, b]← ET
A,B(X

Gg(i,j)
g)

? F ← (n,m, q,A′, B′, P, C)
e← (X0

1 , X
1
1 , . . . , X

0
n, X

1
n)

d← (X0
n+q−m+1, X

1
n+q−m+1, . . . , X

0
n+q, X

1
n+q)

return (F, e, d)

Extract(F, e):

(n,m, q,A′, B′, P, C)← F
(X0

1 , X
1
1 , . . . , X

0
n, X

1
n)← e

for (g, i, j) ∈ {n+ 1, . . . , n+ q} × {0, 1} × {0, 1}
a← A′(g); b← B′(g)

skip loop iteration if Xi
a or Xj

b undefined

A← Xi
a; a← lsb(A); B ← Xj

b

b← lsb(B)

X̃ ← DT
A,B(P [g, a, b]); x← lsb(X̃)

if C[g, x] = H(X̃) then:
if Xx

g already defined then return ⊥
Xx

g ← X̃; Gg(a, b)← x
else Gg(a, b)← ⊥

d′ ← (X0
n+q−m+1, X

1
n+q−m+1, . . . , X

0
n+q, X

1
n+q)

f ′ ← (n,m, q,A′, B′, G)
return (f ′, d′)

Encode(e, x):

(X0
1 , X

1
1 , . . . , X

0
n, X

1
n)← e

x1 · · ·xn ← x
X ← (Xx1

1 , . . . , Xxn
n)

Decode(d, Y):

(Y1, . . . , Ym)← Y
(Y 0

1 , Y
1
1 , . . . , Y

0
m, Y

1
m)← d

for i ∈ {1, . . . ,m} do:
if Yi = Y 0

i then yi ← 0
else if Yi = Y 1

i then yi ← 1
else return ⊥

return y ← y1 · · · ym

Eval(F,X):

? (n,m, q,A′, B′, P, C)← F
(X1, . . . , Xn)← X
for g ← n+ 1 to n+ q do:

a← A′(g), b← B′(g)
A← Xa; a← lsb(A)
B ← Xb; b← lsb(B)
T ← g‖a‖b
Xg ← DT

A,B(P [g, a, b])
? if H(Xg) 6= C[g, lsb(Xg)]:
? return ⊥

return (Xn+q−m+1, . . . , Xn+q)

Fig. 1. Topology-enforcing garbling scheme construction. H denotes a random oracle,
and E denotes a dual-key cipher, following [3]. “?” denotes differences from the Garble2
construction of [3] (the entire Extract procedure is new).

11

Theorem 1. The construction in Figure 1 is a secure garbling scheme (in ran-
dom oracle model) satisfying privacy, authenticity, obliviousness, and prop-enforcement,
when prop denotes the topology of the circuit.

Proof. We focus on the proof of prop-enforcement. First, observe that Extract
can output ⊥ with only negligible probability, since it only outputs ⊥ when it
explicitly finds a collision under the random oracle H. But, as we will argue,
the two branches of the security game are identical except for the possibility of
Extract outputting ⊥.

Extract works by identifying at most 2 “valid” wire labelsX0
g , X

1
g for each wire

g. For input wires, these valid wire labels are given as the encoding information
e. For a gate g with input wires i & j, Extract produces a gate with logic Gg
such that evaluating the corresponding gate in F with wire labels Xa

g , X
b
g yields

X
Gg(a,b)
g (or ⊥ if Gg(a, b) = ⊥). Hence it follows by induction that the output of

Eval(F,Encode(e, x)) is exactly characterized by the choice of wire labels f ′(x).

4 Applications to Dual Execution

In this section, we write a functionality as f(xA, xB) = (yA, yB , yAB) where yA,
yB , yAB denote outputs for Alice only, Bob only, and both parties, respectively.
We must augment the existing dual-execution protocol and proofs of [17, 7] to
account for functionalities that give different inputs to the two parties.

L-leaked model. In the L-leaked model for computing function f , where L =
(LA,LB), Alice provides input xA and Bob provides input xB to the functional-
ity. The functionality then computes (yA, yB , yAB) ← f(xA, xB). Let (yA, yAB)
denote Alice’s potential output and let (yB , yAB) denote Bob’s potential output..

The functionality delivers the corrupt party’s potential output. If Alice is
corrupt, then the adversary supplies a leakage function L ∈ LA to the function-
ality. If Bob is corrupt, the adversary supplies a leakage function L ∈ LB . The
functionality evaluates ` = L(xA, xB). If ` = 0 then the functionality delivers ⊥
to the honest party; otherwise waits for instruction from the adversary before
delivering the honest party’s potential output.

Dual execution protocol. Given a functionality f , we let f(·, x) and f(x, ·) denote
residual circuits with one input hard-coded. We assume that for all possible
inputs x we have prop(f(x, ·)) = prop(f(0n, ·)), and prop(f(·, x)) = prop(f(·, 0n)).

Given a functionality f a garbling scheme G we define the dual execution
protocol DualExf [G] as follows:

1. Alice has input xA and Bob has input xB . Alice does (FA, eA, dA)← Garble(f(xA, ·)).
Bob similarly does (FB , eB , dB)← Garble(f(·, xB)).

2. Alice commits to FA, Bob commits to FB (if the garbling scheme is adap-
tively secure then the garbled circuits can be sent in the clear here).

12

3. Using instances of OT, Alice acts as sender with inputs eA and Bob acts as
receiver with input xB . Bob receives garbled input XB . Likewise, the parties
use OT for Alice to obtain XA.

4. The parties open their commitments to the garbled circuits. Alice aborts if
Prop(FB) 6= prop(f(·, 0n)). Similarly Bob aborts if Prop(FA) 6= prop(f(0n, ·)).

5. Alice does (YA, YB , YAB) = Eval(FB , XA). Bob also computes values (YA, YB , YAB).
If either party obtains ⊥ from executing Eval, then it continues below using
randomly chosen values for these garbled outputs (YA, YB , YAB).

6. Alice can decode YA and YAB to obtain plain outputs yA and yAB . She can
use dA to compute ỸA, ỸAB , which are garbled output encodings of yA and
yAB according to dA. She sends C = ỸA‖YB‖YAB‖ỸAB to the equality test
functionality.

7. Similarly, Bob can decode YB and YAB to obtain plain outputs yB and yAB .
He computes ỸB and ỸAB , garbled output encodings of these values accord-
ing to dB . He sends C = YA‖ỸB‖ỸAB‖YAB to the equality test functionality.

8. If the equality test returns false, then the parties abort; otherwise Alice
outputs (yA, yAB) and Bob outputs (yB , yAB).

Leakage functions. Let f(xA, xB) = (yA, yB , yAB) be a 2-party functionality as
above. Define:

LAf,f ′,ỹ(xA, xB) =

{
1 if f ′(xB) = (ỹ, yB , yAB), where (yA, yB , yAB)← f(xA, xB)

0 otherwise

LBf,f ′,ỹ(xA, xB) =

{
1 if f ′(xA) = (yA, ỹ, yAB), where (yA, yB , yAB)← f(xA, xB)

0 otherwise

Then define Lfprop = ((Lfprop)
A, (Lfprop)

B), where:

(Lfprop)
A = {LAf,f ′,ỹ | prop(f ′) = prop(f(0n, ·)) and ỹ ∈ {0, 1}∗}

(Lfprop)
B = {LBf,f ′,ỹ | prop(f ′) = prop(f(·, 0n)) and ỹ ∈ {0, 1}∗}

Intuitively, the Lfprop-leaked model allows the adversary to choose a circuit
f ′ such that prop(f ′) has the “expected value” and learn whether f ′, when
evaluated on the honest party’s input, equals f(xA, xB). In addition, for the
output of f ′ that is not revealed to the honest party, the adversary can check
that this output of f ′ is any fixed value of the adversary’s choice.

Recall that f ′ may be a circuit with abort. In the case that f ′ aborts, these
leakage functions will always return 0 (since the main equality condition will not
hold).

Security. In Appendix A we prove the following:

Theorem 2. The dual-execution protocol DualExf [G] is secure in the Lfprop-
leaked model when Gsatisfies prop-enforcing, authenticity, and privacy/obliviousness.

13

We point out that our simulator chooses f ′ before seeing the output of the
functionality, and can choose only ỹ after seeing the output. Hence, one could
slightly strengthen the definition of the Lfprop-leaked model. For simplicity, we
choose not to.

5 Achieving “Only Computation Leaks” with Dual
Execution

Micali & Reyzin [16] proposed a model of leakage, one of whose axioms was
that “computation, and only computation, leaks information” (“only computa-
tion leaks”, or OCL, for short). One can think of decomposing a large computa-
tion into smaller “atomic” steps. Each step does not use all of the information
in the system. The OCL axiom restricts us to leakage that is a function of the
information used in a single atomic step. If two values are never used in the same
step, then OCL leakage precludes (directly) leaking a joint function of those two
values.

In a circuit model, the smallest “atomic” steps are gates. Hence, we consider
leakage on the information available to a single gate (i.e., its two input wire val-
ues). By extension, it is natural to consider leaking on the information available
to several gates, but only separately and not jointly. Only when two wires are
inputs to a common gate can the leakage be a joint function of those two wires’
values.

We formalize this kind of leakage as follows:

Gate-local queries. Let f be a circuit. We say that a leakage query L(xA, xB) is
gate-local if there exists a gate g in f such that L(xA, xB) can be expressed as a

function of the input wires of g in the computation of f(xA, xB). We define L
f
ocl

to be the set of conjunctions of gate-local queries; that is:

L
f
ocl = {L = L1 ∧ · · · ∧ Lk | each of L1, . . . , Lk is gate-local for f}

Circuit transformation. Let f be a circuit and define f̂ as follows: For each
gate g in f , we add input bits rg,A for Alice and rg,B for Bob. We add output
bits sg,A for Alice only and sg,B for Bob only. We then perform the following
transformation for each gate:

gα

β
γ

becomes gα

β

rg,B

rg,A
sg,A

sg,B

⊕⊕
⊕

γ

Intuitively, we additively secret share the output of g into shares sg,A and
sg,B , so that each party learns one share. Then the shares are re-assembled to
again form the output of g that is used elsewhere in the circuit.

In Appendix B we prove the following:

14

Theorem 3. Let prop be a property that includes the circuit topology and let

f , f̂ be as above. We define Π to be a protocol for f in the f̂ -hybrid, Lf̂prop-
leaked model. In Π, parties simply send their inputs along with random values
for {rg,A, rg,B}g to the ideal f̂ . Then Π is a secure realization of f in the L

f
ocl-

leaked model.

More concretely, if we would like to compute f restricting adversaries to L
f
ocl

leakage, then we need to simply run the dual execution protocol on f̂ with a
topology-enforcing garbling scheme.

Generalizations. One can also define “only computation leaks” at a higher level
than individual gates. Indeed, this is more in line with most work on OCL,
which does not consider circuit computations. Also, doing so leads to efficiency
improvements in our protocols and transformations.

Consider partitioning a circuit into well-defined components. Then a component-
level leakage query is one that can be written as a function of the inputs to a
single component. Finally, let L denote the set of all conjunctions of component-
level functions.

Then our results of the previous section can be easily applied to yield a
protocol that is secure in the L-leaked model.

We sketch the important differences:

– One would need a garbling scheme which enforces only the topology con-
necting of components, but need not enforce anything about the internals of
each component. Our (gate-)topology-enforcing construction of Section 3.3
adds two hashes to each wire. To preserve topology of components, one
need only add these hashes to the wires connecting different components.
Concretely, this may result in a significantly smaller overhead than gate-
topology-enforcement.

– Recall our transformation from a circuit f to a circuit f̂ . It replaces each
gate g with some gadget of 4 gates. However, the construction and proof go
through verbatim with respect to components, if one interprets our diagram
to let g be a larger component, each line to represent a bundle of wires, and
the XOR gates to be string-XOR gates.
Concretely, instead of adding 3 XOR gates for each gate, we add 3 XOR gates
for each wire connecting different components. Similarly, the number of ad-
ditional inputs/outputs is related to the number of “component-connecting
wires”, not the total size of the circuit.

6 Reducing the Probability of Leakage in Dual Execution

In Section 2.2 we gave a high level overview of our ε-CovIDA protocol. Here,
we describe the protocol in detail, and evaluate its asymptotic and concrete
efficiency. We start with a brief review of the two sub-protocols we use, i.e.,
committing-OTs and two-stage PSI. (For completeness, we provide a formal
definition of CovIDA security in Appendix C.)

15

6.1 Committing-OTs

Oblivious Transfer (OT) protocol implements securely the following functional-
ity; A sender inputs two tuples [K0

1 ,K
0
2 , . . . ,K

0
s], [K1

1 ,K
1
2 , . . . ,K

1
s] and a receiver

inputs a bit b. Then, the receiver learns the tuple [Kb
1,K

b
2, . . . ,K

b
s].

A stronger variant of OT, called committing-OT, is one in which the sender
is also committed to his inputs, meaning, the sender cannot claim in retrospect
that his inputs were different than the ones he entered to the OT in the be-
ginning. In other words, if the sender is asked to show what was his inputs
[K0

1 ,K
0
2 , . . . ,K

0
s], [K1

1 ,K
1
2 , . . . ,K

1
s], he cannot answer with different inputs with-

out being caught.
For simplicity, from now on we abstract out the details of the committing-

OT and just work with the following notation: We denote by COT1(b) the
message sent by the receiver to the sender (where b is the receiver’s input
bit) and similarly use COT2([K0

1 ,K
0
2 , . . . ,K

0
s] , [K1

1 ,K
1
2 , . . . ,K

1
s], COT1(b))

to denote the message sent by the sender to the receiver. When we say that
the sender decommits his input, we refer to the operation in which he reveals
[K0

1 ,K
0
2 , . . . ,K

0
s], [K1

1 ,K
1
2 , . . . ,K

1
s] and proves that these are the correct inputs

he had used in the protocol.
Committing-OTs can be realized in several ways, and even be efficiently

extended for specific implementations (see [18]). Throughout this work we will
assume that the cost of committing-OT is O(s) exponentiations. (The exact
constant can be computed as done in [14], but we prefer stating our efficiency
claims for general committing-OT constructions.)

6.2 Two-Stage Private Set Intersection

In standard two-party private set intersection (PSI), player Pi holds his input
set Si and the goal is for one or both parties to learn the intersection S1 ∩ S2.

The two-stage variant of PSI, which we denote by the functionality F2PSI , is
split the protocol to two stages in order to emulate a commitment on the inputs
before revealing the result (we will use this property in our constructions). I.e.,
in the first stage, players submit their input sets and learn nothing, and in the
second stage, one of the parties ask for the output and obtains the result. The
reason we formalize the functionality with only one party receiving the output is
that all of the realizations we are aware of are this form. In our constructions we
need both parties to learn the intersection, thus we address this issue directly as
part of our 2PC constructions. We define the functionality F2PSI in Figure 6.2.

Realizing two-stage PSI. There are several two-round, fully-simulatable PSI with
security against malicious adversaries in the literature (e.g. see [11, 6], both in
the random oracle model). These protocols do not automatically realize F2PSI

but can be modified at little cost to do so. In particular, two properties that are
shared by these constructions are that (1) only one party learns the intersection
(denoted by P1), and (2) P1 does not learn any information before receiving the
second (and last) message of the protocol from P2.

16

First Stage
Inputs: P1 inputs S1 and P2 inputs S2 (both of size l).
Outputs: Both players receive Inputs Accepted.

Second Stage
Inputs: P2 inputs Reveal.
Outputs: P1 obtains (S1 ∩ S2).

Fig. 2. F2PSI .

Given a fully-simulatable PSI that has these two properties, all we need in
order to realize the F2PSI is to execute the protocol until the step in which P2

is supposed to send his last message. Instead of sending the last message, we
modify the protocol so that P2 only sends a commitment on that message. The
commitment in use should be equivocal and extractable. (Such a commitment
can be constructed in the random oracle model, using H(m, r), or in the stan-
dard model, e.g., [13].) This completes the first stage. When P2 wants to reveal
the intersection (i.e. the second stage), he decommits his last message and P1

completes the protocol. The intuition is that the simulation for the two-stage
PSI is done by calling the original PSI simulators and replacing the last message
with a commitment to it. Note that after the commitment to the last message is
sent, both players cannot change their inputs (obviously, P2 cannot decommit to
a different message, and P1 cannot change his inputs since otherwise the original
PSI would be insecure). We defer a more formal treatment to the full version of
the paper.

Using the above transformation on the protocol of [6], for instance, yields
an efficient two-stage PSI that requires only a linear number (in the number of
sets) of public key operations by each party.

6.3 The Protocol

A detailed description of the protocol is in Figures 3 and 5. In Appendix D we
prove the following theorem:

Theorem 4. Assume that the committing-OT, the PSI protocol, the commit-
ment, and the garbling scheme are secure. Then, the protocol from Figures 3
and 5 is a 2−s+1-CovIDA secure realization of f .

Input-consistency check. The consistency of the players’ inputs is handled using
the technique of [22], where a universal hash function (UH) is evaluated on the
input of each player, and the players verify that the outputs of this function are
the same in all circuits. A player’s input is padded with a short random string r
in order to increase its entropy and by that, reduce the amount of information
that can be learnt about the input from the output of the UH. Let l be the
input length and s be a security parameter. [22] shows a matrix of dimensions
s × (l + 2s + log s) that can be used as a UH, where the evaluation consists of
multiplying this matrix with the input vector (and getting a vector of length s).

17

In our protocol we require an additional property from this matrix: Given
a matrix M and an output vector v, we require that for any input vector vi,
it is easy to find a vector vr such that M × (vi‖vr)T = vT . Interestingly, we
propose a solution meeting this property that is simpler and more efficient than
the solution of [22]. In particular, we generate a random matrix in {0, 1}s×l and
concatenate it with the identity matrix of size s, resulting in matrix of dimensions
s× (l+ s). Evaluation consists of multiplying this matrix with the input vector
which is the l bits of real input and s random bits. The construction is a UH
for reasons identical to the construction of [22], and knowing the output of UH
reveals nothing about the real input since the output vector will be uniformly
random (give the s random bits).

Efficiency comparison. We briefly discuss efficiency of our protocol compared
to the best alternative using existing techniques. As discussed earlier, the best
alternative (referred to as Best Previous in the Figures), is to use the construction
of [18] augmented with the technique of [14] in order to reduce the number of
garbled circuits. In particular, in this potential solution (not published elsewhere)
we run the 2PC once in each direction (with careful incorporation of the input
consistency checks), run the cheating-recovery computation at the end of each,
and perform a maliciously secure equality-check to compare the two outputs.

We initially focus on the overhead in computation and communication be-
yond what is required to garble s circuits by each party and the associated
input-consistency checks, since those are part of any know solution for ε-CovIDA
secure 2PC. Ignoring the cost of the equality-check, the overhead here consists
of the two cheating-recovery executions. This is included in Figure 6 based on
the numbers given in [14] (see Section 3.1).

The overhead of our protocol is simply to run a two-stage PSI with malicious
security where both parties learn the output, and where each set is of expected
size s/2. This requires s commitments and a standard maliciously secure PSI
for which we use the concrete numbers given in [6]. As can be seen in the table,
the overhead in our construction is significantly smaller, i.e. a factor of 10 or
more in communication, and a factor of 200 or more in computation even for
input size of 1. This improvement further increases as the input size grows since
the overhead in our construction is independent of the input while the cost of
cheating recovery linearly grows with it.

While this improvement is only in the “overhead” cost, we stress that the
overhead can be a significant portion of the overall cost in small circuits. In
Figure 7 we compare the overall costs for the two approaches where to estimate
the cost of garbling and the input-consistency checks needed for dual-execution,
we use the numbers given in [14] (multiplied by two) both for our solution and the
“Best Previous” (with the exception that we assume the use of 2-row reduction
techniques when measuring communication for both, but this only effects the
bandwidth column). We note that this comparison is on the conservative side,
and should be seen as the minimum improvement since more optimized options
are available in the RO model (specially for input-consistency checks), and those
would highlight our improvements in the overhead even further.

18

Alice’s input: xA ∈ {0, 1}`. Bob’s input: xB ∈ {0, 1}`.
Common input: Alice and Bob agree on the description of a circuit C, where
C(xA, xB) = f(xA, xB), and a collision resistance hash function H : {0, 1}∗ →
{0, 1}`. Let Commit(·) be an extractable and equivocal commitment.
s is a statistical security parameter that represents the bound on the cheating
probability. L is a computational security parameter, so, for example, each key
label is L-bits long. s′ is a statistical security parameter associated with the
input-consistency matrix.. Let `′ = `+m, and m′ = m+ 2s′.
Output: Both players learn an m-bit string f(xA, xB).

Below, we describe the protocol for the case where Alice is the garbler and
Bob is the evaluator. But the protocol is symmetric and each step is performed
simultaneously in the other direction as well (where Bob is the garbler and
Alice is the evaluator) before moving to the next step. In what follows, we
slightly abuse the notations we introduced for a garbling scheme. In particular,
we feed input/output labels as inputs to the Garble algorithm while in previous
section, they were the output of Garble. This is compatible with all existing
instantiations.

Garbler’s input preparation.

1. Alice chooses s PRF seeds sdA1 , . . . , sd
A
s , and commits on them using

Commit(sdA1), . . . ,Commit(sdAs). All the randomness Alice will use for gen-
erating the ith garbled circuit and its input labels will be derived from
sdAi .

2. Alice chooses rA ∈R {0, 1}t, r′A ∈R {0, 1}m and sets x′A = xA‖rA‖r′A. She
will be using x′A as her input to the circuits instead of xA. We denote the
jth bit of x′A by x′A,j .

3. Alice chooses inA,i,j
b , inB,i,j

b ∈R {0, 1}L for b ∈ {0, 1}, 1 ≤ i ≤ s
and 1 ≤ j ≤ `′. inA,i,j

b would be the b-key for Alice’s jth input
wire in the ith garbled circuit. (inB,i,j

b is defined similarly with re-
spect to Bob.) Using the garbling schemes notation we have eiA =

(inA,i,1
0 , inA,i,1

1 , . . . , inA,i,`′

0 , inA,i,`′

1 , inB,i,1
0 , inB,i,1

1 , . . . , inB,i,`′

0 , inB,i,`′

1).

4. Alice sends Commit(H(inA,i,1

x′
A,1
‖ · · · ‖inA,i,l′

x′
A,l′

)) for 1 ≤ i ≤ s, i.e. commit-

ments to encoding of her inputs.

Oblivious transfer for evaluator’s input.

1. Alice and Bob engage in `′ OTs, where in the jth OT,
Bob sends qj = COT1(x′B,j) and Alice answers with

COT2([inB,1,j
0 , . . . , inB,s,j

0], [inB,1,j
1 , . . . , inB,s,j

1], qj)

Fig. 3. 2−s-CovIDA 2PC via PSI

19

Continued

Circuit Preparation.

1. Alice and Bob jointly choose matrices MA,MB ∈R {0, 1}s
′×`′ , and con-

catenate each with a s′×s′ identity matrix to obtain M ′A,M
′
B respectively.

Let C′(x′A, x
′
B) = (C(xA, xB)⊕ r′A ⊕ r′B ,M ′A · x′A,M ′B · x′B).

2. Alice chooses m′ random label pairs and sets dA =

(outA,1
0 , outA,1

1) . . . (outA,m′

0 , outA,m′

1).
3. For 1 ≤ i ≤ s, Alice computes GCA

i ← Garble(C′, eiA, dA). Note that unlike
standard garbling, here the input and output labels are fixed and fed as
input to the garbling algorithm, and note that the same output label is
used for all s circuits.

4. Alice computes the output decoding table GDecA ={
[i,H(outA,i

0), H(outA,i
1)]

}m′

i=1
. (Note that this is different from dA

and the same table is used for all garbled circuits.)
5. Alice sends garbled circuits GCA

1 , . . . ,GC
A
s and the output decoding table

GDecA.

Challenge Generation.

1. Alice chooses α
(A)
1 , α

(A)
2 ∈R {0, 1}s. Similarly, Bob chooses α

(B)
1 , α

(B)
2 ∈R

{0, 1}s

2. Alice sends Commit(α
(A)
1) and Bob sends Commit(α

(B)
2).

3. Alice sends α
(A)
2 and Bob sends α

(B)
1 .

4. Both players decommit their commitments and set α1 = α
(A)
1 ⊕ α(B)

1 and

α2 = α
(A)
2 ⊕ α(B)

2 . If one of those values is all zeros, or all one, they go
back to step 1.

5. We define the evaluation set EA such that i ∈ EA if and only if ith bit of
α1 is one (Similarly, EB would be generated using α2).

Garbled Circuit Evaluation.

1. Alice sends inA,i,j

x′
A,j

for i ∈ EA and 1 ≤ j ≤ `′, and decommits

Commit(H(inA,i,1

x′
A,1
‖ · · · ‖inA,i,l′

x′
A,l′

)).

2. For i ∈ EA, Bob evaluates GCA
i and gets the garbled output ZA

i . Let zAi
be the actual output resulted from decoding ZA

i using GDecA. If any of
the decoded bits is ⊥, Bob sets zAi to ⊥m′ .

Committing to PSI input sets.

1. For all i ∈ EA, if zAi 6= ⊥m′ , Bob parses zAi = zAi,1 · · · zAi,m′ . He then

computes qi =
(
(outA,1

zAi,1
⊕outB,1

zAi,1
)⊕· · ·⊕(outA,m′

zA
i,m′
⊕outB,m′

zA
i,m′

)
)
. If zAi = ⊥m′ ,

on the other hand, Bob sets qi to be a random (L+m′)-bit value.
If qi ∈ TB , he modifies qi to be a random (L + m′)-bit value. He adds qi
to TB .

2. Alice and Bob call the first stage of F2PSI with their inputs TA and TB .
3. For all i ∈ EA, Alice commits to qi using Commit(·) and sends these

commitments in a random order. (Bob does not need to follow this step.)

Fig. 4. 2−s-CovIDA 2PC via PSI
20

Continued

Opening.

1. Alice decommits sdAi for all i /∈ EA. She also reveals her OT inputs cor-
responding to the opened circuits (the OTs for Bob to learn his input
labels).

2. Bob aborts if any of the following occurs:
– ∃i ∈ EA such that Alice’s garbled inputs are invalid.
– ∃i /∈ EA in which GCA

i 6= Garble(CA, sd
A
i , dA), or, the OTs are not

consistent with GCA
i . (Note that once some sdAi is revealed, Bob can

compute dA by himself.)

– Some of the output labels (out1A,0, out
1
A,1) . . . (outm

′
A,0, out

m′
A,1) are not

properly constructed or not consistent with GDecA.

Output generation.

1. Alice and Bob perform the second stage of F2PSI in order for Alice to
learn I = TA ∩ TB .

2. Alice aborts if I = ∅. Else, she decommits Commit(qi) corresponding to
the single element in I (note that the intersection is guaranteed to be of
size at most one). Bob aborts if the decommitment is invalid or if the
decommitted value is not in set TB .

3. Recall that the computation output is masked by r′A and r′B . Alice sends
r′A and the labels that correspond to r′A in GCB

i for i = min(EA). (These
labels are used for authenticating r′A.) If the labels are invalid, Bob aborts.

4. Both players unmask the output from qi and output the result.

Fig. 5. 2−s-CovIDA 2PC via PSI

21

Construction Fixed-based Regular Symmetric Group Symmetric
Exponent. Exponent. Encryption elements sent communication

Best Previous 18s`+ 1080s 960s 78s` 42s` 24sn`

Ours 4.5s s 2s 4s sn

Fig. 6. Comparison of overhead cost of our CovIDA 2PC protocol with the best al-
ternative using state of the art techniques. s is the number of circuits, n is length of
symmetric-key ciphertext, and ` is the input sizes.

Construction Fixed-based Regular Symmetric Group Symmetric
Exponent. Exponent. Encryption elements sent communication

Best Previous 42s`+ 1080s 7s`+ 36`+ 960s 26s|C|+ 78s` 52s` 4ns|C|+ 28sn`

Ours 24s`+ 4.5s 7s`+ 36`+ s 26s|C|+ 2s 10s`+ 4s 4ns|C|+ sn

Fig. 7. Comparison of overall cost of our CovIDA 2PC protocol with the best alter-
native using state of the art techniques. s is the number of circuits, n is length of
symmetric-key ciphertext, ` is the input sizes, and |C| is the circuit size.

Construction Fixed-based Regular Symmetric Bandwidth (bits)

Best Previous 6456s 1856s+ 4608 186784s 5404672s

Ours 3076s 897 s + 4608 176802 s 3483012s

Fig. 8. Concrete comparison of overall costs for the AES. s is the number of circuits,
n = 128 is length of symmetric-key ciphertext, ` = 128 is the input sizes, and |C| = 6800
is the number of non-XOR gates in the AES circuit.

Finally, for concreteness, in Figure 8 we look at the overall cost of the two
protocols for the AES circuit with 6800 non-XOR gates, input size ` = 128,
the symmetric ciphertext size n = 128 and group element size 220 bits. We have
combined the communication cost into one column named bandwidth which is in
bits. We express all costs in terms of parameter s. For instance, our new protocol
reduces overall bandwidth by 35% and the number of exponentiations by more
than 50%.

Different deterrence value for each player. Besides its better efficiency, an addi-
tional advantage of our new protocol is that each party has a separate challenge
generation and uses a different challenge set Ei, to determine which circuits to
check and which ones to evaluate. This allows us to use a different number of gar-
bled circuits for each party and as a result achieve different deterrence factors for
each. This variant can be quite useful in practice where different participants in
a protocol may have different reputations (to protect) or different levels of toler-
ance for risk. One can take these real-world factors into account when adjusting
the deterrence factor for each party.

References

1. W. Aiello, Y. Ishai, and O. Reingold. Priced oblivious transfer: How to sell digital
goods. In B. Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages
119–135. Springer, May 2001.

22

2. Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient protocols
for realistic adversaries. In S. P. Vadhan, editor, TCC 2007, volume 4392 of LNCS,
pages 137–156. Springer, Feb. 2007.

3. M. Bellare, V. T. Hoang, and P. Rogaway. Foundations of garbled circuits. In
T. Yu, G. Danezis, and V. D. Gligor, editors, ACM CCS 12, pages 784–796. ACM
Press, Oct. 2012.

4. R. Canetti, H. Lin, and R. Pass. Adaptive hardness and composable security in
the plain model from standard assumptions. In 51st FOCS, pages 541–550. IEEE
Computer Society Press, Oct. 2010.

5. R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky. Searchable symmet-
ric encryption: improved definitions and efficient constructions. In A. Juels,
R. N. Wright, and S. Vimercati, editors, ACM CCS 06, pages 79–88. ACM Press,
Oct. / Nov. 2006.

6. E. De Cristofaro, J. Kim, and G. Tsudik. Linear-complexity private set intersection
protocols secure in malicious model. In M. Abe, editor, ASIACRYPT 2010, volume
6477 of LNCS, pages 213–231. Springer, Dec. 2010.

7. Y. Huang, J. Katz, and D. Evans. Quid-Pro-Quo-tocols: Strengthening semi-honest
protocols with dual execution. In 2012 IEEE Symposium on Security and Privacy,
pages 272–284. IEEE Computer Society Press, May 2012.

8. Y. Huang, J. Katz, and D. Evans. Efficient secure two-party computation using
symmetric cut-and-choose. In R. Canetti and J. A. Garay, editors, CRYPTO 2013,
Part II, volume 8043 of LNCS, pages 18–35. Springer, Aug. 2013.

9. Y. Ishai, E. Kushilevitz, R. Ostrovsky, M. Prabhakaran, and A. Sahai. Effi-
cient non-interactive secure computation. In K. G. Paterson, editor, EURO-
CRYPT 2011, volume 6632 of LNCS, pages 406–425. Springer, May 2011.

10. S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu, and M. Steiner. Outsourced sym-
metric private information retrieval. In A.-R. Sadeghi, V. D. Gligor, and M. Yung,
editors, ACM CCS 13, pages 875–888. ACM Press, Nov. 2013.

11. S. Jarecki and X. Liu. Fast secure computation of set intersection. In J. A. Garay
and R. D. Prisco, editors, SCN 10, volume 6280 of LNCS, pages 418–435. Springer,
Sept. 2010.

12. H. Lin, R. Pass, and M. Venkitasubramaniam. A unified framework for concurrent
security: universal composability from stand-alone non-malleability. In M. Mitzen-
macher, editor, 41st ACM STOC, pages 179–188. ACM Press, May / June 2009.

13. Y. Lindell. Highly-efficient universally-composable commitments based on the
DDH assumption. In K. G. Paterson, editor, EUROCRYPT 2011, volume 6632 of
LNCS, pages 446–466. Springer, May 2011.

14. Y. Lindell. Fast cut-and-choose based protocols for malicious and covert adver-
saries. In R. Canetti and J. A. Garay, editors, CRYPTO 2013, Part II, volume
8043 of LNCS, pages 1–17. Springer, Aug. 2013.

15. S. Micali, R. Pass, and A. Rosen. Input-indistinguishable computation. In 47th
FOCS, pages 367–378. IEEE Computer Society Press, Oct. 2006.

16. S. Micali and L. Reyzin. Physically observable cryptography (extended abstract).
In M. Naor, editor, TCC 2004, volume 2951 of LNCS, pages 278–296. Springer,
Feb. 2004.

17. P. Mohassel and M. Franklin. Efficiency tradeoffs for malicious two-party com-
putation. In M. Yung, Y. Dodis, A. Kiayias, and T. Malkin, editors, PKC 2006,
volume 3958 of LNCS, pages 458–473. Springer, Apr. 2006.

18. P. Mohassel and B. Riva. Garbled circuits checking garbled circuits: More effi-
cient and secure two-party computation. In R. Canetti and J. A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 36–53. Springer, Aug. 2013.

23

19. V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T. Malkin, S. G. Choi, W. George,
A. Keromytis, and S. Bellovin. Blind seer: A scalable private DBMS. In Security
and Privacy (Oakland), 2014.

20. R. Pass. Simulation in quasi-polynomial time, and its application to protocol
composition. In E. Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS,
pages 160–176. Springer, May 2003.

21. M. Prabhakaran and A. Sahai. New notions of security: Achieving universal com-
posability without trusted setup. In L. Babai, editor, 36th ACM STOC, pages
242–251. ACM Press, June 2004.

22. A. Shelat and C.-H. Shen. Fast two-party secure computation with minimal as-
sumptions. In A.-R. Sadeghi, V. D. Gligor, and M. Yung, editors, ACM CCS 13,
pages 523–534. ACM Press, Nov. 2013.

23. A. C.-C. Yao. How to generate and exchange secrets (extended abstract). In 27th
FOCS, pages 162–167. IEEE Computer Society Press, Oct. 1986.

A Proof of Theorem 2

Proof. We sketch only the proof for corrupt Alice: the other case is symmetric.
In the real execution, Alice provides FA as input to the commitment scheme,

eA as input to the OTs (as sender), and xA as input to the OTs (as receiver).
Finally, Alice sends a string to the equality test functionality. An honest Bob
provides honest FB and causes Alice to receive honest garbled input XB . An
honest Bob further calculates his input to the equality test as a direct result of
the garbled output Eval(FB ,Encode(eA, xB)).

We consider a sequence of hybrid interactions, taking hybrid H0 to be the
real execution of the protocol:

H1: The simulator extracts (f ′, d′) ← Extract(FA, eA), and Bob’s effective gar-
bled output is instead computed as Encode(d′, f ′(xB)).8 This hybrid is indis-
tinguishable by the prop-enforcing guarantee of G. Provided that Bob does
not abort in step 4, we also have prop(f ′) = prop(f(0n, ·)).

H2: We focus on the values YB and YAB that Alice provides to the equality test.
These values are compared to values that Bob computes by encoding ỹB
and ỹAB under encoding dB , where (ỹA, ỹB , ỹAB) = f ′(xB). Importantly,
Bob provides valid garbled outputs (under encoding dB). By the authen-
ticity guarantee of G, Alice cannot guess any valid garbled outputs besides
the ones she is prescribed via Eval(FB , XA).9 By the correctness of the gar-
bling scheme, these prescribed garbled outputs encode the “correct” values
yB and yAB computed from f(xA, xB). Thus the simulator in this hybrid

8 For simplicity, we are glossing over the case where f ′ outputs ⊥ (corresponding to
the event that Bob’s execution of Eval results in ⊥). In this event, Bob will run the
equality test on random inputs, and the equality test will result in false. Looking
ahead, this matches the semantics of Lf,f ′,ỹA that will be chosen as the leakage
function in the ideal world. For the rest of the proof we can therefore condition on
f ′ not outputing ⊥.

9 Since FB and XA are designated by Bob, this execution of Eval will not abort.

24

returns false for the equality test if f ′(xB) and f(xA, xB) disagree in their
yB or yAB components, or if Alice provides YB or YAB different from those
prescribed via Eval(FB , XA). This change is indistinguishable by the authen-
ticity property of G.

H3: The simulator uses Alice’s prescribed output (yA, yAB) to generate a simu-
lated garbled circuit FA and garbled input XA. This hybrid is indistinguish-
able by the privacy/obliviousness guarantee of G.10

H4: We focus on the other values ỸA and ỸAB that Alice provides to the equality
test. These are compared to Bob’s value that is determined from Encode(d′, f ′(xB)).
The simulator can easily check whether ỸA, ỸAB are valid encodings under d′

(i.e., possible outputs of Encode(d′, ·)). If not, then the equality test will al-
ways return false and the simulator can also do so. Otherwise, the simulator
can easily determine ỹA and ỹAB such that ỸA‖ · · · ‖ỸAB = Encode(d′, ỹA‖ ·
‖ỹAB). Then the equality check involving these ỸA, ỸAB values is logically

equivalent to (ỹA, ·, ỹAB)
?
= f ′(xB).

We see that in the hybrid labeled H4, the equality test outcome is determined
by the following logic:

f ′(xB) = (ỹA, ỹB , ỹAB) and f(xA, xB) = (yA, yB , yAB) and ỹB = yB and ỹAB = yAB

Indeed, the outcome of the equality test is precisely Lf,f ′,ỹA(xA, xB) where ỹA
is the value that the simulator extracts as described above. Overall, we have
described a simulator that is indistinguishable from the real execution; it needs
to know only Alice’s prescribed output (yA, yAB), and the answer to a Lfprop-
leakage query described above.

B Proof of Theorem 3

Proof. For simplicity, suppose f gives all of its output to both parties (there is no

output given to just one of the parties). Then f̂ has syntax f̂((xa, {rg,A}g), (xB , {rg,B}g)) =
({sg,A}g, {sg,B}g, y = f(xA, xB)).

First, consider the case where a corrupt Alice attacks the Π protocol. She
provides input (xA, {rg,A}g) to f̂ , then receives output ({sg,A}g, y) from f̂ . She

then chooses a legal leakage function LA
f̂,h,ỹ

∈ Lf̂prop and learns the result. Bob

aborts if the leakage function evaluates to zero.
In the simulation, the simulator picks outputs {sg,A}g uniformly at random.

It remains to show how the simulator simulates the outcome of the leakage
function given only L

f
ocl leakage to an ideal f .

Alice chooses a leakage function LA
f̂,h,ỹ

where prop(h) = prop(f̂(0n, ·)). Since

prop includes the circuit topology, we can naturally talk about a correspondence
between the topology of h and f̂ .

10 We use obliviousness since the simulated garbled circuit contains no information
about yB .

25

The analysis proceeds one gate a time, in a topological order. Suppose we
are considering some gate g in f , which corresponds to the larger gadget in f̂ ,
described above. Then h has a similar gadget, in which some of the gate logic
may be changed:

gα

β

rB

rA
sA

sB

⊕⊕
⊕

γ

gadget in f̂

g1α

β

rB s
(h)
A

s
(h)
B

g2

g3

g4
γ(h)

corresponding gadget in h

By our inductive hypothesis, we’ll assume that the values of α and β agree with
the corresponding values in f̂ (and hence in f). By construction, the same rB
value is used as input for both circuits. Hence we use the same variable names
for these values in the above diagram.

The leakage function LA
f̂,h,ỹ

simply performs a string equality related to the

outputs of f̂ and h. It is helpful to think of this string comparison as a conjunction
of single-bit comparisons (taken in the same order as our gate-by-gate analysis),
which will “short circuit” to return 0 as soon as a mismatch is encountered.

The current gadget in f̂ and h includes outputs which the leakage function
checks in the following way. The string ỹ (a parameter of the leakage function,
chosen by Alice) includes a single position whose value we call s̃. The leakage

function checks the two bit-comparisons s
(h)
A = s̃ and s

(h)
B = sB .

We rewrite these two conditions as follows:

(s
(h)
A = s̃) ∧ (s

(h)
B = sB)

⇐⇒ (s
(h)
A = s̃) ∧ (g3(s

(h)
A , g1(α, β)) = sB)

⇐⇒ (s
(h)
A = s̃) ∧ (g3(s̃, g1(α, β)) = sB)

⇐⇒ (s
(h)
A = s̃) ∧ (g3(s̃, g1(α, β)) = g(α, β)⊕ sA)

⇐⇒ (g2(rB) = s̃) ∧ (g3(s̃, g1(α, β)) = g(α, β)⊕ sA)

⇐⇒ (g2(rA ⊕ sA) = s̃) ∧ (g3(s̃, g1(α, β)) = g(α, β)⊕ sA)

Observe that the gates g, g1, . . . , g3 and values sA, rA, s̃ are known to the simula-
tor. Hence, this condition is a function of α, β alone — it is a gate-local constraint
in f ! A simulator only needs to know the result of this gate-local function to
simulate the corresponding bit-comparisons in the leakage function LA

f̂,h,ỹ
.

Conditioned on the constraint being true, we examine the output γ(h) of the
gadget in h. We have:

γ(h) = g4(s
(h)
A , s

(h)
B) = g4(s̃, sA ⊕ g(α, β)) = g4(s̃, sA ⊕ γ)

Let π(·) = g4(s̃, sA ⊕ ·). Clearly the simulator can extract the unary function
π. All gates downstream of γ(h) will receive the value of π(γ), where γ is the

26

“correct” value that leaves this gadget in f̂ . But this is equivalent to sending
γ along this wire and modifying a downstream gate g′ to have logic g′(π(·), ·)
instead. This modified circuit has the same topology as h, so our analysis is not
affected. Furthemore, this transformation preserves the invariant that the inputs
to all gadgets in h match their counterparts in f̂ (conditioned on the event that
the leakage function has not yet short-circuited).

Overall, the simulator will only need to know the conjunction of many gate-
local constraints, one for each gate g in f . Hence, the simulator can succeed by
asking only a L

f
ocl query.

The case where Bob is corrupt is similar, but slightly different due to the
asymmetry between Alice & Bob in the gadgets. In this case, the gadget is only
slightly different (now it is Alice’s input rA which goes to gate g2):

gα

β

rB

rA
sA

sB

⊕⊕
⊕

γ

gadget in f̂

g1α

β

rA s
(h)
A

s
(h)
B

g2

g3

g4
γ(h)

corresponding gadget in h

Also, the leakage function now checks the complementary condition (s
(h)
A =

sA)∧ (s
(h)
B = s̃). The key to manipulating this expression is the observation that

sA = g(α, β)⊕ sB .
We obtain:

(s
(h)
A = sA) ∧ (s

(h)
B = s̃)

⇐⇒ (s
(h)
A = sA) ∧ (g3(s

(h)
A , g1(α, β)) = s̃)

⇐⇒ (s
(h)
A = sA) ∧ (g3(sA, g1(α, β)) = s̃)

⇐⇒ (s
(h)
A = sA) ∧ (g3(g(α, β)⊕ sB , g1(α, β)) = s̃)

⇐⇒ (s
(h)
A = g(α, β)⊕ sB) ∧ (g3(g(α, β)⊕ sB , g1(α, β)) = s̃)

⇐⇒ (g2(rA) = g(α, β)⊕ sB) ∧ (g3(g(α, β)⊕ sB , g1(α, β)) = s̃)

⇐⇒ (g2(g(α, β)⊕ sB ⊕ rB) = g(α, β)⊕ sB) ∧ (g3(g(α, β)⊕ sB , g1(α, β)) = s̃)

As before, all gates g, g1, . . . , g3 and values sB , rB , s̃ are known to the simulator,
making this expression a gate-local function of α, β alone.

Conditioned on the above expression being true, we also have:

γ(h) = g4(s
(h)
A , s

(h)
B) = g4(sA, s̃) = g4(γ ⊕ sB , s̃)

As before, γ(h) is a fixed unary function of the “correct” value γ, and the rest
of the argument goes through analogously.

C CovIDA Security Definition

The following definitions for ε-CovIDA security are taken from [18].

27

Real-model execution. The real-model execution of protocol Π takes place
between players (P1, P2), at most one of whom is corrupted by a non-uniform
probabilistic polynomial-time machine adversary A. At the beginning of the exe-
cution, each party Pi receives its input xi. The adversary A receives an auxiliary
information aux and an index that indicates which party it corrupts. For that
party, A receives its input and sends messages on its behalf. Honest parties follow
the protocol.

Let realΠ,A(aux)(x1, x2) be the output vector of the honest party and the
adversary A from the real execution of Π, where aux is an auxiliary information
and xi is player Pi’s input.
Ideal-model execution. Let f : ({0, 1}∗)2 → {0, 1}∗ be a two-party function-
ality. In the ideal-model execution, all the parties interact with a trusted party
that evaluates f . As in the real-model execution, the ideal execution begins with
each party Pi receiving its input xi, and A receives the auxiliary information
aux. The ideal execution proceeds as follows:

Send inputs to trusted party: Each party P1, P2 sends x′i to the trusted
party, where x′i = xi if Pi is honest and x′i is an arbitrary value if Pi is
controlled by A.

Abort option: If any x′i = abort, then the trusted party returns abort to all
parties and halts.

Attempted cheat option: If Pi sends cheati(ε
′), then:

– If ε′ > ε, the trusted party sends corruptedi to all parties and the adver-
sary A, and halts.

– Else, with probability 1 − ε′ the trusted party sends corruptedi to all
parties and the adversary A and halts.

– With probability ε′,

• The trusted party sends undetected and f(x′1, x
′
2) to the adversary

A.
• A responds with an arbitrary boolean (polynomial) function g.
• The trusted party computes g(x′1, x

′
2). If the result is 0 then the

trusted party sends abort to all parties and the adversary A and
halts. (i.e. A can learn g(x′1, x

′
2) by observing whether the trusted

party aborts or not.)

Otherwise, the trusted party sends f(x′1, x
′
2) to the adversary.

Second abort option: The adversary sends either abort or continue. In the
first case, the trusted party sends abort to all parties. Else, it sends f(x′1, x

′
2).

Outputs: The honest parties output whatever they are sent by the trusted
party. A outputs an arbitrary function of its view.

Let idealεf,A(aux)(x1, x2) be the output vector of the honest party and the
adversary A from the execution in the ideal model.

Definition 2. A two-party protocol Π is secure with input-dependent abort in
the presence of covert adversaries with ε-deterrent (ε-CovIDA) if for any non-
uniform probabilistic polynomial-time adversary A in the real model, there exists

28

a non-uniform probabilistic polynomial time adversary S in the ideal model such
that{
realΠ,A(aux)(x1, x2)

}
x1,x2,aux∈{0,1}∗

c
≈
{
idealεf,S(aux)(x1, x2)

}
x1,x2,aux∈{0,1}∗

for all |x1| = |x2| and aux.

D Proof Sketch of Theorem 4

We only present the proof for the case when Alice is corrupted. The case of
corrupted Bob is symmetric. The probability that at least one of the evaluated
garbled gates that were generated by Alice was constructed properly (and con-
sistently with the COT) is 1− 2−s (because of the cut-and-choose and the fact
that Bob checks both the garbled circuits and their corresponding COT inputs).
On the other hand, Alice is forced (because of the OTs) to use only one input for
the garbled circuits generated by Bob. If that input is different than the one she
has used for the garbled circuits that Bob evaluates, then with good probability
the outputs of the input-consistency check will be different, causing the PSI to
return an empty set (since in order to know one element in Bob’s set, Alice has
to guess output wire labels which were not revealed to her in her evaluations).
Therefore, if the PSI returns at least one element, that element is indeed the
result of correct evaluations of valid garbled circuits done by both players, and
since Bob is honest, this is the right output. Furthermore, since Bob is honest,
Alice will get only a single output from all her evaluations, and will have to use
random elements for the rest of her PSI inputs. Since Bob’s inputs to the PSI
include information that must be learned from the output wire labels chosen by
Bob, the only element in the intersection could be the right output.

More formally, let A be an adversary controlling Alice in the execution of the
protocol. We describe a simulator S that runs A internally and interacts with
the trusted third party (TTP) that computes f . S does the following:

1. Emulates a honest Bob with input 0 until the end of ”Circuit Preparation”
Stage.

2. During the emulation, S extracts the seeds Alice committed on, and learns
all her inputs to the OTs (including her input xA in the OTs for her to learn
her input labels for Bob’s circuits). We say that a seed, a garbled circuit
and its COT inputs constitute a good set if they are consistent and properly
generated, and a bad set otherwise. For each of Alice’s circuits, S determines
if it is a good or a bad set. Note that unless all Alice’s circuits are bad, at
this stage S can compute the output labels of Alice’s circuits.
Let rB , r

′
B be the values chosen by the emulated Bob and let rA, r

′
A be the

values chosen by Alice in the OTs. Alice receives only the output f(xA, 0)⊕
r′A⊕r′B from her evaluated circuits and can compute only a single valid value
qi. (She can also guess other valid values with a negligible in L probability.)
S can also compute this value at this stage. Denote this valid qi by Q.

29

If all sets are good, S sends xA to the TTP, receives the output z, and
continues the emulation of Bob. If Alice enters Q to the PSI, she receives
the same value as the intersection, but otherwise she receives an empty
set. Next, if Alice decommits to a value different than Q in the “Output
generation” stage, S aborts. Else, it sends R′B = r′B ⊕ z ⊕ f(xA, 0) to Alice
and outputs whatever she does. (This causes the output of Alice to be z since
she received f(xA, 0) ⊕ r′A ⊕ r′B from the evaluations.) Note that S knows
the corresponding valid labels for R′B from the OTs.

If some of the sets are bad, let c ∈ {0, 1}s be a bitstring such that ci = 1 if
set i is good, and ci = 0 otherwise. Also, let eb be the number of bad sets.

If eb = s, S simulates Bob aborting and outputs whatever Alice does. This
is due to the fact that we generate the challenge set such that at least one
circuit is always checked.

If 0 < eb < s, then

– Let p = 2s−eb−1
2s−2 −

1
2s−2 . With probability p, S extracts α

(A)
1 and chooses

a random α
(B)
1 such that all bad sets are in EA, but also at least one

good set is also in it. It calls the TTP with xA and receives the output z
and proceeds with the emulation until the output unmasking. As before,
if Alice does not send Q to the PSI, it receives an empty set, and if she
does not decommit Q afterwards, S aborts. Last, S sends r′A so that the
unmasked output would be z, and outputs whatever Alice outputs.

– With probability 1 − p, S calls the TTP with xA and then sends the
message cheat(1/(2s−2)/(1−p)). (Note that (1/2s−2)/(1−p) ≤ 2−s+1

when eb ≥ 1.)

If the TTP returns a corrupted message, S chooses a random α
(B)
1 such

that some bad circuits will be checked, and continues the emulation until
Bob aborts once the bad circuits are checked. Otherwise, i.e., in case the
TTP returns undetected and the output z, S causes EA to be the set
of all bad garbled circuits, and sends to the TTP the function that has
hardcoded the bad garbled circuits, their COT inputs, all output labels
(chosen by both players), the values rB , r

′
B and R′B = r′B ⊕ z⊕ f(xA, 0),

and the value Q. (This part is similar to [7, 18].) The function takes Bob’s
real input xB , finds RB such that MB · (0l‖RB‖R′B) = MB · (0l‖rB‖r′B),
emulates a honest Bob with inputs xB , RB , R

′
B that receives its input

labels from the OTs, evaluates the garbled circuits, and checks if any
of the outputs would give qi = Q. In high level, the function emulates
what a honest Bob would get from the evaluation using Bob’s real and
output mask R′B that makes sure both players receive the same output.
If the TTP responds with abort, S emulates Bob aborting after Alice
decommits the output of the intersection (or before in case the emulated
Bob aborts). If the TTP does not respond with abort, as before, if Alice
inputsQ to the PSI she receives it back, or empty set otherwise, and if she
decommits to a different value than Q, then S emulates Bob Aborting.
In case no abort happens until the end of the protocol, S sends R′B as
Bob’s mask. (Note that the COT for the bits of R′B must be fine since

30

otherwise the function that emulated Bob by the TTP would have failed
producing the value Q.)

We now analyse the probabilities of the different cases: (1) If all sets are
good, then S simply retrieves the output and unmask the output accordingly.
The simulation looks the same as the real execution except for Bob’s inputs
which are hidden because of the security of the COT and the garbling scheme;
(2) if all sets are bad, then S will emulate Bob aborting and outputs what Alice
does. This is identical to the real world since at least once circuit is always
checked and hence Alice caught. (3) If some sets (but not all) are bad then there
are three possibilities:

– Alice is caught cheating - Happens with probability (1−p)× (1− 1/(2s−2
1−p) =

1− p− 1/(2s − 2) = 2s−eb−1
2s−2 .

– The protocol ends without accusing Alice of cheating - Happens with prob-

ability p = 2s−eb−1
2s−2 − 1

2s−2 .

– Alice successfully cheats - Happens with probability (1 − p) × 1/(2s−2)
1−p =

1/(2s − 2).

Note that the soundness of the protocol is 2−s+1 since we call the TTP
with the message cheat 1

2s−1/(1− p)) ≤ 2−s+1 for the p we have. We stress that
the actual cheating probability is only 1/(2s − 1). (This “gap” is a because the
adversary is not always accused of cheating, even if it gets caught.)

We remark that the adversary can guess one of Bob’s output labels with a
negligible in L probability. Since it can guess several values and enter them as
inputs to the PSI, the probability that at least one of them would be valid is
|EA| · neg(L). (This affects only the parameter L, and not s.)

31

