
Complete Characterization of Fairness in Secure
Two-Party Computation of Boolean Functions?

Gilad Asharov1, Amos Beimel2, Nikolaos Makriyannis3, and Eran Omri4

1 The Hebrew University of Jerusalem, Jerusalem, Israel.
2 Ben Gurion University of the Negev, Be’er Sheva, Israel.

3 Universitat Pompeu Fabra, Barcelona, Spain.
4 Ariel University, Ariel, Israel.

Abstract. Fairness is a desirable property in secure computation; in-
formally it means that if one party gets the output of the function, then
all parties get the output. Alas, an implication of Cleve’s result (STOC
86) is that when there is no honest majority, in particular in the im-
portant case of the two-party setting, there exist Boolean functions that
cannot be computed with fairness. In a surprising result, Gordon et al.
(JACM 2011) showed that some interesting functions can be computed
with fairness in the two-party setting, and re-opened the question of un-
derstanding which Boolean functions can be computed with fairness, and
which cannot.
Our main result in this work is a complete characterization of the (sym-
metric) Boolean functions that can be computed with fairness in the
two-party setting; this settles an open problem of Gordon et al. The
characterization is quite simple: A function can be computed with fair-
ness if and only if the all one-vector or the all-zero vector are in the
affine span of either the rows or the columns of the matrix describing the
function. This is true for both deterministic and randomized functions.
To prove the possibility result, we modify the protocol of Gordon et al.;
the resulting protocol computes with full security (and in particular with
fairness) all functions that are computable with fairness.

We extend the above result in two directions. First, we completely char-
acterize the Boolean functions that can be computed with fairness in
the multiparty case, when the number of parties is constant and at most
half of the parties can be malicious. Second, we consider the two-party
setting with asymmetric Boolean functionalities, that is, when the out-
put of each party is one bit; however, the outputs are not necessarily the
same. We provide both a sufficient condition and a necessary condition
for fairness; however, a gap is left between these two conditions. We then
consider a specific asymmetric function in this gap area, and by designing
a new protocol, we show that it is computable with fairness. However,
we do not give a complete characterization for all functions that lie in
this gap, and their classification remains open.

Keywords: Secure computation, fairness, foundations, malicious adversaries

?
The first author is supported by the Israeli Centers of Research Excellence (I-CORE) Program
(Center No. 4/11). The second author is partially supported by ISF grant 544/13 and by the
Frankel Center for Computer Science. The forth author is partially supported by ISF grant 544/13.

1 Introduction

Secure multiparty computation is one of the gems of modern cryptography. It
enables a set of mutually distrusting parties to securely compute a joint func-
tion of their inputs in the presence of an adversarial behaviour. The security
requirements of such a computation include privacy, correctness, independence
of inputs, and fairness. Informally, fairness means that if one party gets the
output of the function, then all parties get the output. For example, when two
parties are signing a contract, it is reasonable to expect that one party signs the
contract if and only if the second party signs the contract.

The study of secure multiparty protocols (MPC) started with the works of
Yao [15] for the two-party setting and Goldreich, Micali, and Wigderson [10] for
the multiparty setting. When a strict majority of honest parties can be guaran-
teed, protocols for secure computation provide full security, i.e., they provide all
the security properties mentioned above including fairness. However, this is no
longer the case when there is no honest majority, and in particular in the case
of two-party computation where one of the parties may be corrupted. In these
settings, protocols for secure computation provide a weaker notion of security,
which is known as “security with abort”. Specifically, these protocols still pro-
vide important security requirements such as correctness and privacy, but can
not guarantee fairness – and the adversary can get its output while preventing
the honest parties from getting their output. Relaxing the security requirement
when there is no honest majority is unavoidable as was shown by Cleve [8].

To elaborate further, Cleve [8] proved that there exist two-party functions
that cannot be computed with fairness when there is no honest majority. In
particular, he showed that the coin-tossing functionality, where two parties toss
an unbiased fair coin, cannot be computed with complete fairness. He proved that
in any two-party coin-tossing protocol there exists an adversary that can bias
the output of the honest party. A ramification of Cleve’s impossibility is that
any function that implies coin tossing cannot be computed with full security
without an honest majority. An example for such a function is the exclusive-or
(XOR) function; a fully secure coin-tossing protocol can be easily constructed
assuming the existence of a fair protocol for XOR.

For years, the common interpretation of Cleve’s impossibility was that no
interesting functions can be computed with full security without an honest ma-
jority. In a recent surprising result, Gordon et al. [11] showed that this interpre-
tation is inaccurate as there exist interesting functions that can be computed
with full security in the two-party setting, e.g., the millionaires’ problem with
polynomial size domain. This result re-opened the question of understanding
which Boolean functions can be computed with fairness and which cannot.

In more detail, Gordon et al. [11] showed that all functions with polynomial
size domain that do not contain an embedded XOR can be computed with
full security in the two-party setting; this class of functions contains the AND
function and Yao’s millionaires’ problem. They also presented a protocol, later
referred to as the GHKL protocol, which computes with full security a large
class of Boolean functions containing embedded XORs. However, the analysis

of this protocol is rather involved, and the exact class of function that can be
computed using this protocol was unclear until recently.

In this paper, we focus on the characterization of fairness for Boolean func-
tions, and provide a complete characterization of Boolean two-party functions
that can be computed with full security.

1.1 Previous Works

As mentioned above, Cleve [8] proved that coin tossing cannot be computed
with full security without an honest majority, and in particular, in the two-
party setting. A generalization of Cleve’s result was given recently by Agrawal
and Prabhakaran [1]. They showed that any non-trivial sampling functionality
cannot be computed with fairness and correctness in the two-party setting, where
a non-trivial sampling functionality is a randomized functionality in which two
parties, with no inputs, sample two correlated bits.

Gordon et al. [11] re-opened the question of characterizing fairness in secure
two-party and multiparty computation. This question was studied in a sequence
of works [2,4,14]. Asharov, Lindell, and Rabin [4] focused on the work of Cleve [8]
and fully identified the functions that imply fair coin tossing, and are thus ruled
out by Cleve’s impossibility. Later, Asharov [2] studied the functions that can
be computed with full security using the GHKL protocol. He identified three
classes of functions: Functions that can be computed using the GHKL protocol,
functions that cannot be computed with full security using this specific protocol,
and a third class of functions that remained unresolved. Intuitively, [2] showed
that if a function is somewhat asymmetric, in the sense that, in the ideal model,
one party exerts more influence on the output compared to the other party, then
the function can be computed with full security.

Makriyannis [14] has recently shown that the class of functions that by [2]
cannot be compute fairly using the GHKL protocol is inherently unfair. He
showed a beautiful reduction from sampling functionalities, for which fair com-
putation had already been ruled out in [1], to any function in this class. Indeed,
in this class of functions, the influence that each party exerts over the output in
the ideal world is somewhat the same. However, the works of [2,14] left the afore-
mentioned third class of functions unresolved. Specifically, this class of functions
is significantly different than the class of functions that was shown to be fair,
and it contains functions where the parties exert the same amount of influence
over the output in the ideal model and yet do not imply sampling, at least not
by the construction of [14].

The characterization of fairness was studied in scenarios other than symmet-
ric two-party Boolean functions where the output of the parties is the same.
In particular, Gordon and Katz [12] considered fully-secure computation in the
multiparty setting without an honest majority and constructed a fully-secure
three-party protocol for the majority function and an m-party protocol for the
AND of m bits. Asharov [2] also studied asymmetric functions where the par-
ties’ outputs are not necessarily the same, as well as functions with non-Boolean
outputs, and showed some initial possibility results for these classes of functions.

1.2 Our Results

In this work, we study when functions can be computed with full security without
an honest majority. Our main result in this work is a complete characterization
of the Boolean functions that can be computed with full security in the two-
party setting. This solves an open problem of [11]. We focus on the third class
of functions that was left unresolved by [2, 14], and show that all functions in
this class can be computed with full security (thus, with fairness). This includes
functions where the parties’ influences on the output in the ideal world are
completely equalized, showing that the classification is more subtle than one
might have expected.

In order to show possibility for this class of functions, we provide a new
protocol (based on the protocol of GHKL), and show that it can compute all the
functions in this class. We note that the GHKL protocol had to be modified in
order to show this possibility; In particular, we show that there exist functions
in this class that cannot be computed using the GHKL protocol for any set of
parameters, but can be computed using our modified protocol (see Example 1.2).
In addition, this protocol computes with full security all functions that were
already known to be fair. Combining the result with the impossibility result
of [14], we obtain a quite simple characterization for fairness:

Theorem 1.1 (informal). A Boolean function f : X×Y → {0, 1} can be com-
puted with full security if and only if the all one-vector or the all-zero vector are
an affine combination of either the rows or the columns of the matrix describing
the function.

We recall that an affine-combination is a linear-combination where the sum
of coefficients is 1 (see Example 1.2).

The above informally stated theorem is true for both deterministic and ran-
domized functions. Alternatively, our characterization can be stated as follows:
either a function implies non-trivial sampling, thus cannot be computed with
fairness, or the function can be computed with full security (and, in particular,
with complete fairness), assuming the existence of an oblivious transfer protocol.

Example 1.2. The following function is a concrete example of a function that
was left as unresolved in [2, 14].

y1 y2 y3 y4

x1 0 0 0 1
x2 0 0 1 1
x3 0 1 1 0
x4 1 1 0 1

We show that the GHKL protocol is susceptible to an attack for this par-
ticular function, however, we show that it can be computed using our modified
protocol. In this example, the all-one vector is an affine combination of the rows
(taking the first row with coefficient -1, the second and the forth with coefficient

1, and the third row with coefficient 0; the sum of the coefficients is 1, as re-
quired by an affine combination). Thus, this function can be computed with full
security by our protocol.

We extend the above result in two directions. First, we completely charac-
terize the Boolean functions that can be computed with full security when the
number of parties is constant and at most half of the parties can be malicious.
We show that a function can be computed with full security when at most half
of the parties can be malicious if and only if every partition of the parties’ in-
puts into two equal sets results in a fully-secure two-party function. Second, we
consider the two-party setting with asymmetric Boolean functionalities, that is,
when the output of each party is one bit, but the outputs are not necessarily
the same. We generalize our aforementioned protocol for symmetric functions to
handle asymmetric functions, and conclude with a sufficient condition for fair-
ness. In addition, we provide a necessary condition for fairness; however, a gap is
left between these two conditions. For the functions that lie in the gap, the char-
acterization remains open. We then consider a specific function in this gap area
and, by designing a new protocol, we show that it is computable with fairness.
This new protocol has some different properties than the generalized protocol,
which may imply that the characterization of Boolean asymmetric functions is
more involved than the symmetric case.

2 Preliminaries

In this paper all vectors are column vectors over R. Vectors are denoted by
bold letters, e.g., v or 1 (the all-one vector). Let V ⊆ R` be a set of vectors. A
vector w ∈ R` is an affine combination of the vectors in V if there exist scalars
{av ∈ R}v∈V such that w =

∑
v∈V av · v and

∑
v∈V av = 1. Let M be an `× k

real matrix. A vector w ∈ R` is in the image of M , denoted w ∈ im(M), if there
exists a vector u ∈ Rk such that Mu = w. A vector v ∈ Rk is in the kernel of
M , denoted v ∈ ker(M), if Mv = 0`.

The affine hull of a set V ∈ R`, denoted affine-hull(V), is the smallest affine
set containing V, or equivalently, the intersection of all affine sets containing V.
This is equivalent to the set of all affine combinations of elements in V, that is,
affine-hull(V) = {

∑
v∈V av · v :

∑
v∈V av = 1}.

Proposition 2.1. The vector 1` is not a linear combination of the columns of
M iff the vector (0k)T is an affine combination of the rows of M .

Proof. 1` is not a linear combination of the columns of M iff rank(
(
M |1

)
) =

rank(M) + 1 (where
(
M |1

)
is the matrix M with the extra all-one column) iff

dim(ker(
(
M |1

)T
)) = dim(ker(MT))−1 iff there exists a vector u ∈ R` such that

MTu = 0k and 1 ·u = 1 iff (0k)T is an affine combination of the rows of M . �

Definition 2.2. Given two `× k matrices matrices A and B, we say that C =
A ∗B if C is the entry-wise (Hadamard) product of the matrices, that is, Ci,j =
Ai,j ·Bi,j.

Secure Multiparty Computation. We assume that the reader is familiar with
the definitions of secure computation, and with the ideal-real paradigm. We
refer to [7, 9] and to the full version of this paper [3] for formal definitions. We
distinguish between security-with-abort, for which the adversary may receive
outputs while the honest parties might not (security without fairness), and full
security (security with fairness), where all parties receive outputs (this is similar
to security with respect to honest majority as in [7,9], although we do not have
a honest majority).

3 A Fully-Secure Protocol for Boolean Two-Party
Functions

In this section we present our protocol that securely computes any function
for which the all-one or all-zero vector is an affine combination of either the
rows or the columns of its associated matrix. In Section 3.1, we show that our
protocol can compute functions that cannot be computed using the original
GHKL protocol.

Let f : X×Y → {0, 1} be a finite Boolean function with the associated `×k
matrix M . Without loss of generality, X = {1, . . . , `} and Y = {1, . . . , k}. In
Figure 1 we describe Protocol FairTwoPartyσ, a modification of the GHKL
protocol [11]. Protocol FairTwoPartyσ is described using an on-line dealer.

Remark 3.1. We show that our protocol computes the function with full security
in the presence of an on-line dealer, even though each party can abort this on-line
dealer at any point of the execution. We remark that this implies full security
in the plain model. In order to see this, we first remark that one can use direct
transformation from the on-line dealer to the plain model, as discussed in [2].
An alternative transformation is the following, which is by now standard and is
based on [11].

We next sketch the transformation. Protocol FairTwoPartyσ is composed
of a fixed number r of rounds (which depends on the security parameter and
the function computed by the protocol), the dealer prepares 2r values a1, . . . , ar
and b1, . . . , br and in round i it first gives ai to P1, if P1 does not abort it gives
bi to P2. The values ai and bi are called backup outputs and the respective
value is outputted by a party if the other party aborts. If one of the parties
aborts in round i, then the dealer aborts; otherwise it continues to round i +
1. one can transform this protocol to a protocol with an off-line dealer that
is only invoked in the initial round of the protocol. This off-line dealer first
chooses a1, . . . , ar and b1, . . . , br in the same way the on-line dealer chooses them,
computes authenticated 2-out-of-2 shares of a1, . . . , ar and b1, . . . , br, and gives
one share to P1 and the other to P2. The protocol now proceeds in rounds, where
in round i, party P2 sends to P1 its authenticated share of ai and then party P1

sends to P2 its authenticated share of bi. Assuming that a secure protocol for OT
exists, this protocol with an off-line dealer can be transformed into a protocol in
the plain model where the parties compute this one-time dealer using security

with abort [9]. Alternatively, we can use Kilian’s protocol [13] that computes the
off-line functionality in the OT-hybrid model providing information-theoretic
security-with-abort.

Protocol FairTwoPartyσ

1. The parties P1 and P2 hand their inputs, denoted x and y respectively, to
the dealer.a

2. The dealer chooses i∗ ≥ 2 according to the geometric distribution with
probability α.

3. The dealer computes out = f(x, y), and for 0 ≤ i ≤ r

ai =

{
f(x, ỹ(i)) where ỹ(i) ∈U Y if i < i∗

out otherwise

and

bi =

 f(x̃(i), y) where x̃(i) ∈U X if i < i∗ − 1
σ if i = i∗ − 1
out otherwise.

4. The dealer gives b0 to P2.
5. For i = 1, . . . , r,

(a) The dealer gives ai to P1. If P1 aborts, then P2 outputs bi−1 and halts.
(b) The dealer gives bi to P2. If P2 aborts, then P1 outputs ai and halts.

a If x is not in the appropriate domain or P1 does not hand an input, then the
dealer sends f(x̂, y) (where x̂ is a default value) to P2, which outputs this
value and the protocol is terminated. The case of an inappropriate y is dealt
analogously.

Fig. 1: Protocol FairTwoPartyσ for securely computing a function f , where
σ is either 0 or 1.

The main difference in Protocol FairTwoPartyσ compared to the GHKL pro-
tocol is in Step 3, where bi∗−1 = σ (compared to bi∗−1 = f(x, ỹ) for a random ỹ
in the GHKL protocol). For some functions f we choose σ = 0 and for some we
choose σ = 1; the choice of σ depends only on the function and is independent
of the inputs. This seemingly small change enables to compute with full secu-
rity a larger class of functions, i.e., all Boolean functions that can be computed
with full security. We note that this change is somewhat counter intuitive as
we achieve security against a malicious P1 by giving P2 less information. The
reason why this change works is that it enables the simulator for P1 to choose
its input to the trusted party in a clever way. See Section 3.1 for more intuition
explaining why this change works.

Remark 3.2. There are two parameters in Protocol FairTwoPartyσ that are
unspecified – the parameter α of the geometric distribution and the number of
rounds r. We show that there exists a constant α0 (which depends on f) such

that taking any α ≤ α0 guarantees full security (provided that f satisfies some
conditions). As for the number of rounds r, even if both parties are honest the
protocol fails if i∗ > r (where i∗ is chosen with geometric distribution). The
probability that i∗ > r is (1 − α)r. So, if r = α−1 · ω(log n) (where n is the
security parameter), the probability of not reaching i∗ is negligible.

Theorem 3.3. Let M be the associated matrix of a Boolean function f . If (0k)T

is an affine combination of the rows of M , then there is a constant α0 > 0 such
that Protocol FairTwoParty0 with α ≤ α0 is a fully-secure protocol for f .

Proof. It is easy to see that the protocol is secure against a corrupted P2, using
a simulator similar to [11]. Intuitively, this follows directly from the fact that P2

always gets the output after P1.
We next prove that the protocol is secure against a corrupted P1 by construct-

ing a simulator for every real world adversary A controlling P1. The simulator
we construct has only black-box access to A and we denote it by SA. The sim-
ulation is described in Figure 2. It operates along the same lines as in the proof
of [11]. The main difference is in the analysis of the simulator, where we prove

that there exist distributions (x
(a)
x)x∈X,a∈{0,1}, which are used by the simulator

to choose the input that P1 gives to the trusted party.

The simulator SA for Protocol FairTwoParty0

– The adversary A gives its input x to the simulator.a

– The simulator chooses i∗ ≥ 2 according to the geometric distribution with
probability α.

– For i = 1, . . . , i∗ − 1:
• The simulator gives ai = f(x, ỹ(i)) to the adversary A, where ỹ(i) is

chosen according to the uniform distribution.
• If A aborts, then the simulator chooses an input x0 according to a

distribution x
(ai)
x (which depends on the input x and the last bit that

was chosen), gives x0 to the trusted party, outputs the bits a1, . . . , ai,
and halts.

– At round i = i∗, the simulator gives x to the trusted party and gets the
output a = f(x, y).

– For i = i∗, . . . , r: The simulator gives ai = a to the adversary A, if A aborts,
then the simulator outputs the bits a1, . . . , ai and halts.

– The simulator outputs the bits a1, . . . , ar and halts.

a If the adversary gives an inappropriate x (or no x), then the simulator sends
some default x̂ ∈ X to the trusted party, outputs the empty string, and halts.

Fig. 2: The simulator SA for Protocol FairTwoParty0.

We next prove the correctness of the simulator, that is, if (0k)T is an affine
combination of the rows of M , then the output of the simulator and and the

output of P2 in the ideal world are distributed as the adversary’s view and the
output of the honest P2 in the real world. The simulator generates its output as
the view of P1 in the execution of the protocol in the real world. First, it chooses
i∗ as in Protocol FairTwoParty0, i.e., with geometric distribution. Up to round
i∗−1, the backup outputs are uncorrelated to the input of the honest party. That
is, for all i < i∗ the output ai = f(x, ỹ) is chosen with a uniformly random ỹ.
Starting with round i = i∗, the backup outputs are correlated to the true input
of the honest party, and are set as ai = f(x, y), exactly as in the real execution.

As a result of the adversary seeing the same view, A aborts in the simulation
if and only if it aborts in the protocol. Furthermore, if the adversary aborts after
round i∗, the output of P2 in the protocol and in the simulator is identical –
f(x, y). The only difference between the simulation and the protocol is the way
that the output of P2 is generated when the adversary aborts in a round i ≤ i∗. If
the adversary aborts in round i∗, the output of P2 in Protocol FairTwoParty0

is bi∗−1 = 0, while the the output of P2 in the simulation is f(x, y). To com-
pensate for this difference, in the simulation the output of P2 if the adversary
aborts in a round 1 ≤ i ≤ i∗ − 1 is f(x0, y), where x0 is chosen according to a

distribution x
(ai)
x to be carefully defined later in the proof.

To conclude, we only have to compare the distributions (ViewA,OutP2
) in

the real and ideal worlds given that the adversary aborts in a round 1 ≤ i ≤ i∗.
Thus, in the rest of the proof we let i be the round in which the adversary
aborts and assume that 1 ≤ i ≤ i∗. The view of the adversary in both worlds is
a1, . . . , ai. Notice that in both worlds a1, . . . , ai−1 are equally distributed and are
independent of (ai,OutP2

). Thus, we only compare the distribution of (ai,OutP2
)

in both worlds.
First, we introduce the following notation

(1/`, . . . , 1/`)M = (s1, . . . , sk), M

1/k
...

1/k

 =

p1

...
p`

 . (1)

For example, sy is the probability that f(x̃, y) = 1, when x̃ is uniformly dis-

tributed. Furthermore, for every x ∈ X, y ∈ Y , and a ∈ {0, 1}, define q
(a)
x (y) ,

Pr [f(x0, y) = 1], where x0 is chosen according to the distribution x
(a)
x . That is,

q
(a)
x (y) is the probability that the output of P2 in the simulation is 1 when the

the adversary aborts in round i < i∗, the input of P1 is x, the input of P2 is

y, and ai = a. Finally, define the column vector q
(a)
x , (q

(a)
x (y))y∈Y . Using this

notation,

MTx(a)
x = q(a)

x , (2)

where we represent the distribution x
(a)
x = (x

(a)
x (x0))x0∈X by a column vector.

Next, we analyze the four options for the values of (ai,OutP2
).

First case: (ai,OutP2
) = (0, 0). In the real world (ai,OutP2

) = (0, 0) if one of
the following two events occurs:

– i < i∗, ai = f(x, ỹ) = 0, and OutP2
= bi−1 = f(x̃, y) = 0. The probability of

this event is (1− α)(1− px)(1− sy).
– i = i∗, ai∗ = f(x, y) = 0, and OutP2

= bi∗−1 = 0. Recall that always
bi∗−1 = 0 in Protocol FairTwoParty0. The probability of this event is
α · (1− f(x, y)) · 1 (that is, it is 0 if f(x, y) = 1 and it is α otherwise).

Therefore, in the real world Pr [(ai,OutP2
) = (0, 0)] = (1− α)(1− px)(1− sy) +

α(1− f(x, y)). On the other hand, in the ideal world (ai,OutP2
) = (0, 0) if one

of the following two events occurs:

– i < i∗, ai = f(x, ỹ) = 0, and OutP2
= f(x0, y) = 0. The probability of this

event is (1− α)(1− px)(1− q(0)
x (y)).

– i = i∗, ai∗ = f(x, y) = 0, and OutP2 = f(x, y) = 0. The probability of this
event is α · (1− f(x, y)).

Therefore, in the ideal world Pr [(ai,OutP2
) = (0, 0)] = (1 − α)(1 − px)(1 −

q
(0)
x (y))+α(1−f(x, y)). To get full security we need that these two probabilities

in the two worlds are the same, that is,

(1−α)(1−px)(1−sy)+α(1−f(x, y)) = (1−α)(1−px)(1−q(0)
x (y))+α(1−f(x, y)),

i.e.,
q(0)
x (y) = sy. (3)

As this is true for every y, we deduce, using Equation (1) and Equation (2), that

MTx(0)
x = q(0)

x = MT
(
1/`, . . . , 1/`

)T
. (4)

Thus, taking the uniform distribution, i.e., for every x0 ∈ X

x(0)
x (x0) = 1/`, (5)

satisfies these constraints.

Second case: (ai,OutP2) = (0, 1). In the real world Pr [(ai,OutP2) = (0, 1)] =
(1−α)(1− px)sy (in the real world OutP2 = 0 when i = i∗). On the other hand,

in the ideal world Pr [(ai,OutP2) = (0, 1)] = (1− α)(1− px)q
(0)
x (y) (in the ideal

world ai∗ = OutP2
= f(x, y)). The probabilities in the two worlds are equal if

Equation (3) holds (i.e., Equation (5) holds) for every x.

Third case: (ai,OutP2) = (1, 0). In the real world Pr [(ai,OutP2) = (1, 0)] =
(1−α)px(1− sy) +α · f(x, y) · 1. On the other hand, in the ideal world we have

that Pr [(ai,OutP2
)=(1, 0)] = (1 − α)px(1 − q(1)

x (y)). The probabilities in the
two worlds are equal when

(1− α)px(1− sy) + αf(x, y) = (1− α)px(1− q(1)
x (y)).

If px = 0, then f(x, y) = 0 and we are done. Otherwise, this equality holds iff

q(1)
x (y) = sy −

αf(x, y)

(1− α)px
. (6)

As this is true for every y, we deduce, using Equation (1) and Equation (2), that

MTx(1)
x = q(1)

x = MT
(
1/`, . . . , 1/`

)T − α

(1− α)px
(rowx)T

= MT

((
1/`, . . . , 1/`

)T − α

(1− α)px
ex

)
, (7)

where rowx is the row of M labeled by the input x, and ex is the x-th unit vector.

Before analyzing when there exists a probability vector x
(1)
x solving Section 3, we

remark that if the equalities hold for the first 3 cases of the values for (ai,OutP2
),

the equality of the probabilities must also hold for the case (ai,OutP2
) = (1, 1).

In the rest of the proof we show that there exist probability vectors x
(1)
x for every

x ∈ X solving Section 3.

Claim 3.4. Fix x ∈ X and let α be a sufficiently small constant. If (0k)T is an

affine combination of the rows of M , then there exists a probability vector x
(1)
x

solving Section 3.

Proof. By the conditions of the claim, there exists a vector u ∈ R` such that

MTu = 0k and
(
1, · · · , 1

)
u = 1. Consider the vector y =

(
1/`, . . . , 1/`

)T
+

α
(1−α)px

(u − ex). The vector y is a solution to Section 3 since MTu = 0k. We

need to show that it is a probability vector. First,(
1, · · · , 1

)
y =

(
1, · · · , 1

) (
1/`, . . . , 1/`

)T
+
(
1, · · · , 1

) α

(1− α)px
(u− ex)

= 1 +
α

(1− α)px
(1− 1) = 1.

Second, yi ≥ 1/` − α
(1−α)px

(1 + |ui|) ≥ 1/` − 2kα(1 + max {|uj |}) (recall that

px ≥ 1/k as px > 0 and px is a multiple of 1/k). Thus, by taking α ≤ 1/(2k`(1+
max {|uj |})), the vector y is non-negative, and, therefore, it is a probability
vector solving Section 3.5 �

To conclude, we have showed that if (0k)T is an affine combination of the
rows of M , then there are probability vectors solving Section 3. Furthermore,
these probability vectors can be efficiently found. Using these probability vec-
tors as distributions in the simulator we constructed proves that the protocol
FairTwoParty0 is fully secure for f . �

We provide an alternative proof of Claim 3.4 in the full version of this paper.
Furthermore, in the full version we prove the converse of Claim 3.4. This converse
claim shows that the condition that (0k)T is an affine combination of the rows
of M , which is sufficient for our protocol to securely compute f , is necessary for
our simulation of protocol FairTwoParty0.

5 As the size of the domain of f is considered as a constant, the vector u is a fixed
vector and α is a constant.

Changing the Constant. In the above proof, we have fixed bi∗−1 (i.e., P2’s backup
output at round i∗ − 1) to be 0. By changing this constant and setting it to 1
(that is, by executing Protocol FairTwoParty1), we can securely compute
additional functions.

Corollary 3.5. Let M be the associated matrix of a Boolean function f . If (1k)T

is an affine combination of the rows of M , then there is a constant α0 > 0 such
that Protocol FairTwoParty1 with α ≤ α0 is a fully-secure protocol for f .

Proof. Let M =
(
1
)
−M . Executing Protocol FairTwoParty1 on f is equiv-

alent to executing Protocol FairTwoParty0 with the function f̄(x, y) = 1 −
f(x, y) (whose associated matrix is M), and flipping the output. Thus, Protocol
FairTwoParty1 is fully secure for f if (0k)T is an affine combination of the
rows of M . By the conditions of the corollary, there is an affine combination of
the rows of M that equals (1k)T and the same affine combination applied to
the rows of M equals (0k)T , thus, Protocol FairTwoParty0 is a fully secure
protocol for f̄ . �

Corollary 3.6. Assume that there is a secure protocol for OT. A Boolean two-
party function f with an associated matrix M is computable with full security
if:

– either 0` or 1` is an affine combination of the columns of M , or
– either (0k)T or (1k)T is an affine combination of the rows of M .

Proof. By Theorem 3.3, a function can be computed with full security by proto-
col FairTwoParty0 if (0k)T is an affine combination of the rows ofM . Likewise,
by Corollary 3.5, a function can be computed with protocol FairTwoParty1

if (1k)T is an affine combination of the rows of M . By changing the roles of the
parties in the protocol (in particular, P2 gets the correct output before P1), we
obtain the other two possibilities in the corollary.

Assuming that there exists a secure protocol for OT, we can transform proto-
col FairTwoPartyσ to a protocol without a dealer providing full security. �

3.1 Limits of the GHKL Protocol

We consider the function that was given in Example 1.2 and show that it cannot
be computed using the GHKL protocol. In fact, we show a concrete attack on
the protocol, and construct an adversary that succeeds to influence the output of
the honest party. We then explain how the modified protocol is not susceptible
to this attack.

Assume that P2 chooses its input from {y1, y2, y4} uniformly at random (each
with probability 1/3), and if the input y1 was chosen, it flips the output that was
received. If the protocol computes f with full security, then P2 receives a bit that
equals 1 with probability 2/3, no matter what input distribution (malicious) P1

may use.

Now, assume that the adversary A corrupts P1, always uses input x1, and
follows the following strategy: If a1 = 1 it aborts immediately (in which case, P2

outputs b0). Otherwise, it aborts at round 2 (in which case, P2 outputs b1).

We now compute the probability that P2 outputs 1 when it runs the GHKL
protocol with A. We have the following cases:

1. If i∗ 6= 1, then both b0 and b1 are random values chosen by the online-dealer,
and thus both possible values of a1 yield the same result. In this case, the
output of P2 is 1 with probability 2/3.

2. If i∗ = 1, then the value a1 is the correct output (i.e., f(x, y) where y ∈
{y1, y2, y4}). Moreover, the output of P2 depends on a1: If a1 = 1, then it
outputs b0, which is random value chosen by the online-dealer. If a1 = 0, it
outputs b1, which is the correct output.

Since A uses input x1, the case of a1 = 1 may occur only if the input of P2 is
y4, and thus b0 = 1 with probability 3/4. On the other hand, if a1 = 0 then
P2’s input is either y1 or y2, and it receives correct output b1. It outputs 1
only in the case where its input was y1.

We therefore conclude:

Pr [Out2 = 1] = Pr [i∗ 6= 1] · Pr [Out2 = 1 | i∗ 6= 1] + Pr [i∗ = 1] · Pr [Out2 = 1 | i∗ = 1]

= (1− α) · 2

3
+ α ·

(
Pr [Out2 = 1∧a1 = 0 | i∗ = 1] + Pr [Out2 = 1∧a1 = 1 | i∗ = 1]

)
= (1− α) · 2

3
+ α ·

(
2

3
· 1

2
+

1

3
· 3

4

)
=

2

3
− 1

12
α <

2

3
.

Protocol FairTwoParty1. Since 1Tk is an affine combination of the rows of M ,
we use the protocol FairTwoParty1, that is, use the backup output at round
i∗ − 1 to be 1. Assume that the adversary corrupts P1 and instructs him to
conduct the same attack in some round i ≥ 2 (as i∗ ≥ 2 such attack in round
1 is meaningless in our protocol) . Now, if i = i∗, the value of bi∗−1 is always
1, and the value of bi∗ is correct. If i < i∗, then bi is some random value chosen
by the dealer. In the former case (i∗ = i), since P2 flips its output in case its
input was y1, its output is 1 with probability 2/3. In the latter case, P2 outputs
1 with probability 2/3. We get that the final output of P2 is 1 with probability
2/3, and conclude that the protocol is not susceptible to the attack described
above.

We next give some intuition why the GHKL protocol is susceptible to this at-
tack whereas our protocol is immune to it. In the GHKL protocol, for each input
y the distributions of bi∗−1 is different. At round i∗, the value ai∗ is “correct”,
and leaks information about the distribution of bi∗−1. This gives the adversary
the ability to bias the output of P2 once it guesses correctly the round i∗. In
contrary, in our protocol, we detach the correlation between ai∗ and bi∗−1; al-
though ai∗ leaks information about the input of P2, all distributions of bi∗−1 are
exactly the same for all possible inputs y, and this attack is bypassed.

4 Characterization of Fairness for Boolean Two-Party
Functions

In this section we provide a complete characterization of the Boolean functions
that can be computed with full security. To prove this characterization, recall
the definition of semi-balanced functions given in [14]:

Definition 4.1. A function f : X ×Y → {0, 1} with an associated `× k matrix

M is right semi-balanced if ∃p ∈ Rk such that Mp = 1` and
∑k
i=1 pi 6= 1. Sim-

ilarly, f is left semi-balanced if ∃q ∈ R` such that MTq = 1k and
∑`
i=1 qi 6= 1.

A function f is semi-balanced if it is right semi-balanced and left semi-blanced.

Makriyannis [14] proved that semi-unbalanced functions are inherently unfair,
by showing that a fully-secure protocol for a semi-balanced function implies fair-
sampling. We claim that if f is not semi-balanced then f is computable with full
security by Protocol FairTwoPartyσ.

Lemma 4.2. If f is not right semi-balanced, then either (0k)T is an affine
combination of the rows of M or 1` is an affine combination of the columns of
M .

If f is not left semi-balanced, then either (1k)T is an affine combination of
the rows of M or 0` is an affine combination of the columns of M .

Proof. We show only the case where f is not right semi-balanced, the case of
left semi-balanced is proven analogously. If f is not right semi-balanced, then
one of the following is implied: Either 1` 6∈ im(M), which, by Proposition 2.1,
implies that (0k)T is an affine combination of the rows of M . Alternatively, it
can be that 1` ∈ im(M). In this case the vector p for which M · p = 1` satisfies∑`
i=1 pi = 1 (since f is not right semi-balanced). This in particular implies that

1` is an affine combination of the columns of M . �

Theorem 4.3. Assume an that there is a secure protocol for OT. Let f be a
Boolean two-party function f with an associated matrix M . The function f can
be computed with full-security if and only if f is not semi-balanced if and only if
at least one of the following conditions holds

I. (0k)T is an affine combination of the rows of M or 1` is an affine combina-
tion of the columns of M ,

II. (1k)T is an affine combination of the rows of M or 0` is an affine combina-
tion of the columns of M .

Proof. If f is semi-balanced, then by [14] it cannot be computed with complete
fairness, hence, it cannot be computed with full security.

If f is not semi-balanced, then, by Lemma 4.2, at least one of the conditions
(I) or (II) holds. By Corollary 3.6, conditions (I) or (II) imply (assuming that
there is a secure protocol for OT) that f can be computed with full security. �

4.1 Extensions

First we consider the OT-hybrid model. As explained in Remark 3.1, our protocol
can be executed in the OT-hybrid model providing information-theoretic security
(without any dealer). Furthermore, the impossibility result of [1] holds in the OT-
hybrid model and the reduction of [14] is information-theoretic secure. Thus, our
characterization remains valid in the OT-hybrid model.

Corollary 4.4. Let f be a Boolean two-party function f with an associated
matrix M . The function f can be computed with full-security in the OT-hybrid
model with information-theoretic security if and only if f is not semi-balanced if
and only if at least one of the following conditions holds

I. (0k)T is an affine combination of the rows of M or 1` is an affine combina-
tion of the columns of M ,

II. (1k)T is an affine combination of the rows of M or 0` is an affine combina-
tion of the columns of M .

Second, consider randomized functionalities. Let f : X × Y → ∆({0, 1})
be a randomized finite Boolean function and define associated ` × k matrix
M such that for all i, j, Mi,j = Pr [f(xi, yj) = 1] . One can modify Protocol
FairTwoPartyσ such that the dealer now computes randomized outputs, we
note that the analysis above still holds. In particular, the following theorem is
true.

Theorem 4.5. Assume that there is a secure protocol for OT. A randomized
Boolean two-party function f is computable with complete security if and only if
it is not semi-balanced.

4.2 A Geometric Interpretation of the Characterization

We review the geometric representation of our characterization, which may shed
some light on on our understanding of full security. We start by linking between
semi-balanced functions and linear hyperplanes.

A linear hyperplane in Rm is an (m− 1)-dimensional affine subspace of Rm,
and is defined as all the points x = (x1, . . . , xm) ∈ Rm that are a solution of some
linear equation a1x1+. . .+amxm = b, for some constants a = (a1, . . . , am) ∈ Rm
and b ∈ R. We denote this hyperplane by H(a, b) , {X ∈ Rm | 〈X,a〉 = b}. We
show alternative representations for the semi-balanced property:

Claim 4.6. Let f be a Boolean function, let X1, . . . , X` ∈ Rk denote the rows of
the matrix M , and let Y1, . . . , Yk ∈ R` denote the columns of M . The following
are equivalent:

1. The function is semi-balanced.
2. 0k,1k 6∈ affine-hull{X1, . . . , X`} and 0`,1` 6∈ affine-hull{Y1, . . . , Yk}.
3. There exists an hyperplane H(q, 1) that contains all the rows X1, . . . , X`,

and there exists yet another hyperplane H(p, 1) that contains all the columns
Y1, . . . , Yk. In addition, 1k,0k 6∈ H(q, 1) and 1`,0` 6∈ H(p, 1).

The proof can be found in the full version of this paper [3]. The following theo-
rem divides the Boolean functions to three categories. Each category has some
different properties which we will discuss in the following.

Theorem 4.7. Let f be a Boolean function. Then:

1. The function is balanced:
There exists an hyperplane H(q, δ1) that contains all the rows X1, . . . , X`,
and there exists yet another hyperplane H(p, δ2) that contains all the columns
Y1, . . . , Yk. Then:
(a) If 0`,1` 6∈ H(p, δ1) and 0k,1k 6∈ H(q, δ2), then the function is semi-

balanced and cannot be computed fairly.
(b) If either H(p, δ1) or H(q, δ2) contains one of the vectors 1k,0k,1`,0`,

then f can be computed with full-security.
2. The function is unbalanced (full-dimensional):

If the rows do not lie on a single hyperplane, or the columns do no lie on a
single hyperplane, then the function is unbalanced and can be computed with
full-security.

We remark that case 1b was left unresolved in [2,14], and is finally proven to be
possible here.

Intuition. Consider a single (ideal, fair) execution of some function f where P1

chooses its input according to some distribution a = (a1, . . . , a`), i.e., chooses
input xi with probability ai, and P2 chooses its input according to distribution
b = (b1, . . . , bk). Then, the parties invoke the function and receive the same
output simultaneously. The vector αT ·Mf = (w1, . . . , wk) is the output vector of
P2, where wj represents the probability that the output of P2 is 1 when it uses
input yj in this execution. Similarly, we consider also the output vector Mf · b.

Intuitively, fairness is achievable in functions which are more “unbalanced”
and is impossible to achieve in more “balanced” functions. In our context, the
term “balanced” relates to the question of whether there exists a party that can
influence and bias the output of the other party in a single (and fair) invocation
of the function, as mentioned above.

More concretely, for balanced functions (class 1a), we use the fact that in
a single execution no party can bias the output of the other in the reduction
to sampling [14]. Specifically, the reduction works by considering a single (fair)
execution of the function, where each party chooses its input randomly according
to some cleverly chosen distributions a′ and b′. The geometric representation
of the functions in this class may explain why these functions are reducible to
sampling. The fact that all the rows lie on a single hyperplane H(q, δ1) implies
that all their convex combinations also lie on that hyperplane. Therefore, no
matter what input distribution a′ a malicious P1 may choose (i.e., what convex
combination of the rows), the resulting vector a′ ·Mf = (w1, . . . , wk) lies on the
hyperplane H(q, δ1) as well, and therefore satisfies the relation 〈a′,q〉 = δ1. This
guarantees that there is the exact same correlation between the possible outputs
of P2 no matter what input P1 may use, and this enables P2 to deduce a coin

from this function. We also have a similar guarantee for the output of P1 and
malicious P2, and thus this function is reducible to sampling.

The other extreme case is class 2, the class of unbalanced functions. In this
class of functions, one party has significant more power over the other, and can
manipulate its output. In this case, the single invocation of the function that we
consider is the process of the ideal execution: the honest party and the simulator
send their inputs to the trusted party, who computes the function correctly and
sends the outputs back simultaneously. What enables successful simulation is the
fact that that the simulator can actually manipulate the output of the honest
party. In particular, in the proof of Theorem 3.3 the simulator chooses the input

distribution x
(b)
x cleverly in order to succeed in the simulation. Geometrically,

since the inputs of the honest party do not lie on any hyperplane, its outputs
are not correlated and the simulator has enough freedom to manipulate them.

Additional interesting geometric properties that show the differences between
the two class of functions (classes 1a and 2) are the following. First, one can show
that for each function in class 1a, the two hyperplanes that contain the rows and
resp. the columns are unique. This implies that the affine dimensions of the
affine hulls of the rows and the affine-hull of the columns are equal. On the
other hand, in class 2, the affine dimensions of these two affine-hulls are always
distinct. Moreover, almost all functions that satisfy |X| = |Y | are in class 1a,
whereas almost all functions that satisfy |X| 6= |Y | are in class 2.

Class 1b. The third class of functions is where the things become less clearer,
and may even contradict the intuition mentioned above. This class contains
functions that are totally symmetric and satisfy MT

f = Mf (see, for instance,
Example 1.2), and thus both parties have the exact same influence on the output
of the other party in a single invocation of the function, the affine dimensions
of the rows and the columns are the same, and also in most cases |X| = |Y |.
Yet, somewhat surprisingly, fairness is possible. Overall, since all the rows and
columns lie on hyperplanes, all the functions in this class are reducible to sam-
pling; however, the sampling is a trivial one (where the resulting coins of the
parties are uncorrelated). In addition, although the influence that a party may
have on the output of the other is significantly less than the case of class 2, it
turns out that simulation is still possible, and the simulator can “smudge” the
exact advantage that the real world adversary has in the real execution. This
case is much more delicate, and the GHKL protocol fails to work for some func-
tions in this class. Nevertheless, as we show, the limited power that the simulator
has in the ideal execution suffices.

5 On the Characterization of Fairness for Asymmetric
Functions

In this section, we study asymmetric Boolean functions. Namely, we consider
functions f = (f1, f2), where fi : X × Y → {0, 1} for each i ∈ {1, 2}. As two-
party functionalities, P1 and P2’s input domains correspond to sets X and Y

respectively, like the symmetric case, however, their outputs now are computed
according to f1 and f2 respectively. In other words, the parties are computing
different functions on the same inputs.

Our goal is to extend the characterization of full security to this class of func-
tions. In particular, we show how the feasibility result (Theorem 3.3) and the
impossibility result (the reduction from non-trivial sampling) translate to the
asymmetric case. Unfortunately, while these two results provide a tight charac-
terization for symmetric functionalities, the same cannot be said about asym-
metric ones. As a first step toward the characterization the latter functions, we
consider a particular function that lies in the gap and describe a new proto-
col that computes this function with full security. While this protocol may be
considered as another variant of the GHKL-protocol, we believe that it departs
considerably from the protocols we have considered thus far. Consequently, it
seems that the characterization for asymmetric functionalities is more involved
than the symmetric case.

5.1 Sufficient Condition for Fairness of Two-Party Asymmetric
Functionalities

We analyze when Protocol FairTwoPartyσ, described in Figure 1, provides full
security for Boolean asymmetric functionalities f = (f1, f2). We modify Protocol
FairTwoPartyσ such that the backup values of Pi are computed with fi; we
call the resulting protocol FairTwoPartyAsymmσ. For the next theorem recall
that M1 ∗M2 is the entry-wise product of the matrices.

Theorem 5.1. Let f1, f2 be functions with associated matrices M1 and M2

respectively. If 0k is an affine combination of the rows of M2, and all the rows
of M1 ∗M2 are linear combinations of the rows of M2, then there is a constant
α0 > 0 such that Protocol FairTwoPartyAsymm0 with α ≤ α0 is a fully-secure
protocol for (f1, f2).

In Theorem 5.1, we require that all the rows of the matrix M1 ∗M2 are in
the row-span of M2, and that the vector 0k is an affine combination of the rows
of M2. Note that when the function is symmetric, and thus, M1 = M2, the first
requirement always holds and the only requirement is the second, exactly as in
Theorem 3.3.

Proof (of TheoremTheorem 5.1). We only discuss the required changes in the
proof of Protocol FairTwoPartyAsymm0 compared to the proof of Protocol
FairTwoParty0. We use the same simulator for P1. The difference are in its
proof. As in the proof of Theorem 3.3, we only need to compare the distribution
of (ai,OutP2

) in both worlds given that the adversary aborts in round i ≤ i∗.
First, we introduce the following notation

(1/`, . . . , 1/`)M2 = (s1, . . . , sk), M1

1/k
...

1/k

 =

p1

...
p`

 . (8)

For example, sy is the probability that f2(x̃, y) = 1, when x̃ is uniformly dis-

tributed. Furthermore, for every x ∈ X, y ∈ Y , and a ∈ {0, 1}, define q
(a)
x (y)

as the probability that the output of P2 in the simulation is 1 (given that the
adversary has aborted in round i ≤ i∗) when the input of P1 is x, the input of P2

is y, and ai = a, that is q
(a)
x (y) , Pr [f(x0, y) = 1], where x0 is chosen according

to the distribution x
(a)
x . Finally, define the column vector q

(a)
x , (q

(a)
x (y))y∈Y .

Using this notation,
MT

2 x(a)
x = q(a)

x , (9)

where we represent the distribution x
(a)
x = (x

(a)
x (x0))x0∈X by a column vector.

We next analyze the four options for the values of (ai,OutP2
).

First case: (ai,OutP2
) = (0, 0). In the real world Pr [(ai,OutP2

) = (0, 0)] =
(1− α)(1− px)(1− sy) + α(1− f1(x, y)). On the other hand, in the ideal world

Pr [(ai,OutP2) = (0, 0)] = (1−α)(1−px)(1−q(0)
x (y))+α(1−f1(x, y))(1−f2(x, y)).

To get full security we need that these two probabilities in the two worlds are
the same, that is,

(1− α)(1− px)(1− sy) + α(1− f1(x, y))

= (1− α)(1− px)(1− q(0)
x (y)) + α(1− f1(x, y))(1− f2(x, y)). (10)

If px = 1, then f1(x, y) = 1 and (10) holds. Otherwise, (10) is equivalent to

q(0)
x (y) = sy −

α · (1− f1(x, y))f2(x, y)

(1− α)(1− px)
. (11)

As this is true for every y, we deduce, using Equations (2) and (1), that

MT
2 x(0)

x = q(0)
x = MT

2

(
1/`, . . . , 1/`

)T − α

(1− α)(1− px)
(M1 ∗M2)Tex. (12)

Claim 5.2. Fix x ∈ X and let α be a sufficiently small constant. If (0k)T is
an affine combination of the rows of M2 and all the rows of M1 ∗M2 are linear

combinations of the rows of M2, then there exists a probability vector x
(0)
x solving

Equation (12).

Proof. Let 1 denote the `× k all-one matrix, and let λα = α
(1−α)(1−px) . We get

that (M1 ∗M2)Tex = ((1 −M1) ∗M2)Tex = (M2 −M1 ∗M2)Tex = MT
2 ex −

(M1 ∗M2)Tex. Literally, this is the subtraction of some row x in matrix M2, and
the row x in the matrix M1 ∗M2. However, from the conditions in the statement,
this is just a vector in the linear-span of the rows of M2, and can be represented
as MT

2 · v for some vector v ∈ R`. We therefore are looking for a probability

vector x
(0)
x solving:

MT
2 x(0)

x = MT
2

(
1/`, . . . , 1/`

)T − λα ·MT
2 v. (13)

Let β = 〈1,v〉, and recall that 0k is an affine combination of the rows of M2,
and thus there exists a vector u ∈ R` such that MT · u = 0k and 〈1,u〉 = 1.

Consider the vector y = (1/`, . . . , 1/`)T −λαv +λαβu. This vector is a solution
for Eq. (13) since MT

2 · u = 0k. Moreover, it sums-up to 1 since:

〈1,y〉 = 〈1, (1/`, . . . , 1/`)T 〉 − λα〈1,v〉+ λαβ〈1,u〉 = 1− λαβ + λαβ · 1 = 1.

Finally, for appropriate choice of α, all the coordinates of y are non-negative,
and thus y is a probability vector solving Eq. (13). �

Second case: (ai,OutP2
) = (0, 1). In the real world Pr [(ai,OutP2

) = (0, 1)] =
(1 − α)(1 − px)sy (in the real world OutP2

= bi∗−1 = 0 when i = i∗). On the

other hand, in the ideal world Pr [(ai,OutP2
) = (0, 1)] = (1−α)(1−px)q

(0)
x (y) +

α · (1− f1(x, y))f2(x, y) (in the ideal world ai∗ = f1(x, y) and OutP2
= f2(x, y)).

The probabilities in the two worlds are equal if (11) holds.

Third case: (ai,OutP2) = (1, 0). In the real world Pr [(ai,OutP2) = (1, 0)] =
(1 − α)px(1 − sy) + α · f1(x, y) · 1. On the other hand, in the ideal world

Pr [(ai,OutP2
) = (1, 0)] = (1− α)px(1− q(1)

x (y)) + α · f1(x, y)(1− f2(x, y)). The
probabilities in the two worlds are equal when

(1− α)px(1− sy) + αf1(x, y) = (1− α)px(1− q(1)
x (y)) + αf1(x, y)(1− f2(x, y)).

If px = 0, then f1(x, y) = 0 and we are done. Otherwise, this equality holds iff

q(1)
x (y) = sy −

αf1(x, y)f2(x, y)

(1− α)px
. (14)

As this is true for every y, we deuce, using Equations (9) and (8), that

MT
2 x(1)

x = q(1)
x = MT

(
1/`, . . . , 1/`

)T − α

(1− α)px
(M1 ∗M2)Tex, (15)

Analogically to case (0, 0), there exists a probability vector x
(1)
x solving Equa-

tion (15) if each row of M1 ∗M2 is in the row span of M2, and 0k is in the affine
hull of the rows of M2.

If the equalities hold for the first 3 cases of the values for (ai,OutP2
), the

equality of the probabilities must also hold for the case (ai,OutP2) = (1, 1).
To conclude, the conditions of the theorem imply that there are probabil-

ity vectors solving Equations (12) and (15) for every x. Using these probabil-
ity distributions in the simulator we constructed, we conclude that protocol
FairTwoPartyAsymm0 is fully secure for f = (f1, f2). �

Changing the Matrices. In the symmetric setting, we have showed that by flip-
ping the matrix M associated with the function (i.e., by taking the matrix
M =

(
1
)
−M) we can construct protocols with full security for a richer class of

functions. In the asymmetric setting we can go even further: P1 and P2 can flip
some of the rows of M1 and obtain a matrix M̂1 and flip some of the columns of
M2 and obtain a matrix M̂2. The parties now execute FairTwoPartyAsymm0

on the flipped matrices and the parties obtain outputs a and b respectively. If
the input of P1 corresponds to a row that was flipped, then P1 outputs 1 − a,
otherwise, it outputs a. Similarly, if the input of P2 corresponds to a column that
was flipped, then P2 outputs 1 − b, otherwise, it outputs b. Call the resulting
protocol FairTwoPartyAsymm’. Thus, we obtain the following corollary.

Corollary 5.3. Let M1,M2 be the associated matrices of f1 and f2 respectively.
Assume that M̂1 is computed from M1 by flipping some of its rows and M̂2 is
computed from M2 by flipping some of its columns. If 0k is an affine-combination
of the rows of M̂2, and all the rows of M̂1 ∗ M̂2 are in the linear span of
the rows of M̂2, then then there is a constant α0 > 0 such that the Protocol
FairTwoPartyAsymm’ with α ≤ α0 is a fully-secure protocol for f = (f1, f2).

5.2 Necessary Condition

In this section, we provide a necessary condition for fully secure computation of
asymmetric functionalities. It consists of a natural generalization of the semi-
balanced criterion for symmetric functionalities. Namely, we show that certain
functions imply (non-private) non-trivial sampling and are thus unfair. Infor-
mally, the next theorem states that if both parties have some distribution over
their inputs that “cancels out” the other party’s choice of input, then, assuming
the resulting bits are statistically dependent, the function cannot be computed
with complete fairness.

Theorem 5.4. Let f1, f2 be functions with associated matrices M1 and M2

respectively. If there exist p ∈ R`, q ∈ Rk such that pTM1 = δ1 ·1Tk , M2q = δ2 ·1`
and pT (M1 ∗M2)q 6= δ1δ2, then the functionality f(x, y) = (f1(x, y), f2(x, y))
implies (non-private) non-trivial sampling.

Proof. Suppose there exist p ∈ R`, q ∈ Rk such that pTM1 = δ1 · 1Tk , M2q =
δ2 · 1` and pT (M1 ∗M2)q 6= δ1δ2. Further assume that

∑
i |pi| =

∑
i |qj | = 1,

and define δ1,2 = pT (M1 ∗ M2)q. Consider the following protocol Π in the
hybrid model with ideal access to f (with full security). This protocol achieves
non-trivial sampling.

– Inputs: Empty for both parties.
– Invoke trusted party: Parties choose xi, yj according to probability vec-

tors |p| and |q| respectively, and invoke the trusted party, write a and b for
the bits received by the first and second party.

– Outputs: P1 outputs a if pi ≥ 0 and 1− a otherwise. P2 outputs b if qj ≥ 0
and 1− b otherwise.

Claim 5.5. Let Out1, Out2 for the outputs of P1 and P2 in the above protocol.
In an honest execution of Π, the parties’ outputs satisfy Pr [Out1 = 1] = δ1 +p−,
Pr [Out2 = 1] = δ2 + q− and Pr [Out1 = 1 ∧Out2 = 1] = δ1,2 + p−δ2 + q−δ1 +
p−q−, where p− =

∑
pi<0 |pi| and q− =

∑
qj<0 |qj |.

Proof. We begin the proof by introducing some notation. Let row1,i, row2,i de-
note the i-th row of M1 and M2 respectively, and let col1,j , col2,j denote the j-th

column of M1 and M2 respectively. Construct matrices M̂1 and M̂2 such that

– the i-th row of M̂1 is equal to row1,i if pi ≥ 0 and 1Tk − row1,i otherwise,

– the j-th column of M̂2 is equal to col2,j if qj ≥ 0 and 1` − col2,j otherwise.

Let ˆrow1,i, ĉol1,j and ˆrow2,i, ĉol2,j denote the rows and columns of M̂1 and

M̂2 respectively. The proof consists of a straightforward computation of each
probability.

Pr [Out1 = 1 | y = yj] = |pT |M̂1eyj =

∑
pi<0

|pi| ˆrow1,i +
∑
pi≥0

pi ˆrow1,i

 eyj (16)

=

∑
pi<0

|pi|(1Tk − row1,i) +
∑
pi≥0

pirow1,i

 eyj =

(∑
pi<0

|pi|1Tk + pTM1

)
eyj = δ1 + p−.

The output of P2 is obtained in a similar fashion. Next,

Pr [(Out1,Out2) = (1, 1)] = |pT |(M̂1 ∗ M̂2)|q| = |pT |

(∑
j

(ĉol1,j ∗ ĉol2,j)|qj |

)

= |pT |

∑
qj≥0

(ĉol1,j ∗ col2,j)qj +
∑
qj<0

(
ĉol1,j ∗ (1` − col2,j)

)
|qj |

= |pT |

(M̂1 ∗M2)q +
∑
qj<0

ĉol1,j |qj |

 . (17)

Now, since by (17), |pT |ĉol1,j = |pT |M̂1eyj = δ1 + p−, we deduce that (17) is
equal to∑

pi≥0

pi(row1,i ∗ row2,i) +
∑
pi<0

|pi|
(
(1− row1,i) ∗ row2,i

)q + (δ1 + p−)q−

= pT (M1 ∗M2)q +
∑
pi<0

|pi|(row2,iq) + (δ1 + p−)q− = δ1,2 + p−δ2 + q−δ1 + p−q−.

�

It remains to show that protocol Π is a secure realization of (non-private) non-
trivial sampling. First, we note that the parties’ outputs above are statistically
dependent. This follows from the fact that two bits are independent if and only if
Pr [Out1 = 1] · Pr [Out2 = 1] = Pr [Out1 = 1 ∧Out2 = 1]. Since, by assumption,
δ1,2 6= δ1δ2, we deduce that in an honest execution the parties’ outputs are
statistically dependent. To conclude, note that no matter how the adversary
(say controlling P2) chooses his input (or does not send one at all), by (17), the
probability that the output of P1 is 1 is equal to δ1 + p−. Hence, by [1], we get
a contradiction. �

5.3 Special Round Protocol with a Twist

Define an asymmetric functionality fsp(x, y) = (f1(x, y), f2(x, y)), where f1, f2

are given by the following matrices

M1 =

1 1 1 0
0 0 0 1
1 0 0 1
0 1 0 1

 , M2 =

1 0 1 0
1 0 0 1
1 0 0 0
0 1 1 1

 .

In this section we show that the above function can be computed with full
security. First, note that fsp does not satisfy the hypothesis of Theorem 5.4. On
the other hand, both the GHKL protocol as well as FairTwoPartyAsymmσ are
susceptible to fail-stop attacks for this particular function, as explained below.

On the limits of the known protocols for the function fsp. Suppose
that the parties execute protocol FairTwoPartyAsymm0 for computing fsp.
In addition, suppose that P2 chooses his input uniformly at random from {y1, y2}.
If the protocol computes f with full security, then this particular choice of inputs
should result in P2 obtaining an unbiased random bit as an output, regardless
of the actions of P1. We claim that a corrupt P1 can bias P2’s output toward
zero and thus protocol FairTwoPartyAsymm0 does not compute f with full
security. Consider an adversary A that quits immediately upon receiving a2.
Let’s compute the probability that P2’s output is equal to 1 under the action of
A, and assuming that y ∈U {y1, y2}:

Pr [out2 = 1] = Pr [b1 = 1]

= Pr [b1 = 1 ∧ i∗ = 2] + Pr [b1 = 1 ∧ i∗ 6= 2]

= 0 +
1

2
· (1− α).

In summary, knowing that bi∗−1 = 0 and that A can guess i∗ with non-negligible
probability (A is betting that i∗ = 2) we deduce that the above attack will
result in P2 outputting a bit that does not satisfy the prescribed probability
distribution. If we revert to the original GHKL protocol, i.e., i∗ ≥ 1, and bi∗−1 =
f2(x̃(i∗−1), y) where x̃(i∗−1) is chosen uniformly at random, then a very similar
attack will produce the same result:

– The adversary instructs P1 to use x3 and execute the protocol.
– At the first round, if a1 = 1 quit. Otherwise, quit upon receiving a2.

Again, let’s compute the probability that P2’s output is equal to 1 under the
action of A assuming that y ∈U {y1, y2}:

Pr [out2 = 1] = Pr [out2 = 1 ∧ i∗ 6= 1] + Pr [out2 = 1 ∧ i∗ = 1]

= (1− α)
1

2
+ α ·

(
Pr [a1 = 1 ∧ b0 = 1 | i∗ = 1] + Pr [a1 = 0 ∧ b1 = 1 | i∗ = 1]

)
= (1− α)

1

2
+ α ·

(
1

4
+ 0

)
=

1

2
− α1

4
.

Once again, A can guess i∗ with non-negligible probability (A is betting that
i∗ = 1), and since P1 obtains ai∗ prior to P2 obtaining bi∗ , the adversary can
successfully bias P2’s output. We note that an adversary corrupting P1 can bias
P2’s output regardless of how we choose to describe the function. In other words,
flipping some of the rows of M1 and/or some of the columns of M2 does not
offer any solution, since the attacks above can be easily modified to successfully
bias P2’s output. Nor is switching the players’ roles helpful, i.e., considering
(MT

2 ,M
T
1), since M1 = MT

2 .

To remedy this, we propose a new protocol, named FairTwoPartySpecial
(described in Figure 3), which foils the attacks described above and provides full
security for fsp. Our protocol is the same as the original GHKL protocol for every
round, except special round i∗. Recall that in the GHKL protocol (as well as all
other protocols we have considered), at round i∗, party P1 obtains ai∗ = f1(x, y)
followed by P2 who obtains bi∗ = f2(x, y). We can reverse the player’s roles,
however, there is a party that always gets the correct output before the other
party. We now make the following modification for the protocol computing fsp:
if x ∈ {x1, x2}, then ai∗ = f1(x, y), otherwise ai∗ = f1(x, ỹ(i∗)), where ỹ(i∗) is
chosen uniformly at random. However, always bi∗ = f2(x, y). Thus, for certain
inputs, the second player P2 effectively obtains the output first. We claim that
this modification suffices to compute fsp with full security. and we dedicate the
rest of the section to the proof this claim.

Theorem 5.6. For every α ≤ 1/9, protocol FairTwoPartySpecial is fully
secure for fsp.

Proof. The proof follows the ideas of the symmetric case with two significant
modifications. First, we need two distinct simulations for P1 depending on the
choice of the input. In particular, ifA hands x1 or x2 to SA, then the simulation is
exactly the same as in the symmetric case (or the equivalent asymmetric protocol
FairTwoPartyAsymm0). If not, i.e., if A hands x3 or x4, then we simulate P1

as if he were P2 in the symmetric case. On the other hand, regarding the second
player, we note that a difficulty arises due to the fact that P2 obtains the output
first depending on P1’s choice of input. Nevertheless, we claim that by simulating
P2 as if he were P1 in the symmetric case (or Protocol FairTwoPartyAsymm0),
i.e., as if he always gets the output first, results in the correct simulator. Thus,
we will first consider the case of a corrupt P1 when the adversary hands either
x1 or x2 to the simulator, followed by the security analysis of a corrupt P2.

We only discuss the required changes in the security proof of Protocol FairT-
woPartySpecial compared to the proof of Protocol FairTwoPartyAsymm0.
As in the proofs of Theorem 3.3 and Theorem 5.1, we only need to compare the
distribution of (ai,OutP2) in both worlds given that the adversary aborts in

round i ≤ i∗. Similarly to the previous proofs, we compute vectors q
(0)
x and q

(1)
x

where q
(a)
x (y) is the desired probability that the output of P2 in the simulation

(given that the adversary has aborted in round i < i∗) is 1 when the input of P1

is x, the input of P2 is y and ai = a. In contrast to the proofs of Theorem 3.3
and Theorem 5.1, we only need to consider x ∈ {x1, x2}, since we have a sep-
arate simulation for x ∈ {x3, x4}. However, we emphasize that the simulator

Protocol FairTwoPartySpecial

1. The parties P1 and P2 hand their inputs, denoted x and y respectively, to
the dealer.a

2. The dealer chooses i∗ ≥ 1 according to a geometric distribution with prob-
ability α.

3. The dealer computes out1 = f1(x, y), out2 = f2(x, y) and for 0 ≤ i ≤ r

ai =

f1(x, ỹ(i)) where ỹ(i) ∈U Y if i < i∗

f1(x, ỹ(i)) where ỹ(i) ∈U Y if i = i∗ and x ∈ {x3, x4}
out1 otherwise

bi =

{
f2(x̃(i), y) where x̃(i) ∈U X if i < i∗

out2 otherwise.

4. The dealer gives b0 to P2.
5. For i = 1, . . . , r,

(a) The dealer gives ai to P1. If P1 aborts, then P2 outputs bi−1 and halts.
(b) The dealer gives bi to P2. If P2 aborts, then P1 outputs ai and halts.

a If x is not in the appropriate domain or P1 does not hand an input, then the
dealer sends f2(x̂, y) (where x̂ is a default value) to P2, which outputs this
value and the protocol is terminated. The case of an inappropriate y is dealt
analogously.

Fig. 3: Protocol FairTwoPartySpecial for securely computing a function fsp.

can choose any input from the entire domain to send to the trusted party. By
considering the four possible values of (ai,OutP2

), we deduce that

q(0)
x (y) = sy +

α

(1− α)(1− px)
(1− f1(x, y))(sy − f2(x, y))

q(1)
x (y) = sy +

α

(1− α)px
f1(x, y)(sy − f2(x, y))

and thus,

q(0)
x1 =

3/4
1/4
1/2
1/2

+
α

(1− α)(1− px1)

0
0
0

1/2

 , q(1)
x1 =

3/4
1/4
1/2
1/2

+
α

(1− α)px1

−1/4
1/4
−1/2

0

 ,

q(0)
x2 =

3/4
1/4
1/2
1/2

+
α

(1− α)(1− px2)

−1/4
1/4
1/2
0

 , q(1)
x2 =

3/4
1/4
1/2
1/2

+
α

(1− α)px2

0
0
0
−1/2

 .

We conclude that MT
2 x

(a)
x = q

(a)
x for the following vectors x

(a)
x :

x(0)
x1

= 1/4 · (1, 1, 1, 1)T +
α

(1− α)(1− px1
)
1/2 · (0, 1,−1, 0)T

x(1)
x1

= 1/4 · (1, 1, 1, 1)T +
α

(1− α)px1

1/4 · (−3,−1, 3, 1)T

x(0)
x2

= 1/4 · (1, 1, 1, 1)T +
α

(1− α)(1− px2
)
1/4 · (1,−1,−1, 1)T

x(1)
x2

= 1/4 · (1, 1, 1, 1)T +
α

(1− α)px2

1/2 · (0,−1, 1, 0)T .

It remains to show that for some α ∈ (0, 1) the above vectors become prob-
ability vectors – they already sum to 1, we just need them to be positive. A
straightforward computation yields that any α ≤ 1/9 will do.

Corrupt P2. We now consider the case of an adversary A corrupting P2. As
mentioned above, we construct a simulator SA given a black-box to A that is
completely analogous to P1’s simulator in protocol FairTwoPartyAsymmσ.
Namely, say that A hands y ∈ Y to SA for the computation of f . The simulator
chooses i∗ according to a geometric distribution with parameter α and,

– for i = 0, . . . , i∗ − 1, the simulator hands bi = f(x̃(i), y) to A, where x̃(i) ∈U
X. If A decides to quit, SA sends y0 according to distribution y

(bi)
y (to be

defined below), outputs (b0, . . . , bi) and halts.
– for i = i∗, the simulator sends y to the trusted party, receives b = f2(x, y)

and hands bi∗ = b to A. If A decides to quit, SA outputs (b0, . . . , bi∗) and
halts.

– for i = i∗ + 1, . . . , r, the simulator hands bi = b to A. If A decides to quit,
SA outputs (b0, . . . , bi) and halts.

– If A has not quitted yet, SA outputs (b0, . . . , br) and halts.

For reasons mentioned in the proof of Theorem 3.3, we only need to compare
the distribution of (bi,OutP1

) in both worlds assuming that i ≤ i∗. Now, for

every x ∈ X, y ∈ Y , and b ∈ {0, 1}, define q
(b)
y (x) , Pr [f1(x, y0) = 1], where

y0 is chosen according to the distribution y
(b)
y , and define the column vector

q
(b)
y , (q

(b)
y (x))x∈X . Using this notation,

M1y
(b)
y = q(b)

y , (18)

where we represent the distribution y
(b)
y = (y

(b)
y (y0))y0∈Y by a column vector.

We now analyze the four options for the values of (bi,OutP1
). Bare in mind that

we need to carefully distinguish between x ∈ {x1, x2} and x ∈ {x3, x4} in the
real world.

First case: (bi,OutP1) = (0, 0). In the real world, if x ∈ {x1, x2}, then we have
Pr [(bi,OutP1

) = (0, 0)] = (1−α)(1− px)(1− sy) +α(1− f1(x, y))(1− f2(x, y)).
Otherwise, Pr [(bi,OutP1

) = (0, 0)] = (1 − α)(1 − px)(1 − sy) + α(1 − px)(1 −

f2(x, y)). On the other hand, in the ideal world Pr [(bi,OutP1
) = (0, 0)] = (1 −

α)(1−sy)(1−q(0)
y (x))+α(1−f1(x, y))(1−f2(x, y)). To get full security we need

that these two probabilities in the two worlds are the same, that is,

(1− α)(1− sy)(1− q(0)
y (x)) + α(1− f1(x, y))(1− f2(x, y)) (19)

=

{
(1− α)(1− px)(1− sy) + α(1− f1(x, y))(1− f2(x, y)) if x ∈ {x1, x2}
(1− α)(1− px)(1− sy) + α(1− px)(1− f2(x, y)) if x ∈ {x3, x4}

.

Eq. (19) is equivalent to

q(0)
y (x) =

px if x ∈ {x1, x2}

px +
α(px − f1(x, y))(1− f2(x, y))

(1− α)(1− sy)
if x ∈ {x3, x4}

. (20)

Let λ = α/(1− α); we now compute the vectors q
(0)
y :

q(0)
y1 =

3/4
1/4
1/2
1/2

+
λ

1− sy1

0
0
0

1/2

 , q(0)
y2 =

3/4
1/4
1/2
1/2

+
λ

1− sy2

0
0

1/2
0

 ,

q(0)
y3 =

3/4
1/4
1/2
1/2

+
λ

1− sy3

0
0

1/2
0

 , q(0)
y4 =

3/4
1/4
1/2
1/2

+
λ

1− sy4

0
0
−1/2

0

 .

and deduce that that M1y
(0)
y = q

(0)
y for the following vectors y

(0)
y :

y(0)
y1 = 1/4 · (1, 1, 1, 1)T +

λ

1− sy1
1/2 · (0, 1,−1, 0)T

y(0)
y2 = 1/4 · (1, 1, 1, 1)T +

λ

1− sy2
1/2 · (1, 0,−1, 0)T

y(0)
y3 = 1/4 · (1, 1, 1, 1)T +

λ

1− sy3
1/2 · (1, 0,−1, 0)T

y(0)
y4 = 1/4 · (1, 1, 1, 1)T +

λ

1− sy4
1/2 · (−1, 0, 1, 0)T .

Note that, to obtain probability vectors, any α ≤ 1/9 will do.
We refer to the full proof in [3] for cases (bi,OutP1

) = (0, 1) and (bi,OutP1
) =

(1, 0). �

6 Characterization of Fairness when Half of the Parties
are Honest

In this section, we extend our discussion to the case of any constant number of
parties, where at most half of the parties are corrupted. Using the characteriza-
tion of symmetric two-party functionalities from Section 4, we fully characterize

the functions that can be computed with full security in this setting. In this
section, we only consider symmetric functions, i.e., where all parties receive the
same output. The main result of this section is stated in Theorem 6.2 below.

Let X = X1 × X2 × · · · × Xm and let f : X → R be some function. For
a subset ∅ ⊂ I ⊂ [m] let Ī = [m] \ I and let XI be the projection of X on I.
For an input x ∈ X, let xI be the projection of x on I. We define the function
fI : XI ×XĪ → R, by fI(w, z) = f(x), where x is such that xI = w and xĪ = z.

The full proof of the theorem appears in the full version of this work (see,
Section 5 in [3]). The proof of the feasibility part of Theorem 6.2 is proved by
describing a protocol (with an on-line dealer), in which the dealer runs many
two-party protocols simultaneously. More specifically, for each subset I ⊂ [m] of
size k, the dealer runs the appropriate two-party protocol ΠI that securely com-
putes the two-party function fI . The description of Protocol FairMultiParty,
proving the feasibility, appears in Figure 4. The proof of its security as well as
the explanation of how the on-line dealer is eliminated are deferred to the full
version of this paper. Our proofs draw on ideas from [5,6].

We next introduce some of the notation that is necessary for understanding
the description of Protocol FairMultiParty described in Figure 4. We assume
without loss of generality that there exists an integer r such that each ΠI is an
r-round protocol with an on-line dealer for securely computing the two-party
function fI . We show in the full version that this is without loss of generality.

Notation 6.1. Fix I ⊂ [m], such that 1 ∈ I and |I| = k. Let AI be the party
that plays the role of A in ΠI , and let BI be the other party in this protocol.

Denote by a
(I)
i (resp. b

(I)
i) the backup output that party AI (resp. BI) receives in

round i of ΠI . In addition, let S
(1)
I be the set of parties whose inputs correspond

to the input of AI , that is, S
(1)
I = {Pi : i ∈ I}; let S

(2)
I be the remaining parties

(i.e., whose inputs correspond to that of party B).

Theorem 6.2. Let m = 2k be a constant, let X = X1×X2×· · ·×Xm be a finite
domain, and let f : X → R be a deterministic function. Then, f is computable
with full security in the multiparty setting against an adversary that can corrupt
up to k parties if and only if for every subset I ⊂ [m], with |I| = k, the function
fI is computable with full security in the two-party setting. The same is true if
f is a randomized Boolean function.

7 Open Problems

As a conclusion, we provide a short list of questions that are left unanswered by
our paper. First, regarding asymmetric functionalities, it would be interesting
to know if a generalized version of Protocol FairTwoPartySpecial offers any
significant improvement toward bridging the gap in the asymmetric case. In
Protocol FairTwoPartySpecial, for certain inputs P1 gets the output first,
and for others P2 gets the output first. In our protocol this partition depends

Protocol FairMultiParty

1. The parties P1, . . . , Pm hand their inputs, denoted x = x1, . . . , xm, respec-
tively, to the dealer. If a party Pj does not send an input, then the dealer
selects xj ∈ Xj uniformly at random. If half of the parties do not send an
input, then the dealer sends f(x1, . . . , xm) to the honest parties and halts.

2. The dealer computes for every I ⊂ [m], such that |I| = k = m/2, and for

every 0 ≤ i ≤ r the backup outputs a
(I)
i and b

(I)
i using ΠI .

3. The dealer shares b
(I)
0 among the parties of S

(2)
I for each I as above, in a

k-out-of-k Shamir secret-sharing scheme.
4. For i = 1, . . . , rf ,

(a) The dealer shares a
(I)
i among the parties of S

(1)
I for each I as above,

in a k-out-of-k Shamir secret-sharing scheme. If all the parties of some
subset S

(1)
I abort, then the parties in S

(2)
I reconstruct bIi−1, output it

and halt.
(b) The dealer shares b

(I)
i among the parties of S

(2)
I for each I as above,

in a k-out-of-k Shamir secret-sharing scheme. If all the parties of some
subset S

(2)
I abort, then the parties in S

(1)
I reconstruct aIi , output it and

halt.
5. All subsets S

(1)
I and S

(2)
I (for all sets I as above) reconstruct aIr and bIr,

respectively, and output it (by correctness, with all but negligible probability
in the security parameter – all successfully reconstructed values are equal).

Fig. 4: Protocol FairMultiParty for securely computing a function f , if at
least half of the parties are honest.

only on the input of P1. The question is which asymmetric functions can be
computed with full security when the protocol uses an arbitrary partition of the
parties’ inputs.

On the other hand, some functions that lie in the gap might be outright im-
possible to compute with full security. If true, then these functions do not imply
non-trivial sampling by the construction6 of [14], and thus, any impossibility
result would require a new argument. We provide an example of a function that
lies in the gap, and whose fairness does not seem to derive from the work of the
present paper.

M1 =

0 1 1 0
1 0 1 1
1 0 0 0
0 1 0 1

 , M2 =

1 1 1 0
1 0 1 1
0 1 0 1
1 1 0 0

 .

Another direction of inquiry would be the computation of Boolean functions
in the multi-party setting, where the corrupted parties form a strict majority.
In particular, there may be room to generalize protocol FairMultiParty to
handle strict majorities of corrupted parties. However, several difficulties arise

6 The construction is also presented in the proof of Theorem 5.4 in Section 5.2.

in view of the fact that the adversary would have access to the backup outputs of
multiple partial functions, and not just one. Furthermore, the characterization of
functions with arbitrary output domains, a subject already touched upon by [2],
seems like a hard problem to tackle.

Our protocols assume that the size of the input domain is a constant inde-
pendent of the security parameter. It can be shown that in our protocols for two
parties, if the size of the input domains is log n (where n is the security param-
eter), then the number of rounds and the computation are still polynomial in n.
It would be interesting to construct protocols for families of functions {fn}n∈N,
where the size of the domain of fn is polynomial or even exponential in n.

References

1. S. Agrawal and M. Prabhakaran. On fair exchange, fair coins and fair sampling.
In CRYPTO 2013, volume 8042 of LNCS, pages 259–276. 2013.

2. G. Asharov. Towards characterizing complete fairness in secure two-party compu-
tation. In TCC 2014, volume 8349 of LNCS,, pages 291–316. 2014.

3. G. Asharov, A. Beimel, N. Makriyannis, and E. Omri. Complete characterization of
fairness in secure two-party computation of boolean functions. Cryptology ePrint
Archive, Report 2014/1000, 2014. http://eprint.iacr.org/.

4. G. Asharov, Y. Lindell, and T. Rabin. A full characterization of functions that
imply fair coin tossing and ramifications to fairness. In TCC 2013, volume 7785 of
LNCS, pages 243–262. 2013.

5. A. Beimel, Y. Lindell, E. Omri, and I. Orlov. 1/p-secure multiparty computation
without honest majority and the best of both worlds. In Advances in Cryptology –
CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science, pages 277–296.
Springer-Verlag, 2011.

6. A. Beimel, E. Omri, and I. Orlov. Protocols for multiparty coin toss with dishonest
majority. J. of Cryptology, 2013. To appear. Conference version in: T. Rabin,
editor, Advances in Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes
in Computer Science, pages 538-557. Springer-Verlag, 2010.

7. R. Canetti. Security and composition of multiparty cryptographic protocols. J. of
Cryptology, 13(1):143–202, 2000.

8. R. Cleve. Limits on the security of coin flips when half the processors are faulty.
In 18th STOC, pages 364–369, 1986.

9. O. Goldreich. Foundations of Cryptography, Voume II Basic Applications. Cam-
bridge University Press, 2004.

10. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In 19th
STOC, pages 218–229, 1987.

11. S. D. Gordon, C. Hazay, J. Katz, and Y. Lindell. Complete fairness in secure
two-party computation. J. of the ACM, 58(6):Article No. 24, 2011.

12. S. D. Gordon and J. Katz. Complete fairness in multi-party computation without
an honest majority. In TCC 2009, pages 19–35, volume 5444 of LNCS, 2009.

13. J. Kilian. Basing cryptography on oblivious transfer. In 20th STOC, pages 20–31,
1988.

14. N. Makriyannis. On the classification of finite boolean functions up to fairness. In
SCN 2014, volume 8642 of LNCS, pages 135–154. 2014.

15. A. C. Yao. How to generate and exchange secrets. In 27th FOCS, pages 162–167,
1986.

