
Secure Physical Computation using Disposable
Circuits

Ben A. Fisch1, Daniel Freund2, and Moni Naor?3

1 Columbia University benafisch@gmail.com
2 Cornell University freund90@mac.com

3 Weizmann Institute of Science moni.naor@weizmann.ac.il

Abstract. In a secure physical computation, a set of parties each have
physical inputs and jointly compute a function of their inputs in a way
that reveals no information to any party except for the output of the
function. Recent work in CRYPTO’14 presented examples of physical
zero-knowledge proofs of physical properties, a special case of secure
physical two-party computation in which one party has a physical input
and the second party verifies a boolean function of that input. While the
work suggested a general framework for modeling and analyzing physi-
cal zero-knowledge protocols, it did not provide a general theory of how
to prove any physical property with zero-knowledge. This paper takes
an orthogonal approach using disposable circuits (DC)—cheap hardware
tokens that can be completely destroyed after a computation—an ex-
tension of the familiar tamper-proof token model. In the DC model, we
demonstrate that two parties can compute any function of their physical
inputs in a way that leaks at most 1 bit of additional information to
either party. Moreover, our result generalizes to any multi-party physical
computation. Formally, our protocols achieve unconditional UC-security
with input-dependent abort.

1 Introduction

In a secure two-party computation (2PC), parties A and B each have secret inputs
xA and xB respectively, and they jointly compute a function f(xA, xB) such that
each party receives the output of the function, but no further information about
the other party’s secret input. A secure multi-party computation (MPC) extends
2PC to an arbitrary number of parties each with private inputs to a multi-party
function. As early as the 1980s, various results demonstrated that any two-party
or multi-party function can be securely computed under standard cryptographic
assumptions [21, 9].

In the present work, we consider secure computation in a physical context
where each party’s input is a physical entity. For example, suppose parties A

? Incumbent of the Judith Kleeman Professorial Chair. Research supported in part
by grants from the Israel Science Foundation, BSF and Israeli Ministry of Science
and Technology and from the I-CORE Program of the Planning and Budgeting
Committee and the Israel Science Foundation.



and B wish to securely compute a function of their DNA (e.g. whether they
are both carriers of a certain recessive gene). Unless the parties trust each other
to honestly supply their genetic information as digital inputs, they cannot use
standard secure 2PC to solve this task. They also may not trust one another
to directly measure each other’s genetic information and potentially learn more
than the necessary information. To solve this task, the parties require a secure
physical computation that is guaranteed to return to both parties the correct
function output of the physical inputs and simultaneously prevent either party
from learning more than the function output.

A special case of physical secure computation is a physical zero-knowledge
proof, where a Prover must prove to a Verifier that a physical input object sat-
isfies a physical property without revealing any further information about the
input. Informal examples of physical zero-knowledge have appeared throughout
the literature [19, 20]. Recent work of [4] introduced formal definitions and an
analysis framework for physical zero-knowledge protocols, and gave examples of
protocols for comparing DNA profiles and neutron radiographs of objects. Earlier
work of [7, 8] used physical zero-knowledge techniques to demonstrate that two
nuclear warheads have the same design without revealing further information on
the design. The necessity for such a protocol arises in nuclear disengagement,
where one country must prove to the other that it is destroying authentic nu-
clear weapons without revealing sensitive information on that weapon’s design.
Previous techniques relied on information barriers, or trusted devices that would
measure the input objects and display only a red (reject) or green (accept) light.
However, in absence of trust, information barriers are problematic as they may
reveal too much information to the inspecting party, or may display false infor-
mation. The protocols in [4] and [7] avoid information barriers and instead use
techniques that physically manipulate the inputs and enable the inspecting party
to verify physical properties without ever recording any sensitive information.
Such protocols seem to be inherently problem-specific, and there is no general
zero-knowledge protocol presented for proving any arbitrary physical property
of any input.

We revisit the idea of an information barrier using special devices we call
disposable circuits: instead of avoiding ever recording sensitive information, we
suggest using cheap computing devices such as smart cards that can be destroyed
or have their memory completely wiped after the computation. Each party will
create a disposable device that can investigate the physical inputs and perform
the necessary computations. Since neither party can trust the other party’s de-
vice to act as a true information barrier, we can only allow party A’s device
to directly supply output to party B and party B’s device to directly supply
output to party A. Each party must remain isolated from its device during the
computation, and the opposing party should be able to destroy or memory-wipe
the device after the computation is complete. On the other hand, each party can
only trust the correctness of its own device’s output. Thus, the two parties need
a secure protocol to verify the authenticity of the outputs received.

2



Many previous works have explored the use of physical hardware and physical
separation in cryptographic protocols. Ben-Or et. al. [1] introduced the multi-
prover interactive proof system (MIP) model, and showed that with two physi-
cally isolated provers it is possible to achieve unconditionally secure ZK proofs
for NP. In addition, they showed similar results for bit commitment and Rabin-
OT. Goldreich and Ostrovsky [10] demonstrated uses of tamper-proof hardware
for the purpose of software protection. Katz [15] initiated a long line of works
that used tamper-proof hardware to achieve universally composable (UC) secu-
rity in multi-party computation protocols. In particular, Goyal et. al. [12] showed
that tamper-proof hardware could be used to achieve unconditional UC-secure
non-interactive multi-party computation.

Our model of disposable circuits is an extension of the standard stateful
tamper-proof token model, which was first formalized by Katz [15]. The tokens
in our model have the additional capability to measure physical inputs. In par-
ticular, a party in our model has the ability to create a token that will directly
probe a specific physical input held by another party. We assume that both
parties can reference the same object by some uniquely identifiable physical in-
formation even if all further physical characteristics of that object are secret.
For example, the physical input might be a box held by the second party whose
contents are secret, and yet both parties can identify the box by its exterior
characteristics and physical location. The issuer of a token could certify that the
token is investigating a specified object simply through physical observation. Al-
ternatively, the token itself could be programmed to recognize the pre-specified
characteristics used to reference the object. The motivation for this functionality
is to remove any need for parties to trust each other to supply correct physical
inputs or honest descriptions of physical inputs to the tokens.

Another nuance in our model is the assumption that any user of a token can
destroy or memory-wipe that token. Katz’s original model did not make any
assumptions on the destruction of tokens, but several subsequent works consid-
ered tokens with a self-destruction capability. For example, Goldwasser et. al.
[11] introduced one-time memory (OTM) tokens that immediately self-destruct
after delivering output. Goyal et. al. used OTM tokens as well in their construc-
tion of unconditionally secure MPC. However, in these works, the self-destruct
behavior was only used to make the hardware token tamper-proof against its
user, and not to prevent its creator from recovering information. In fact, an
important property of the standard tamper-proof token model is that it does
not require mutual trust—each party only needs to trust the physical assump-
tions about its own hardware. This distinguishes the tamper-proof token model
from similarly powerful models that require the parties to agree upon a trusted
setup, such as the common reference string (CRS) model. Our disposable circuit
model similarly only requires the device creator to trust a device’s full function-
ality and tamper-proof properties, but we additionally require the user to trust
one physical assumption: that the device can be destroyed.

We show that in this disposable circuit model, a prover party can prove
any physical property of an arbitrary physical input to a verifier party in a

3



way that leaks at most a single bit about the input. The high-level idea is to
allow the verifier to create a tamper-proof device that will investigate the object
in isolation. To restrict the communication between the device and verifier, the
prover party will mediate all communication between the device and the verifier.
The device will conditionally reveal to the prover a secret string after checking
the validity of the physical property. The prover could send this string back to the
verifier as evidence of the property’s validity, but would need to ensure that this
string does not reveal any further information to the verifier. To accomplish this,
the prover and verifier will execute a secure 2PC protocol that verifies whether
both parties “know” the same secret. The device can always communicate an
arbitrary bit to the verifier because it can cause the protocol to abort dependent
on the physical input. Crucially, the device is destroyed or memory-wiped at the
end of the protocol so that it cannot reveal any further information.

More generally, we show that it is possible for two parties to evaluate any
function of their physical inputs in a way that leaks at most one bit of informa-
tion about the inputs. Each party can issue a token to investigate the opposing
party’s physical input and output a message authentication code (MAC) signa-
ture on the input description to the opposing party. The two parties then invoke
a secure 2PC functionality that verifies the MAC signatures and computes the
desired function. Moreover, we show that this approach can be easily extended
for physical multi-party computation (MPC). Each party creates multiple to-
kens, one for each of the other parties. Each token investigates a single party’s
input and outputs a MAC signature on the input description to that party.
The parties each collect the MAC signatures they have received from the other
parties’ tokens, and input these signatures along with their input descriptions
to an MPC functionality that verifies the signatures and computes the desired
function.

Building on the result that MPC can be unconditionally realized in the
tamper-proof token model [12], our protocols are unconditionally secure (i.e.
they do not rely on computational assumptions). We will analyze the security of
our protocols using the notion of security with input-dependent abort introduced
in [14], which cleanly captures the idea that an adversary can learn at most 1
bit about another party’s input by causing the protocol to abort conditioned on
that party’s input.

Lastly, we present in Section 5 a protocol called isolated circuit secure commu-
nication that allows the two isolated disposable circuits to communicate secretly
with each other without leaking any information to A or B and discuss its po-
tential applications. We conclude in Section 6 with a question left open by our
work.

2 Preliminaries

In this section we provide further details and formal specifications of the un-
derlying definitions and concepts we address in this paper. We provide formal
specifications in terms of ideal functionalities (see Canetti [2]). The ideal func-

4



tionality definition of a protocol or token describes its target behavior in an ideal
world using a trusted entity.

Disposable circuits model. Our formalization of the disposable circuits (DC)
model is based on the stateful tamper-proof token model of Katz [15]. Katz for-
mally defines a “wrapper” functionality FWRAP to model a real world system
in which any party can construct a hardware device encapsulating an arbitrary
software program and pass it to a user party, who may only interact with the
embedded software in a black-box manner. Formally, FWRAP takes two possible
commands: a “creation” command, which initializes a new token Tρ implement-
ing a stateful interactive polynomial-time program ρ (e.g., an ITM), and an
“execution” command, which causes ρ to run on a supplied input and return
output. Additionally, the token Tρ may be partially isolated so that it cannot
communicate with its creator and only interacts with a specified user. This is
captured in FWRAP by having the creator party P specify a user party P ′,
whereafter FWRAP stores (P, P ′, ρ) and only accepts subsequent “execution”
commands from P ′ to run Tρ.

We define the ideal functionality FDC (see Figure 1) as an extension of
FWRAP . We model the ability of tokens to directly measure physical inputs
in the environment following the paradigm in [4]. Every real world physical
object x is assigned a unique identifier idx, which captures the public meta
information that the parties in the real world system use to reference the same
object. Upon receiving the identifier idx, FDC queries an ideal world oracle for
a physical measurement M with idx, which returns the logical output of the
real world physical measurement M(x). However, without loss of generality, we
may assume that M is an identity function (outputting a canonical description
of x and all its physical characteristics), and hence we eliminate M from the
formal description of FDC for simplicity. Instead, upon receiving idx as input to
a token implementing ρ, FDC directly computes ρ(x̄) where x̄ is the canonical
description of x. We also model the capability of the token creator to certify that
the token will be used only to investigate a specific object by optionally including
idx in the “creation” command. Additionally, we add a “destroy” command to
FDC that deletes the tuple representing an active token and outputs ⊥ to the
issuer of the command. This models the real world ability of users to destroy or
memory-wipe hardware tokens at any point in time as well as certify that the
device has been successfully destroyed.

Secure physical property verification (SPV). SPV involves two parties, a
prover P and a verifier V . The prover holds a physical input x, and will allow the
verifier to verify a physical property π of x, i.e. certify that π(x) = 1. The ideal
functionality for SPV is described below in Figure 2, and only slightly modifies
the physical zero-knowledge ideal functionality FΠZK definition described in [4].

Secure physical two-party computation (2PC). Secure physical 2PC in-
volves two parties, A and B, who each hold physical inputs x and y respectively.

5



Functionality FDC

FDC is parametrized by a polynomial p(·) and an implicit security parameter k.

“Creation” Upon receiving (create, sid, P, P ′, idx,mid, ρ) from a party P where ρ
is the description of a deterministic program (e.g., an interactive Turing machine),
mid is a machine id, and idx either uniquely references a physical object x or is
set to ⊥:

1. Send (create, sid, P, P ′, idx,mid, ρ) to P ′.
2. Store (P, P ′, idx,mid, ρ, ∅).

“Execution” Upon receiving (run, sid, P,mid,msg) from party P ′:

1. Find the unique tuple (P, P ′, idx,mid, ρ, state). If no such tuple is stored, then
do nothing.

2. If idx 6= ⊥ and msg 6= idx, then do nothing.
3. If msg = idx, set input = x̄, the canonical description x.
4. If idx = ⊥, then set input = msg.
5. Run ρ(input, state) for at most p(k) steps. Let (out, state′) denote the result.

If ρ does not terminate in p(k) steps, then set out = ⊥ and state′ = state.
6. Send (sid, P,mid, out) to P ′, store (P, P ′, idx,mid, ρ, state

′) and erase
(P, P ′, idx,mid, ρ, state).

“Destroy” Upon receiving (destroy, sid,mid, P ) from party P ′, erase any tuple of
the form (P, P ′, ∗,mid, ∗, ∗) and return ⊥ to P ′.

Fig. 1. Ideal world disposable circuit functionality

A function of x and y has two components: a pair of physical measurements
(M1,M2) and a mathematical function f(M1(x),M2(y)). However, in defining
the ideal functionality FPhysical2PC , we may assume without loss of generality that
M1 andM2 are “identity” measurements that each output a sufficiently detailed
description of their physical inputs and relevant physical properties. Thus, our
definition instead allows FPhysical2PC to query an oracle O that outputs canon-
ical descriptions of physical objects. The ideal functionality is formally defined
in Figure 3.

Secure physical multi-party computation (MPC). Secure physical MPC
naturally extends the definition of physical 2PC to N parties with N physical
inputs x1, ..., xN . The ideal functionality FPhysicalMPC receives an input identifier
idxi from each ith party, it derives the canonical description O(idxi) = x̄i for
each i, computes a function f(x̄1, ..., x̄N ), and outputs this value to all parties.

Unconditional one-time MAC. We denote by (MAC,V F ) an uncondi-
tionally secure one-time message authentication code scheme. A message m is

6



Functionality FΠSPV

The functionality is parametrized by a physical property Π. We model the physical
measurement MΠ for verifying Π as an ideal functionality FΠM. We assume any
physical input x has a unique identifier idx in the ideal world.

– Upon receiving (idx,Prover,Verifier) from the party Prover, FΠSPV queries FΠM
to compute Π(x), and sends (Π(x), idx, Π) to Verifier. Finally, if Verifier re-
ceives Π(x) = 1, it outputs accept. Otherwise Verifier outputs reject.

Fig. 2. Ideal world Secure Property Verification

Functionality FPhysical2PC

Upon initiation, the functionality is supplied with a function f : {0, 1}∗×{0, 1}∗ →
{0, 1}∗ and access to an oracle O, which on input idx identifying a physical object
x outputs a canonical description including physical properties of x.

– Upon receiving idx from the party A and idy from the party B, query O and
record x̄ = O(idx) and ȳ = O(idy). Output f(x̄, ȳ) to both parties A and B.

Fig. 3. Ideal world physical 2PC

signed with a key k as (m,MACk(m)). The verification algorithm V F computes
V Fk(m,σ) = 1 if and only if σ is a correct signature of m with key k. An ex-
ample of an unconditional one-time MAC is the map x 7→ a · x+ b over a finite
field, where the key k = (a, b) is used to sign m as a ·m+ b.

Proving security of protocols. Our security analysis uses the UC-framework
[3]. We compare the execution of a real protocol ρ (defined in a given compu-
tational environment) with a static malicious adversary A corrupting a subset
of the parties to an ideal process where the parties only interact with the ideal
functionality Fρ for ρ and an ideal world adversary S, also called the simulator.
When A (resp. S) corrupts a party, it learns that party’s entire state, and takes
control of its communication. We define an environment Z that sets the par-
ties’ inputs in both executions and observes their outputs. Additionally, Z may
communicate freely with the adversary A in the real protocol and S in the ideal
protocol. Let REALρ,A,Z denote the output of Z after interacting with the real
protocol and let IDEALFρ,A,Z denote its output after interacting with the ideal
process.

Definition 1. (Realizing an ideal functionality) A protocol ρ securely realizes
the ideal functionality Fρ if for any real world adversary A there exists an ideal
adversary S such that REALρ,A,Z ∼ IDEALFρ,S,Z for every environment Z.

7



We will prove that our protocols satisfy a slightly relaxed definition of security
called security with input-dependent abort [14], which allows an adversary to
learn at most 1 bit of information by causing the protocol to abort dependent
on another party’s inputs. Formally, given any multi-party functionality F , we
define the functionality F IDA as follows. F IDA receives inputs from the parties and
runs an internal copy of F . In addition, it receives the description of a predicate
φ from the adversary. Before delivering any output from F , it evaluates φ with all
the inputs. If φ outputs 1, then F IDA replaces the outputs to the honest parties
with abort. Otherwise, F IDA delivers the correct outputs from F to both parties.
We make only one modification to this definition to account for functionalities
with physical inputs: if idx denotes a physical input identifier, then φ is evaluated
on the canonical description x̄ of the object identified by idx (along with the other
inputs).

Definition 2. (Security with input-dependent abort) A protocol ρ implementing
the ideal functionality Fρ is secure with input-dependent abort if ρ securely
realizes F IDA

ρ .

3 Secure Property Verification

In this section, we present a solution for SPV that is secure with input-dependent
abort. The general setup is as follows. The input to the protocol is the physical
object x and a physical property Π. We express Π as a boolean function so that
Π(x) ∈ {0, 1}. The verifier, denoted V , programs a DC token CV to examine
x, and compute Π(x). In the formal description, CV is replaced with the ideal
functionality FDC , as described in Section 2. The token CV must then commu-
nicate Π(x) to V via an indirect channel through the prover, denoted P , who is
mediating the communication. The prover’s task is to limit this communication
to a single bit.

It is straightforward for CV to authenticate any message it sends to the
verifier via the prover by signing the message using a MAC and a secret key it
shares with V . In fact, since the message only consists of a single bit, it suffices
for CV to either send the secret key itself or nothing. More precisely, let CV and
V share a secret string sk of length λ (a security parameter). After investigating
x, CV sends sk to P if and only if Π(x) = 1. P must demonstrate to V that
it “knows” sk as “evidence” that Π(x) = 1. P could simply send sk to V ,
but would need to ensure that V cannot learn any further information from sk.
Namely, P should be convinced that V already “knows” sk as well.

Solutions from bit commitment. A natural way to convince P that V al-
ready knows sk is to use a commitment protocol in which V sends P a com-
mitment to sk that CV can later de-commit (without involving or even commu-
nicating with V ). We discuss briefly a few solutions for this task that we can
easily derive from existing protocols in the literature. One suitable protocol is the
“commit and reveal” protocol of [1] for two isolated provers in the MIP model,

8



where V acts as one prover and CV as the second. The UC-secure commitment
protocol of Moran and Segev [18] is also applicable, but their protocol uses V to
send both the commitment and de-commitment while CV is used for a validity
check. It is easy to modify the protocol so that the token CV de-commits the
secret instead of V , although to maintain UC-security we would need to involve a
third isolated token for the validity check (the simulator can extract the commit-
ted value by rewinding this token whereas it cannot rewind V ). Another option
is to adapt the standard construction of bit commitment from Rabin-OT [16].
In the generalized version of this construction using error-correcting codes (e.g.,
[6, 5]), the sender computes a randomized encoding enc(s) of the input string s
to be committed, and obliviously transmits to the receiver a subset of the bits
of enc(s) via Rabin-OT. To de-commit, the sender reveals s, and the receiver is
able to check that enc(s) is consistent with the previously transmitted bits. In
our setting, P would simply request from V to see a random subset of the bits
of enc(s), and CV would de-commit by sending s.

All of the above solutions would be unconditionally secure in our model,
and we imagine it would not be hard to obtain UC-security as well. However,
it is simpler to present and prove our feasibility result by making black-box use
of previously defined functionalities that are known to be unconditionally UC-
secure in the tamper-proof token model (and the disposable-circuit model by
extension). The above solutions could not use the standard ideal commitment
functionality FCOM in a black-box way because FCOM does not separate the
party that sends the commitment from the party (or token) that reveals the
commitment, which seems crucial in our application.

Solution from 2PC. In an effort to present and prove our result in the sim-
plest possible way, we offer a solution using general 2PC, which can be realized
with unconditional UC-security in the tamper-proof token model [12]. V and P
will run a secure 2PC functionality that takes inputs x and y from each party,
and either outputs 1 if x = y and otherwise outputs abort. If both parties are
honest, they will both supply the input sk. If the honest V receives the out-
put 1, then it is convinced that P knows sk, which constitutes a proof that CV
verified Π(x) = 1 (up to the negligible probability that P guessed sk). More
formally, given any UC-secure protocol implementing this 2PC functionality, if
the protocol execution outputs 1 when V supplies sk, then there exists an effi-
cient simulator that can extract sk from P . Even if V is dishonest, it can learn
at most 1 bit from the protocol by causing the 2PC subprotocol to either abort
or succeed dependent on the input that the honest P supplies. We formally
describe the protocol in Figure 4 and prove that it securely realizes SPV with
input-dependent abort.

Claim 1: Protocol 1 securely realizes FΠSPV with input-dependent abort (uncon-
ditionally).

Proof. Let π denote the real protocol according to the description of Protocol
1. We define the ideal world simulator S given any real world adversary A and

9



Protocol 1 - SPV

Setup: Let λ denote a security parameter. The Verifier chooses a random password
string sk in {0, 1}λ. Let x̄ denote a canonical description of the physical input
x that the prover supplies. Let Π be a boolean function so that Π(x̄) ∈ {0, 1}.
Recall that FDC is able to derive x̄ given idx, a unique identifier for the object.
The prover claims that Π(x̄) = 1.

1. (V initiates a token) Let ρ define a program that on input x̄ outputs sk if
Π(x̄) = 1 and outputs ⊥ otherwise. V sends (create, sid, V, P, idx,mid, ρ) to
FDC .

2. (P queries the token) P submits (run, sid, V,mid, idx) to FDC and receives
in response ρ(x̄).

3. (P destroys the token) P submits (destroy, sid,mid, V ) to FDC and waits
to receive ⊥ in response.

4. (2PC equality check) P inputs ρ(x̄) and V inputs sk to a protocol that
unconditionally UC-realizes the following ideal functionality:
– EqualityChecker: On input (msg, sid, P, V ) from party P and

(msg′, sid, V, P ) from party V , output 1 to both parties if msg = msg′,
and otherwise output abort.

5. If V receives the output 1 from EqualityChecker, then it outputs Accept. If
either party receives abort, then it outputs abort.

Fig. 4. SPV from secure 2PC.

consider separately the cases where A corrupts Prover and A corrupts Verifier.
We may assume without loss of generality that A is a proxy for Z. In other
words, Z controls A’s outgoing communication and A forwards all its incoming
messages back to Z.

A corrupts V . S runs a simulated copy of A. S intercepts the command
(create, sid, V, P, idx,mid, ρ) that A sends to FDC as well as the value s that
A submits to EqualityChecker. S defines the unary predicate φs on strings m ∈
{0, 1}∗ so that φs(m) = 0 when ρ(m) = s and φs(m) = 1 when ρ(m) 6= s. S then
submits this predicate φs to F IDA

SPV . Recall that F IDA
SPV will proceed identically

to FSPV on input idx unless φs(x̄) = 1 (i.e. ρ(x̄) 6= s). Thus, S will receive
the output (Π(x), idx, 1) from F IDA

SPV if and only if A would receive the output
1 from EqualityChecker. In this case, S forwards 1 to Z and sets V ’s output to
Accept. Likewise, S will receive the output abort if and only if A would receive
abort from EqualityChecker. In this case, S sends abort to Z and sets V ’s output
to abort as well. In the former case, the honest P has no output in either the
ideal or real processes. In the latter case, the honest party P also outputs abort
in both processes. Thus, Z has identical views in both processes.

A corrupts P . S runs a simulated FDC with a simulated A just as V would,
except that it chooses its own random password string sk′ and defines ρ′ to

10



output sk′ when Π(x) = 1. S records the value out that A receives back from
FDC , and the value s′ that the simulated A would submit to EqualityChecker. If
either out = ⊥ or out 6= s′, then S sends the constant predicate φ = 1 to F IDA

SPV ,
causing both P and V to output abort, and sends abort directly to Z as well.
Otherwise, if out = sk′ = s′, then S sends (Π(x), idx, 1) to F IDA

SPV , causing V to
output Accept.

In the case that the simulated A receives out = sk′, the real A would receive
sk from FDC . Let s denote the value that the real A would send as input to
the EqualityChecker. Since sk and sk′ are identically distributed random strings,
it follows that (sk, s) and (sk′, s′) must be identically distributed. Conditioned
on out = sk′, the probability that s′ 6= sk′ is identical to the probability that
s 6= sk, which both cause P and V to output abort in the real and ideal processes
respectively. In this case, the view of Z is distributed identically in the real and
ideal processes.

In the case that the simulated A receives out = ⊥, the real A also receives ⊥.
Here, S immediately causes an abort. The only way that Z might see different
values in the real process is if A avoids an abort by guessing sk. This occurs
with probability negligible in λ over V ’s random choice of sk.

We conclude that in both cases, REALπ,A,Z ∼ IDEALF IDA
SPV ,S,Z

.

4 Secure Physical Two-Party Computation

We now have two parties, Party A and Party B, who respectively hold physical
inputs xA and xB , and wish to evaluate a function of their inputs. Party A
creates a DC token CA to investigate xB and party B creates a DC token CB to
investigate xA. We assume that the function can be computed by measuring xA
and xB separately in isolation, and then evaluating a logical function f of the
measured values.4 The parties exchange circuits so that CA is isolated with xB
and only a communication channel to B while CB is isolated with xA and only
a communication channel to A. Figure 5 depicts a schematic of the setup after
the circuits are exchanged.

A high level description of the protocol is as follows. Each token computes
a canonical description of the input it investigates, and outputs this description
signed with an unconditional one time MAC to the opposing party. Let kA and
kB denote secret keys that A shares with CA and B shares with CB respectively.
CA (investigating xB) derives the description x̄B and sends (x̄B ,MACkA(x̄B)) to
B. CB (investigating xA) derives the description x̄A and sends (x̄A,MACkB (x̄A))
to A. Parties A and B also derive the canonical descriptions of their own inputs
to check that the descriptions they receive from the tokens are correct. Next, A
and B execute a secure 2PC functionality that verifies the MAC signatures and
computes the function f . A supplies the inputs (x̄A,MACkB (x̄A), kA) and B
supplies the inputs (x̄B ,MACkA(x̄B), kB). The 2PC functionality outputs abort
to both parties if either MAC verification fails, and otherwise outputs f(x̄A, x̄B)
to both parties. We describe the details of the protocol formally in Figure 6.

4 We do not posit that this covers all physical functions (e.g, in the quantum domain).

11



Physical 2PC with Disposable Circuits

A B

CB CAFaraday cages

I/O

Network

I/O

xBxA

Fig. 5. Schematic of the physical setup for secure physical 2PC using disposable circuits
(Protocol 2).

Alternatively, we could use CA and CB to locally compute the outputs first,
send the outputs signed with a MAC to the opposing party. Then A and B could
execute a 2PC functionality that both verifies the signatures and checks that the
outputs are equal, outputting 1 if these checks pass. This should be a more ef-
ficient method in general since f could be an arbitrarily complex function and
costly to evaluate inside the 2PC functionality. This modified protocol uses the
same general technique as the dual-execution garbled circuits (DualEx) protocol
for 2PC [17, 13], although the goal of DualEx was to achieve a tradeoff between
security and efficiency in standard 2PC. Nonetheless, we find the former method
simpler to present and prove secure.

Claim 2: Protocol 2 securely realizes FPhysical2PC with input-dependent abort.

Proof. Let π denote the real protocol according to the description of Protocol
1. We define the ideal world simulator S given any real world adversary A. It
suffices to analyze the case where A corrupts A, as the case in which A corrupts
B is symmetrical. As before, we may assume without loss of generality that A
is a proxy for Z.

S runs a simulated copy of A. S intercepts idxB and ρA from A’s create mes-
sage to FDC . In addition, S runs a simulated FDC . S chooses a random secret key
r, defines ρS(y) = (y,MACr(y)), and sends (create, sidS ,S, A, idxB ,midS , ρS)
to FDC . Next, S intercepts idxA from A’s run command to FDC . S sends
(run, sidS ,S,midS , idxA) to the simulated FDC , and forwards the resulting out-
put (x̄A,MACr(x̄A)) to A and to Z. S intercepts the input (m′, σ′, k′) that A
submits to VFChecker. If V Fr(m

′, σ′) 6= 1 then S sets φ = 1. Otherwise, S sets
the predicate φ such that φ(x, y) = 1 if and only if V Fk′(ρA(y)) 6= 1. Finally, S
sends idxA and φ to FIDAPhysical2PC. S forwards the output it receives, whether abort
or f(x̄A, x̄B), to Z and sets A’s output accordingly.

In the real protocol, Z sees (x̄A,MACkB (x̄A)) and in the ideal world it sees
(x̄A,MACr(x̄A)) where kB is the random value chosen by A and r is the random

12



Protocol 2 - Physical 2PC

Setup: Let λ denote a security parameter. Let (MAC,V F ) denote an unconditional
one-time message authentication scheme. Party A has physical input xA identified
by idxA and party B has physical input xB identified by idxB . Let x̄A denote a
canonical description of xA and x̄B a canonical description of xB . Parties A and
B share a function f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗.

1. (A initiates a token) Choose a random string kA ∈ {0, 1}λ. Let ρA define
a program that on input y outputs (y, σA) where σA = MACkA(y). A sends
(create, sidA, A,B, idxB ,midA, ρA) to FDC .

2. (B initiates a token) Choose a random string kB ∈ {0, 1}λ. Let ρB define
a program that on input y outputs (y, σB) where σB = MACkB (y). B sends
(create, sidB , B,A, idxA ,midB , ρB) to FDC .

3. (A queries B’s token) A submits (run, sidB , B,midB , idxA) to FDC , receives
in response (outB , σB), and checks that outB = x̄A.

4. (B queries A’s token) A submits (run, sidA, A,midA, idxB ) to FDC , receives
in response (outA, σA), and checks that outA = x̄B .

5. (The parties destroy the tokens) A submits (destroy, sidB ,midB , B) to
FDC and waits to receive ⊥ in response. B submits (destroy, sidA,midA, A)
to FDC and waits to receive ⊥ in response.

6. (2PC check signatures and compute f) A submits inputs (x̄A, σB , kA)
and B submits inputs (x̄B , σA, kB) to a protocol that unconditionally UC-
realizes the following ideal functionality:
– VFChecker: On input (m,σ, kA) from party A and (m′, σ′, kB) from party
B, check that V FkA(m′, σ′) = 1 and check that V FkB (m,σ) = 1. If these
checks pass, compute and output f(m,m′) to both parties. Otherwise,
output abort.

7. If VFChecker outputs abort, then both A and B output abort. Otherwise,
VFChecker outputs f(x̄A, x̄B) to both A and B, who each locally output this
value as well.

Fig. 6. Secure physical 2PC leaking at most 1 bit.

value chosen by S. These values are identically distributed. Thus, the probabil-
ity A responds in the real world with (m,σ, k) such that the verification of the
honest party’s MAC fails, i.e. V FkB (m,σ) 6= 1, is identical to the probability
that the simulated A responds with (m′, σ′, k′) such that V Fr(m

′, σ′) 6= 1. Like-
wise, the outcome of the verifying the adversary’s MAC in the real world, i.e.
V Fk′(ρA(x̄B)), is identically distributed to V Fk(ρA(x̄B)). Thus, the probability
that one of the verifications fails in the real world is identical to the probability
that one of the verifications fails in the simulation. This event causes the same
outcome in the real process and ideal process, namely abort.

On the other hand, when both MAC verifications pass, in the ideal world
the output is always the true output f(x̄A, x̄B), whereas in the real world the
output is f(m, x̄B) possibly for m 6= x̄A. Nonetheless, when m 6= x̄A, the

13



probability that verifying the honest party’s MAC passes, i.e. V FkB (m,σ) =
V FkB (m,MACkA(x̄A)) = 1, is negligible by reduction to the security of (MAC,V F ).

We conclude that REALπ,A,Z ∼ IDEALF IDA
Physical2PC ,S,Z

5 Secure Physical Multi-Party Computation

Our protocol for secure physical 2PC can be generalized for n parties computing
a multi-party functionality of their n physical inputs x1, ..., xn. We will sketch
the protocol without going into low-level detail, as the extension is quite natural.
In the first phase of the protocol, each party Pi creates n − 1 tokens {T ij}j 6=i,
and transfers the token T ij to party Pj . The token T ij investigates the input xj
and outputs to Pj the canonical description x̄j of xj and a MAC signature using
Pi’s key ki: (x̄j ,MACki(x̄j)). At the end of the first phase, each party Pi has
received n − 1 MAC signed descriptions of its input xi from the other parties’
tokens. Each Pi checks that the n − 1 descriptions it has received are all the
same, and also match the correct canonical description x̄i that it has derived on
its own. In the second phase, each party Pi inputs (x̄i, ki, {MACkj (x̄i)}i6=j) to
a secure MPC protocol implementing a functionality that verifies all the MAC
signatures and either outputs abort (when a signature is invalid) or otherwise
returns f(x̄1, ..., x̄n) to each party. The resulting protocol is secure with input-
dependent abort, as an adversary and its tokens can at best cause the MPC
protocol to either succeed or fail depending on the inputs they investigate and
the adversary’s input. The MPC protocol can be unconditionally UC-securely
realized in the DC model (as an extension of the tamper-proof token model)
following the result of Goyal et. al. [12].

6 Isolated Circuit Secure Communication

In this section we show a simple protocol we call isolated circuit secure commu-
nication (ICSC) that enables the two isolated circuits CA and CB in the setup
depicted in Figure 5 to send messages to each other in a way that keeps the
messages hidden from both A and B. The protocol is malleable, meaning that
A and B can sabotage any message sent between the circuits without detection.
However, all messages that A and B see during the protocol reveal no infor-
mation (are uniformly distributed) even if A colludes maliciously with CA or B
colludes maliciously with CB .

Security (sketch). We do not precisely formalize the security of the ICSC
protocol (e.g., in the UC-framework), but we sketch here the security intuition.
First, it is easy to see the the output of the protocol to CA and CB respectively
is correct when all parties are honest. Second, the views of A and B are indis-
tinguishable from random. Consider the view of an adversary A corrupting A
(the case for B is symmetric). In the first round, A receives k0B ⊕m for some m
and in the second round it receives k1B ⊕m′ for some m′. Given that k0B and k1B

14



Protocol 3 - ICSC

CA and A share secret key k0A and k1A; CB and B share a secret keys k0B and k1B .

1. CA sends message m0 to CB :
– CA to B: send u0 = k0A ⊕m0

– B to A: send v0 = k0B ⊕ u0

– A to CB : send w0 = k0A ⊕ v0 =
k0B ⊕m0

– CB : output m0 = k0B ⊕ w0

2. CB sends message m1 to CA:
– CB to A: send v1 = k1B ⊕m1

– A to B: send u1 = k1A ⊕ v1
– B to CA: send w1 = k1B ⊕ u1 =
k1A ⊕m1

– CA: output m1 = k1A ⊕ w1

Multiple rounds: Using a pseudorandom function or any KDF, on round i party
A uses a key pair KDF(k0A; k1A; i), and party B uses a key pair KDF(k0B ; k1B ; i).

Fig. 7. Isolated circuits CA and CB exchange secret messages indirectly through A and
B.

are independent uniformly distributed random strings, the simulator can replace
both of A’s messages with independent random strings. The argument can be
extended to prove computational security in the multi-round setting via a stan-
dard hybrid argument, replacing the PRF generated keys with uniform random
strings.

Applications. ISCS enables two tokens in isolation to execute arbitrary two-
party interactive (digital) functionalities without leaking information to the two
parties involved (other than 1 bit by aborting). In theory, this is no more powerful
than the protocol we presented for physical two-party computation. However, we
can imagine ISCS could have practical import. For example, we could use ISCS
to efficiently compile any interactive protocol that leaks up to k bits into one
that leaks at most 1 bit of the initial k bits. The isolated tokens could first run
the interactive protocol to learn the output and at most k additional bits. Next,
the tokens would communicate their outputs to the two parties using the DualEx
paradigm (they send their MAC signed output to the opposing party, and the
parties run secure 2PC to verify the MACs and equality of the outputs).

7 Further directions

Open question: Is there a protocol for physical SPV or 2PC/MPC in the DC
model that is fully secure against malicious adversaries, or that provably does
not leak any information?

15



Acknowledgements

We would like to thank the anonymous reviewers of this paper for their many
helpful comments and suggestions.

References

1. M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi-prover interactive
proofs: How to remove intractability assumptions. In 20th ACM STOC, pages
113–131. ACM Press, May 1988.

2. R. Canetti. Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology, 13(1):143–202, 2000.

3. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE, Oct. 2001. Full version at Cryp-
tology ePrint Archive, Report 2001/055, http://eprint.iacr.org/2001/055.

4. B. Fisch, D. Freund, and M. Naor. Physical zero-knowledge proofs of physical
properties. In J. A. Garay and R. Gennaro, editors, CRYPTO 2014, volume 8617,
pages 313–336. Springer, Aug. 17–21, 2014.

5. T. K. Frederiksen, T. P. Jakobsen, J. B. Nielsen, P. S. Nordholt, and C. Orlandi.
MiniLEGO: Efficient secure two-party computation from general assumptions. In
Eurocrypt 2013, LNCS, pages 537–556. Springer, 2013.

6. J. A. Garay, Y. Ishai, R. Kumaresan, and H. Wee. On the complexity of UC
commitments. In P. Q. Nguyen and E. Oswald, editors, Eurocrypt 2014, volume
8441 of LNCS, pages 677–694. Springer, May 11–15, 2014.

7. A. Glaser, B. Barak, and R. J. Goldston. A new approach to nuclear warhead
verification using a zero-knowledge protocol. Presented at 53rd Annual INMM
(Institute of Nuclear Materials Management) meeting, 2012.

8. A. Glaser, B. Barak, and R. J. Goldston. A zero-knowledge protocol for nuclear
warhead verification. Nature, 510:497–502, 2014.

9. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game, or a
completeness theorem for protocols with honest majority. In A. Aho, editor, 19th
ACM STOC, pages 218–229. ACM Press, May 1987.

10. O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious
RAMs. J. ACM, 43(3):431–473, 1996.

11. S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. One-time programs. In D. Wag-
ner, editor, Crypto 2008, volume 5157 of LNCS, pages 39–56. Springer, Aug. 17–21,
2008.

12. V. Goyal, Y. Ishai, A. Sahai, R. Venkatesan, and A. Wadia. Founding cryptography
on tamper-proof hardware tokens. In 2010, volume 5978 of LNCS, pages 308–326.
Springer, 2010.

13. Y. Huang, D. Evans, and J. Katz. Quid-Pro-Quo-tocols: Strengthening semi-honest
protocols with dual execution. In IEEE Symposium on Security and Privacy, pages
272–284, 2012.

14. Y. Ishai, E. Kushilevitz, R. Ostrovsky, M. Prabhakaran, and A. Sahai. Efficient
non-interactive secure computation. In K. G. Paterson, editor, Eurocrypt 2011,
volume 6632 of LNCS, pages 406–425, Tallinn, Estonia, May 15–19, 2011. Springer.

15. J. Katz. Universally composable multi-party computation using tamper-proof
hardware. In M. Naor, editor, Eurocrypt 2007, volume 4515 of LNCS, pages
115–128. Springer, May 20–24, 2007.

16



16. J. Kilian. Founding cryptography on oblivious transfer. In 20th ACM STOC, pages
20–31. ACM Press, May 1988.

17. P. Mohassel and M. Franklin. Efficiency tradeoffs for malicious two-party compu-
tation. In M. Yung, Y. Dodis, A. Kiayias, and T. Malkin, editors, (PKC 2006),
volume 3958 of LNCS, pages 458–473. Springer, Apr. 2006.

18. T. Moran and G. Segev. David and Goliath commitments: UC computation for
asymmetric parties using tamper-proof hardware. In N. P. Smart, editor, Eurocrypt
2008, volume 4965 of LNCS, pages 527–544. Springer, Apr. 13–17, 2008.

19. M. Naor, Y. Naor, and O. Reingold. Applied kid cryptography or how to convince
your children you are not cheating. Journal of Craptology, 0(1), April 1999.

20. J.-J. Quisquater, L. Guillou, M. Annick, and T. Berson. How to explain zero-
knowledge protocols to your children. In Proceedings on Advances in Cryptology,
CRYPTO ’89, pages 628–631, New York, NY, USA, 1989. Springer-Verlag New
York, Inc.

21. A. C.-C. Yao. How to generate and exchange secrets (extended abstract). In FOCS,
pages 162–167, 1986.

17


