
Topology-Hiding Computation

Tal Moran1,?, Ilan Orlov1, and Silas Richelson2

1 Efi Arazi School of Computer Science, IDC Herzliya.
{talm,iorlov}@idc.ac.il

2 Department of Computer Science, UCLA
SiRichel@ucla.edu

Abstract. Secure Multi-party Computation (MPC) is one of the foun-
dational achievements of modern cryptography, allowing multiple, dis-
trusting, parties to jointly compute a function of their inputs, while
revealing nothing but the output of the function. Following the sem-
inal works of Yao and Goldreich, Micali and Wigderson and Ben-Or,
Goldwasser and Wigderson, the study of MPC has expanded to con-
sider a wide variety of questions, including variants in the attack model,
underlying assumptions, complexity and composability of the resulting
protocols.
One question that appears to have received very little attention, how-
ever, is that of MPC over an underlying communication network whose
structure is, in itself, sensitive information. This question, in addition
to being of pure theoretical interest, arises naturally in many contexts:
designing privacy-preserving social-networks, private peer-to-peer com-
putations, vehicle-to-vehicle networks and the “internet of things” are
some of the examples.
In this paper, we initiate the study of “topology-hiding computation” in
the computational setting. We give formal definitions in both simulation-
based and indistinguishability-based flavors. We show that, even for fail-
stop adversaries, there are some strong impossibility results. Despite this,
we show that protocols for topology-hiding computation can be con-
structed in the semi-honest and fail-stop models, if we somewhat restrict
the set of nodes the adversary may corrupt.

? Supported by ISF grant no. 1790/13 and by the European Union Seventh Framework
Programme (FP7/2007-2013) under grant agreement no. 293843

1 Introduction

Secure multi party computation (MPC) has occupied a central role in cryptog-
raphy since its inception in the ’80s. The unifying question can be stated simply:

Can mutually distrusting parties compute a function of their inputs, while
keeping their inputs private?

Classical feasibility results [26,18,4,23] paved the way for a plenitude of research
which has over time simplified, optimized and generalized the original foun-
dational constructions. Some particularly rich lines of work include improving
the complexity (round/communication/computation) of MPC protocols (e.g.,
[3,15,12,11] and many more) and striving to achieve security in the more diffi-
cult (but realistic) setting where the adversary may execute many instantiations
of the protocol along with other protocols (e.g., [22,20,8,6] and many more).

Common to nearly all prior work, however, is the assumption that the par-
ties are all capable of exchanging messages with one another. That is to say,
most work in the MPC literature assumes that the underlying network topol-
ogy is that of a complete graph. This is unrealistic as incomplete or even sparse
networks are much more common in practice. Moreover, the comparably small
body of MPC work that deals with incomplete networks concerns itself with the
classical goal of hiding the parties’ inputs. In light of the growing impact of net-
working on today’s world, this traditional security goal is insufficient. Consider,
for example, the graph representing a social network: nodes representing people,
edges representing relationships. Most computation on social networks today is
performed in a centralized way—Facebook, for example, performs computations
on the social network graph to provide popular services (e.g., recommendations
that depend on what “similar” people liked). However, in order to provide these
services Facebook must “know” the entire graph.

One could imagine wanting to perform such a computation in a distributed
manner, where each user communicates only with their own friends, without
revealing any additional information to third parties (there is clearly wide inter-
est in this type of service—Diaspora*, a project that was expressly started to
provide “Facebook-like” functionality in a more privacy-preserving manner [2],
raised over $200,000 in 40 days via Kickstarter).

Another motivating example is the recent push by US auto safety regulators
towards vehicle-to-vehicle communication [1], which envisions dynamic networks
of communicating vehicles; many “global” computations seem to be interesting
in this setting (such as analysis of traffic patterns), but leaking information about
the structure of this network could have severe privacy implications.

The rise of the “internet of things”, connected by mesh networks (networks
of nodes that communicate locally with each other) is yet another case in which
the topology of the communication network could reveal private information
that users would prefer to hide.

It is with such applications in mind that we initiate the study of topology-
hiding MPC in the computational setting. We consider the fundamental ques-
tion:

Can an MPC protocol computationally hide the underlying network topol-
ogy?

1.1 Our Contributions

Formally Defining Topology-Hiding MPC: In keeping with tradition we give both
an indistinguishability game-based definition and a simulation-based one. Very
briefly, in the game-based definition the adversary corrupts A ⊂ V and sends
two network topologies G0, G1 on vertices V . These graphs must be so that the
neighborhoods of A are the same. The challenger then picks Gb at random and
returns the collective view of the parties in A resulting from the execution of the
protocol on Gb. The adversary outputs b′ and wins if b′ = b. We say a protocol is
secure against chosen topology attack (IND-CTA−secure) if no PPT adversary
can win the above game with probability negligibly greater than if it simply
guesses b′.

We then give a simulation-based definition of security using the UC frame-
work. We define an ideal functionality Fgraph and say that a protocol is “topology
hiding” if it is UC secure in the Fgraph−hybrid model. The functionality Fgraph

models a network with private point-to-point links (private in the sense that
the adversary does not know the network topology). It receives G as input,
and outputs to each party a description of its neighborhood. It then acts as
an “ideal communication channel” allowing neighbors to send messages to each
other. For more details on Fgraph and the motivations behind our definition see
the discussion below. Finally, we relate the two new notions by proving that
simulation-based security implies game-based security.

Feasibility of topology-hiding MPC against semi-honest adversary:

Theorem 1. Assume trapdoor permutations exist. Let G be the underlying net-
work graph and d a bound on the degree of every vertex in G. Then every mul-
tiparty functionality may be realized by a topology hiding MPC protocol which
is secure against a semi-honest adversary who does not corrupt all parties in
any k−neighborhood of the underlying network graph where k is such that dk =
poly(n).

We point out that many naturally occurring graphs satisfy dD = poly(n) where
D is the diameter. Examples of such graphs include binary trees, hypercubes,
expanders, and generally graphs with relatively high connectivity such as those
occurring from social networks. For such graphs theorem 1 is a feasibility result
against a general semi-honest adversary.

Impossibility in fail-stop model:

Theorem 2. There exists a functionality F and a network graph G such that
realizing F while hiding G is impossible.

Our proof uses the ability of the adversary to disconnect G with his aborts; we
then prove this is inherent.

Sufficient conditions in fail-stop model:

Theorem 3. Assume TDP exist. Every multiparty functionality may be realized
by a topology hiding MPC protocol which is secure against a fail-stop adversary
who does not corrupt all parties in any neighborhood of the underlying network
graph and who’s aborts do not disconnect the graph.

1.2 Related Work

MPC on Incomplete Network Topologies One line of work which is in exception
to the above began with Dolev’s paper [13] proving impossibility of Byzantine
agreement on incomplete network topologies with too low connectivity. Dwork
et. al. [14] coined the term “almost everywhere Byzantine agreement” to be a
relaxed variant of Byzantine agreement where agreement is reached by almost
all of the honest parties. Garay and Ostrovsky [16] used this to achieve almost
everywhere (AE) MPC. Recently [9] gave an improved construction of AE Byzan-
tine agreement translating to an improved feasibility result for AE MPC. These
works are all in the information theoretic setting. We refer the curious reader
to [9] and the references therein for more details.

Another recent line of work is that of Goldwasser et. al. [5] who consider MPC
while minimizing the communication locality, the number of parties each player
must exchange messages with. Their work is in the cryptographic setting and
they give a meaningful upper bound on the locality and overall communication
complexity. Their work does not address the notion of hiding the graph. Moreover
they employ techniques such as leader election which seem inherently not to hide
the graph.

Finally, we mention the two classical techniques of mix-net and onion routing.
The mix-net technique introduced by Chaum [10] uses public key encryption
to implement a “message transmit” scheme allowing a sender and receiver to
using in a message transmit using an additional shuffling mechanism. The onion
routing technique [25,24] and its extensions is a useful technique for anonymous
communication over the Internet. Its basic idea is establishing paths of entities
called proxies that know the topology in order to transmit massages.

Topology-Hiding MPC: While most of the cryptographic MPC literature disre-
gards the interplay between multiparty computation and networking, the above
works give a relatively satisfactory view of the landscape. Hiding the topology
of the network in secure computation, on the other hand, is somewhat of a novel
goal. The only work in the MPC literature of which we are aware that has con-
sidered this question is that of Hinkelmann and Jakoby [19] who focused on the
information theoretic setting. Their main observation can be summarized:

If vertices v and w are not adjacent in G then Pv cannot send a message
to Pw without some intermediate Pz learning that it sits between Pv and
Pw.

They use this observation to prove that any MPC protocol in the information
theoretic setting must inherently leak information about G to an adversary.
They do, however, prove a nice positive result: given some minimal amount of
network information to leak (formalized as a routing table of the network), one
can construct an MPC protocol which leaks no further information.

Their work leaves open the interesting possibility that, using cryptographic
techniques, one could construct an MPC protocol which (computationally) hides
the network topology. In this work we explore this possibility.

Organization of the Rest of the paper The rest of the paper is organized as
follows. In section 2 we go over the background and general definitions which
are required to understand the technical portions which follow. In section 3
we formally define our new notions of “topology hiding” computation. This in-
cludes our game-based and simulation-based definitions as well as a proof that
simulation-based security implies game-based security. In section 4 we consider
achieving topology-hiding MPC against a semi-honest adversary. Our basic pro-
tocol is secure as long as the adversary does not corrupt any whole neighbor-
hoods of the network graph. We then lessen this requirement showing how to
transform a protocol which is secure against an adversary who doesn’t corrupt
an entire k−neighborhood into one secure as long as A does not corrupt any
(k + 1)−neighborhood. This proves theorem 1. In section 5 we consider a fail-
stop adversary and give a somewhat complete picture of the landscape in this
setting, proving theorem 2 and theorem 3.

2 Preliminaries

2.1 General Definitions

We model a network by a directed graph G = (V,E) that is not fully connected.
We consider a system with m = poly(n) parties, denoted P1, . . . , Pm. We often
implicitly identify V with the set of parties {P1, . . . , Pm}. We consider a static
and computationally bounded (PPT) adversary that controls some subset of par-
ties. That is, at the beginning of the protocol, the adversary corrupts a subset
of the parties and may instruct them to deviate from the protocol according to
the corruption model. Through this work, we consider mostly semi-honest and
fail-stop adversaries, though we discuss the implications of our fail-stop impos-
sibility result on the hope of achieving topology-hiding MPC in the malicious
model. In addition, we assume that the adversary is rushing; that is, in each
round the adversary sees the messages sent by the honest parties before sending
the messages of the corrupted parties for this round. For general MPC definitions
including descriptions of the adversarial models we consider see [17].

2.2 Definitions of Graph Terms

Let G = (V,E) be an undirected graph. For v ∈ V we let N(v) = {w ∈ V :
(v, w) ∈ E} denote the neighborhood of v by; and similarly, the closed neigh-
borhood of v, N[v] = N(v) ∪ {v}. We sometimes refer to N[v] as the closed

1−neighborhood of v, and for k ≥ 1 we define the k−neighborhood of v as

Nk+1[v] =
⋃

w∈Nk(v)

N[w].

2.3 UC Security

We employ the UC model [7] in order to abstract away many of the imple-
mentation details and get at the core of our definition. Our protocol for hiding
the topology in MPC is local in nature, and our final protocol is the result of
composing many local subprotocols together. This motivates the need for using
subprotocols which are secure under some form of composition. UC security of-
fers strong composability guarantees and thus is well suited to our setting. One of
the appealing features of our definition is that it fits entirely within the existing
UC framework, hence the UC composition theorem can be applied directly.

The downside of the UC model is that it requires setup [7] and opponents ar-
gue that it is “unrealistic”. We have two responses to this. First, we encapsulate
our setup into realizing the Fgraph functionality. This functionality (defined for-
mally in the next section) models the underlying communication network and so
we think of the setup required in order to realize it as an implementation issue.
Second, we point out that our subroutines need only be secure against bounded
self-composition in order to obtain stand-alone security in the Fgraph−hybrid
model, corresponding to a stand-alone variant of topology hiding security. This
allows us to instantiate our protocol in the plain model on top of (for example)
[20] in order to obtain stand-alone topology hiding MPC.

3 Our Model of Security

3.1 Topology Hiding—The Simulation-Based Definition

In this section, we propose a simulation-based definition for topology hiding com-
putation in the UC framework. Generally, in the UC model, the communication
between all parties passes through the environment, so it seems the environment
implicitly knows the structure of the underlying communication network. We get
around this by working in the Fgraph−hybrid model. The Fgraph functionality
(shown in Figure 1) takes as input the network graph from a special “graph
party” Pgraph and returns to each other party a description of their neighbors.
It then handles communication between parties, acting as an “ideal channel”
functionality allowing neighbors to communicate with each other without this
communication going through the environment.

In a real-world implementation, Fgraph models the actual communication
network; i.e., whenever a protocol specifies a party should send a message to one
of its neighbors using Fgraph, this corresponds to the real-world party directly
sending the message over the underlying communication network.

Since Fgraph provides local information about the graph to all corrupted
parties, any ideal-world adversary must have access to this information as well

Participants/Notation:
This functionality involves all the parties P1, . . . , Pm and a special graph
party Pgraph.

Initialization Phase:
Inputs: Fgraph waits to receive the graph G = (V,E) from Pgraph.
Outputs: Fgraph outputs NG[v] to each Pv.

Communication Phase:
Inputs: Fgraph receives from a party Pv a destination/data pair (w,m)
where w ∈ N(v) and m is the message Pv wants to send to Pw.
Output: Fgraph gives output (v,m) to Pw indicating that Pv sent the
message m to Pv.

Fig. 1. The functionality Fgraph.

(regardless of the functionality we are attempting to implement). To capture
this, we define the functionality FgraphInfo, that is identical to Fgraph but contains
only the initialization phase. For any functionality F , we define a “composed”
functionality (FgraphInfo||F) that adds the initialization phase of Fgraph to F .
We can now define topology-hiding MPC in the UC framework:

Definition 1. We say that a protocol Π securely realizes a functionality F hid-
ing topology if it UC-realizes (FgraphInfo||F) in the Fgraph-hybrid model.

Note that this definition can also capture protocols that realize functionalities
depending on the graph (e.g., find a shortest path between two nodes with the
same input, or count the number of triangles in the graph).

3.2 Topology Hiding - The Indistinguishability-based Security
Definition

In this section, we propose another definition for topology-hiding security that
is not restricted to secure multi-party computation. The definition is formalized
using a security game between an adversary A and a challenger C. In addition,
we prove that this definition is implied by the simulation-based definition from
subsection 3.1. The basic structure of the game fits several types of adversarial
behaviors, e.g., semi-honest, fail-stop, and malicious, thus, we do not emphasize
the exact behavior of the adversary during the execution of the protocol.

– Setup: Let G be a set of graphs. Let Π be a protocol capable of running over
any of the communication graphs in G according to the adversarial model of
A (semi-honest, fail-stop, or malicious). Each Pi gets an input xi ∈ Xi.

– A chooses a corrupt subset S, inputs xj for the corrupted parties Pj ∈ S
and, for i ∈ {0, 1}, two graphs Gi = (Vi, Ei) ∈ G, such that S ⊂ V0 ∩ V1
and NG0

[S] = NG1
[S] (equality of graphs). It outputs

(
S;G0, G1; {xj}

)
. If

S 6⊂ V0 ∩ V1 or if some input xj is invalid C wins automatically.

– Now C chooses a random b ∈ {0, 1} and runs Π in the communication graph
Gb, where each honest Pi gets xi and each dishonest party gets the input
prescribed by A. A receives the collective view of all parties in S during the
protocol execution. 3

– Finally A must output b′ ∈ {0, 1}. If b′ = b we say that A wins the security
game. Otherwise A loses.

Definition 2. We say that an MPC protocol Π is Indistinguishable under Cho-
sen Topology Attack (IND-CTA secure) over G if for any PPT adversary A there
exists negligible function µ(·), such that for every n it holds∣∣∣∣Pr

(
A wins

)
− 1

2

∣∣∣∣ ≤ µ(n).

We prove below that IND-CTA security is weaker than security with respect
to the simulation-based security definition (Definition 1); thus, our impossibility
results (in subsection 5.1) imply impossibility of the simulation based definition
as well.

Claim. For every functionality F that does not depend on the communication
graph structure, if Π securely realizes F with topology-hiding security (under
Definition 1) then Π is IND-CTA secure.

Proof (Proof Sketch). Let Π be a topology-hiding secure-computation protocol
with respect to Definition 1 and let G0 and G1 be two graphs. We consider two
specific executions of Π on network topologies G0 and G1 with corrupt parties
given the same inputs. We define random variables (HYBRIDG0 , IDEALG0) and
(HYBRIDG1 , IDEALG1) as usual. We observe that IDEALG0 are IDEALG1 are
identically distributed, as in both cases the adversary gets the same final output,
in addition to the same set of local closed neighborhoods. It follows that if
Π realizes F with topology hiding security then HYBRIDG0

and HYBRIDG1

are indistinguishable. It follows that A cannot win the IND-CTA game with
probability that is noticeably better than 1/2. So Π meets also the IND-CTA
security definition.

4 Topology Hiding MPC Against a Semi-Honest
Adversary

In this section we describe a protocol for topology-hiding MPC against a semi-
honest adversary. This construction is the heart of the main positive result in
the paper:

3 In the semi-honest model, the joint view of the corrupted parties is given to A by the
end of the execution of Pi, while in the active models such as fail-stop and malicious,
A sends instructions during the execution of Π and can deviate from the prescribed
protocol.

Theorem 4. Let d be a bound on the degree of any vertex in G. Then for every
k satisfying dk = poly(n), there exists a protocol Π that securely realizes the
broadcast functionality hiding topology against a semi-honest adversary A that
does not corrupt all parties in any closed k−neighborhood of G.

Note that this gives us security against a general semi-honest adversary when the
graph has constant degree and a logarithmic bound on the diameter (by setting k
to be anything larger than the graph diameter). We point out that many natural
families of graphs are of this sort, including binary trees, hypercubes, expanders
and more. Theorem 1 follows from theorem 4 by standard methods for compiling
broadcast into MPC.

4.1 High-Level Protocol Overview of Our Basic Protocol

Below we give a top-down description of our basic broadcast protocol: one that
is secure against adversaries that do not corrupt any complete 1-neighborhood in
the graph (i.e., in every star there is at least one honest node). This basic protocol
can then be used to construct a broadcast protocol that tolerates larger corrupt
neighborhoods (more details of this transformation appear in section 4.6).

A Näıve Broadcast Protocol To understand the motivation for the construc-
tion, first consider a näıve broadcast protocol for a single bit:

1. In the first round, the broadcaster sends the broadcast bit b to all of its
neighbors. Every other party sends 0 to all of their neighbors.

2. In each successive round, every party computes the OR of all bits received
from their neighbors in the previous round, and sends this bit to all neigh-
bors.

After j rounds, every party at distance j or less from the broadcaster will
be sending the bit b (this can be easily shown by induction); after diam(G)
rounds all parties will agree on the bit b. This protocol realizes the broadcast
functionality, but it is not topology-hiding: a party can tell how far it is from the
broadcaster by counting the number of rounds until it receives a non-zero bit
(assume b = 1 for this attack). It can also tell in which direction the broadcaster
lies by noting which neighbor first sent a non-zero bit.

Using Local MPC to Hide Topology Our construction hides the sensitive
information by secret-sharing it among the nodes in a local neighborhood. Es-
sentially, our basic protocol replaces each node in the näıve protocol above with
a secure computation between the node and all of its direct neighbors in the
graph.

In order to communicate a bit between one local neighborhood and another,
without revealing the bit to the vertex connecting the two neighborhoods, each
local neighborhood generates a public/private key pair, for which the private
key is secret-shared between the parties in the neighborhood. The input to each

local MPC includes the private key shares. The output to each party is encrypted
under the public key of the neighborhood represented by that party (i.e., of which
the party is the center node).

Since no local neighborhood is entirely corrupted, the adversary does not
learn any of the plaintext bits. In the final round (at which point the broadcast
bit has “percolated” to all the neighborhoods in the graph). a secure computation
is used to decrypt the bits and output the plaintext to all the parties.

The protocol is formally specified as two separate functionalities, each instan-
tiated using a local secure computation: the KeyGen functionality (LKeyGen),
handles the generation and distribution of the public/private key-pair shares in
each local neighborhood, and the “broadcast-helper” functionality (Lbc-helper),
handles the encryption/decryption and ORing of the bits. The details of the
construction are in section 4.4.

Implementing Local MPC To implement LKeyGen and Lbc-helper, the basic
protocol uses a general MPC functionality, LMPC, that allows the local neighbor-
hoods to perform secure computation protocols (i.e., among parties connected
in a star graph). Realizing LMPC ammounts to constructing a compiler which
transforms a standard MPC protocol which runs on a complete graph into one
which runs on a star graph. We achieve this by having players in the star who are
not connected pass messages to each other through the center. The messages are
encrypted to ensure privacy. One subtle point is that the protocol must not leak
how many players are in the local neighborhood, as parties are not supposed to
learn the degrees of their neighbors. We sidestep this issue by having the center
node “invent” fake nodes so that parties learn only that the degree is at most
d, some public upper bound on the degree of any node in G. The functionality
LMPC is shown in Figure 2.

4.2 Formal Protocol Construction and Proofs of Security

Below, we give the formal protocol definitions and sketch their proofs of security
in the UC framework.

Notation The protocols and functionalities in the remainder of this section
involve parties P1, . . . , Pm and a special graph party Pgraph whose role is always
simply to pass his input, G, to Fgraph. For v ∈ V we let Pv be the player
corresponding to v. Many of these protocols/functionalities begin with a KeyGen
phase which uses a public key encryption scheme (Gen,Enc,Dec). Finally, we
will make repeated use of “local” MPCs which are executed by the parties in a
local neighborhood of G. We will use repeated parallel executions of local MPCs
to realize global functionalities. We reserve the letter L for local functionalities
realized by local MPCs, and use F for global functionalities. For simplicity when
describing a local functionality or local MPC protocol, we will describe only the
singular execution running in N[v] (involving Pv and {Pw}w∈N(v)), even though
the same process is occurring in every closed neighborhood in G simultaneously.

4.3 Realizing LMPC in the Fgraph−hybrid Model

The local MPC functionality LMPC is shown in Figure 2. As we have already
mentioned, it is sufficient to securely realize message passing between all parties
in N[v] in the Fgraph−hybrid model. This is because, once all parties can send
messages to each other, they can simply run their favorite UC secure MPC
protocol as if the network topology is that of a complete graph. Note that as
we are in the semi-honest model here, UC secure MPC does not require setup.
We will use the constant round, protocol of [21], as it is UC secure against
a semi-honest adversary (against general adversaries it is bounded concurrent
secure).

Graph Entry Phase:
Input: LMPC receives the graph G from Pgraph.
Output: LMPC outputs N[v] to Pv.

MPC Phase:
Input: LMPC receives from Pv a d−party protocol Π and input xw from
Pw, for each w ∈ N[v].
Computation: LMPC simulates Π with inputs {xw}w obtaining outputs
{yw}w.
Output: LMPC gives yw to each Pw.

Fig. 2. The functionality LMPC.

For simplicity we describe the protocol allowing Pw to securely send a message
to Pu for w, u ∈ N[v].

1. Pu generates a key pair and sends the public key to Pw through Pv;
2. Pw encrypts its message and sends the ciphertext back to Pu through Pv.

Such a protocol naturally extends to allow all parties in N[v] to exchange mes-
sages with each other (as long as Pv invents enough nodes to ensure that his
neighbors do not learn his degree, but just the preselected bound d). As we men-
tion above, this is sufficient for securely realizing LMPC in the Fgraph−hybrid
model.

Security of LMPC. The proof is very simple so we suffice it to briefly describe S,
and leave checking that it accurately emulates A’s view in the real world to the
reader. Since Π is a UC secure MPC protocol on a complete graph, there exists
a simulator S ′ who can replicate any adversary A’s real-world view in the ideal
world. The only difference between the view S ′ outputs and the view we need to
output is that we must take into account that our messages are encrypted and
passed through Pv. Therefore, S generates key pairs {(pkw,u, skw,u)}w,u∈N[v],
where Pw will use pkw,u to send messages to Pu and computes encryptions of
the messages in the view output by S, and distributes them accordingly to the
players. Security follows from the security of the encryption scheme.

Participants/Notation: This protocol involves players Pv, Pw, Pu, for
w, u ∈ N[v], and allows Pw to send the message msg to Pu. Let
(Gen,Enc,Dec) be a public key encryption scheme.

Input: Pv and Pu use no input, Pw uses input msg.
Protocol for Message Passing:

• Pu chooses a key pair (pk, sk) ← Gen(1n) and sends
(
v; (w,pk)

)
to

Fgraph; Pv receives
(
u; (w,pk)

)
.

• Pv sends
(
w; (u, pk)

)
to Fgraph; Pw receives

(
v; (u,pk)

)
.

• Pw computes encryption y = Encpk(msg) and sends
(
v; (u, y)

)
to

Fgraph; Pv receives
(
w; (u, y)

)
.

• Pv sends
(
u; (w, y)

)
to Fgraph; Pu receives

(
v; (w, y)

)
.

• Pu decrypts and outputs msg = Decsk(y).

Fig. 3. The Fgraph−hybrid protocol Πmsg-transmit.

4.4 The Functionalities LKeyGen and Lbc-helper

The functionality LMPC of the previous section is a general functionality that
compiles an MPC protocol Π on a complete graph into an analogous one which
can be executed by the parties in N[v], without compromising the security of
Π, and also without leaking any information about the topology. We will be
interested in two specific local functionalities, LKeyGen and Lbc-helper. These can
be securely realized in the Fgraph−hybrid model by simply instantiating LMPC

with two specific MPC protocols.

Recall that our underlying idea is to replace the role of Pv in a usual broad-
cast protocol with an MPC to be performed by the parties in Pv’s neighbor-
hood. This will hide each player’s distance from the broadcaster because even
though the bit might have been received by Pv’s neighborhood, it will not be
known to any individual player. Our first functionality, LKeyGen, is useful to-
wards this end. Intuitively, it generates a key pair (pk, sk) for the neighborhood
N[v] and gives pk to Pv and distributes secret shares of the secret key among
Pv’s neighbors. Our second functionality, Lbc-helper will allow the broadcast bit
to spread from neighborhood to neighborhood once the neighborhoods have keys
distributed according to LKeyGen. The functionalities LKeyGen and Lbc-helper are
shown in Figure 4 and Figure 5, respectively. Let LKeyGen(v) and Lbc-helper(v)
denote the copies of LKeyGen and Lbc-helper, respectively, which take place in
N[v]

4.5 Realizing Fbroadcast in LMPC−hybrid model

Our LMPC−hybrid protocol for broadcast, Πbroadcast uses the ideal function-
alities LKeyGen and Lbc-helper described above. As mentioned in the previous
section, these functionalities are obtained from LMPC by instantiating LMPC

with specific MPC protocols. A description of Πbroadcast is given in Figure 11.

Participants/Notation: Let (Gen,Enc ,Dec) be a public key encryption
scheme.

Graph Entry Phase: same as in LMPC

KeyGen Phase:
• LKeyGen generates a key pair (pk, sk)← Gen(1n).
• LKeyGen computes random shares {skw}w∈N[v] such that

⊕
w skw =

sk.
Output: LKeyGen gives outputs

(
pk, skv

)
to Pv, and skw to each Pw such

that w ∈ N[v].

Fig. 4. The functionality LKeyGen.

Participants/Notation: For w ∈ N[v], let pkw be the public key output
to Pw by LKeyGen(w). Let skvw denote Pw’s share of skv (the secret key
corresponding to pkv), given as output by LKeyGen(v).

Graph Entry Phase: same as in LMPC

Main Phase:
Input: Lbc-helper receives inputs:
• αw ∈ {“cipher”, “plain”} from each Pw;
•
(
pkw, skvw

)
from each Pw;

• encryptions {xw}w∈N[v] from Pv, where xw = Encpkv (bw) for a bit
bw ∈ {0, 1}.

The first input αw is a tag which determines whether Lbc-helper outputs
ciphertexts or plaintests. If all parties do not agree on αw, Lbc-helper halts
giving no output.
Computation:
• Lbc-helper reconstructs the secret key skv =

⊕
w∈N[v] skvw;

• Lbc-helper decrypts the bits bw = Decskv (xw);
• Lbc-helper computes b =

∨
w∈N[v] bw.

Output:
• If αw = “cipher” for all w ∈ N[v] then Lbc-helper outputs yw =

Encpkw (b) to each Pw.
• If αw = “plain” for all w ∈ N[v] then Lbc-helper outputs b to each Pw.

Fig. 5. The functionality Lbc-helper.

Note that Πr
broadcast is correct as long r > diam(G), the diameter of the network

graph G. Our statement and proof of security are below.

Claim. The protocolΠr
broadcast UC securely realizes Fbroadcast in the Fgraph−hybrid

model as long as the network topology graph G is such that

1. Diameter(G) < r;
2. A does not corrupt any entire closed neighborhood of G.

Input: Pgraph inputs the graph G, each Pv inputs a bit bv ∈ {0, 1}.
KeyGen: Parties call LKeyGen and each Pv receives N[v] and (pkv, skvv)
from LKeyGen(v) and skvw from LKeyGen(w) for each w ∈ N[v].
Main Computation:
• Each Pv sets x0v,w = Encpkv (bv) for each w ∈ N[v].
• For c = 1, . . . , r − 1, parties call Lbc-helper:
∗ Pv gives input

{
“cipher”;

(
pkv, skvv

)
; {xc−1

v,w }w∈N[v]

}
to

Lbc-helper(v);
∗ For each w ∈ N[v], Pv gives input

{
“cipher”;

(
pkv, skwv

)}
to

Lbc-helper(w);
∗ Pv receives output xcv,w from Lbc-helper(w) for all w ∈ N[v].

• Finally, parties call Lbc-helper:
∗ Pv gives input

{
“plain”;

(
pkv, skvv

)
; {xr−1

v,w }w∈N[v]

}
to

Lbc-helper(v);
∗ For each w ∈ N[v], Pv gives input

{
“plain”;

(
pkv, skwv

)}
to

Lbc-helper(w);
∗ Pv receives the bit b∗v,w as output from Lbc-helper(w).

Output: Pv outputs b∗v =
∨
w b
∗
v,w.

Fig. 6. The (LKeyGen||Lbc-helper)-hybrid protocol Πr
broadcast.

Simulator. Consider a corrupt party Pv. S simulates Pv’s view as follows:

1. KeyGen: S generates (pkv, skv)← Gen(1n). When the parties call LKeyGen,
S returns pkv to Pv and random strings rwv to each Pw such that w ∈ N[v],
instead of shares of Pw’s secret key.

2. Main Computation: As output to each of the first r−1 calls to Lbc-helper,
S gives output {xcv,w}w,c to Pv, where xcv,w = Encpkv (0n) to Pv. To compute
the output of the last call of Lbc-helper, S inputs bv and all other corrupt
parties’ input bits to Fbroadcast receiving b∗ which it returns to Pv.

Hybrid Argument.

H0 − This is the real execution of Πr
broadcast. Namely, each environment first runs

LKeyGen, after which each Pv has key data
(
pkv, {skwv }w∈N[v]

)
. Then parties

enter the loop, running Lbc-helper r times. Initially, parties enter their se-
cret bit and the key data received from LKeyGen. In each subsequent call to
Lbc-helper, the output from the previous call is also given as input. Finally,
Pv receives many copies of the same bit b∗v as output from the last call to
Lbc-helper, and Pv outputs this bit. The view of Pv therefore consists of the
following:

1. input bv ∈ {0, 1}, output b∗v ∈ {0, 1};
2. key data

(
pkv, {(skwv)}w∈N[v]

)
;

3. encryptions
{
xcv,w

}c=0,...,r−1
w∈N[v]

.

Let B ⊂ V be the set of bad parties corrupted by A. The view of the
adversary is {(

bv, b
∗
v; pkv,

{
skwv

}
w∈N[v]

;
{
xcv,w

}
w,c

)}
v∈B

.

H1 − This is the same as the above experiment except the secret key shares are
replaced by random strings. The resulting view is{(

bv, b
∗
v; pkv, {rwv }w; {xcv,w}w,c

)}
v∈B

.

As the secret key skv is secret shared among N[v] using a
∣∣N[v]

∣∣−out−of−
∣∣N[v]

∣∣
secret sharing scheme, and A does not corrupt all of N[v], we have that
H1 ≈ H0.

H2 − This is identical to H1 except that all of the encryptions xcv,w are changed
to encryptions of 0. The resulting view is exactly the view of the ideal world
adversary, and is indistinguishable from the view in H1 by semantic security
of the encryption scheme.

4.6 Allowing for Corruption of Whole Neighborhoods

Our protocol Πr
broadcast from the previous section successfully realizes the broad-

cast functionality while hiding the topology of the graph so long as A does not
corrupt any entire neighborhood of G. If A were to corrupt N[v] for some v, our
protocol immediately becomes insecure, as A would possess all of the shares of
skv and so could simply decrypt all of the encrypted bits Pv receives and learn
when the broadcast bit reaches Pv. In this section, we show how, given a protocol
Π that is secure as long as A does not corrupt all parties in a k−neighborhood,
one can construct another protocol Π ′ for the same functionality as Π, but is
secure as long as A does not corrupt an entire (k+1)−neighborhood. The round
complexity of Π ′ will be a constant times the round complexity of Π and so one
can only repeat this process logarithmically many times.

The main ideas of this section are essentially the same as those in the previous
section; showing that the technique of using local MPC to hide information
as it spreads to all parties in the graph is quite general. Like Πbroadcast, our
protocol Π ′ will be given in the LMPC−hybrid model, where we will use the
ideal functionality LKeyGen. However, instead of using Lbc-helper, we will use a

similar but different local functionality, LΠ , shown in Figure 7. Essentially, LΠ
allows the role of Pv in Π to be computed using a local MPC by all of the parties
in N[v]. Then the protocol Π ′ uses LΠ to execute Π except that each party’s
role in Π is computed using local MPC by its local neighborhood in Π ′. This
ensures that if Π is such that any adversary wishing to attack Π must corrupt an
entire k−neighborhood, then any adversary wishing to attack Π ′ must corrupt
an entire (k + 1)−neighborhood.

Participants/Notation: For w ∈ N[v], let pkw be the public key output
to Pw by LKeyGen(w). Let skvw denote Pw’s share of skv (the secret key
corresponding to pkv), given as output by LKeyGen(v).

Graph Entry Phase: same as in LMPC

Main Phase:
Input: LΠ receives inputs:
• a round number cw ∈ {1, . . . , r} from each w ∈ N[v];
•
(
pkw, skvw

)
from each Pw such that w ∈ N[v];

• an encrypted transcript so far T̂ c−1
v =

(
xv, σv; {ŷ`v,w}`≤c−1

w

)
from

Pv, where xv and σv are Pv’s input and randomness and ŷ`v,w =
Encpkv (y`v,w) is an encryption of the message Pw sent to Pv in the
`−th round of Π.

If all parties don’t agree on the round number, LΠ halts giving no output.
Computation:
• LΠ reconstructs the secret key skv =

⊕
w∈N[v] skvw;

• LΠ decrypts y`v,w = Decskv (ŷ`v,w) for all w ∈ N[v] and ` ≤ c− 1;
• LΠ computes the next message function of Π,

FΠv,c

(
xv, σv, {y`v,w}w,`

)
=

{
{ycw,v}w, c ≤ r − 1

zv, c = r

Output:
• If c ≤ r− 1 then each Pw with w ∈ N[v] receives ŷcw,v = Encpkw (ycw,v)

from LΠ .
• If c = r then LΠ outputs zv to Pv.

Fig. 7. The functionality LΠ .

Our hybrid protocol Π ′ is described in Figure 8. Our statement and con-
struction of simulator are below. We leave out the hybrid argument as it is very
similar to the one in subsection 4.5

Claim. The protocol Π ′ realizes the same functionality as Π. Moreover if Π
realizes the functionality UC securely in the Fgraph−hybrid model as long as
A does not corrupt an entire k−neighborhood of G, then Π ′ is UC secure
in the Fgraph−hybrid model as long as A does not corrupt an entire (k +
1)−neighborhood of G.

Input: Pgraph inputs the graph G, each Pv inputs xv, their input to Π.
KeyGen: Parties call LKeyGen and each Pv receives N[v] and(
pkv, {skwv }w∈N[v]

)
.

Main Computation:
• Pv initializes T̂ 0

v to (xv, σv; ∅).
• For c = 1, . . . , r, parties call LΠ :
∗ Pv gives input

{
c;
(
pkv, skvv

)
; T̂ c−1

v

}
to Lbc-helper(v);

∗ For each w ∈ N[v], Pv gives input
{
c;
(
pkv, skwv

)}
to

Lbc-helper(w);
∗ Pv receives output ŷcv,w from Lbc-helper(w) for all w ∈ N[v].

∗ If c ≤ r − 1, Pv updates T̂ cv to include the messages {ŷcv,w}j he
just received.

Output: When c = r, Pv receives zv from LΠ(v), which it outputs.

Fig. 8. The (LKeyGen||LΠ)-hybrid protocol Π ′.

Simulator. We construct a simulator S ′ which will make use of the simulator S
for Π. Consider a corrupt party Pv. S ′ simulates Pv’s view as follows:

1. KeyGen: S ′ generates (pkv, skv)← Gen(1n) and random shares {skvw}w∈N[v]

such that
⊕

w skvw = skv. When the parties call LKeyGen, S ′ returns (pkv, skvv)
to Pv and skvw to Pw.

2. Main Computation: In order to simulate Pv’s view we consider two cases:
Case 1−(Pv has at least one honest neighbor): In this case S ′ simulates Pv’s

view by replacing all the messages Pv would receive with encryptions of
0n.

Case 2−(all of N[v] is corrupt): In this case A can reconstruct skv and so
will be able to distinguish if S ′ sends encryptions of zero. However, A
does not corrupt an entire (k+ 1)−neighborhood of G which means the
set {v ∈ V : N[v] is corrupt} does not contain any k−neighborhood.
Moreover, since each neighborhood in Π ′ plays the role of a player in
Π, we can simulate the view of such Pv using the simulator S for Π.
Specifically, S ′ internally runs S in order to simulate Pv’s view in Π,
and encrypts with pkv to obtain Pv’s view in Π ′.

5 Topology Hiding MPC Against a Fail-Stop Adversary

In this section we consider a stronger adversarial model: the fail-stop adversary. A
party controlled by a fail-stop adversary must follow the honest protocol exactly,
except that they may abort if the adversary instructs them to.

We have two main results in this section. In section 5.1 we give a general
impossibility result, showing that any protocol that implements even a weak
version of the broadcast functionality is not IND-CTA secure against fail-stop
adversaries. Our proof crucially relies on the ability of the adversary to discon-
nect the communication graph by aborting with well-placed corrupt parties. In

Section 5.2 we show that this is inherent by transforming our broadcast protocol
from the previous section into one which is secure against a fail-stop adversary
who does not disconnect the graph with his aborts, and who does not corrupt
(even semi-honestly) any k−neighborhood. We give a high level overview of our
techniques of this section before proceeding to the details.

In section 5.1 we consider a protocol Π realizing the broadcast functionality
being executed on a line. The proof of the impossibility result is based on two
simple observations. First, if some party aborts early in the protocol then honest
parties’ outputs cannot depend on b. Clearly, if P ∗ aborts before the information
about b has reached him, then no information about b will reach the honest
parties on the other side of P ∗. This means that the outputs of all honest parties
must be independent of b, otherwise an adversary would be able to corrupt
another party Pdet to act as a detective. Namely, A will instruct Pdet to play
honestly and based on Pdet’s output, A will be able to guess which side of P ∗ Pdet

is on. Second, if P ∗ aborts near the end of the protocol then all parties (other
than P ∗’s neighbors) must ignore this abort and output what they would have
output had nobody aborted. Indeed, if P ∗ aborts with only k rounds remaining in
the protocol, then there simply isn’t time for honest parties of distance greater
than k from P ∗ to learn of this abort. Therefore, all honest parties’ outputs
must be independent of the fact that P ∗ aborted, lest an A would be able to
employ Pdet to detect whether is within distance k of P ∗ or not. This difference
in honest parties’ outputs when P ∗ aborts early versus late means there is a
round i∗ such that the output distribution of Pdet when P ∗ aborts in round
i∗ is distinguishable from Pdet’s output distribution when P ∗ aborts in round
i∗ + 1. We take advantage of this by having two aborters P ∗1 and P ∗2 who abort
in rounds i∗ and i∗ + 1. We prove that A will be able to distinguish the cases
from when Pdet is to the left of P ∗1 with the case when he is to the right of P ∗2
allowing A to win the IND-CTA game with non-negligible advantage.

In Section 5.2 we modify our broadcast protocol of section 4 to be secure against
a fail-stop adversary who does not disconnect the graph with his aborts. The idea
is to run the semi-honest protocol 2m−1 times. Since the adversary can corrupt
and abort with at most m−1 parties we are guaranteed that the majority of the
executions have no aborts. We ensure that A learns nothing from the outputs of
the executions with aborts by holding off on giving any output until all 2m− 1
executions have occurred. Then we use a final local MPC protocol to compute
all outputs, select the majority and output this to all parties.

5.1 Impossibility Result

Definition 3. We say that a protocol Π weakly realizes the broadcast function-
ality if Π is such that when all parties execute the protocol honestly, all parties
output

∨
xi where xi is Pi’s input.

Note that in weak broadcast, there are no guarantees on the behavior of honest
parties if any of the parties deviates from the honest protocol.

Theorem 5. There does not exist an IND-CTA secure protocol Π that weakly
realizes the broadcast functionality in the fail-stop model.

Let G be a line with m vertices. Namely, G = (V,E) with V = {P1, . . . , Pm}
and E = {(Pi, Pi+1)}i=1,...,m−1. Let Π be a protocol executed on G that weakly
realizes the broadcast functionality where P1 (the left most node) is the broad-
caster (P1 has input b, and the inputs to all other nodes is 0). Suppose Π has r
rounds. We will show that Π cannot be IND-CTA secure.

Claim. Let Hv,b be the event that Pv’s output after executing Π matches the
broadcast bit b. Let Ei be the event that the first abort occurs in round i. Then
either Π is not IND-CTA secure, or there exists a bit b ∈ {0, 1} such that∣∣∣Pr

(
Hv,b

∣∣Er−1)− Pr
(
Hv,b

∣∣E1

)∣∣∣ ≥ 1

2
− negl(n)

for all honest Pv whose neighbors do not abort.

Proof. If some P ∗ aborts during the first round of Π then he disconnects the
graph, making it impossible for the parties separated from P1 to learn about b.
These parties’ outputs therefore must be independent of b, which implies that
there exists a b ∈ {0, 1} such that Pr

(
Hb

∣∣E1

)
≤ 1

2 . If Π is to be IND-CTA secure
then it must be that this inequality holds (with possibly a negligible error) for all
honest parties. Otherwise an adversary could use the correlation between b and
a party’s output to deduce that this party is in the same connected component
as P1.

Formally, consider a fail-stop adversary A who corrupts three parties: the broad-
caster P1, aborter P ∗ = Pbm2 c and detective Pdet. A then submits (G0, G1, S), to
the challenger where G0 = G and G1 is constructed from G by exchanging the
labels of the nodes (P3, P4, P5) with (Pm−2, Pm−1, Pm). That is, in G1, the nodes
P3, P4, P5 appear at the end of the line. We call Pdet = P4 the “detective” node.
The set S consists of the nodes P1, P

∗ and Pdet. Note that A’s neighborhoods
are the same in G0 and G1 (for m ≥ 12).
A instructs P ∗ to abort during the first round and observes Pdet’s output.

Since Pm−1’s output must be independent of b, if P4’s output depends in a
non-negligible way on b, this will translate into an advantage for A in the CTA
game.

Finally, note that Pr
(
Hv,b

∣∣Er−1) = Pr
(
Hv,b

∣∣ no aborts
)

= 1 for all Pv which are
not neighbors of P ∗. The claim follows.

Proof (Proof of Theorem 5).
It follows from Claim 5.1 that there exists a pair (i∗, b) ∈ {1, . . . , r} × {0, 1}

such that ∣∣∣Pr
(
Hv,b

∣∣Ei∗)− Pr
(
Hv,b

∣∣Ei∗+1

)∣∣∣ ≥ 1

2r
− negl(n). (1)

for all honest Pv who do not have an aborting neighbor. Furthermore, assume
without loss of generality that Pr

(
Hv,b

∣∣Ei∗) > Pr
(
Hv,b

∣∣Ei∗+1

)
. We construct

a fail-stop adversary A who can leverage this fact to win the CTA game with
non-negligible advantage.

Our adversaryA corrupts four parties: the broadcaster P1, two aborters
(
P ∗L , P

∗
R

)
=(

Pbm2 c−1, Pb
m
2 c+1

)
, and the detective Pdet. A then submits (G0, G1, S) to the

challenger where G0 = G, G1 is constructed from G by exchanging (P3, P4, P5)
with (Pm−2, Pm−1, Pm) and S = {P1, P

∗
L , P

∗
R, Pdet = P4}. These graphs are shown

in Figure 9. Note that these adversary structures have identical neighborhoods
for m ≥ 14.

NowA guesses (i∗, b) ∈ {1, . . . , r}×{0, 1}. With non-negligible probability, (i∗, b)
is such that inequality (1) is satisfied. A gives b as input to P1 and instructs P ∗L
to abort on round i∗, P ∗R to abort on round i∗ + 1. Notice that since the two
aborting parties are at distance 2 from each other, the information about P ∗L ’s
abort does not reach P ∗R by the time he aborts one round later. Therefore, the
information about P ∗L ’s abort does not reach any of the parties to the right of
P ∗R at any point during the protocol. This means that if G0 was chosen by the
challenger, Pdet’s output will be consistent with Ei∗ whereas if G1 was chosen,
Pdet’s output will be consistent with Ei∗+1. A concludes by comparing Pdet’s
output bit to the broadcast bit b. If they are equal, A sends 0 to the challenger,
otherwise he sends 1. The noticeable difference in output distributions ensured
by i∗ translates to a noticeable advantage for A.

P1 Pdet,0 P ∗L P ∗R Pdet,1

G0 : ∗ ∗ ∗ • ∗ •

G1 : ∗ • ∗ • ∗ ∗

Fig. 9. Graphs used by A in proof of theorem 5.

5.2 Feasibility Result

In this section we show how to modify the broadcast protocol from section 4
which is secure against a semi-honest adversary who doesn’t corrupt any k−neighborhood
into one which is secure against a fail stop adversary, who doesn’t corrupt a
k−neighborhood and whose aborts don’t disconnect the graph. For simplicity
in describing the protocol we take k to be 1, and point out what would have
to be changed to accomodate k = O(log n). Our protocol, Πfstop-bcast, is shown

in Figure 11, it makes use of another local functionality Lmaj shown in Figure 12.
Πfstop-bcast realizes the fail-stop broadcast functionality shown in Figure 10

The main idea of our protocol is to run the semihonest protocol many times,
ensuring that the majority of the executions contain no aborts. The correctness of
the semi-honest protocol guarantees that these executions with no aborts result
in correct output. However, to prevent parties from learning which executions
contain an abort, we change our protocol so that the outputs of the individual
executions are given to the parties in encrypted form, and only after all of them
have been completed, N[v] runs a local MPC realizing Lmaj to compute the
majority of the outputs it has received. This ensures that all parties will receive
the correct output.

We comment that an adversary who aborts during the final majority MPC
will stop each local neighborhood he is a part of from being able to reconstruct
the output. However, since A knows which parties he is connected to, forcing
them to output ⊥ does not tell him anything about the graph. If a corrupt party
aborts during the main part of the protocol then he ruins the local MPCs running
in all closed neighborhoods to which he belongs, but does not affect anything
else. Neighbors of the aborting party will get an output of ⊥ for the current
run of the semi-honest protocol, but now that this corrupt party has aborted he
cannot ruin any other repititions. The majority at the end will ensure that this
abort does not upset the output of Πfstop-bcast.

Finally, we comment that if the local MPC run at the end to compute the
majority is executed by the parties in N[v], then the resulting protocol will only
be secure if A does not corrupt any closed neighborhood in G. However, we
can compile a protocol which is secure against a semi-honest A who does not
corrupt all parties in a k−neighborhood of G into one that is secure against a
fail-stop A simply by having the last MPC be computed by all the parties in the
k−neighborhood of v. This involves implementing a message passing protocol
between all parties in the k−neighborhood of v which may be done similarly to
Πmsg-transmit.

Input: Fbc-failstop receives inputs:
• the graph G from Pgraph;
• a bit bv ∈ {0, 1} from each Pv;
• a value αv ∈ {complete, abort early, abort late} from each corrupt Pv.

Output: Fbc-failstop gives outputs:
• ⊥ to all adversarial Pv such that αv ∈ {abort early, abort late};
• ⊥ to all honest Pv who are adjacent to an adversarial Pw such that
αw = abort late;

•
∨
v bv to all other parties.

Fig. 10. The fail-stop broadcast functionality Fbc-failstop.

Input: Pgraph inputs the graph G, each Pv inputs a bit bv ∈ {0, 1}.
KeyGen: Parties call LKeyGen and each Pv receives N[v],

(
pkv, skvv

)
from

LKeyGen(v) and skwv from LKeyGen(w) for all w ∈ N[v]. If a party aborts
during this phase then start again, ignoring that party for the remainder
of the protocol.
Main Computation For j = 1, . . . , 2m− 1 do:
• Each Pv sets x̂0v,w = Encpkv (bv) for each w ∈ N[v].
• For i = 1, . . . , r, parties call Lbc-helper:

∗ Pv gives input
{

“cipher”;
(
pkv, {skwv }w

)
; {x̂i−1

v,w}w
}

;

∗ Pv receives output {x̂iv,w}w.
• Pv picks w ∈ N[v] randomly and sets ŷjv = x̂rv,w.
• If a party aborts during this computation all of his neighbors set
ŷjv = Encpkv (⊥) and ignore the aborting party for the remainder of
the protocol.

Output:
• Parties call Lmaj:

∗ Pv gives input
{(

pkv, {skwv }w
)
; {ŷjv}j

}
;

∗ Pv receives output b∗v
• Each Pv outputs b∗v.

Fig. 11. The protocol Πfstop-bcast (in the LMPC−hybrid model).

Graph Entry Phase: same as in LMPC

Main Phase:
Input: Lmaj receives inputs:
•
(
pkv, {skwv }w∈N[v]

)
− the data Pv receives from Lmaj

• {ŷ1v, . . . , ŷ2m−1
j } − encryptions ŷjv = Encpkv (bjv) of values bjv ∈ {0, 1}∪

{⊥}
from each Pv.
Computation:
• Lmaj reconstructs the secret key skv =

⊕
w∈N[v] skvw for each v ∈ V .

• For each v ∈ V , Lmaj decrypts the bits bjv = Decskv (ŷjv) for j =
1, . . . , 2m− 1.

• Lmaj computes bv = MAJj(b
j
v), where MAJ is the majority function.

Output: Lmaj gives Pv the output bv.

Fig. 12. The functionality Lmaj.

6 Discussion and Open Questions

Malicious Model. The most basic question we leave open in this work is the
situation in the malicious model. Clearly, our impossibility results for the fail-
stop model also apply here. Our positive results do not carry over, however. This
is because a malicious adversary can “pretend” to be connected to an entire
graph; in this fake graph, the adversary can corrupt any size neighborhood,
violating our security assumptions.

General Graphs in the Semi-Honest Model. A second natural question that arises
from this work is whether the restriction to graphs of logarithmic diameter is
a necessary one, even in the semi-honest model. Does there exist a protocol for
topology-hiding secure computation in arbitrary graphs?

Hiding the Identities of Neighbors. Another open problem we leave is whether
topology-hiding security can be realized while hiding from Pv the identities of
his neighbors. This would involve changing the Fgraph functionality to give as
output a local identity for each of the parties in Pv’s neighborhood, and this
identity would differ in other closed neighborhoods. One interesting application
would be that adversaries in the same local neighborhood would not learn that
they are distance 2 from each other. Even our semi-honest protocol revealed this
information as parties at distance 2 had to communicate in local MPCs.

References

1. http://www.its.dot.gov/research/v2v.htm.
2. http://www.nytimes.com/2010/05/12/nyregion/12about.html.
3. D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols

(extended abstract). In STOC, pages 503–513. ACM, 1990.
4. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-

cryptographic fault-tolerant distributed computation (extended abstract). In
STOC, pages 1–10. ACM, 1988.

5. E. Boyle, S. Goldwasser, and S. Tessaro. Communication locality in secure multi-
party computation - how to run sublinear algorithms in a distributed setting. In
TCC, pages 356–376, 2013.

6. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067, 2000. http://eprint.

iacr.org/2000/067.
7. R. Canetti. Universally composable security: A new paradigm for cryptographic

protocols. In FOCS, pages 136–145. IEEE Computer Society, 2001.
8. R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-

party and multi-party secure computation. Cryptology ePrint Archive, Report
2002/140, 2002. http://eprint.iacr.org/2002/140.

9. N. Chandran, J. A. Garay, and R. Ostrovsky. Edge fault tolerance on sparse
networks. In A. Czumaj, K. Mehlhorn, A. M. Pitts, and R. Wattenhofer, editors,
ICALP (2), volume 7392 of Lecture Notes in Computer Science, pages 452–463.
Springer, 2012.

http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2002/140

10. D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM, 24(2):84–88, 1981.

11. I. Damg̊ard, Y. Ishai, and M. Krøigaard. Perfectly secure multiparty computa-
tion and the computational overhead of cryptography. In H. Gilbert, editor, EU-
ROCRYPT, volume 6110 of Lecture Notes in Computer Science, pages 445–465.
Springer, 2010.

12. I. Damg̊ard and J. B. Nielsen. Scalable and unconditionally secure multiparty
computation. In A. Menezes, editor, CRYPTO, volume 4622 of Lecture Notes in
Computer Science, pages 572–590. Springer, 2007.

13. D. Dolev. The byzantine generals strike again. J. Algorithms, 3(1):14–30, 1982.
14. C. Dwork, D. Peleg, N. Pippenger, and E. Upfal. Fault tolerance in networks of

bounded degree. SIAM J. Comput., 17(5):975–988, 1988.
15. M. K. Franklin and M. Yung. Communication complexity of secure computation

(extended abstract). In STOC, pages 699–710. ACM, 1992.
16. J. Garay and R. Ostrovsky. Almost-everywhere secure computation. In N. P.

Smart, editor, EUROCRYPT, volume 4965 of Lecture Notes in Computer Science,
pages 307–323. Springer, 2008.

17. O. Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cam-
bridge University Press, New York, NY, USA, 2004.

18. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a
completeness theorem for protocols with honest majority. In STOC, pages 218–229.
ACM, 1987.

19. M. Hinkelmann and A. Jakoby. Communications in unknown networks: Preserving
the secret of topology. Theor. Comput. Sci., 384(2-3):184–200, 2007.

20. R. Pass. Bounded-concurrent secure multi-party computation with a dishonest
majority. In L. Babai, editor, STOC, pages 232–241. ACM, 2004.

21. R. Pass. Bounded-Concurrent Secure Multi-Party Computation with a Dishon-
est Majority. In Proceedings of the 36th Annual ACM Symposium on Theory of
Computing, STOC ’04, pages 232–241, 2004.

22. R. Pass and A. Rosen. Bounded-concurrent secure two-party computation in a
constant number of rounds. In FOCS, pages 404–413. IEEE Computer Society,
2003.

23. T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In STOC, pages 73–85. ACM, 1989.

24. M. G. Reed, P. F. Syverson, and D. M. Goldschlag. Anonymous connections and
onion routing. IEEE Journal on Selected Areas in Communications, 16(4):482–494,
1998.

25. M. K. Reiter and A. D. Rubin. Anonymous web transactions with crowds. Com-
mun. ACM, 42(2):32–38, 1999.

26. A. C.-C. Yao. Protocols for secure computations (extended abstract). In FOCS,
pages 160–164. IEEE, 1982.

	Topology-Hiding Computation

