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Abstract. A fundamental result in secure multiparty computation (MPC)
is that in order to achieve full security, it is necessary that a majority
of the parties behave honestly. There are settings, however, where the
condition of an honest majority might be overly restrictive, and there
is a need to define and investigate other plausible adversarial models in
order to circumvent the above impossibility.
To this end, we introduce the two-tier model for MPC, where some
small subset of servers is guaranteed to be honest at the beginning of
the computation (the first tier), while the corruption state of the other
servers (the second tier) is unknown. The two-tier model naturally arises
in various settings, such as for example when a service provider wishes to
utilize a large pre-existing set of servers, while being able to trust only a
small fraction of them.
The first tier is responsible for performing the secure computation while
the second tier serves as a disguise: using novel anonymization techniques,
servers in the first tier remain undetected to an adaptive adversary,
preventing a targeted attack on these critical servers. Specifically, given
n servers and assuming αn of them are corrupt at the onset (where
α ∈ (0, 1)), we present an MPC protocol that can withstand an optimal
amount of less than (1−α)n/2 additional adaptive corruptions, provided
the first tier is of size ω(logn). This allows us to perform MPC in a fully
secure manner even when the total number of corruptions exceeds n/2
across both tiers, thus evading the honest majority requirement.

1 Introduction

A technically interesting and practically relevant configuration for performing
secure multiparty computation (MPC) [GMW87] is the commodity-based client-
server approach, in which the vast part of the computation is delegated from
one or more clients to one or more servers [Bea97]. Indeed, these settings have
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plenty of practical value, as demonstrated for example by the implementation
and deployment of an auction system in the Danish sugar-beet market [BCD+09],
and, more generally, in the emerging secure cloud computing paradigm.

Security in MPC is commonly formulated via the following properties: privacy
(parties learn only what they should learn); correctness (the honest parties’ outputs
are correct, despite the disruptive behavior of the corrupt parties); independence
of inputs (parties’ inputs are independent of other parties’); fairness (either all
parties get their output, or none does); and guaranteed output delivery (all honest
parties are guaranteed to obtain their outputs). Note that guaranteed output
delivery also implies fairness. Achieving all these properties is called full security.
A fundamental result in MPC with actively malicious participants is that in
order to be able to compute any function with full security in the computational
setting, an honest majority of the parties is necessary (and sufficient) [Cle86,
GMW87, CFGN96].

Indeed, when half or more of the parties are corrupted, fairness might be
compromised and guaranteed output delivery cannot be achieved [Cle86]. There
are settings, however, where the honest majority requirement might be too
costly or unattainable in practice (e.g., the resource-constrained service provider
scenario elaborated on below). Thus, it is important to investigate models where
it is possible to carry out any computation and obtain full security, even if the
number of malicious participants is potentially higher than the number of honest
parties. Clearly, in order to circumvent the above impossibility, the model in use
must be relaxed.1

In this paper we put forth a new model for performing client-server-based
MPC which we call the two-tier model for MPC. In this model, m servers are
guaranteed to be properly functioning at the onset of the computation (such
servers are identified by the set P1), while the remaining n − m servers (the
set P2) are of dubious trustworthiness. In addition, it is assumed that m� n.
We call P1 the first-tier servers and P2 the second-tier servers. The objective is
to run MPC withstanding a number of corruptions greater than the majority of
the overall number of servers—in particular greater than n/2. We stress that the
adversary may be adaptive, i.e., choose which servers to corrupt on the fly.

At first sight, it might seem unlikely that the two-tier setting could provide
any advantage in circumventing the honest-majority requirement. Suppose αn
servers are initially corrupted (and thus, m < (1−α)n). If we simply run the MPC
protocol utilizing all the n servers indiscriminately then the number of additional
corruptions (beyond the initial αn) the protocol would withstand is bounded by
max{0, ( 1

2 − α)n}. On the other hand, if we execute the MPC protocol utilizing
only the first-tier servers (and ignoring all the other servers), then the number of
additional corruptions is bounded from above by m/2. Furthermore, any server
allocation strategy that would utilize any arbitrary fraction of the second tier
servers along with any fraction the first tier servers would be inferior to one of

1 See Section 1.3 for a comparison of several MPC variants and the security guarantees
they offer when a majority of the parties are corrupted.



the above strategies.2 We thus conclude that applying standard MPC in the
two-tiered setting achieves at best tolerance of max{m/2, ( 1

2 − α)n} malicious
participants (in addition to the initially αn corrupted parties), which equals m/2
for the interesting case of an initial dishonest majority (α ≥ 1/2).

However, had we known which second-tier servers are honest at the onset
of the computation and which are corrupt, we could have (at least in principle)
beaten the above bound by executing the MPC over those servers along with
all the first-tier servers. The bound on the number of additional corruptions
in this case is (1− α)n/2, which surpasses m/2 (recall that m < (1− α)n). In
fact, if such a protocol was at all feasible, it would imply that the total number
of dishonest parties would be αn + (1 − α)n/2, which is larger than n/2, for
any α > 0. Note that this is the best possible one could achieve given that there
are (1− α)n honest servers across the two tiers.

Somewhat surprisingly, we show how to construct a protocol that exactly
withstands the above maximal number of corruptions, without knowing the status
of the second-tier servers, under the assumption that the uncorrupted servers
from the two tiers can be made indistinguishable in the view of the adversary.
Effectively, this enables our protocol to take advantage of all the honest second-
tier servers, even in settings where an (unknown) overwhelming majority of them
are corrupted. Specifically, we show the following:

Theorem 1 (Informal). Let α ∈ (0, 1) and let P = P1 ∪ P2 be a set of
n servers such that an unknown α-fraction of them are initially corrupted, yet
the servers in P1 are guaranteed to be honest. Then, for any ε > 0 there is a
two-tier fully secure MPC protocol against any adversary adaptively corrupting
up to (1− ε) · 1−α

2 · n additional servers, assuming |P1| = ω(log n) and that the
two tiers are indistinguishable to the adversary.

1.1 How to obtain two-tiers: the corruption/inspection game

The above result is predicated on being able to establish a subset P1 of honest
parties, and that P1 and P2 can be made indistinguishable. Theorem 1 says
that a super-logarithmic number of P1 servers would be sufficient to harness the
maximal resiliency of the system in terms of number of corrupted servers that can
be tolerated. However, it seems challenging to obtain a set P1 where all its servers
are honest, and still keep them hidden within the remaining servers. For example,
one cannot form P1 simply by adding new “trusted” servers into a preexisting pool
of servers, as those would easily be identified by the adversary (whose existence in
the pool of servers precedes the event of the introduction of the new servers). To
address this, we now illustrate a realistic setting where two tiers naturally arise.

2 To see this, note that if we utilize l servers from P1 and k servers from P2 randomly
chosen for some values l ≤ m and k ≤ n−m, then the expected number of additional
corruptions is bounded by l

2
+ k

2
− (α n

n−m )k, where (α n
n−m ) is the probability of

picking a corrupt server when choosing a random server from P2. This function is
maximized by taking l = m and is clearly bounded by max{m/2, ( 1

2
−α)n} for any α.



Assume that there is a single pool of machines out of which an α fraction is
corrupted. Furthermore, assume we are allowed to inspect some of the servers, say,
β-fraction of them, and restore them into a safe state if found corrupt. We assume
here that corrupting a server means altering its operating program. Therefore,
“inspecting” a server means comparing its loaded program with a clean version
of the program, and “restoring” a server can be done by simply restoring the
original program (“format and reinstall”). Once restored, the machine should be
considered as any other honest machine; in particular, it may be corrupted again
just like any other machine.

As a motivating example, consider a cloud service with several thousands of
machines. As time goes by, some of the machines get hacked. On the other hand,
the IT department performs regular maintenance on the servers, possibly restoring
compromised machines. Since the IT department has limited resources, it cannot
perform a daily maintenance on thousands of machines, but it does service a
small fraction (where every day different machines are due for maintenance).
Thus, at any given time when a client wishes to utilize a service using the above
cloud, we can assume that the above (α, β)-corruption/inspection scenario holds.

We can now define the set P1 to consist of all the servers that were inspected
and found clean (i.e., uncorrupted). Note that the restored servers cannot be
in P1, as those would not be indistinguishable from the other honest servers,
since the adversary may be aware that it is no longer controlling them. We let
P2 denote all the remaining servers.

For a given rate of corruption α and rate of inspection β at the onset, the
question now is what is the maximal possible fraction of active faults γ we can
still withstand when running an MPC protocol. In Figure 1 we formalize the
above as a “corruption/inspection game” between a service provider S and an
adversary A.

1. A corrupts α · n of the servers for a parameter α ∈ (0, 1). Distinguishing
corrupted from uncorrupted servers is undetectable at this stage (for the
service provider S).

2. S inspects β · n servers and if they are corrupted it returns them to a
clean state. β is the inspection rate of the service provider.

3. S opens the service by choosing a subset of the n servers to be tier-1 and
the remaining servers tier-2; each server performs a designated protocol
specific to its tier. Once the service is activated, A may adaptively corrupt
an additional γ · n servers. γ is called the adaptive corruption rate.

4. We say that A wins the game, if it succeeds to corrupt at least half of the
tier-1 servers.

Fig. 1. The corruption/inspection game.

The problem posed by the above game is that for a fixed α, the service
provider S wants to maximize γ while minimizing β. In the general case, one
wants to maximize γ for any given α and β. Observe that, theoretically speaking,
the maximum value of γ that can be attained is (1− α+ αβ)/2 (see Figure 2),



which corresponds to (more than) half the honest servers among the ones originally
clean plus (more than) half the ones that were reset to a clean state.

Fig. 2. The maximum adaptive corruption rate γ given α, β in the corruption/inspection
game.

For the special case of β → 0, the theoretical maximum is γ = (1 − α)/2.
Indeed, Theorem 1 implies that the service provider can examine a vanishing
fraction of the servers and still run a successful MPC protocol amongst those
inspected servers that were found clean, given that the adversary’s corruption
rate γ is below (1− α)/2. However, this still does not show how to obtain the
maximal γ for any choice of α, β, when the service provider is unaware of the
identity of the (1− α)n honest servers.

Note that the above course of action for the service provider, where the
first tier consists of only inspected servers which were uncorrupted, takes no
advantage of the servers that were restored to a clean state. As mentioned above,
those restored servers cannot be part of the first tier since such servers would be
detected by the adversary and hence the required indistinguishability between
tiers would be violated. However, by performing a more sophisticated selection
of servers which also exploits a small random subset of the restored servers, we
can improve on the number of adaptive corruptions obtained by Theorem 1, and
maximize γ to its optimal value for any choice of α, β. Specifically:

Theorem 2 (Informal). In the corruption/inspection game, for any constants
α, β ∈ (0, 1) and any constant ε > 0, there exists a two-tier fully secure MPC
protocol tolerating adaptive corruption rate γ ≤ (1− ε) 1−α+αβ

2 .

In other words, for any constants α, β, we achieve the maximal theoretical
corruption rate of almost half the honest parties across the two tiers. This means
our protocol tolerates a total corruption rate arbitrarily close to 1−α+αβ

2 +α(1−β)
across both tiers. Such a corruption rate is above 1/2 for any α > 0, surpassing
the maximal corruption rate that can be tolerated in the plain model.



1.2 Our techniques

The main idea behind our constructions is to have all the servers take part in the
protocol, albeit in a way that only tier-1 servers perform the actual computation
(as in [Bea97, DI05, ALZ13]), while the tier-2 servers’ role is to keep the identities
of the tier-1 servers hidden. This way we effectively employ MPC with “honest
majority” among tier-1 servers and achieve full security, even though a majority
of the overall number of parties may be corrupted.

Hiding the identities of tier-1 servers is done by utilizing a novel message de-
livery mechanism we describe below, which has the net effect that the adversarial
view of the MPC protocol transcript is hidden in a traffic analysis-resistant way
amidst a large set of irrelevant (but indistinguishable) messages. Performing MPC
with a hidden, anonymous set of servers raises many interesting cryptographic
questions; in particular:

How can first-tier servers run an MPC protocol amongst themselves, while
any specific server (whether first- or second-tier) remains oblivious to
other servers’ identities?

We solve this apparent contradiction by introducing the notion of Anonymous
yet Authentic Communication (AAC), which allows a party to send a message to
any other party in an anonymous and oblivious way. Despite being anonymous,
the delivery is authenticated, that is, only the certified party will be able to send
a valid message, and only the certified recipient will be able to correctly learn
the message. We believe that such a primitive might be of independent interest.

In more detail, in an AAC message delivery the sender will reveal to the
recipient only his “virtual” protocol identity, but not his real identity. At the
same time, the sender will remain oblivious to the real identity of the recipient,
which will only be specified by its protocol identity. We show how to implement
AAC message delivery by utilizing an anonymous broadcast protocol [Cha88],
which allows parties to broadcast messages without disclosing the real identity
of the sender of each message, and composing it with a suitable authentication
mechanism. Finally, by substituting point-to-point channels with AAC activations
in an (adaptively secure) MPC protocol, we achieve our desired two-tier MPC
functionality. The fundamental observation in the security proof is that the usage
of the AAC message delivery mechanism effectively transforms any adaptive
corruption strategy of the adversary against the MPC protocol into a random
corruption strategy. Given this observation, we apply a probabilistic analysis
using the tail bounds of the hypergeometric distribution to establish Theorem 1.

The proof of Theorem 2 is slightly more complex than Theorem 1’s, as we
now have to account for the fact that some information is “leaked”: the adversary
can distinguish the restored servers from the remaining ones, and can therefore
“cluster” servers around those two disjoint subsets. Nevertheless, we are able
to apply a similar analysis as in Theorem 1 by observing that any adaptive
corruption strategy effectively amounts to a partially random corruption strategy:
the adversary can control which specific cluster it corrupts, but within a specific
cluster, which parties he corrupts are effectively chosen at random.



1.3 Related work

As mentioned above, fully secure MPC in the cryptographic setting can only be
achieved in the standard model against static and adaptive corruptions in the
case of an honest majority [GMW87, CFGN96]; in the case of a corrupt majority,
the weaker notion of security with abort can be achieved as in, e.g., [GMW87,
BG89, GL91, CFGN96, GL02, CLOS02, KOS03].

Our two-tier model is inspired by recent work on “resource-based corrup-
tions” [GJKY13], in which corrupting a party (server) carries a (computational)
cost to the adversary. Different parties may have different corruption costs, and
this information is hidden from the resource-bounded adversary (in [GJKY13],
this is termed hidden diversity). Due to being uninformed of such costs, the adver-
sary is then “forced” to waste his budget on servers whose corruption cost is high.
For a fixed adversarial budget, robustness in the hidden-cost model greatly out-
weighs robustness in the setting in which all parties have the same corruption cost.

Full security with dishonest majority is also achievable in the case of incentive-
driven adversaries [GKM+13], which considers a rational type of adversary who is
assumed to receive a certain payoff/utility for breaking certain security properties,
such as privacy and/or correctness. Intuitively, low payoffs allow for security
against corrupt majorities. In contrast to [GJKY13] and [GKM+13], our adversary
is the standard cryptographic adversary.

Maybe closest to our work is the work by Asharov, Lindell and Zarosim [ALZ13],
which defines a model with a “reputation system.” In this model, the service
provider knows in advance the probability ri that a party i remains honest
throughout the protocol (in other words, the adversary corrupts each party i
independently with probability 1− ri). This allows the service provider to find a
subset of the parties, over half of which is guaranteed to remain honest with high
probability. In contrast, in our model the service provider only knows that some
specific parties are honest at the onset of the computation, but has no control or
knowledge on whether they remain honest, nor is he aware of the “reputation”
of the other parties. In addition, our model also tolerates adaptive corruptions,
while the adversary in [ALZ13] only statically corrupts parties according to the
reputation system. In more detail, our technique has the property that the best
adversarial corruption strategy becomes the random one, that is, we force the
adversary to corrupt parties at random. Therefore, although our adversary is fully
adaptive and is only restricted in the number of parties to corrupt, he is effectively
restricted to a uniform corruption pattern. Such a strategy induces a reputation
vector which is in the feasible region for secure multiparty computation according
to [ALZ13]; yet, we achieve a fully secure MPC without restricting the adversary
in advance to a specific corruption pattern.

Table 1 summarizes the current state of the art of MPC with dishonest
majority.

Finally, our anonymous message transmission notion, AAC, is related to (but
distinct from) the notion of “secret handshakes” [BDS+03, CJT04]. Similarly
to this notion, we work in a setting where a certain special action takes place



Paper
“Standard”
Adversary

Adaptive
Corruption

Dishonest
Majority

Security GODa

[GMW87], [BG89],
[GL91], [CFGN96],
[GL02], [CLOS02],
[KOS03], etc.

√ √

(some)

√
with abort —

[GKM+13] —b √ √
full

√

[GJKY13] —c √
—d full

√

[ALZ13]
√

—
√

full
√

(this paper)
√ √ √

full
√

a
Guaranteed Output Delivery

b
Incentive-driven adversary; restricted to some utility functions

c
Resource-based adversary; with different corruption cost per party (unknown to the adversary)

d
The adversary has enough resources to corrupt a majority of the parties, yet the parties’ hidden
corruption costs prevent the adversary from doing so

Table 1. Circumventing the impossibility of full security [Cle86]: a comparison.

between two parties if and only if they are both members of a hidden subset.
If it happens that one party is not a member of the hidden subset, then it
cannot infer the membership status of the other party. Our work is, to the best
of our knowledge, the first application of such “covert subset” techniques in a
setting where anonymity is not the prime objective. In fact, our work shows
how anonymity can be effectively used to increase the resiliency (specifically, the
number of tolerated corruptions) of MPC, and makes yet another demonstration
of the power of such tools [FGMO05, IKOS06].

1.4 Organization of the paper

The balance of the paper is organized as follows. Notation, definitions, and the
two-tier (TT) model for MPC are presented in Section 2. The TT MPC protocol,
as well as the AAC (Anonymous yet Authentication Communication) notion
and construction it relies on, are presented in Section 3. Finally, the analysis
yielding the selection of the two tiers allowing to tolerate the maximal corruption
rate appears in Section 4. Some complementary material, including auxiliary
definitions and constructions, is presented in the appendix.

2 Model and Definitions

2.1 Notation and preliminaries

We let κ be the security parameter, and assume that any function, set size or
running time implicitly depends on this parameter (especially when we write negl
to describe a negligible function in κ—i.e., negl < 1/poly(κ) for large enough κ).
For any ε, we say that two distribution ensembles {Xκ}κ∈N, {Yκ}κ∈N are ε-
indistinguishable, denoted {Xκ} ≈ε {Yκ}, if for any probabilistic polynomial-time



(PPT) algorithm C, for large enough κ,

|Pr[C(1κ, Xκ) = 1]− Pr[C(1κ, Yκ) = 1]| < ε+ negl(κ).

We say thatX and Y are computationally indistinguishable, denoted {Xκ} ≈ {Yκ},
if they are ε-indistinguishable with ε = 0. We now proceed to describe some of
the cryptographic notions and building blocks that we use throughout the paper.

Security of multiparty protocols. For defining security of a multiparty pro-
tocol for computing an n-ary function f , we follow the standard simulation-based
approach [GMW87, Can00], in which the protocol execution is compared to
an ideal protocol where the parties send their inputs to a trusted party who
computes f and returns the designated output to each party. Commonly, the
trusted-party activity for computing the function f is captured via a so-called
ideal functionality Ff .

Let EXECπ,A,Z(κ,x) denote an execution of the n-party protocol π with an
adversary A and an environment Z, with x = x1, . . . , xn being the vector of
inputs of the parties. In the same manner, define IDEALFf ,S,Z(κ,x) to be an
execution in the ideal-model, where the ideal functionality is described by Ff , S
is the adversary (commonly known as simulator), Z is the environment, and x
defined as above. We say that π securely realizes the functionality Ff if for every
polynomial-time real-model adversary A and any PPT environment Z, there is a
polynomial time ideal-model simulator S such that for any input vector x,

{EXECπ,A,Z(κ,x)}κ∈N ≈ε {IDEALFf ,S,Z(κ,x)}κ∈N

where ε is a negligible function in the security parameter κ. Throughout this
paper, we assume n and κ are polynomially related.

We refer the reader to Appendix A for additional standard definitions and
other building blocks we use, and move on to describe the basics of the two-tier
(TT) model for MPC.

2.2 The two-tier (TT) model for secure multiparty computation

There are n parties (servers) P = {P1, P2, . . . , Pn}, each of them identified by
a name Pi, referred to as its real identity, and a “virtual” name from P∗ =
{P ∗1 , . . . , P ∗n}, referred to as its protocol pseudonym, which identifies them as
participants in the MPC protocol; all are probabilistic polynomial-time (PPT)
machines. We assume a bijection ν : P → P∗ which maps a real identity Pi to
its protocol pseudonym ν(Pi) ∈ P∗. The parties are assumed to know both their
real name and pseudonym, but they do not know the specific ν.

We are interested in secure function evaluation [GMW87] performed by the
servers in P. The inputs to the computation are assumed to be held by a set
of clients, who are assumed to be outside the set P. Each such client has an
input xi, and the goal is to compute a joint function f of the clients’ inputs.
Servers do not have an input of their own and they expect no output from the



computation—their sole purpose is to carry out the computation and deliver the
output back to clients.

As in the standard MPC setting, parties are connected by pair-wise authentic
and reliable channels, which are identified by the real names of the two connected
parties/servers. Accessing this communication channel does not mandate the
disclosure of the protocol pseudonyms of the communicating parties. We assume a
synchronous communication model where a party can send a message to multiple
parties at the same time [Can00].

The set of servers is divided into two disjoint sets P = P1 ∪P2—the first and
second tier servers respectively. Our communication model assumes that the two
tiers are indistinguishable at the communication (real name) layer. As mentioned
in Section 1, the two tiers are subject to different adversarial capabilities with
respect to corruption. Among the servers in P2, an unlimited number ts of static
corruptions are allowed. The servers in P1, on the other hand, are assumed to
be uncorrupted at the onset of the computation. During the course of the com-
putation, all servers are subject to adaptive corruptions; we denote the number
of such corruptions by ta. We assume a threshold corruption model, in which the
adversary is restricted to corrupting at most t (= ts + ta) of the parties overall.
At each step, the adversary may choose a party Pi ∈ P and corrupt it, as long
as the total number of corrupted parties does not exceed his “budget” t. Once
Pi gets corrupted, the adversary learns its internal state, including its tier level
and protocol pseudonym ν(Pi).

We assume a standard public-key infrastructure (PKI) setup, in which each
party Pi, i ∈ {1, . . . , n}, is given two pairs of public/secret keys (pki, ski),
(pk∗j , sk

∗
j ) corresponding to its real name and protocol pseudonym, as well as

the public keys of all other users (in a certified way) in the form {(pkk, Pk)}k 6=i
and {(pk∗k, P ∗k )}k 6=j . Note that the correspondence between names and protocol
pseudonyms is not revealed. More formally, we express this as the parties having
access to two instances of an ideal PKI functionality, denoted by FPPKI and FP∗PKI

(see [Can05] for definition of an ideal PKI functionality). If ν : P → P∗ maps
between real and protocol identities, we shorthand these two functionalities by

FνPKI = (FPPKI,F
ν(P)=P∗
PKI ).

3 Secure Multiparty Computation in the Two-Tier
Model

In this section we present our MPC protocol in the two-tier model, obtaining
Theorem 1. As mentioned above, exploiting the indistinguishability between the
two tiers requires new cryptographic tools that enable anonymous communication
among servers. To this end, our construction assumes a communication capability
which allows parties to communicate messages in an authenticated way but
without compromising their real identity, which we term Anonymous yet Authentic
Communication (AAC). Specifically, AAC allows entities to communicate with
each other in an authenticated fashion at the protocol (application) layer, yet
anonymously at the network (real-name) layer; the latter property comes from



the fact that the correspondence between real and protocol names is hidden from
the adversary and the functionality does not reveal it. We now define the ideal
functionality of such a communication channel, and construct a protocol that
securely realizes it.

3.1 The Fν
AAC ideal functionality

In the ideal world, the sender delivers to the functionality the message µ along
with the protocol pseudonym of the intended receiver. The adversary is notified
of this event and receives the pseudonyms of the two communicating entities.
However, the real names of the two entities remain hidden. The functionality
is parameterized by a mapping ν that gives the correspondence between names
and pseudonyms. When the adversary instructs the functionality to deliver the
message, the functionality recovers the real identity of the receiving entity and
writes the message on its network tape along with the protocol pseudonym of
the sender. We formally describe the functionality in Figure 3.

Functionality FνAAC
FνAAC is parameterized by a security parameter κ and a set of n parties with
real names P, protocol pseudonyms P∗, and a bijection ν : P → P∗; it assumes
a message space M = M(κ) and proceeds as follows, running with parties
P1, ..., Pn ∈ P and an adversary S:

Upon receiving (Send, sid, Pi, µ, P
∗
j ) from Pi, record this tuple. Once a

message is recorded from all honest parties send to the adversary S the
sequence of tuples (SendLeak, sid, ν(Pi), µ, P

∗
j ) lexicographically ordered.

Upon receiving (Deliver, sid) from S, check that a Send message was recorded
on behalf of all senders, and if so, for any recorded tuple of the form
(Send, sid, Pi, µ, P

∗
j ), deliver (Sent, sid, ν(Pi), µ) to party ν−1(P ∗j ).

Upon receiving (Abort, sid, A) from S check that A is a non-empty subset
of corrupted parties and forward this message to all honest parties.

Upon receiving (Corrupt, Pi) from S mark Pi as corrupted and return ν(Pi)
to S.

If Pi is corrupted then S is allowed to submit (Send, sid, Pi, µ, P
∗
j ) on behalf

of Pi.

Fig. 3. Ideal functionality for anonymous yet authentic communication (AAC).

We now show how this functionality can be securely realized assuming an
anonymous broadcast channel functionality (cf. [Cha88]) tolerating an arbitrary
number of corrupted parties3. Recall that such functionality can be thought of

3 We remark that performing an AAC message delivery means that in case the AAC
protocol terminates with abort, the protocol is repeated with a subset of parties
currently not marked as corrupt.



as a bulletin board on which any party can post messages without revealing its
identity. This is modeled as the ideal functionality FABC in Figure 4, which we
later on show how to implement assuming a PKI setup.4

Functionality FABC

The functionality assumes a message spaceM =M(κ) with κ being the security
parameter, and works as follows, running with n parties P1, . . . , Pn and an
adversary S:

Upon receiving (AnonBcast, sid, Pi, µ) from Pi record this tuple. Once a
message is recorded for all honest parties send to the adversary S the
message (AnonBcastLeak, sid,M) where M is the (lexicographically ordered)
set of messages µ from all recorded tuples of the form (AnonBcast, sid, Pi, µ).

Upon receiving (Deliver, sid) from S, ignore further AnonBcast messages,
and deliver (AnonBcastDeliver, sid,M ′) to all parties P1, . . . , Pn where M ′

is the set of messages µ (lexicographically ordered) from all recorded tuples
of the form (AnonBcast, sid, Pi, µ).

Upon receiving (Abort, sid, A) from S check that A is a non-empty subset
of corrupted parties and forward this message to all honest parties.

Upon receiving (Corrupt, Pi) from S mark Pi as corrupted and return the
recorded (AnonBcast, sid, Pi, µ) to S.

If Pi is corrupted then S is allowed to submit (or substitute existing)
(AnonBcast, sid, Pi, µ) messages on behalf of Pi.

Fig. 4. Ideal anonymous broadcast channel functionality (ABC).

Using the ideal functionality FABC and the PKI setting described in Section 2,
we now describe a secure realization of FνAAC. The protocol makes use of an
existentially unforgeable digital signature scheme (see Appendix A). The imple-
mentation is rather straightforward: the sender uses the (protocol layer) PKI to
sign the message and anonymously broadcast it. Any party receiving the message
checks whether it is the intended protocol-layer recipient, and if so, it verifies the
signature and decrypts the message. This approach prevents impersonation at
the protocol layer while still hiding the correspondence between protocol names
and real names.

The AAC protocol is described in Figure 5 and operates in the (FνPKI,FABC)-
hybrid world.

Theorem 3. Let n ∈ N, parties P with protocol pseudonyms P∗ and a bijection
ν : P → P∗. The AAC protocol from Figure 5 securely realizes FνAAC against an
adaptive adversary corrupting t < n parties in the (FνPKI,FABC)-hybrid model.

4 We note that (most) security proofs in Canetti’s synchronous model [Can00] carry over
to the Universal Composability framework [Can05], given that certain functionalities
are available to the protocol [KMTZ13].



Protocol AAC

Setup: Let κ be the security parameter, and (GenS, Sig,Ver) be an existen-
tially unforgeable signature scheme. The PKI setup delivers real-layer keys
(pki, ski) and protocol-layer keys (pk∗i , sk

∗
i ), as described in Section 2.2. Each

pair of keys is generated using GenKey(1κ) = (GenE(1κ),GenS(1κ)).
We assume real names P and protocol pseudonyms P∗ are known to all
entities (but not ν).

Send message: On input (Send, sid, Pi, µ, P
∗
j ), party Pi sends

(AnonBcast, sid, Pi, (P
∗
i , P

∗
j , µ, σ)) to FABC where σ ← Sigsk∗i

(P ∗j , µ, sid).

Receive message: Pj , 1 ≤ j ≤ n, upon receiving (AnonBcast, sid,M)
from FABC, if it holds that P ∗j = B for some (A,B, µ, σ) ∈ M (i.e.,
Pj is the intended protocol level receiver of that message), Pj checks
Verpk∗i (P ∗j , µ, sid, σ), where i is such that A = P ∗i , and provided Ver re-
turns 1, it records (P ∗i , µ). The action terminates by returning all recorded
tuples.

Abort: If FABC returns (Abort, sid, A) then terminate and return A.

Fig. 5. A protocol realizing FνAAC.

Proof (sketch). Consider a PPT adversary A and a PPT environment Z. We use
the notation M to denote the space of all messages. We construct a simulator S
so that for every vector of inputs x = x1, . . . , xn with xi ∈ {(Send, sid, Pi, µ, P ∗j ) |
j ∈ {1, . . . , n}, µ ∈M}, for i = 1, . . . , n, the following holds:

EXEC
FνPKI,FABC

AAC,A,Z (κ,x) ≈ IDEALFνAAC,S,Z(κ,x)

where ν : P → P∗ is a random bijection. As a setup step, S generates keys for
all the identities in P∗, and gives A all the public keys. The simulator maintains
a list M which is empty at initialization.

The simulation is straightforward: when S receives (SendLeak, sid, P ∗i , µ, P
∗
j )

from FνAAC it generates a signature σ = Sigsk∗i (P ∗j , µ, sid) and updates the list

M = M ∪ (P ∗i , P
∗
j , µ, σ). Once S processes the SendLeak message for all the

honest parties, it sends (AnonBcastLeak, sid,M) over to A. If A issues an Abort
message, S forwards the abort to FνAAC. Otherwise, A issues a Deliver message
which is also forwarded to FνAAC.

When the adversary requests to corrupt some party Pi, the simulator forwards
the request to FνAAC and learns Pi’s protocol pseudonym ν(Pi). Next, it forms the
inner state of Pi accordingly (that contains the signing key of pseudonym ν(Pi)),
and delivers this information to A. It is clear that the honest parties’ output is
identically distributed between the real and ideal executions, with the exception
of the event that the adversary A (or the environment Z) forges a signature
on behalf of an honest party. In this case the simulator will fail, but this will
happen with negligible probability based on the security of the underlying digital
signature scheme. ut



There are several possible ways to realize FABC so that up to t < n corruptions
can be tolerated assuming our setup configuration (PKI). We consider some
alternatives in Appendix B.

3.2 Pseudonymity and random corruptions

With foresight, the approach we will follow is to replace every communication in
an (adaptively secure) MPC protocol for the standard setting with an invocation
to FνAAC. We now show that if a protocol π that operates at the pseudonym layer
is unaware of the real/protocol name correspondence, then the approach does not
reveal any information about the mapping ν. (In addition, it is straightforward
to verify that the modified protocol would remain correct, i.e., it produces the
same outputs as π.)

Let π be a protocol defined over the “pseudonym” protocol layer, i.e., running
with parties P ∗1 , . . . , P

∗
n . Further, π operates in (synchronous) communication

rounds. Normally, in an execution of π with an adversary A, an environment Z
and parties P ∗1 , . . . , P

∗
n , A is capable of issuing (Corrupt, P ∗i ) messages when

it wants to corrupt party P ∗i .5 We consider a stronger notion of execution,
denoted rcEXEC, in which the adversary is allowed to issue (Corrupt) requests to
a corruption oracle, upon which a randomly chosen honest party gets corrupted.
We call this an execution with random corruptions. Note that rcEXECπ,A,Z is
the ensemble of views over the adversary’s (and environment’s) coin tosses, the
parties’ coin tosses and the randomness of the corruption oracle.

Now consider the setting where the communication is handled by a lower
“physical” layer where each party has a physical (real) identity P1, . . . , Pn and there
is a mapping ν : P → P∗ that corresponds protocol identities to communication
identities (real names). Given any protocol π that operates in rounds, we can
easily obtain a protocol π̃F

ν
AAC that runs with parties P1, . . . , Pn and whenever π,

acting on behalf of P ∗i , wishes to send a message µ to party P ∗j the π̃ protocol

delivers (Send, sid, ν−1(P ∗i ), µ, P ∗j ) to FνAAC. Thus, each communication round
of π is equivalent to a single instantiation of FνAAC.

Next, we show that π̃F
ν
AAC with a randomly chosen ν is simulatable in the

random-corruptions setting. For ease of notation, we identify a bijection ν : P →
P∗ with a permutation on n elements.

Lemma 4. Let π and π̃F
ν
AAC be as above. For any PPT adversary A and envi-

ronment Z, and for any input vector x, there exist a PPT simulator S such
that {

EXEC
FνAAC
π̃,A,Z(κ,xν)

}
ν∈RPerm(n)

≈ rcEXECπ,S,Z(κ,x)

where Perm(n) is the set of all the possible permutations on n elements.

5 We emphasize that since π exists only in the pseudonym layer, the parties’ identifiers
are P∗, and the adversary corrupts by specifying a certain P ∗i . However, when running
in our TT model setup, the identities of the parties are P, and the adversary corrupts
a party by specifying a certain Pi.



Proof. Consider the following simulator. At first it fixes a randomness tape for
A and follows the computation, replacing each “communication round” with a
FνAAC simulation. Namely, after each round of communication, S gathers all the
messages sent in this round, and provides the adversary with a lexicographical
list whose entries are of the form (SendLeak, sid, P ∗i , µ, P

∗
j ) matching the case

where P ∗i sent P ∗j the message µ. Note that we assume π runs in rounds, so each
party sends exactly one message at each communication round.

When A issues (corrupt, Pi), the simulator issues (corrupt) and as a result, P ∗j
gets corrupted, for a random j (out of all the parties that are still honest). The
simulator sets ν(i) = j and simulates the inner state of P ∗j so it would correspond
to the real identity Pi in a straightforward way.

Note that at the end of the simulation, the simulator has defined a partial
mapping ν. The output of this simulation is exactly the same as the output of
any instance of the left-hand side experiment, running with the same adversary
(set to the same randomness tape), for any mapping ν′ that agrees with ν on the
identities of all corrupted parties. It easily follows that the two ensembles are
identically distributed. ut

3.3 The two-tier MPC protocol

Recall our setting in which n parties (servers) with real names P = {P1, P2, . . . , Pn},
are split into two tiers P = P1 ∪ P2, and where the computation is effectively
carried out only by servers in the first tier, who then distribute the output to
the clients as needed (see also [DI05, ALZ13]). Let |P1| = m and |P2| = n−m.
In addition, we assume there are c ∈ N clients, each holding a private input xi;
let x = x1, . . . , xc. The clients wish to compute some function f of their inputs,
described as the c-party functionality Ff (x).

We now describe the two-tier MPC protocol performed by the servers, assum-
ing they have already (verifiably) secret-shared6 the clients’ inputs. This operation
is in fact easy to achieve using standard techniques and without the need for
AAC communication. For example, one may assume that the i-th client computes
an (m, dm/2e − 1)-verifiable secret sharing of xi using the adaptively secure VSS
scheme of Abe and Fehr [AF04]. Then, the client broadcasts a signed copy of
the j-th share encrypted with P ∗j ’s public key. (Recall that protocol identities,
and in particular those corresponding to servers in P1, are public.) As a result of
the computation, the servers obtain a share of Ff (x)’s output—we denote this
modified functionality by Fvss

f (x); the shares are then sent to the clients.7

We now explain how the servers carry out the actual computation of Ff (x).
The two-tiered MPC protocol operates in the (FνPKI,FνAAC)-hybrid world and is
presented in Figure 6.

6 Refer to Appendix A for the definition of VSS.
7 We note that in case the identities of first-tier servers need to remain hidden (say, for

the continuation of the service in a forthcoming MPC execution), the output delivery
should be anonymous as well. This can be achieved, for example, by extending
the AAC mechanism to include both servers and clients at the protocol layer.



MPC in the Two-Tier Model

Assume n parties with real names P = {P1, P2, . . . , Pn}, split into two disjoint
subsets P = P1 ∪ P2, where |P1| = m. Parameters n and m are public.
Furthermore, assume a c-ary functionality Ff (x) to be securely computed on
inputs x = x1 . . . xc, where each xi is (m, dm/2e − 1)-VSS’d in P1.

Trusted setup. Public and secret keys, as well as protocol identities are
handed to each party by FνPKI, as described in Section 2.2.

Computation phase.

Let F vss
f be the m-party functionality that performs the same task as the

c-party functionality Ff , assuming that each of the m parties holds a
share of each of the c inputs.
The output of F vss

f is a (m, dm/2e − 1)-VSS share of each of the c outputs
of Ff .

The parties in P1 adaptively securely compute F vss
f amongst themselves

(for example, via [CFGN96]). During the execution, messages between
any two parties are sent invoking FνAAC (Fig. 3).

Fig. 6. Computation phase of the TT MPC protocol.

It is immediate that the protocol in Figure 6 securely realizes Fvss
f as long as

the adversary does not corrupt a majority of the tier-1 servers. Formally,

Proposition 5. Let n,m, c ∈ N. For any given c-ary functionality Ff and for
any bijection ν : P → P∗, the protocol of Figure 6 operating in the (FνPKI,FνAAC)-
hybrid world securely realizes Fvss

f conditioned on the event that the adversary
corrupts at most dm/2e − 1 servers.

Next, we prove a combinatorial lemma, showing that for any ε > 0 and ts
initial static corruptions among the tier-2 servers, if an adversary adaptively
corrupts up to (1− ε)n−ts2 parties without knowing the two-tier partition, then
the probability of corrupting a majority of P1 servers is negligible in |P1|.

Lemma 6. Assume n parties P, m of which are in P1 and ts ≤ n − m of
P2 are initially corrupted. Assume that the adversary is bounded to adaptively
corrupting ta parties with ta ≤ (1−ε)n−ts2 , for some constant ε > 0, where εm ≥ 4.
Furthermore, assume that by corrupting a party Pi ∈ P, the adversary learns
its tier level (but not the tier level of other parties). Then, the probability that
adversary corrupts at least m/2 parties from P1 is at most 2−Ω(m).

Proof. Let K be the random variable describing the number of P1 servers that
were corrupted, assuming the adversary corrupts additional ta = (1−ε)n−ts2 servers
(i.e., on top of statically-corrupting ts parties). K is distributed according to the
hypergeometric distribution (see Appendix C) with parameters (n − ts,m, ta),
and we denote K ∼ HypGeon−ts,m,ta . We get that

E[K] = (1− ε)n− ts
2
· m

n− ts
= (1− ε)m

2
.



Assuming that m is odd (the case of even m is similar) we can use the tail
bound of Lemma 10 to bound the probability that more than m/2 servers get
corrupted.

Pr[K > m/2] = Pr[K − E[K] > εm/2]

< e−2 n−ts+2
4(m+1)(n−ts−m+1)

(ε2m2−1)

≤ 2−Ω( n−ts
n−ts−m+1m) = 2−Ω(m),

since in our case αn,m,t of Lemma 10 satisfies αn,m,t ≥ n+2
(m+1)(n−m+1) , and

assuming εm ≥ 4 . ut

Theorem 1. Assume m = ω(log n) and ε > 0. For any given c-ary functionality
Ff , there exists a two-tier MPC protocol in the (FνPKI,FνAAC)-hybrid world that
securely realizes Ff against any PPT adversary with ta ≤ (1 − ε)n−ts2 and
ts ≤ n−m.

Proof. Observe that (i) the MPC protocol is secure as long as a majority of P1

servers are honest (Proposition 5); (ii) given that the adversary learns the
protocol pseudonym and tier-level of a party only when this party is corrupt,
when restricted to (1 − ε)n−ts2 corruptions, it has only an exponentially small
probability (in m) to corrupt a majority of P1 (Lemma 6); (iii) by Lemma 4
an adaptive adversary learns only negligible information about ν (for uncorrupt
parties), that is, it does not have an advantage in learning the protocol identity
(i.e., tier-level) of uncorrupted parties from the transcript. Therefore, an adaptive
adversary has exponentially small probability (in m) to break the protocol
of Figure 6. Setting m = ω(log n) makes the adversary’s success probability
negligible in n. ut

4 Optimal Strategy for the Corruption/Inspection Game

In this section we present the analysis for the corruption/inspection game (Fig-
ure 1). We obtain, for any parameters (α, β), a strategy that maximizes γ up
to the theoretical limit. In the previous sections we demonstrated that, given a
two-tier model, MPC can be realized to resist as much corruptions as less than
half the amount of the still-honest parties. However, it is left to be shown how to
split the n servers into two tiers so that (i) the two tiers are indistinguishable
and (ii) the tier-1 servers are honest at the onset of the computation.

As mentioned in Section 1, one possible strategy for the service provider S
is to set as tier-1 all the servers that were inspected and found clean. However,
S cannot use the servers which were found corrupt, as these are no longer
indistinguishable from the honest servers. This strategy leads to a non-optimal
adaptive corruption rate of γ = 1−α

2 . Thus, better strategies should be sought
in order to utilize the “restored” machines. Next, we show a strategy for the
service provider which maximizes his utility in the corruption/inspection game.
Specifically, we prove the following:



Theorem 2. For any constants α, β ∈ (0, 1), and for any ε > 0, there ex-
ists a two-tier MPC protocol in the (FνPKI,FνAAC)-hybrid world, and a winning
strategy for a service provider in the corruption/inspection game, such that the
protocol is adaptively secure against any PPT adversary with corruption rate
γ ≤ (1− ε) (1− α+ αβ) /2.

We begin by showing a strategy for the service provider that beats any
adversary who learns the tier-level of honest parties only by corrupting them.
The idea of the strategy is to use two sets of servers as tier-1. One set comprises
all the servers that were inspected and found clean, while the second one is a
small random subset of the servers that were restored to a clean state. Note that,
from the point of view of the adversary, the first set is hidden within all the
uncorrupt servers, while the second set is hidden within all the servers that were
restored to a clean state. We set the size of the second group so that in both
these sets, the ratio of tier-1 servers to the size of the set it is hidden within, is
the same.

Lemma 7. Assume S and A play the corruption/inspection game with some
constants α, β ∈ (0, 1) and a small constant ε > 0. Furthermore, assume that
when a server becomes corrupt (and only then), the adversary learns its tier
level. Then, there exists a strategy for S for choosing tier-1 servers, such that
given a corruption rate γ ≤ (1− ε) (1− α+ αβ) /2 the adversary has negligible
probability to corrupt half (or more) of tier-1 servers.

Proof. S will choose the tier-1 servers as a subset of the βn inspected servers. We
distinguish between two groups of inspected servers according to their state before
the inspection: servers that were uncorrupt before the inspection (denoted G1),
and servers that were corrupt but recovered to a safe state by the inspection (G2).

From the point of view of A, The first group is ‘hidden’ within the set Ĝ1 of
size (1 − α)n of the uncorrupt servers at the onset. The second group is fully

known to the adversary (Ĝ2 = G2 with αβn servers8). S will pick a small subset

of servers in G2 as tier-1; these will be hidden within the entire Ĝ2. Note that the
adversary knows which servers belong in Ĝ1 and which are in Ĝ2, but does not
know the tier level of each party within each set. That way, the indistinguishability
requirement between tier-1 and tier-2 servers still holds, yet separately in Ĝ1

and Ĝ2.

Specifically, S chooses tier-1 servers in the following way: all the (1− α)βn
servers in G1 are chosen as tier-1 in addition to a random subset of servers
in G2. We equate the fraction of tier-1 servers in both groups (with respect to
the group it is hidden within). Thus, out of the αβn servers in G2, S randomly

8 The sizes of the groups are only their expected value. However for large enough n
(and especially, for our asymptotical analysis where n→∞), with high probability
the real size will be very close to the expected value and we treat those sets as having
sizes exactly (1− α)n and αβn.



picks y = αβ2n servers to be tier-1, so that

y

αβn
=

(1− α)βn

(1− α)n
.

We allow the adversary to corrupt at most t = (1− ε)(1−α+αβ)n/2 servers

out of the uncorrupt servers Ĝ1 ∪ Ĝ2. Assume the adversary splits his budget so
that it corrupts t1 servers from Ĝ1, and t2 servers from Ĝ2, where t1 + t2 = t.9

Let r = t1/t (thus, 1− r = t2/t); observe that the adversary cannot spend
more budget than the population of each set so t1 ≤ (1 − α)n and t2 ≤ αβn,
hence 1− αβ

t ≤ r ≤
1−α
t . Let K1,K2 be the random variables that describe the

number of servers A adaptively corrupts out of Ĝ1 and Ĝ2 with budget t1, t2,
respectively. It is clear that

K1 ∼ HypGeo(1−α)n,(1−α)βn,t1 , K2 ∼ HypGeoαβn,αβ2n,t2 .

In order to win the game, A needs to corrupt at least half of the tier-1 servers,
where some can be in Ĝ1 and the rest in Ĝ2. However, no matter how A splits
its budget, A corrupts more than half of the overall tier-1 servers with only a
negligible probability. To that end, we again use the tail bound of Lemma 10.
Specifically, the probability that the adversary corrupts, out of Ĝ1, at least an
r-fraction of half of all the tier-1 servers, is negligible:

Pr
[
K1 >

r
2 ((1− α)β + αβ2)n

]
= Pr

[
K1 > t1β

(1− α+ αβ)n

2t

]
= Pr

[
K1 >

1

1− ε
E[K1]

]
= Pr [K1 > (1 + ε′)E[K1]]

< e−Ω(βt) = e−Ω(n),

where the second equality follows from E[K1] = t1
(1−α)βn
(1−α)n = t1β.

In a similar way for Ĝ2, the probability that A corrupts more than a 1− r
fraction of half of tier-1 servers is negligible:

Pr
[
K2 >

1−r
2 ((1− α)β + αβ2)n

]
= Pr [K2 > t2β(1− α+ αβ)n/2t]

= Pr

[
K2 >

1

1− ε
· E[K2]

]
= Pr [K2 > (1 + ε′)E[K2]]

< e−Ω(n).

9 While we assume fixed values t1 and t2, in general the attack might be of any arbitrary
distribution among the two sets. However, for any such attack we can repeat the
analysis with t1 being the expected number of servers corrupted out of Ĝ1, and the
two analyses differ with negligible probability when n→∞.



It follows that there is a negligible probability for the adversary to corrupt at
least (r+ (1− r)) · 1

2 ((1− α)β + αβ2)n tier-1 servers, and since the total number
of tier-1 servers is ((1− α)β + αβ2)n, S wins the game. ut

Since the tier-1 servers are now split into two separate sets, we need to extend
Lemma 4 to the case where ν is not uniform over Perm(n). Specifically, we
assume now that {P1, . . . , Pn} are partitioned into r disjoint sets, P1, . . . ,Pr,
with respective sizes s1, . . . , sr, such that

∑r
i=1 si = n. Additionally, assume

the protocol pseudonyms P∗ are also partitioned into r disjoint sets P∗1 , . . . ,P∗r
where for every 1 ≤ i ≤ r, |Pi| = |P∗i |. We assume that the mapping ν is
composed of r independent uniform permutations on the specific partitions. That
is ν = (ν1, . . . , νr) where νi : Pi → P∗i . For notational convenience, we also treat
νi as a permutation on {1, . . . , si}.

We show that even in this setting, where the adversary has some partial
knowledge on ν, his best corruption strategy is equivalent to corrupting a random
party. To that end, we re-define rcEXEC to be such that the simulator is allowed
to choose the set from which the next party will be corrupted. That is, S may
issue (corrupt, i) in which a random honest party in Pi will get corrupted. We
denote an execution of this model as rcrEXEC.

Lemma 8. Let π and π̃F
ν
AAC be as above. Assume the parties are divided into r

sets P1, . . . ,Pr of sizes s1, . . . , sr. For any PPT adversary A and environment Z,
and for any input vector x, there exist a PPT simulator S such that{

EXEC
FνAAC
π̃,A,Z(κ,xν)

}
ν= (ν1,...,νr)
∈R(Perm(s1),...,Perm(sr))

≈ rcrEXECπ,S,Z(κ,x),

where Perm(k) is the set of all the possible permutations on k elements.

Proof. The simulation works similarly to the one of Lemma 4, with the following
exception. When the adversary issues (corrupt, Pi), S will issue (corrupt, k) for
the set k such that Pi ∈ Pk. Assume that as a result P ∗j becomes corrupt, then S
sets νk(i) = j and continues as before. Once again, the output of the simulation

in this case is identical to any instance of EXEC
Fν
′

AAC

π̃,A,Z running with the same
adversary and a mapping ν′ that agrees with the partial mapping ν defined by
the simulator. ut

Given the above lemmas, the proof of Theorem 2 now follows.

Proof. (Theorem 2) The service provider will pick tier-1 servers according to
the strategy described in Lemma 7. That is, the service provider will choose as
tier-1 all the inspected servers that were found clean and a random β-fraction of
the inspected servers that were found corrupt and then restored to a clean state.
Then, the service provider runs the MPC scheme described in Figure 6. Similarly
to the proof of Theorem 1 we observe the following:

1. The MPC protocol is secure as long as a majority of tier-1 servers are honest
(Proposition 5).



2. Given that the adversary learns the protocol pseudonym and tier-level of a
party only when this party is corrupt, when restricted to γ ≤ (1− ε)(1− α+
αβ)/2 corruptions, it has only a exponentially small probability in m = O(n)
to corrupt a majority of tier-1 servers (Lemma 7).

3. Lemma 8 shows that an adaptive adversary learns only negligible information
about ν (for uncorrupt parties).

Therefore, the computation is secure against the above adaptive adversary, except
with negligible probability in n.

Observe that the parties are divided into three sets: the set of clean servers
after step (1) of the corruption/inspection game (denoted by Ĝ1 in Lemma 7); the

set of servers that were restored to a clean state (Ĝ2); and the rest of the servers.
Setting r = 3, it is easy to see that Lemma 8 applies to our case by denoting
those sets as P1,P2 and P3, respectively, and setting the protocol pseudonyms
P∗1 ,P∗2 and P∗3 such that the number of tier-1 servers in each set matches the
strategy of the service provider (e.g, β-fraction of the servers in each of the first
two sets are tier-1, and no tier-1 servers in the third set). ut
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A Additional Definitions and Building Blocks

Signature schemes. A public-key signature scheme consists of three PPT
algorithms (GenS,Sig,Ver) such that (sk, pk)← GenS(1κ) generates a key; sig ←
Sigsk(m) generates a signature for m ∈M and b ∈ {0, 1} ← Verpk(m, sig) verifies
a signature. For (sk, pk) generated by GenS, it holds that Verpk(m,Sigsk(m)) = 1.

We say that a signature scheme is existentially unforgeable if any PPT
adversary has only negligible advantage (in κ) in winning the following game
running with a challenger:

Setup: The challenger runs (pk, sk) ← KeyS(1κ). It gives the adversary the
resulting public key pk and keeps the private key sk to itself.

Queries: The adversary issues signature queries m1, . . . ,mq. To each query mi,
the challenger computes sigi ← Sigsk(mi) and sends sigi back to the adver-
sary. Note that mi may depend on previous signatures (adaptive queries).

Challenge: The adversary outputs a pair (m, sig), where m 6= mi for any mi

queried during the previous step. The adversary wins if Verpk(m, sig) = 1.

Verifiable secret sharing (VSS). A (n, t)-VSS scheme is a protocol between
a dealer and n parties P1, . . . , Pn, which extends a standard secret sharing. It
consists of a Sharing phase where the dealer initially holds a value σ and finally,
each party holds a private share vi; and a Reconstruction phase in which the
parties reveal their shares (a dishonest party may reveal v′i 6= vi) and a value σ′

is reconstructed out of the shares σ′ = REC(v′1, . . . , v
′
n). Assuming an adversary

that corrupts up to t parties, the following holds.



Privacy: If the dealer is honest, then the adversary’s view during the sharing
phase reveals no information about σ. More formally, the adversary’s view is
identically distributed under all different values of σ.

Correctness: If the dealer is honest, then the reconstructed value equals to σ.

Commitment: After the sharing phase, a unique value σ∗ is determined which
will be reconstructed in the reconstruction phase; i.e., σ∗ = REC(v′1, . . . , v

′
n)

regardless of the views provided by the dishonest players.

B Realizing Anonymous Broadcast

First, one may realize ABC via standard adaptively secure multyparty com-
putation techniques [CFGN96]. This construction shows how multiple parties
can securely compute any given circuit, which in the case of FABC is a lexico-
graphic sorting of the inputs. An asymptotically optimal sorting circuit is given
in [AKS83] using O(n log n) comparators with depth O(log n).

Assuming the size of each field element is O(κ) bits, a field-element comparator
can be constructed out of binary gates in a tree fashion in size O(κ) and depth
O(log κ), or in a pipeline fashion with depth and size O(κ). These constructions
yield sorting circuits of size O(κn log n) and depths O(log κ log n) and O(κ+log n),
respectively.

Note that the AAC protocol incurs only one call of ABC (i.e., there are
no concurrent instances). Thus, invoking Canetti’s modular composition theo-
rem [Can00, Can05], such a construction gives adaptive security (with identifiable
abort) against any number t < n of corruptions. Observe that in the case of
an abort, the only information that the adversary learns is the output, which is
broadcast to all parties, and the security of the construction is not affected.

We refer to this protocol as ABCCFGN; the next corollary immediately follows
from [CFGN96].

Corollary 9. The protocol ABCCFGN securely realizes FABC with round com-
plexity O(min{log κ log n, κ+ log n}), and total communication O(κ2n log n), as-
suming non-committing encryption is used to implement point-to-point secure
communication between parties.

Although the above realization of FABC is sufficient for our purposes, we now
discuss other alternatives, hoping for higher efficiency. First, we note that Golle
and Juels [GJ04] present a scheme for honest-majority anonymous broadcast
which uses bilinear maps, assuming the hardness of the Decisional Bilinear
Diffie-Hellman problem (DBDH). Besides the honest-majority requirement, the
construction does not consider “collisions,” a common problem which arises in
DC-nets in the selection of message positions; while the first shortcoming could
be addressed by a player-elimination technique, addressing the second seems
problematic, short of an MPC-type approach.

In [PW92, PW96], Pfitzmann and Waidner give an information theoreti-
cally secure sender-anonymous broadcast, based on Chaum’s DC-nets [Cha88].



Their scheme assumes a pre-computation step during which a reliable broad-
cast is guaranteed. In our setting, we can replace the pre-computation reliable
broadcast demand with an adaptively secure broadcast scheme, assuming a PKI
setup [GKKZ11].

At a high level, the Pfitzmann-Waidner protocol consists of performing a
many-to-many, corruption-detectable variant of a DC-net [BdB90], in which each
user begins with a private input xi and, if all parties behave as expected, ends
with the multiset of inputs {xi}i without being able to relate an input to its
source. If some party deviates from the protocol, the other users notice this event
(with high probability) and begin an ‘investigation’ in which each party should
publicly reveal its messages and secret state, along with its private input. The
parties can now check for consistency and (locally) identify the cheaters.

The resulting scheme, in the FPKI-hybrid world, however, is less efficient than
the generic construction requiring O(n4) rounds with O(κn2) communication per
round.

C The Hypergeometric Distribution

We recall the hypergeometric distribution and some of its properties. The Hy-
pergeometric distribution with parameters n,m, t describes the probability to
draw k ‘good’ items out of an urn that contains n items out of which m are good,
when one is allowed to draw t items overall. The probability is given by

HypGeon,m,t(k) =

(
m

k

)(
n−m
t− k

)
/

(
n

t

)
.

The expectation of a random variable K ∼ HypGeon,m,t is given by E[K] = tmn .
In our setting and terminology, HypGeon,m,t(k) describes the probability of

corrupting k tier-1 servers, if there are n servers out of which m are tier-1, and
the adversary is allowed to corrupt up to t servers altogether (assuming that the
adversary learns the tier level of a specific server only when it gets corrupt).

A useful tool is a tail bound on the hypergeometric distribution, derived by
Hush and Scovel [HS05]:

Lemma 10. Let K ∼ HypGeon,m,t be a random variable distributed according
to the Hypergeometric distribution with parameters n,m, t. Then,

Pr[K − E[K] > δ] < e−2αn,m,t(δ
2−1)

where
αn,m,t = max

((
1
t+1 + 1

n−t+1

)
,
(

1
m+1 + 1

n−m+1

))
and assuming δ > 2.
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