A Little Honesty Goes a Long Way: The Two-Tier Model for Secure Multiparty Computation

Juan A. Garay¹, Ran Gelles^{2,*}, David S. Johnson³, Aggelos Kiayias^{4,**}, and Moti Yung⁵

Yahoo Labs, garay@yahoo-inc.com
 Princeton University, rgelles@cs.princeton.edu
 ³ Columbia University, dstiflerj@gmail.com
 ⁴ National and Kapodistrian University of Athens, aggelos@kiayias.com
 ⁵ Google Inc. and Columbia University, moti@cs.columbia.edu

Abstract. A fundamental result in secure multiparty computation (MPC) is that in order to achieve full security, it is necessary that a majority of the parties behave honestly. There are settings, however, where the condition of an honest majority might be overly restrictive, and there is a need to define and investigate other plausible adversarial models in order to circumvent the above impossibility.

To this end, we introduce the *two-tier model* for MPC, where some small subset of servers is guaranteed to be honest at the beginning of the computation (the *first tier*), while the corruption state of the other servers (the *second tier*) is unknown. The two-tier model naturally arises in various settings, such as for example when a service provider wishes to utilize a large pre-existing set of servers, while being able to trust only a small fraction of them.

The first tier is responsible for performing the secure computation while the second tier serves as a disguise: using novel anonymization techniques, servers in the first tier remain undetected to an adaptive adversary, preventing a targeted attack on these critical servers. Specifically, given n servers and assuming αn of them are corrupt at the onset (where $\alpha \in (0, 1)$), we present an MPC protocol that can withstand an optimal amount of less than $(1 - \alpha)n/2$ additional adaptive corruptions, provided the first tier is of size $\omega(\log n)$. This allows us to perform MPC in a fully secure manner even when the total number of corruptions exceeds n/2across both tiers, thus evading the honest majority requirement.

1 Introduction

A technically interesting and practically relevant configuration for performing secure multiparty computation (MPC) [GMW87] is the commodity-based *client-server* approach, in which the vast part of the computation is delegated from one or more clients to one or more servers [Bea97]. Indeed, these settings have

^{*} Work partially done while a student at University of California, Los Angeles.

^{**} Research supported by ERC project CODAMODA.

plenty of practical value, as demonstrated for example by the implementation and deployment of an auction system in the Danish sugar-beet market $[BCD^+09]$, and, more generally, in the emerging secure cloud computing paradigm.

Security in MPC is commonly formulated via the following properties: privacy (parties learn only what they should learn); correctness (the honest parties' outputs are correct, despite the disruptive behavior of the corrupt parties); independence of inputs (parties' inputs are independent of other parties'); fairness (either all parties get their output, or none does); and guaranteed output delivery (all honest parties are guaranteed to obtain their outputs). Note that guaranteed output delivery also implies fairness. Achieving all these properties is called *full security*. A fundamental result in MPC with actively malicious participants is that in order to be able to compute any function with full security in the computational setting, an honest majority of the parties is necessary (and sufficient) [Cle86, GMW87, CFGN96].

Indeed, when half or more of the parties are corrupted, fairness might be compromised and guaranteed output delivery cannot be achieved [Cle86]. There are settings, however, where the honest majority requirement might be too costly or unattainable in practice (e.g., the resource-constrained service provider scenario elaborated on below). Thus, it is important to investigate models where it is possible to carry out any computation and obtain full security, even if the number of malicious participants is potentially *higher* than the number of honest parties. Clearly, in order to circumvent the above impossibility, the model in use must be relaxed.¹

In this paper we put forth a new model for performing client-server-based MPC which we call the *two-tier model* for MPC. In this model, m servers are guaranteed to be properly functioning at the onset of the computation (such servers are identified by the set \mathcal{P}_1), while the remaining n - m servers (the set \mathcal{P}_2) are of dubious trustworthiness. In addition, it is assumed that $m \ll n$. We call \mathcal{P}_1 the *first-tier* servers and \mathcal{P}_2 the *second-tier* servers. The objective is to run MPC withstanding a number of corruptions greater than the majority of the overall number of servers—in particular greater than n/2. We stress that the adversary may be *adaptive*, i.e., choose which servers to corrupt on the fly.

At first sight, it might seem unlikely that the two-tier setting could provide any advantage in circumventing the honest-majority requirement. Suppose αn servers are initially corrupted (and thus, $m < (1-\alpha)n$). If we simply run the MPC protocol utilizing all the *n* servers indiscriminately then the number of additional corruptions (beyond the initial αn) the protocol would withstand is bounded by max $\{0, (\frac{1}{2} - \alpha)n\}$. On the other hand, if we execute the MPC protocol utilizing only the first-tier servers (and ignoring all the other servers), then the number of additional corruptions is bounded from above by m/2. Furthermore, any server allocation strategy that would utilize any arbitrary fraction of the second tier servers along with any fraction the first tier servers would be inferior to one of

¹ See Section 1.3 for a comparison of several MPC variants and the security guarantees they offer when a majority of the parties are corrupted.

the above strategies.² We thus conclude that applying standard MPC in the two-tiered setting achieves at best tolerance of $\max\{m/2, (\frac{1}{2} - \alpha)n\}$ malicious participants (in addition to the initially αn corrupted parties), which equals m/2 for the interesting case of an initial dishonest majority ($\alpha \ge 1/2$).

However, had we known which second-tier servers are honest at the onset of the computation and which are corrupt, we could have (at least in principle) beaten the above bound by executing the MPC over those servers along with all the first-tier servers. The bound on the number of additional corruptions in this case is $(1 - \alpha)n/2$, which surpasses m/2 (recall that $m < (1 - \alpha)n$). In fact, if such a protocol was at all feasible, it would imply that the total number of dishonest parties would be $\alpha n + (1 - \alpha)n/2$, which is larger than n/2, for any $\alpha > 0$. Note that this is the best possible one could achieve given that there are $(1 - \alpha)n$ honest servers across the two tiers.

Somewhat surprisingly, we show how to construct a protocol that exactly withstands the above maximal number of corruptions, without knowing the status of the second-tier servers, under the assumption that the uncorrupted servers from the two tiers can be made indistinguishable in the view of the adversary. Effectively, this enables our protocol to take advantage of *all* the honest secondtier servers, even in settings where an (unknown) overwhelming majority of them are corrupted. Specifically, we show the following:

Theorem 1 (Informal). Let $\alpha \in (0,1)$ and let $\mathcal{P} = \mathcal{P}_1 \cup \mathcal{P}_2$ be a set of n servers such that an unknown α -fraction of them are initially corrupted, yet the servers in \mathcal{P}_1 are guaranteed to be honest. Then, for any $\epsilon > 0$ there is a two-tier fully secure MPC protocol against any adversary adaptively corrupting up to $(1-\epsilon) \cdot \frac{1-\alpha}{2} \cdot n$ additional servers, assuming $|\mathcal{P}_1| = \omega(\log n)$ and that the two tiers are indistinguishable to the adversary.

1.1 How to obtain two-tiers: the corruption/inspection game

The above result is predicated on being able to establish a subset \mathcal{P}_1 of honest parties, and that \mathcal{P}_1 and \mathcal{P}_2 can be made indistinguishable. Theorem 1 says that a super-logarithmic number of \mathcal{P}_1 servers would be sufficient to harness the maximal resiliency of the system in terms of number of corrupted servers that can be tolerated. However, it seems challenging to obtain a set \mathcal{P}_1 where all its servers are honest, and still keep them hidden within the remaining servers. For example, one cannot form \mathcal{P}_1 simply by adding new "trusted" servers into a preexisting pool of servers, as those would easily be identified by the adversary (whose existence in the pool of servers precedes the event of the introduction of the new servers). To address this, we now illustrate a realistic setting where two tiers naturally arise.

² To see this, note that if we utilize l servers from \mathcal{P}_1 and k servers from \mathcal{P}_2 randomly chosen for some values $l \leq m$ and $k \leq n-m$, then the expected number of additional corruptions is bounded by $\frac{l}{2} + \frac{k}{2} - (\alpha \frac{n}{n-m})k$, where $(\alpha \frac{n}{n-m})$ is the probability of picking a corrupt server when choosing a random server from \mathcal{P}_2 . This function is maximized by taking l = m and is clearly bounded by $\max\{m/2, (\frac{1}{2} - \alpha)n\}$ for any α .

Assume that there is a single pool of machines out of which an α fraction is corrupted. Furthermore, assume we are allowed to *inspect* some of the servers, say, β -fraction of them, and *restore* them into a safe state if found corrupt. We assume here that corrupting a server means altering its operating program. Therefore, "inspecting" a server means comparing its loaded program with a clean version of the program, and "restoring" a server can be done by simply restoring the original program ("format and reinstall"). Once restored, the machine should be considered as any other honest machine; in particular, it may be corrupted again just like any other machine.

As a motivating example, consider a cloud service with several thousands of machines. As time goes by, some of the machines get hacked. On the other hand, the IT department performs regular maintenance on the servers, possibly restoring compromised machines. Since the IT department has limited resources, it cannot perform a daily maintenance on thousands of machines, but it does service a small fraction (where every day different machines are due for maintenance). Thus, at any given time when a client wishes to utilize a service using the above cloud, we can assume that the above (α, β) -corruption/inspection scenario holds.

We can now define the set \mathcal{P}_1 to consist of all the servers that were inspected and found *clean* (i.e., uncorrupted). Note that the restored servers cannot be in \mathcal{P}_1 , as those would not be indistinguishable from the other honest servers, since the adversary may be aware that it is no longer controlling them. We let \mathcal{P}_2 denote all the remaining servers.

For a given rate of corruption α and rate of inspection β at the onset, the question now is what is the maximal possible fraction of active faults γ we can still withstand when running an MPC protocol. In Figure 1 we formalize the above as a "corruption/inspection game" between a service provider S and an adversary \mathcal{A} .

- 1. A corrupts $\alpha \cdot n$ of the servers for a parameter $\alpha \in (0, 1)$. Distinguishing corrupted from uncorrupted servers is undetectable at this stage (for the service provider S).
- 2. S inspects $\beta \cdot n$ servers and if they are corrupted it returns them to a clean state. β is the *inspection rate* of the service provider.
- 3. S opens the service by choosing a subset of the n servers to be tier-1 and the remaining servers tier-2; each server performs a designated protocol specific to its tier. Once the service is activated, \mathcal{A} may adaptively corrupt an additional $\gamma \cdot n$ servers. γ is called the *adaptive corruption rate*.
- 4. We say that \mathcal{A} wins the game, if it succeeds to corrupt at least half of the tier-1 servers.

Fig. 1.	The	corruption,	/inspection	game.
---------	-----	-------------	-------------	-------

The problem posed by the above game is that for a fixed α , the service provider S wants to maximize γ while minimizing β . In the general case, one wants to maximize γ for any given α and β . Observe that, theoretically speaking, the maximum value of γ that can be attained is $(1 - \alpha + \alpha\beta)/2$ (see Figure 2), which corresponds to (more than) half the honest servers among the ones originally clean plus (more than) half the ones that were reset to a clean state.

Fig. 2. The maximum adaptive corruption rate γ given α , β in the corruption/inspection game.

For the special case of $\beta \to 0$, the theoretical maximum is $\gamma = (1 - \alpha)/2$. Indeed, Theorem 1 implies that the service provider can examine a vanishing fraction of the servers and still run a successful MPC protocol amongst those inspected servers that were found clean, given that the adversary's corruption rate γ is below $(1 - \alpha)/2$. However, this still does not show how to obtain the maximal γ for any choice of α, β , when the service provider is unaware of the identity of the $(1 - \alpha)n$ honest servers.

Note that the above course of action for the service provider, where the first tier consists of only inspected servers which were uncorrupted, takes no advantage of the servers that were restored to a clean state. As mentioned above, those restored servers cannot be part of the first tier since such servers would be detected by the adversary and hence the required indistinguishability between tiers would be violated. However, by performing a more sophisticated selection of servers which also exploits a small random subset of the restored servers, we can improve on the number of adaptive corruptions obtained by Theorem 1, and maximize γ to its optimal value for any choice of α , β . Specifically:

Theorem 2 (Informal). In the corruption/inspection game, for any constants $\alpha, \beta \in (0, 1)$ and any constant $\epsilon > 0$, there exists a two-tier fully secure MPC protocol tolerating adaptive corruption rate $\gamma \leq (1 - \epsilon)\frac{1-\alpha+\alpha\beta}{2}$.

In other words, for any constants α , β , we achieve the maximal theoretical corruption rate of almost half the honest parties across the two tiers. This means our protocol tolerates a total corruption rate arbitrarily close to $\frac{1-\alpha+\alpha\beta}{2}+\alpha(1-\beta)$ across both tiers. Such a corruption rate is above 1/2 for any $\alpha > 0$, surpassing the maximal corruption rate that can be tolerated in the plain model.

1.2 Our techniques

The main idea behind our constructions is to have all the servers take part in the protocol, albeit in a way that only tier-1 servers perform the actual computation (as in [Bea97, DI05, ALZ13]), while the tier-2 servers' role is to keep the identities of the tier-1 servers hidden. This way we effectively employ MPC with "honest majority" among tier-1 servers and achieve full security, even though a majority of the overall number of parties may be corrupted.

Hiding the identities of tier-1 servers is done by utilizing a novel message delivery mechanism we describe below, which has the net effect that the adversarial view of the MPC protocol transcript is hidden in a traffic analysis-resistant way amidst a large set of irrelevant (but indistinguishable) messages. Performing MPC with a hidden, anonymous set of servers raises many interesting cryptographic questions; in particular:

How can first-tier servers run an MPC protocol amongst themselves, while any specific server (whether first- or second-tier) remains oblivious to other servers' identities?

We solve this apparent contradiction by introducing the notion of *Anonymous* yet Authentic Communication (AAC), which allows a party to send a message to any other party in an anonymous and oblivious way. Despite being anonymous, the delivery is *authenticated*, that is, only the certified party will be able to send a valid message, and only the certified recipient will be able to correctly learn the message. We believe that such a primitive might be of independent interest.

In more detail, in an AAC message delivery the sender will reveal to the recipient only his "virtual" protocol identity, but not his real identity. At the same time, the sender will remain oblivious to the real identity of the recipient, which will only be specified by its protocol identity. We show how to implement AAC message delivery by utilizing an *anonymous broadcast* protocol [Cha88], which allows parties to broadcast messages without disclosing the real identity of the sender of each message, and composing it with a suitable authentication mechanism. Finally, by substituting point-to-point channels with AAC activations in an (adaptively secure) MPC protocol, we achieve our desired two-tier MPC functionality. The fundamental observation in the security proof is that the usage of the AAC message delivery mechanism effectively transforms any adaptive corruption strategy of the adversary against the MPC protocol into a *random* corruption strategy. Given this observation, we apply a probabilistic analysis using the tail bounds of the hypergeometric distribution to establish Theorem 1.

The proof of Theorem 2 is slightly more complex than Theorem 1's, as we now have to account for the fact that some information is "leaked": the adversary can distinguish the restored servers from the remaining ones, and can therefore "cluster" servers around those two disjoint subsets. Nevertheless, we are able to apply a similar analysis as in Theorem 1 by observing that any adaptive corruption strategy effectively amounts to a partially random corruption strategy: the adversary can control which specific cluster it corrupts, but within a specific cluster, which parties he corrupts are effectively chosen at random.

1.3 Related work

As mentioned above, fully secure MPC in the cryptographic setting can only be achieved in the standard model against static and adaptive corruptions in the case of an honest majority [GMW87, CFGN96]; in the case of a corrupt majority, the weaker notion of *security with abort* can be achieved as in, e.g., [GMW87, BG89, GL91, CFGN96, GL02, CLOS02, KOS03].

Our two-tier model is inspired by recent work on "resource-based corruptions" [GJKY13], in which corrupting a party (server) carries a (computational) cost to the adversary. Different parties may have different corruption costs, and this information is hidden from the resource-bounded adversary (in [GJKY13], this is termed *hidden diversity*). Due to being uninformed of such costs, the adversary is then "forced" to waste his budget on servers whose corruption cost is high. For a fixed adversarial budget, robustness in the hidden-cost model greatly outweighs robustness in the setting in which all parties have the same corruption cost.

Full security with dishonest majority is also achievable in the case of *incentive*driven adversaries [GKM⁺13], which considers a rational type of adversary who is assumed to receive a certain payoff/utility for breaking certain security properties, such as privacy and/or correctness. Intuitively, low payoffs allow for security against corrupt majorities. In contrast to [GJKY13] and [GKM⁺13], our adversary is the standard cryptographic adversary.

Maybe closest to our work is the work by Asharov, Lindell and Zarosim [ALZ13]. which defines a model with a "reputation system." In this model, the service provider knows in advance the probability r_i that a party *i* remains honest throughout the protocol (in other words, the adversary corrupts each party iindependently with probability $1 - r_i$). This allows the service provider to find a subset of the parties, over half of which is guaranteed to remain honest with high probability. In contrast, in our model the service provider only knows that some specific parties are honest at the onset of the computation, but has no control or knowledge on whether they remain honest, nor is he aware of the "reputation" of the other parties. In addition, our model also tolerates adaptive corruptions, while the adversary in [ALZ13] only statically corrupts parties according to the reputation system. In more detail, our technique has the property that the best adversarial corruption strategy becomes the random one, that is, we *force* the adversary to corrupt parties at random. Therefore, although our adversary is fully adaptive and is only restricted in the number of parties to corrupt, he is effectively restricted to a uniform corruption pattern. Such a strategy induces a reputation vector which is in the feasible region for secure multiparty computation according to [ALZ13]; yet, we achieve a fully secure MPC without restricting the adversary in advance to a specific corruption pattern.

Table 1 summarizes the current state of the art of MPC with dishonest majority.

Finally, our anonymous message transmission notion, AAC, is related to (but distinct from) the notion of "secret handshakes" [BDS⁺03, CJT04]. Similarly to this notion, we work in a setting where a certain special action takes place

Paper	"Standard" Adversary	Adaptive Corruption	Dishonest Majority	Security	GOD^a
[GMW87], [BG89], [GL91], [CFGN96], [GL02], [CLOS02], [KOS03], etc.	\checkmark	$\sqrt{(\text{some})}$	\checkmark	with abort	
$[GKM^+13]$	b	\checkmark	\checkmark	full	
[GJKY13]	c	\checkmark	d	full	\checkmark
[ALZ13]	\checkmark	—	\checkmark	full	
(this paper)	\checkmark	\checkmark	\checkmark	full	

^a Guaranteed Output Delivery

^b Incentive-driven adversary; restricted to some utility functions

 c Resource-based adversary; with different corruption cost per party (unknown to the adversary)

 $^d\,$ The adversary has enough resources to corrupt a majority of the parties, yet the parties' hidden corruption costs prevent the adversary from doing so

Table 1. Circumventing the impossibility of full security [Cle86]: a comparison.

between two parties if and only if they are both members of a hidden subset. If it happens that one party is not a member of the hidden subset, then it cannot infer the membership status of the other party. Our work is, to the best of our knowledge, the first application of such "covert subset" techniques in a setting where anonymity is not the prime objective. In fact, our work shows how anonymity can be effectively used to increase the resiliency (specifically, the number of tolerated corruptions) of MPC, and makes yet another demonstration of the power of such tools [FGMO05, IKOS06].

1.4 Organization of the paper

The balance of the paper is organized as follows. Notation, definitions, and the two-tier (TT) model for MPC are presented in Section 2. The TT MPC protocol, as well as the AAC (Anonymous yet Authentication Communication) notion and construction it relies on, are presented in Section 3. Finally, the analysis yielding the selection of the two tiers allowing to tolerate the maximal corruption rate appears in Section 4. Some complementary material, including auxiliary definitions and constructions, is presented in the appendix.

2 Model and Definitions

2.1 Notation and preliminaries

We let κ be the security parameter, and assume that any function, set size or running time implicitly depends on this parameter (especially when we write negl to describe a negligible function in κ —i.e., negl < 1/poly(κ) for large enough κ). For any ε , we say that two distribution ensembles $\{X_{\kappa}\}_{\kappa\in\mathbb{N}}$, $\{Y_{\kappa}\}_{\kappa\in\mathbb{N}}$ are ε indistinguishable, denoted $\{X_{\kappa}\} \approx_{\epsilon} \{Y_{\kappa}\}$, if for any probabilistic polynomial-time (PPT) algorithm C, for large enough κ ,

$$|\Pr[C(1^{\kappa}, X_{\kappa}) = 1] - \Pr[C(1^{\kappa}, Y_{\kappa}) = 1]| < \epsilon + \mathsf{negl}(\kappa).$$

We say that X and Y are computationally indistinguishable, denoted $\{X_{\kappa}\} \approx \{Y_{\kappa}\}$, if they are ε -indistinguishable with $\varepsilon = 0$. We now proceed to describe some of the cryptographic notions and building blocks that we use throughout the paper.

Security of multiparty protocols. For defining security of a multiparty protocol for computing an *n*-ary function f, we follow the standard simulation-based approach [GMW87, Can00], in which the protocol execution is compared to an ideal protocol where the parties send their inputs to a trusted party who computes f and returns the designated output to each party. Commonly, the trusted-party activity for computing the function f is captured via a so-called ideal functionality \mathcal{F}_f .

Let $\mathsf{EXEC}_{\pi,\mathcal{A},\mathcal{Z}}(\kappa, \boldsymbol{x})$ denote an execution of the *n*-party protocol π with an adversary \mathcal{A} and an environment \mathcal{Z} , with $\boldsymbol{x} = x_1, \ldots, x_n$ being the vector of inputs of the parties. In the same manner, define $\mathsf{IDEAL}_{\mathcal{F}_f,\mathcal{S},\mathcal{Z}}(\kappa, \boldsymbol{x})$ to be an execution in the ideal-model, where the ideal functionality is described by $\mathcal{F}_f, \mathcal{S}$ is the adversary (commonly known as *simulator*), \mathcal{Z} is the environment, and \boldsymbol{x} defined as above. We say that π securely realizes the functionality \mathcal{F}_f if for every polynomial-time real-model adversary \mathcal{A} and any PPT environment \mathcal{Z} , there is a polynomial time ideal-model simulator \mathcal{S} such that for any input vector \boldsymbol{x} ,

$$\{\mathsf{EXEC}_{\pi,\mathcal{A},\mathcal{Z}}(\kappa,\boldsymbol{x})\}_{\kappa\in\mathbb{N}}\approx_{\varepsilon}\{\mathsf{IDEAL}_{\mathcal{F}_{f},\mathcal{S},\mathcal{Z}}(\kappa,\boldsymbol{x})\}_{\kappa\in\mathbb{N}}$$

where ε is a negligible function in the security parameter κ . Throughout this paper, we assume n and κ are polynomially related.

We refer the reader to Appendix A for additional standard definitions and other building blocks we use, and move on to describe the basics of the two-tier (TT) model for MPC.

2.2 The two-tier (TT) model for secure multiparty computation

There are *n* parties (servers) $\mathcal{P} = \{P_1, P_2, \ldots, P_n\}$, each of them identified by a name P_i , referred to as its *real* identity, and a "virtual" name from $\mathcal{P}^* = \{P_1^*, \ldots, P_n^*\}$, referred to as its *protocol pseudonym*, which identifies them as participants in the MPC protocol; all are probabilistic polynomial-time (PPT) machines. We assume a bijection $\nu : \mathcal{P} \to \mathcal{P}^*$ which maps a real identity P_i to its protocol pseudonym $\nu(P_i) \in \mathcal{P}^*$. The parties are assumed to know both their real name and pseudonym, but they do not know the specific ν .

We are interested in secure function evaluation [GMW87] performed by the servers in \mathcal{P} . The inputs to the computation are assumed to be held by a set of clients, who are assumed to be outside the set \mathcal{P} . Each such client has an input x_i , and the goal is to compute a joint function f of the clients' inputs. Servers do not have an input of their own and they expect no output from the

computation—their sole purpose is to carry out the computation and deliver the output back to clients.

As in the standard MPC setting, parties are connected by pair-wise authentic and reliable channels, which are identified by the *real* names of the two connected parties/servers. Accessing this communication channel does not mandate the disclosure of the protocol pseudonyms of the communicating parties. We assume a synchronous communication model where a party can send a message to multiple parties at the same time [Can00].

The set of servers is divided into two disjoint sets $\mathcal{P} = \mathcal{P}_1 \cup \mathcal{P}_2$ —the first and second tier servers respectively. Our communication model assumes that the two tiers are indistinguishable at the communication (real name) layer. As mentioned in Section 1, the two tiers are subject to different adversarial capabilities with respect to corruption. Among the servers in \mathcal{P}_2 , an unlimited number t_s of *static* corruptions are allowed. The servers in \mathcal{P}_1 , on the other hand, are assumed to be uncorrupted at the onset of the computation. During the course of the computation, *all* servers are subject to adaptive corruptions; we denote the number of such corruptions by t_a . We assume a threshold corruption model, in which the adversary is restricted to corrupting at most $t (= t_s + t_a)$ of the parties overall. At each step, the adversary may choose a party $P_i \in \mathcal{P}$ and corrupt it, as long as the total number of corrupted parties does not exceed his "budget" t. Once P_i gets corrupted, the adversary learns its internal state, including its tier level and protocol pseudonym $\nu(P_i)$.

We assume a standard public-key infrastructure (PKI) setup, in which each party P_i , $i \in \{1, \ldots, n\}$, is given *two* pairs of public/secret keys (pk_i, sk_i) , (pk_j^*, sk_j^*) corresponding to its real name and protocol pseudonym, as well as the public keys of all other users (in a certified way) in the form $\{(pk_k, P_k)\}_{k \neq i}$ and $\{(pk_k^*, P_k^*)\}_{k \neq j}$. Note that the correspondence between names and protocol pseudonyms is not revealed. More formally, we express this as the parties having access to two instances of an ideal PKI functionality, denoted by $\mathcal{F}_{\mathsf{PKI}}^{\mathcal{P}}$ and $\mathcal{F}_{\mathsf{PKI}}^{\mathcal{P}^*}$ (see [Can05] for definition of an ideal PKI functionality). If $\nu : \mathcal{P} \to \mathcal{P}^*$ maps between real and protocol identities, we shorthand these two functionalities by $\mathcal{F}_{\mathsf{PKI}}^{\nu} = (\mathcal{F}_{\mathsf{PKI}}^{\mathcal{P}}, \mathcal{F}_{\mathsf{PKI}}^{\nu(\mathcal{P}) = \mathcal{P}^*})$.

3 Secure Multiparty Computation in the Two-Tier Model

In this section we present our MPC protocol in the two-tier model, obtaining Theorem 1. As mentioned above, exploiting the indistinguishability between the two tiers requires new cryptographic tools that enable anonymous communication among servers. To this end, our construction assumes a communication capability which allows parties to communicate messages in an authenticated way but without compromising their real identity, which we term *Anonymous yet Authentic Communication* (AAC). Specifically, AAC allows entities to communicate with each other in an authenticated fashion at the protocol (application) layer, yet anonymously at the network (real-name) layer; the latter property comes from the fact that the correspondence between real and protocol names is hidden from the adversary and the functionality does not reveal it. We now define the ideal functionality of such a communication channel, and construct a protocol that securely realizes it.

3.1 The \mathcal{F}^{ν}_{AAC} ideal functionality

In the ideal world, the sender delivers to the functionality the message μ along with the protocol pseudonym of the intended receiver. The adversary is notified of this event and receives the pseudonyms of the two communicating entities. However, the real names of the two entities remain hidden. The functionality is parameterized by a mapping ν that gives the correspondence between names and pseudonyms. When the adversary instructs the functionality to deliver the message, the functionality recovers the real identity of the receiving entity and writes the message on its network tape along with the protocol pseudonym of the sender. We formally describe the functionality in Figure 3.

Functionality \mathcal{F}_{ν}^{ν}
Functionality J AAC
\mathcal{F}_{AAC}^{ν} is parameterized by a security parameter κ and a set of n parties with
real names \mathcal{P} , protocol pseudonyms \mathcal{P}^* , and a bijection $\nu : \mathcal{P} \to \mathcal{P}^*$; it assumes
a message space $\mathcal{M} = \mathcal{M}(\kappa)$ and proceeds as follows, running with parties
$P_1,, P_n \in \mathcal{P}$ and an adversary \mathcal{S} :
- Upon receiving (Send, sid , P_i , μ , P_i^*) from P_i , record this tuple. Once a
message is recorded from all honest parties send to the adversary \mathcal{S} the
sequence of tuples (SendLeak, sid , $\nu(P_i)$, μ , P_j^*) lexicographically ordered.
- Upon receiving (Deliver, sid) from S , check that a Send message was recorded
on behalf of all senders, and if so, for any recorded tuple of the form
(Send, sid , P_i , μ , P_j^*), deliver (Sent, sid , $\nu(P_i)$, μ) to party $\nu^{-1}(P_j^*)$.
- Upon receiving (Abort, sid , A) from S check that A is a non-empty subset
of corrupted parties and forward this message to all honest parties.
- Upon receiving (Corrupt, P_i) from S mark P_i as corrupted and return $\nu(P_i)$
to S.
If D is summarized then C is allowed to submit (Cand and D or D^*) on babali
If P_i is corrupted then S is allowed to submit (Send, sid , P_i , μ , P_j) on behalf
of P_i .

Fig. 3. Ideal functionality for anonymous yet authentic communication (AAC).

We now show how this functionality can be securely realized assuming an *anonymous broadcast channel* functionality (cf. [Cha88]) tolerating an arbitrary number of corrupted parties³. Recall that such functionality can be thought of

³ We remark that performing an AAC message delivery means that in case the AAC protocol terminates with abort, the protocol is repeated with a subset of parties currently not marked as corrupt.

as a bulletin board on which any party can post messages without revealing its identity. This is modeled as the ideal functionality \mathcal{F}_{ABC} in Figure 4, which we later on show how to implement assuming a PKI setup.⁴

Functionality \mathcal{F}_{ABC}

The functionality assumes a message space $\mathcal{M} = \mathcal{M}(\kappa)$ with κ being the security parameter, and works as follows, running with n parties P_1, \ldots, P_n and an adversary \mathcal{S} :

- Upon receiving (AnonBcast, sid, P_i , μ) from P_i record this tuple. Once a message is recorded for all honest parties send to the adversary S the message (AnonBcastLeak, sid, M) where M is the (lexicographically ordered) set of messages μ from all recorded tuples of the form (AnonBcast, sid, P_i , μ).
- Upon receiving (Deliver, sid) from S, ignore further AnonBcast messages, and deliver (AnonBcastDeliver, sid, M') to all parties P_1, \ldots, P_n where M'is the set of messages μ (lexicographically ordered) from all recorded tuples of the form (AnonBcast, sid, P_i , μ).
- Upon receiving (Abort, sid, A) from S check that A is a non-empty subset of corrupted parties and forward this message to all honest parties.
- Upon receiving (Corrupt, P_i) from S mark P_i as corrupted and return the recorded (AnonBcast, sid, P_i , μ) to S.

If P_i is corrupted then S is allowed to submit (or substitute existing) (AnonBcast, sid, P_i , μ) messages on behalf of P_i .

Using the ideal functionality \mathcal{F}_{ABC} and the PKI setting described in Section 2, we now describe a secure realization of \mathcal{F}_{AAC}^{ν} . The protocol makes use of an existentially unforgeable digital signature scheme (see Appendix A). The implementation is rather straightforward: the sender uses the (protocol layer) PKI to sign the message and anonymously broadcast it. Any party receiving the message checks whether it is the intended protocol-layer recipient, and if so, it verifies the signature and decrypts the message. This approach prevents impersonation at the protocol layer while still hiding the correspondence between protocol names and real names.

The AAC protocol is described in Figure 5 and operates in the $(\mathcal{F}_{PKI}^{\nu}, \mathcal{F}_{ABC})$ -hybrid world.

Theorem 3. Let $n \in \mathbb{N}$, parties \mathcal{P} with protocol pseudonyms \mathcal{P}^* and a bijection $\nu : \mathcal{P} \to \mathcal{P}^*$. The AAC protocol from Figure 5 securely realizes \mathcal{F}_{AAC}^{ν} against an adaptive adversary corrupting t < n parties in the $(\mathcal{F}_{PKI}^{\nu}, \mathcal{F}_{ABC})$ -hybrid model.

⁴ We note that (most) security proofs in Canetti's synchronous model [Can00] carry over to the *Universal Composability* framework [Can05], given that certain functionalities are available to the protocol [KMTZ13].

Protocol AAC

Setup: Let κ be the security parameter, and (GenS, Sig, Ver) be an existentially unforgeable signature scheme. The PKI setup delivers real-layer keys (pk_i, sk_i) and protocol-layer keys (pk_i^*, sk_i^*) , as described in Section 2.2. Each pair of keys is generated using GenKey $(1^{\kappa}) = (\text{GenE}(1^{\kappa}), \text{GenS}(1^{\kappa}))$. We assume real names \mathcal{P} and protocol pseudonyms \mathcal{P}^* are known to all entities (but not ν). Send message: On input (Send, sid, P_i, μ, P_j^*), party P_i sends (AnonBcast, $sid, P_i, (P_i^*, P_j^*, \mu, \sigma)$) to \mathcal{F}_{ABC} where $\sigma \leftarrow \text{Sig}_{sk_i^*}(P_j^*, \mu, sid)$. Receive message: P_j , $1 \leq j \leq n$, upon receiving (AnonBcast, sid, M) from \mathcal{F}_{ABC} , if it holds that $P_j^* = B$ for some $(A, B, \mu, \sigma) \in M$ (i.e., P_i is the intended protocol layer have a source of that message).

from \mathcal{F}_{ABC} , if it folds that $P_j = B$ for some $(A, B, \mu, \sigma) \in M$ (i.e., P_j is the intended protocol level receiver of that message), P_j checks $\operatorname{Ver}_{pk_i^*}(P_j^*, \mu, sid, \sigma)$, where *i* is such that $A = P_i^*$, and provided Ver returns 1, it records (P_i^*, μ) . The action terminates by returning all recorded tuples. **Abort:** If \mathcal{F}_{ABC} returns (Abort, sid, A) then terminate and return A.

Fig. 5. A protocol realizing \mathcal{F}_{AAC}^{ν} .

Proof (sketch). Consider a PPT adversary \mathcal{A} and a PPT environment \mathcal{Z} . We use the notation \mathcal{M} to denote the space of all messages. We construct a simulator \mathcal{S} so that for every vector of inputs $\boldsymbol{x} = x_1, \ldots, x_n$ with $x_i \in \{(\mathsf{Send}, sid, P_i, \mu, P_j^*) \mid j \in \{1, \ldots, n\}, \mu \in \mathcal{M}\}$, for $i = 1, \ldots, n$, the following holds:

$$\mathsf{EXEC}_{\mathsf{AAC},\mathcal{A},\mathcal{Z}}^{\mathcal{F}_{\mathsf{PKI}}^{\nu},\mathcal{F}_{\mathsf{ABC}}}(\kappa,\boldsymbol{x}) \approx \mathsf{IDEAL}_{\mathcal{F}_{\mathsf{AAC}}^{\nu},\mathcal{S},\mathcal{Z}}(\kappa,\boldsymbol{x})$$

where $\nu : \mathcal{P} \to \mathcal{P}^*$ is a random bijection. As a setup step, \mathcal{S} generates keys for all the identities in \mathcal{P}^* , and gives \mathcal{A} all the public keys. The simulator maintains a list M which is empty at initialization.

The simulation is straightforward: when S receives (SendLeak, sid, P_i^* , μ , P_j^*) from \mathcal{F}_{AAC}^{ν} it generates a signature $\sigma = \text{Sig}_{sk_i^*}(P_j^*, \mu, sid)$ and updates the list $M = M \cup (P_i^*, P_j^*, \mu, \sigma)$. Once S processes the SendLeak message for all the honest parties, it sends (AnonBcastLeak, sid, M) over to \mathcal{A} . If \mathcal{A} issues an Abort message, S forwards the abort to \mathcal{F}_{AAC}^{ν} . Otherwise, \mathcal{A} issues a Deliver message which is also forwarded to \mathcal{F}_{AAC}^{ν} .

When the adversary requests to corrupt some party P_i , the simulator forwards the request to \mathcal{F}_{AAC}^{ν} and learns P_i 's protocol pseudonym $\nu(P_i)$. Next, it forms the inner state of P_i accordingly (that contains the signing key of pseudonym $\nu(P_i)$), and delivers this information to \mathcal{A} . It is clear that the honest parties' output is identically distributed between the real and ideal executions, with the exception of the event that the adversary \mathcal{A} (or the environment \mathcal{Z}) forges a signature on behalf of an honest party. In this case the simulator will fail, but this will happen with negligible probability based on the security of the underlying digital signature scheme. \Box There are several possible ways to realize \mathcal{F}_{ABC} so that up to t < n corruptions can be tolerated assuming our setup configuration (PKI). We consider some alternatives in Appendix B.

3.2 Pseudonymity and random corruptions

With foresight, the approach we will follow is to replace every communication in an (adaptively secure) MPC protocol for the standard setting with an invocation to \mathcal{F}_{AAC}^{ν} . We now show that if a protocol π that operates at the pseudonym layer is unaware of the real/protocol name correspondence, then the approach does not reveal any information about the mapping ν . (In addition, it is straightforward to verify that the modified protocol would remain correct, i.e., it produces the same outputs as π .)

Let π be a protocol defined over the "pseudonym" protocol layer, i.e., running with parties P_1^*, \ldots, P_n^* . Further, π operates in (synchronous) communication rounds. Normally, in an execution of π with an adversary \mathcal{A} , an environment \mathcal{Z} and parties P_1^*, \ldots, P_n^* , \mathcal{A} is capable of issuing (Corrupt, P_i^*) messages when it wants to corrupt party P_i^* .⁵ We consider a stronger notion of execution, denoted rcEXEC, in which the adversary is allowed to issue (Corrupt) requests to a corruption oracle, upon which a *randomly* chosen honest party gets corrupted. We call this an execution with *random* corruptions. Note that rcEXEC_{$\pi,\mathcal{A},\mathcal{Z}$} is the ensemble of views over the adversary's (and environment's) coin tosses, the parties' coin tosses *and* the randomness of the corruption oracle.

Now consider the setting where the communication is handled by a lower "physical" layer where each party has a physical (real) identity P_1, \ldots, P_n and there is a mapping $\nu : \mathcal{P} \to \mathcal{P}^*$ that corresponds protocol identities to communication identities (real names). Given any protocol π that operates in rounds, we can easily obtain a protocol $\tilde{\pi}^{\mathcal{F}_{AC}^{\iota}}$ that runs with parties P_1, \ldots, P_n and whenever π , acting on behalf of P_i^* , wishes to send a message μ to party P_j^* the $\tilde{\pi}$ protocol delivers (Send, $sid, \nu^{-1}(P_i^*), \mu, P_j^*$) to \mathcal{F}_{AAC}^{ν} . Thus, each communication round of π is equivalent to a single instantiation of \mathcal{F}_{AAC}^{ν} .

Next, we show that $\tilde{\pi}^{\mathcal{F}_{AAC}^{\nu}}$ with a randomly chosen ν is simulatable in the random-corruptions setting. For ease of notation, we identify a bijection $\nu : \mathcal{P} \to \mathcal{P}^*$ with a permutation on n elements.

Lemma 4. Let π and $\tilde{\pi}^{\mathcal{F}_{AAC}^{\nu}}$ be as above. For any PPT adversary \mathcal{A} and environment \mathcal{Z} , and for any input vector \boldsymbol{x} , there exist a PPT simulator \mathcal{S} such that

$$\left\{\mathsf{EXEC}_{\tilde{\pi},\mathcal{A},\mathcal{Z}}^{\mathcal{F}_{\mathsf{AAC}}^{\nu}}(\kappa,\boldsymbol{x}^{\nu})\right\}_{\nu\in_{R}\mathrm{Perm}(n)}\approx\mathsf{rcEXEC}_{\pi,\mathcal{S},\mathcal{Z}}(\kappa,\boldsymbol{x})$$

where Perm(n) is the set of all the possible permutations on n elements.

⁵ We emphasize that since π exists only in the pseudonym layer, the parties' identifiers are \mathcal{P}^* , and the adversary corrupts by specifying a certain P_i^* . However, when running in our TT model setup, the identities of the parties are \mathcal{P} , and the adversary corrupts a party by specifying a certain P_i .

Proof. Consider the following simulator. At first it fixes a randomness tape for \mathcal{A} and follows the computation, replacing each "communication round" with a \mathcal{F}_{AAC}^{ν} simulation. Namely, after each round of communication, \mathcal{S} gathers all the messages sent in this round, and provides the adversary with a lexicographical list whose entries are of the form (SendLeak, sid, P_i^* , μ , P_j^*) matching the case where P_i^* sent P_j^* the message μ . Note that we assume π runs in rounds, so each party sends exactly one message at each communication round.

When \mathcal{A} issues (corrupt, P_i), the simulator issues (corrupt) and as a result, P_j^* gets corrupted, for a random j (out of all the parties that are still honest). The simulator sets $\nu(i) = j$ and simulates the inner state of P_j^* so it would correspond to the real identity P_i in a straightforward way.

Note that at the end of the simulation, the simulator has defined a partial mapping ν . The output of this simulation is exactly the same as the output of any instance of the left-hand side experiment, running with the same adversary (set to the same randomness tape), for any mapping ν' that agrees with ν on the identities of all corrupted parties. It easily follows that the two ensembles are identically distributed.

3.3 The two-tier MPC protocol

Recall our setting in which n parties (servers) with real names $\mathcal{P} = \{P_1, P_2, \ldots, P_n\}$, are split into two tiers $\mathcal{P} = \mathcal{P}_1 \cup \mathcal{P}_2$, and where the computation is effectively carried out only by servers in the first tier, who then distribute the output to the clients as needed (see also [DI05, ALZ13]). Let $|\mathcal{P}_1| = m$ and $|\mathcal{P}_2| = n - m$. In addition, we assume there are $c \in \mathbb{N}$ clients, each holding a private input x_i ; let $\boldsymbol{x} = x_1, \ldots, x_c$. The clients wish to compute some function f of their inputs, described as the c-party functionality $\mathcal{F}_f(\boldsymbol{x})$.

We now describe the two-tier MPC protocol performed by the servers, assuming they have already (verifiably) secret-shared⁶ the clients' inputs. This operation is in fact easy to achieve using standard techniques and without the need for AAC communication. For example, one may assume that the *i*-th client computes an $(m, \lceil m/2 \rceil - 1)$ -verifiable secret sharing of x_i using the adaptively secure VSS scheme of Abe and Fehr [AF04]. Then, the client broadcasts a signed copy of the *j*-th share encrypted with P_j^* 's public key. (Recall that protocol identities, and in particular those corresponding to servers in \mathcal{P}_1 , are public.) As a result of the computation, the servers obtain a share of $\mathcal{F}_f(\boldsymbol{x})$'s output—we denote this modified functionality by $\mathcal{F}_f^{res}(\boldsymbol{x})$; the shares are then sent to the clients.⁷

We now explain how the servers carry out the actual computation of $\mathcal{F}_f(\boldsymbol{x})$. The two-tiered MPC protocol operates in the $(\mathcal{F}_{\mathsf{PKI}}^{\nu}, \mathcal{F}_{\mathsf{AAC}}^{\nu})$ -hybrid world and is presented in Figure 6.

⁶ Refer to Appendix A for the definition of VSS.

⁷ We note that in case the identities of first-tier servers need to remain hidden (say, for the continuation of the service in a forthcoming MPC execution), the output delivery should be anonymous as well. This can be achieved, for example, by extending the AAC mechanism to include both servers and clients at the protocol layer.

MPC in the Two-Tier Model

Assume *n* parties with real names $\mathcal{P} = \{P_1, P_2, \ldots, P_n\}$, split into two disjoint subsets $\mathcal{P} = \mathcal{P}_1 \cup \mathcal{P}_2$, where $|\mathcal{P}_1| = m$. Parameters *n* and *m* are public. Furthermore, assume a *c*-ary functionality $\mathcal{F}_f(\boldsymbol{x})$ to be securely computed on inputs $\boldsymbol{x} = x_1 \ldots x_c$, where each x_i is $(m, \lceil m/2 \rceil - 1)$ -VSS'd in \mathcal{P}_1 .

Trusted setup. Public and secret keys, as well as protocol identities are handed to each party by $\mathcal{F}_{\mathsf{PKI}}^{\nu}$, as described in Section 2.2.

Computation phase.

- Let $\mathcal{F}_{f}^{\text{vss}}$ be the *m*-party functionality that performs the same task as the *c*-party functionality \mathcal{F}_{f} , assuming that each of the *m* parties holds a share of each of the *c* inputs.
- The output of $\mathcal{F}_{f}^{\text{vss}}$ is a $(m, \lceil m/2 \rceil 1)$ -VSS share of each of the *c* outputs of \mathcal{F}_{f} .
- The parties in \mathcal{P}_1 adaptively securely compute $\mathcal{F}_f^{\text{vss}}$ amongst themselves (for example, via [CFGN96]). During the execution, messages between any two parties are sent invoking \mathcal{F}_{AAC}^{ν} (Fig. 3).

It is immediate that the protocol in Figure 6 securely realizes \mathcal{F}_{f}^{vss} as long as the adversary does not corrupt a majority of the tier-1 servers. Formally,

Proposition 5. Let $n, m, c \in \mathbb{N}$. For any given c-ary functionality \mathcal{F}_f and for any bijection $\nu : \mathcal{P} \to \mathcal{P}^*$, the protocol of Figure 6 operating in the $(\mathcal{F}_{\mathsf{PKI}}^{\nu}, \mathcal{F}_{\mathsf{AAC}}^{\nu})$ hybrid world securely realizes $\mathcal{F}_f^{\mathsf{vss}}$ conditioned on the event that the adversary corrupts at most $\lceil m/2 \rceil - 1$ servers.

Next, we prove a combinatorial lemma, showing that for any $\epsilon > 0$ and t_s initial static corruptions among the tier-2 servers, if an adversary adaptively corrupts up to $(1-\epsilon)\frac{n-t_s}{2}$ parties without knowing the two-tier partition, then the probability of corrupting a majority of \mathcal{P}_1 servers is negligible in $|\mathcal{P}_1|$.

Lemma 6. Assume n parties \mathcal{P} , m of which are in \mathcal{P}_1 and $t_s \leq n - m$ of \mathcal{P}_2 are initially corrupted. Assume that the adversary is bounded to adaptively corrupting t_a parties with $t_a \leq (1-\epsilon)\frac{n-t_s}{2}$, for some constant $\epsilon > 0$, where $\epsilon m \geq 4$. Furthermore, assume that by corrupting a party $P_i \in \mathcal{P}$, the adversary learns its tier level (but not the tier level of other parties). Then, the probability that adversary corrupts at least m/2 parties from \mathcal{P}_1 is at most $2^{-\Omega(m)}$.

Proof. Let K be the random variable describing the number of \mathcal{P}_1 servers that were corrupted, assuming the adversary corrupts additional $t_{\mathsf{a}} = (1-\epsilon)\frac{n-t_{\mathsf{s}}}{2}$ servers (i.e., on top of statically-corrupting t_{s} parties). K is distributed according to the hypergeometric distribution (see Appendix C) with parameters $(n - t_{\mathsf{s}}, m, t_{\mathsf{a}})$, and we denote $K \sim \mathsf{HypGeo}_{n-t_{\mathsf{s}}, m, t_{\mathsf{a}}}$. We get that

$$\mathbb{E}[K] = (1-\epsilon)\frac{n-t_{\mathsf{s}}}{2} \cdot \frac{m}{n-t_{\mathsf{s}}} = (1-\epsilon)\frac{m}{2}.$$

Assuming that m is odd (the case of even m is similar) we can use the tail bound of Lemma 10 to bound the probability that more than m/2 servers get corrupted.

$$\begin{aligned} \Pr[K > m/2] &= \Pr[K - \mathbb{E}[K] > \epsilon m/2] \\ &< e^{-2\frac{n - t_{\mathsf{s}} + 2}{4(m + 1)(n - t_{\mathsf{s}} - m + 1)}(\epsilon^2 m^2 - 1)} \\ &\leq 2^{-\Omega(\frac{n - t_{\mathsf{s}}}{n - t_{\mathsf{s}} - m + 1}m)} = 2^{-\Omega(m)}, \end{aligned}$$

since in our case $\alpha_{n,m,t}$ of Lemma 10 satisfies $\alpha_{n,m,t} \geq \frac{n+2}{(m+1)(n-m+1)}$, and assuming $\epsilon m \geq 4$.

Theorem 1. Assume $m = \omega(\log n)$ and $\epsilon > 0$. For any given c-ary functionality \mathcal{F}_f , there exists a two-tier MPC protocol in the $(\mathcal{F}_{\mathsf{PKI}}^{\nu}, \mathcal{F}_{\mathsf{AAC}}^{\nu})$ -hybrid world that securely realizes \mathcal{F}_f against any PPT adversary with $t_{\mathsf{a}} \leq (1-\epsilon)\frac{n-t_{\mathsf{s}}}{2}$ and $t_s \leq n-m$.

Proof. Observe that (i) the MPC protocol is secure as long as a majority of \mathcal{P}_1 servers are honest (Proposition 5); (ii) given that the adversary learns the protocol pseudonym and tier-level of a party only when this party is corrupt, when restricted to $(1 - \epsilon)\frac{n-t_s}{2}$ corruptions, it has only an exponentially small probability (in m) to corrupt a majority of \mathcal{P}_1 (Lemma 6); (iii) by Lemma 4 an adaptive adversary learns only negligible information about ν (for uncorrupt parties), that is, it does not have an advantage in learning the protocol identity (i.e., tier-level) of uncorrupted parties from the transcript. Therefore, an adaptive adversary has exponentially small probability (in m) to break the protocol of Figure 6. Setting $m = \omega(\log n)$ makes the adversary's success probability negligible in n.

4 Optimal Strategy for the Corruption/Inspection Game

In this section we present the analysis for the corruption/inspection game (Figure 1). We obtain, for any parameters (α, β) , a strategy that maximizes γ up to the theoretical limit. In the previous sections we demonstrated that, given a two-tier model, MPC can be realized to resist as much corruptions as less than half the amount of the still-honest parties. However, it is left to be shown how to split the n servers into two tiers so that (i) the two tiers are indistinguishable and (ii) the tier-1 servers are honest at the onset of the computation.

As mentioned in Section 1, one possible strategy for the service provider S is to set as tier-1 all the servers that were inspected and found clean. However, S cannot use the servers which were found corrupt, as these are no longer indistinguishable from the honest servers. This strategy leads to a non-optimal adaptive corruption rate of $\gamma = \frac{1-\alpha}{2}$. Thus, better strategies should be sought in order to utilize the "restored" machines. Next, we show a strategy for the service provider which maximizes his utility in the corruption/inspection game. Specifically, we prove the following:

Theorem 2. For any constants $\alpha, \beta \in (0, 1)$, and for any $\varepsilon > 0$, there exists a two-tier MPC protocol in the $(\mathcal{F}_{\mathsf{PKI}}^{\nu}, \mathcal{F}_{\mathsf{AAC}}^{\nu})$ -hybrid world, and a winning strategy for a service provider in the corruption/inspection game, such that the protocol is adaptively secure against any PPT adversary with corruption rate $\gamma \leq (1 - \varepsilon) (1 - \alpha + \alpha\beta)/2$.

We begin by showing a strategy for the service provider that beats any adversary who learns the tier-level of honest parties only by corrupting them. The idea of the strategy is to use two sets of servers as tier-1. One set comprises all the servers that were inspected and found clean, while the second one is a small random subset of the servers that were restored to a clean state. Note that, from the point of view of the adversary, the first set is hidden within all the uncorrupt servers, while the second set is hidden within all the servers that were restored to a clean state. We set the size of the second group so that in both these sets, the ratio of tier-1 servers to the size of the set it is hidden within, is the same.

Lemma 7. Assume S and A play the corruption/inspection game with some constants $\alpha, \beta \in (0, 1)$ and a small constant $\varepsilon > 0$. Furthermore, assume that when a server becomes corrupt (and only then), the adversary learns its tier level. Then, there exists a strategy for S for choosing tier-1 servers, such that given a corruption rate $\gamma \leq (1 - \varepsilon) (1 - \alpha + \alpha\beta)/2$ the adversary has negligible probability to corrupt half (or more) of tier-1 servers.

Proof. S will choose the tier-1 servers as a subset of the βn inspected servers. We distinguish between two groups of inspected servers according to their state before the inspection: servers that were uncorrupt before the inspection (denoted G_1), and servers that were corrupt but recovered to a safe state by the inspection (G_2). From the point of view of \mathcal{A} , The first group is 'hidden' within the set \widehat{G}_1 of size $(1 - \alpha)n$ of the uncorrupt servers at the onset. The second group is fully known to the adversary ($\widehat{G}_2 = G_2$ with $\alpha\beta n$ servers⁸). S will pick a small subset of servers in G_2 as tier-1; these will be hidden within the entire \widehat{G}_2 . Note that the adversary knows which servers belong in \widehat{G}_1 and which are in \widehat{G}_2 , but does not know the tier level of each party within each set. That way, the indistinguishability requirement between tier-1 and tier-2 servers still holds, yet separately in \widehat{G}_1 and \widehat{G}_2 .

Specifically, S chooses tier-1 servers in the following way: all the $(1 - \alpha)\beta n$ servers in G_1 are chosen as tier-1 in addition to a random subset of servers in G_2 . We equate the fraction of tier-1 servers in both groups (with respect to the group it is hidden within). Thus, out of the $\alpha\beta n$ servers in G_2 , S randomly

⁸ The sizes of the groups are only their *expected* value. However for large enough n (and especially, for our asymptotical analysis where $n \to \infty$), with high probability the real size will be very close to the expected value and we treat those sets as having sizes exactly $(1 - \alpha)n$ and $\alpha\beta n$.

picks $y = \alpha \beta^2 n$ servers to be tier-1, so that

$$\frac{y}{\alpha\beta n} = \frac{(1-\alpha)\beta n}{(1-\alpha)n}.$$

We allow the adversary to corrupt at most $t = (1 - \varepsilon)(1 - \alpha + \alpha\beta)n/2$ servers out of the uncorrupt servers $\widehat{G}_1 \cup \widehat{G}_2$. Assume the adversary splits his budget so that it corrupts t_1 servers from \widehat{G}_1 , and t_2 servers from \widehat{G}_2 , where $t_1 + t_2 = t$.⁹

Let $r = t_1/t$ (thus, $1 - r = t_2/t$); observe that the adversary cannot spend more budget than the population of each set so $t_1 \leq (1 - \alpha)n$ and $t_2 \leq \alpha\beta n$, hence $1 - \frac{\alpha\beta}{t} \leq r \leq \frac{1-\alpha}{t}$. Let K_1, K_2 be the random variables that describe the number of servers \mathcal{A} adaptively corrupts out of \widehat{G}_1 and \widehat{G}_2 with budget t_1, t_2 , respectively. It is clear that

$$K_1 \sim \mathsf{HypGeo}_{(1-\alpha)n,(1-\alpha)\beta n,t_1}, \qquad K_2 \sim \mathsf{HypGeo}_{\alpha\beta n,\alpha\beta^2 n,t_2}.$$

In order to win the game, \mathcal{A} needs to corrupt at least half of the tier-1 servers, where some can be in \widehat{G}_1 and the rest in \widehat{G}_2 . However, no matter how \mathcal{A} splits its budget, \mathcal{A} corrupts more than half of the overall tier-1 servers with only a negligible probability. To that end, we again use the tail bound of Lemma 10. Specifically, the probability that the adversary corrupts, out of \widehat{G}_1 , at least an *r*-fraction of *half* of all the tier-1 servers, is negligible:

$$\Pr\left[K_1 > \frac{r}{2}((1-\alpha)\beta + \alpha\beta^2)n\right] = \Pr\left[K_1 > t_1\beta\frac{(1-\alpha+\alpha\beta)n}{2t}\right]$$
$$= \Pr\left[K_1 > \frac{1}{1-\varepsilon}\mathbb{E}[K_1]\right]$$
$$= \Pr\left[K_1 > (1+\varepsilon')\mathbb{E}[K_1]\right]$$
$$< e^{-\Omega(\beta t)} = e^{-\Omega(n)},$$

where the second equality follows from $\mathbb{E}[K_1] = t_1 \frac{(1-\alpha)\beta n}{(1-\alpha)n} = t_1\beta$.

In a similar way for \widehat{G}_2 , the probability that \mathcal{A} corrupts more than a 1 - r fraction of half of tier-1 servers is negligible:

$$\Pr\left[K_2 > \frac{1-r}{2}((1-\alpha)\beta + \alpha\beta^2)n\right] = \Pr\left[K_2 > t_2\beta(1-\alpha + \alpha\beta)n/2t\right]$$
$$= \Pr\left[K_2 > \frac{1}{1-\varepsilon} \cdot \mathbb{E}[K_2]\right]$$
$$= \Pr\left[K_2 > (1+\varepsilon')\mathbb{E}[K_2]\right]$$
$$< e^{-\Omega(n)}.$$

⁹ While we assume fixed values t_1 and t_2 , in general the attack might be of any arbitrary distribution among the two sets. However, for any such attack we can repeat the analysis with t_1 being the expected number of servers corrupted out of \widehat{G}_1 , and the two analyses differ with negligible probability when $n \to \infty$.

It follows that there is a negligible probability for the adversary to corrupt at least $(r + (1 - r)) \cdot \frac{1}{2}((1 - \alpha)\beta + \alpha\beta^2)n$ tier-1 servers, and since the total number of tier-1 servers is $((1 - \alpha)\beta + \alpha\beta^2)n$, S wins the game.

Since the tier-1 servers are now split into two separate sets, we need to extend Lemma 4 to the case where ν is not uniform over $\operatorname{Perm}(n)$. Specifically, we assume now that $\{P_1, \ldots, P_n\}$ are partitioned into r disjoint sets, $\mathcal{P}_1, \ldots, \mathcal{P}_r$, with respective sizes s_1, \ldots, s_r , such that $\sum_{i=1}^r s_i = n$. Additionally, assume the protocol pseudonyms \mathcal{P}^* are also partitioned into r disjoint sets $\mathcal{P}_1^*, \ldots, \mathcal{P}_r^*$ where for every $1 \leq i \leq r$, $|\mathcal{P}_i| = |\mathcal{P}_i^*|$. We assume that the mapping ν is composed of r independent uniform permutations on the specific partitions. That is $\nu = (\nu_1, \ldots, \nu_r)$ where $\nu_i : \mathcal{P}_i \to \mathcal{P}_i^*$. For notational convenience, we also treat ν_i as a permutation on $\{1, \ldots, s_i\}$.

We show that even in this setting, where the adversary has some partial knowledge on ν , his best corruption strategy is equivalent to corrupting a random party. To that end, we re-define rcEXEC to be such that the simulator is allowed to choose the set from which the next party will be corrupted. That is, S may issue (corrupt, i) in which a random honest party in \mathcal{P}_i will get corrupted. We denote an execution of this model as $\operatorname{rc}_r \mathsf{EXEC}$.

Lemma 8. Let π and $\tilde{\pi}^{\mathcal{F}_{hAC}^{\iota}}$ be as above. Assume the parties are divided into r sets $\mathcal{P}_1, \ldots, \mathcal{P}_r$ of sizes s_1, \ldots, s_r . For any PPT adversary \mathcal{A} and environment \mathcal{Z} , and for any input vector \boldsymbol{x} , there exist a PPT simulator \mathcal{S} such that

$$\left\{\mathsf{EXEC}_{\tilde{\pi},\mathcal{A},\mathcal{Z}}^{\mathcal{F}_{\mathsf{AAC}}^{\nu}}(\kappa, \boldsymbol{x}^{\nu})\right\}_{\substack{\nu = (\nu_{1}, \dots, \nu_{r}) \\ \in_{R}(\operatorname{Perm}(s_{1}), \dots, \operatorname{Perm}(s_{r}))}} \approx \mathsf{rc}_{r}\mathsf{EXEC}_{\pi, \mathcal{S}, \mathcal{Z}}(\kappa, \boldsymbol{x}),$$

where Perm(k) is the set of all the possible permutations on k elements.

Proof. The simulation works similarly to the one of Lemma 4, with the following exception. When the adversary issues (corrupt, P_i), S will issue (corrupt, k) for the set k such that $P_i \in \mathcal{P}_k$. Assume that as a result P_j^* becomes corrupt, then S sets $\nu_k(i) = j$ and continues as before. Once again, the output of the simulation in this case is identical to any instance of $\mathsf{EXEC}_{\tilde{\pi},\mathcal{A},\mathcal{Z}}^{\mathcal{F}_{\mathsf{AAC}}^{\nu}}$ running with the same adversary and a mapping ν' that agrees with the partial mapping ν defined by the simulator.

Given the above lemmas, the proof of Theorem 2 now follows.

Proof. (Theorem 2) The service provider will pick tier-1 servers according to the strategy described in Lemma 7. That is, the service provider will choose as tier-1 all the inspected servers that were found clean and a random β -fraction of the inspected servers that were found corrupt and then restored to a clean state. Then, the service provider runs the MPC scheme described in Figure 6. Similarly to the proof of Theorem 1 we observe the following:

1. The MPC protocol is secure as long as a majority of tier-1 servers are honest (Proposition 5).

- 2. Given that the adversary learns the protocol pseudonym and tier-level of a party only when this party is corrupt, when restricted to $\gamma \leq (1 \varepsilon)(1 \alpha + \alpha\beta)/2$ corruptions, it has only a exponentially small probability in m = O(n) to corrupt a majority of tier-1 servers (Lemma 7).
- 3. Lemma 8 shows that an adaptive adversary learns only negligible information about ν (for uncorrupt parties).

Therefore, the computation is secure against the above adaptive adversary, except with negligible probability in n.

Observe that the parties are divided into three sets: the set of clean servers after step (1) of the corruption/inspection game (denoted by \widehat{G}_1 in Lemma 7); the set of servers that were restored to a clean state (\widehat{G}_2) ; and the rest of the servers. Setting r = 3, it is easy to see that Lemma 8 applies to our case by denoting those sets as $\mathcal{P}_1, \mathcal{P}_2$ and \mathcal{P}_3 , respectively, and setting the protocol pseudonyms $\mathcal{P}_1^*, \mathcal{P}_2^*$ and \mathcal{P}_3^* such that the number of tier-1 servers in each set matches the strategy of the service provider (e.g., β -fraction of the servers in each of the first two sets are tier-1, and no tier-1 servers in the third set).

References

- [AF04] M. Abe and S. Fehr. Adaptively secure Feldman VSS and applications to universally-composable threshold cryptography. M. Franklin, ed., Advances in Cryptology – CRYPTO 2004, Lecture Notes in Computer Science, vol. 3152, pp. 317–334. Springer, Heidelberg, 2004.
- [AKS83] M. Ajtai, J. Komlós, and E. Szemerédi. An O(n log n) sorting network. Proceedings of the fifteenth annual ACM symposium on Theory of computing, STOC '83, pp. 1–9. ACM, New York, NY, USA, 1983.
- [ALZ13] G. Asharov, Y. Lindell, and H. Zarosim. Fair and efficient secure multiparty computation with reputation systems. K. Sako and P. Sarkar, eds., Advances in Cryptology – ASIACRYPT 2013, Lecture Notes in Computer Science, vol. 8270, pp. 201–220. Springer Berlin Heidelberg, 2013.
- [BCD⁺09] P. Bogetoft, D. Christensen, I. Damgård, M. Geisler, T. Jakobsen, M. Krøigaard, J. Nielsen, J. Nielsen, K. Nielsen, J. Pagter, M. Schwartzbach, and T. Toft. Secure multiparty computation goes live. R. Dingledine and P. Golle, eds., *Financial Cryptography and Data Security, Lecture Notes* in Computer Science, vol. 5628, pp. 325–343. Springer, Heidelberg, 2009.
- [BdB90] J. Bos and B. den Boer. Detection of disrupters in the DC protocol. J.-J. Quisquater and J. Vandewalle, eds., Advances in Cryptology – EURO-CRYPT '89, Lecture Notes in Computer Science, vol. 434, pp. 320–327. Springer, Heidelberg, 1990.
- [BDS⁺03] D. Balfanz, G. Durfee, N. Shankar, D. K. Smetters, J. Staddon, and H.-C. Wong. Secret handshakes from pairing-based key agreements. *IEEE Symposium on Security and Privacy*, pp. 180–196. 2003.
- [Bea97] D. Beaver. Commodity-based cryptography (extended abstract). Proceedings of the twenty-ninth annual ACM symposium on Theory of computing, STOC '97, pp. 446–455. ACM, New York, NY, USA, 1997.
- [BG89] D. Beaver and S. Goldwasser. Multiparty computation with faulty majority. Foundations of Computer Science, IEEE Annual Symposium on, pp. 468– 473, 1989.

- [Can00] R. Canetti. Security and composition of multiparty cryptographic protocols. J. Cryptology, 13(1):143–202, 2000.
- [Can05] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. IACR Cryptology ePrint Archive, p. 67, 2005.
- [CFGN96] R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively secure multiparty computation. Tech. rep., Massachusetts Institute of Technology, Cambridge, MA, USA, 1996.
- [Cha88] D. Chaum. The dining cryptographers problem: Unconditional sender and recipient untraceability. *Journal of Cryptology*, 1:65–75, 1988.
- [CJT04] C. Castelluccia, S. Jarecki, and G. Tsudik. Secret handshakes from caoblivious encryption. P. J. Lee, ed., Advances in Cryptology – ASIACRYPT 2004, Lecture Notes in Computer Science, vol. 3329, pp. 293–307. Springer Berlin Heidelberg, 2004.
- [Cle86] R. Cleve. Limits on the security of coin flips when half the processors are faulty (extended abstract). J. Hartmanis, ed., STOC, pp. 364–369. ACM, 1986.
- [CLOS02] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-party and multi-party secure computation. *Proceedings of the thiryfourth annual ACM symposium on Theory of computing*, STOC '02, pp. 494–503. ACM, New York, NY, USA, 2002.
- [DI05] I. Damgård and Y. Ishai. Constant-round multiparty computation using a black-box pseudorandom generator. V. Shoup, ed., Advances in Cryptology - CRYPTO 2005, Lecture Notes in Computer Science, vol. 3621, pp. 378– 394. Springer, Heidelberg, 2005.
- [FGMO05] M. Fitzi, J. A. Garay, U. M. Maurer, and R. Ostrovsky. Minimal complete primitives for secure multi-party computation. J. Cryptology, 18(1):37–61, 2005.
- [GJ04] P. Golle and A. Juels. Dining cryptographers revisited. C. Cachin and J. Camenisch, eds., Advances in Cryptology – EUROCRYPT 2004, Lecture Notes in Computer Science, vol. 3027, pp. 456–473. Springer Berlin, Heidelberg, 2004.
- [GJKY13] J. Garay, D. Johnson, A. Kiayias, and M. Yung. Resource-based corruptions and the combinatorics of hidden diversity. *Proceedings of the 4th Conference* on Innovations in Theoretical Computer Science, ITCS '13, pp. 415–428. ACM, New York, NY, USA, 2013.
- [GKKZ11] J. A. Garay, J. Katz, R. Kumaresan, and H.-S. Zhou. Adaptively secure broadcast, revisited. C. Gavoille and P. Fraigniaud, eds., *PODC*, pp. 179–186. ACM, 2011.
- [GKM⁺13] J. Garay, J. Katz, U. Maurer, B. Tackmann, and V. Zikas. Rational protocol design: Cryptography against incentive-driven adversaries. Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on, pp. 648–657. 2013.
- [GL91] S. Goldwasser and L. Levin. Fair computation of general functions in presence of immoral majority. A. Menezes and S. Vanstone, eds., Advances in Cryptology – CRYPTO '90, Lecture Notes in Computer Science, vol. 537, pp. 77–93. Springer Berlin Heidelberg, 1991.
- [GL02] S. Goldwasser and Y. Lindell. Secure computation without agreement.
 D. Malkhi, ed., Distributed Computing, Lecture Notes in Computer Science, vol. 2508, pp. 17–32. Springer Berlin Heidelberg, 2002.

- [GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. Proceedings of the nineteenth annual ACM symposium on Theory of computing, STOC '87, pp. 218–229. ACM, New York, NY, USA, 1987.
- [HS05] D. Hush and C. Scovel. Concentration of the hypergeometric distribution. Statistics & Probability Letters, 75(2):127–132, 2005.
- [IKOS06] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Cryptography from anonymity. Foundations of Computer Science, 2006. FOCS '06. 47th Annual IEEE Symposium on, pp. 239–248. 2006.
- [KMTZ13] J. Katz, U. Maurer, B. Tackmann, and V. Zikas. Universally composable synchronous computation. A. Sahai, ed., *Theory of Cryptography, Lecture Notes in Computer Science*, vol. 7785, pp. 477–498. Springer Berlin Heidelberg, 2013.
- [KOS03] J. Katz, R. Ostrovsky, and A. Smith. Round efficiency of multi-party computation with a dishonest majority. Advances in Cryptology – EURO-CRYPT 2003, pp. 578–595. Springer, 2003.
- [PW92] B. Pfitzmann and M. Waidner. Unconditionally untraceable and faulttolerant broadcast and secret ballot election. Hildesheimer Informatik Berichte, 1992.
- [PW96] B. Pfitzmann and M. Waidner. Information-theoretic pseudosignatures and byzantine agreement for $t \ge n/3$. IBM Research Report RZ 2882 (#90830), 1996.

A Additional Definitions and Building Blocks

Signature schemes. A public-key signature scheme consists of three PPT algorithms (GenS, Sig, Ver) such that $(sk, pk) \leftarrow \text{GenS}(1^{\kappa})$ generates a key; $sig \leftarrow \text{Sig}_{sk}(m)$ generates a signature for $m \in \mathcal{M}$ and $b \in \{0, 1\} \leftarrow \text{Ver}_{pk}(m, sig)$ verifies a signature. For (sk, pk) generated by GenS, it holds that $\text{Ver}_{pk}(m, \text{Sig}_{sk}(m)) = 1$.

We say that a signature scheme is *existentially unforgeable* if any PPT adversary has only negligible advantage (in κ) in winning the following game running with a challenger:

- SETUP: The challenger runs $(pk, sk) \leftarrow KeyS(1^{\kappa})$. It gives the adversary the resulting public key pk and keeps the private key sk to itself.
- QUERIES: The adversary issues signature queries m_1, \ldots, m_q . To each query m_i , the challenger computes $sig_i \leftarrow \text{Sig}_{sk}(m_i)$ and sends sig_i back to the adversary. Note that m_i may depend on previous signatures (adaptive queries).
- CHALLENGE: The adversary outputs a pair (m, sig), where $m \neq m_i$ for any m_i queried during the previous step. The adversary wins if $\operatorname{Ver}_{pk}(m, sig) = 1$.

Verifiable secret sharing (VSS). A (n,t)-VSS scheme is a protocol between a dealer and n parties P_1, \ldots, P_n , which extends a standard secret sharing. It consists of a SHARING PHASE where the dealer initially holds a value σ and finally, each party holds a private share v_i ; and a RECONSTRUCTION PHASE in which the parties reveal their shares (a dishonest party may reveal $v'_i \neq v_i$) and a value σ' is reconstructed out of the shares $\sigma' = \text{REC}(v'_1, \ldots, v'_n)$. Assuming an adversary that corrupts up to t parties, the following holds. PRIVACY: If the dealer is honest, then the adversary's view during the sharing phase reveals no information about σ . More formally, the adversary's view is identically distributed under all different values of σ .

CORRECTNESS: If the dealer is honest, then the reconstructed value equals to σ .

COMMITMENT: After the sharing phase, a unique value σ^* is determined which will be reconstructed in the reconstruction phase; i.e., $\sigma^* = \mathsf{REC}(v'_1, \ldots, v'_n)$ regardless of the views provided by the dishonest players.

B Realizing Anonymous Broadcast

First, one may realize ABC via standard adaptively secure multyparty computation techniques [CFGN96]. This construction shows how multiple parties can securely compute any given circuit, which in the case of \mathcal{F}_{ABC} is a lexicographic sorting of the inputs. An asymptotically optimal sorting circuit is given in [AKS83] using $O(n \log n)$ comparators with depth $O(\log n)$.

Assuming the size of each field element is $O(\kappa)$ bits, a field-element comparator can be constructed out of binary gates in a tree fashion in size $O(\kappa)$ and depth $O(\log \kappa)$, or in a pipeline fashion with depth and size $O(\kappa)$. These constructions yield sorting circuits of size $O(\kappa n \log n)$ and depths $O(\log \kappa \log n)$ and $O(\kappa + \log n)$, respectively.

Note that the AAC protocol incurs only one call of ABC (i.e., there are no concurrent instances). Thus, invoking Canetti's modular composition theorem [Can00, Can05], such a construction gives adaptive security (with identifiable abort) against any number t < n of corruptions. Observe that in the case of an abort, the only information that the adversary learns is the output, which is broadcast to all parties, and the security of the construction is not affected.

We refer to this protocol as ABC_{CFGN} ; the next corollary immediately follows from [CFGN96].

Corollary 9. The protocol ABC_{CFGN} securely realizes \mathcal{F}_{ABC} with round complexity $O(\min\{\log \kappa \log n, \kappa + \log n\})$, and total communication $O(\kappa^2 n \log n)$, assuming non-committing encryption is used to implement point-to-point secure communication between parties.

Although the above realization of \mathcal{F}_{ABC} is sufficient for our purposes, we now discuss other alternatives, hoping for higher efficiency. First, we note that Golle and Juels [GJ04] present a scheme for honest-majority anonymous broadcast which uses bilinear maps, assuming the hardness of the Decisional Bilinear Diffie-Hellman problem (DBDH). Besides the honest-majority requirement, the construction does not consider "collisions," a common problem which arises in DC-nets in the selection of message positions; while the first shortcoming could be addressed by a player-elimination technique, addressing the second seems problematic, short of an MPC-type approach.

In [PW92, PW96], Pfitzmann and Waidner give an information theoretically secure sender-anonymous broadcast, based on Chaum's *DC-nets* [Cha88]. Their scheme assumes a *pre-computation* step during which a reliable broadcast is guaranteed. In our setting, we can replace the pre-computation reliable broadcast demand with an adaptively secure broadcast scheme, assuming a PKI setup [GKKZ11].

At a high level, the Pfitzmann-Waidner protocol consists of performing a many-to-many, corruption-detectable variant of a DC-net [BdB90], in which each user begins with a private input x_i and, if all parties behave as expected, ends with the multiset of inputs $\{x_i\}_i$ without being able to relate an input to its source. If some party deviates from the protocol, the other users notice this event (with high probability) and begin an 'investigation' in which each party should publicly reveal its messages and secret state, along with its private input. The parties can now check for consistency and (locally) identify the cheaters.

The resulting scheme, in the $\mathcal{F}_{\mathsf{PKI}}$ -hybrid world, however, is less efficient than the generic construction requiring $O(n^4)$ rounds with $O(\kappa n^2)$ communication per round.

C The Hypergeometric Distribution

We recall the hypergeometric distribution and some of its properties. The Hypergeometric distribution with parameters n, m, t describes the probability to draw k 'good' items out of an urn that contains n items out of which m are good, when one is allowed to draw t items overall. The probability is given by

$$\mathsf{HypGeo}_{n,m,t}(k) = \binom{m}{k}\binom{n-m}{t-k} / \binom{n}{t}.$$

The expectation of a random variable $K \sim \mathsf{HypGeo}_{n,m,t}$ is given by $\mathbb{E}[K] = t \frac{m}{n}$.

In our setting and terminology, $\mathsf{HypGeo}_{n,m,t}(k)$ describes the probability of corrupting k tier-1 servers, if there are n servers out of which m are tier-1, and the adversary is allowed to corrupt up to t servers altogether (assuming that the adversary learns the tier level of a specific server only when it gets corrupt).

A useful tool is a tail bound on the hypergeometric distribution, derived by Hush and Scovel [HS05]:

Lemma 10. Let $K \sim \mathsf{HypGeo}_{n,m,t}$ be a random variable distributed according to the Hypergeometric distribution with parameters n, m, t. Then,

$$\Pr[K - \mathbb{E}[K] > \delta] < e^{-2\alpha_{n,m,t}(\delta^2 - 1)}$$

where

$$\alpha_{n,m,t} = \max\left(\left(\frac{1}{t+1} + \frac{1}{n-t+1}\right), \left(\frac{1}{m+1} + \frac{1}{n-m+1}\right)\right)$$

and assuming $\delta > 2$.