
An Efficient Transform from Sigma Protocols to
NIZK with a CRS and Non-Programmable

Random Oracle?

Yehuda Lindell

Dept. of Computer Science
Bar-Ilan University, Israel

lindell@biu.ac.il

Abstract. In this short paper, we present a Fiat-Shamir type trans-
form that takes any Sigma protocol for a relation R and outputs a non-
interactive zero-knowledge proof (not of knowledge) for the associated
language LR, in the common reference string model. As in the Fiat-
Shamir transform, we use a hash function H. However, zero-knowledge
is achieved under standard assumptions in the common reference string
model (without any random oracle), and soundness is achieved in the
non-programmable random oracle model. The concrete computational
complexity of the transform is only slightly higher than the original Fiat-
Shamir transform.

1 Introduction

Concretely efficient zero knowledge. Zero knowledge proofs [20,16] play
an important role in many fields of cryptography. In secure multiparty compu-
tation, zero-knowledge proofs are used to force parties to behave semi-honestly,
and as such are a crucial tool in achieving security in the presence of malicious
adversaries [17]. This use of zero-knowledge proofs is not only for proving feasi-
bility as in [17], and efficient zero-knowledge proofs are used widely in protocols
for achieving concretely efficient multiparty computation with security in the
presence of malicious adversaries; see [30,22,26,31,23,24] for just a few examples.
Efficient zero knowledge is also widely used in protocols for specific problems
like voting, auctions, anonymous credentials, and more.

Most efficient zero knowledge proofs known are based on Sigma protocols [8]
and [21, Ch. 7]. Informally, Sigma protocols are honest-verifier perfect zero-
knowledge interactive proof systems with some very interesting properties. First,
they are three round public-key protocols (meaning that the verifier’s single
message—or challenge—is just a random string); second, if the statement is not
in the language, then for every first prover message there exists just a single

?
This work was funded by the European Research Council under the European Union’s Seventh
Framework Programme (FP/2007-2013) / ERC consolidators grant agreement n. 615172 (HIPS),
and under the European Union’s Seventh Framework Program (FP7/2007-2013) grant agreement
n. 609611 (PRACTICE).



verifier challenge that can be answered; third, there exists a simulator that is
given the statement and verifier challenge and generates the exact distribution
over the prover’s messages with this challenge. Although seemingly specific, there
exist Sigma protocols for a wide variety of tasks like proving that a tuple is of
the Diffie-Hellman type, that an ElGamal commitment is to a certain value, that
a Paillier encryption is to zero, and many more. It is also possible to efficiently
combine Sigma protocols to prove compound statements [5]; e.g., (x1 ∈ L∧ y1 ∈
L) ∨ (x2 ∈ L ∧ y2 ∈ L). Finally, it is possible to efficiently compile a Sigma
protocol to a zero-knowledge proof (resp., zero-knowledge proof of knowledge)
with just one additional round (resp., two additional rounds) [21, Ch. 7].

The Fiat-Shamir transform and NIZK. The Fiat-Shamir transform [13] is a
way of transforming any public-coin zero-knowledge proof into a non-interactive
zero-knowledge proof [2,11].1 The transform is very simple, and works by hav-
ing the prover compute the verifier’s (random) messages by applying an “ap-
propriate” hash function to the previous prover messages. The security of this
transform was proven in the random oracle model [29]. This means that if the
hash function is modeled as an external random function, then the result of
applying the Fiat-Shamir transform to a public-coin zero-knowledge proof is
a non-interactive zero-knowledge proof. However, it was also shown that it is
not possible to prove this statement for any concrete instantiation of the hash
function. Rather, there exist public-coin zero-knowledge proofs for which every
concrete instantiation of the hash function in the Fiat-Shamir transform yields
an insecure scheme [19].

When applying the Fiat-Shamir transform to a Sigma protocol, the result
is an extraordinarily efficient non-interactive zero-knowledge proof. We remark
that this is not immediate since Sigma protocols are only honest-verifier zero
knowledge. Thus, the Fiat-Shamir transform both removes interaction and guar-
antees zero knowledge for malicious verifiers.

The Fiat-Shamir transform is very beneficial in obtaining efficient protocols
since it saves expensive rounds of communication without increasing the com-
putational complexity of the original protocol. In addition, it is very useful in
settings where the non-interactive nature of the proof is essential (e.g., in anony-
mous credentials). However, as we have seen, this reliance on the Fiat-Shamir is
only sound in the random-oracle model. This leads us to the following question:

Can we construct a Fiat-Shamir type transformation, that is highly effi-
cient and is secure in the standard model (without a random oracle)?

In this paper, we take a first step towards answering this question.

1 The Fiat-Shamir transform was designed to construct signature schemes from public-
coin zero-knowledge proofs, and later works also studied its security as a signature
scheme. However, the results are actually the same for non-interactive zero knowl-
edge.



The random-oracle saga. Reliance on the random oracle model is contro-
versial, with strong advocates on one side and strong opponents on the other.
However, it seems that almost all agree that proving security without reliance
on the random oracle model is preferable. As such, there has been a long line
of work attempting to prove security of existing schemes without reliance on a
random oracle, and to construct new schemes that are comparable to existing
ones (e.g., with respect to efficiency) but don’t require a random oracle. In the
case of the Fiat-Shamir transform, there is no chance of proving it secure in
general without a random oracle, due to the impossibility result of [19]. Thus,
the aim is to construct a transform that is comparable to Fiat-Shamir in terms
of efficiency, but can be proven secure in the standard model.

An interesting development regarding the random oracle is that not all ran-
dom oracles are equal. In particular, Nielsen introduced the notion of a non-
programmable random oracle [25], based on the observation that many proofs of
security—including that of the Fiat-Shamir transform—rely inherently on the
ability of the simulator (or security reduction) to “program” the random oracle
and fix specific input/output pairs. In contrast, a non-programmable random
oracle is simply a random function that all parties have access to. In some sense,
reliance on a non-programmable random oracle seems conceptually preferable
since it more closely models the intuition that “appropriate hash functions” be-
have in a random way. Formally, of course, this makes no sense. However, proofs
of security that do not require programmability are preferable in the sense that
they rely on less properties of the random oracle and can be viewed as a first
step towards removing it entirely.

Our results. In this paper, we present a Fiat-Shamir type transform from
Sigma protocols to non-interactive zero knowledge proofs (that are not proofs of
knowledge). The transform is extremely efficient; for example, under the Deci-
sional Diffie-Hellman assumption, the cost of transforming a Sigma protocol to a
non-interactive zero-knowledge proof is just 4 exponentiations, and the transmis-
sion of a single number in Zq (where q is the order of the group). Our transform
achieves two advantages over the Fiat-Shamir transform:

1. The zero-knowledge property holds in the standard model and does not re-
quire any random oracle at all. This is in contrast to the standard Fiat-
Shamir transform when applied to Sigma protocols, for which the only known
proof uses a (fully programmable) random oracle. Our transform utilizes
the common reference string model, which is inherent since one-round zero-
knowledge protocols do not exist for languages not in BPP [18].

2. The soundness property holds when the hash function is modeled as a non-
programmable random oracle.

The fact that zero knowledge holds without any random oracle implies that the
difficulties regarding zero knowledge composition that arise in the random oracle
model [32] are not an issue here. It also implies that the random oracle is not
needed for any simulation, and one only needs it to prove soundness.



Our transform. The technique used in our transform is very simple. We use a
two-round equivocal commitment scheme for which there exists a trapdoor with
which commitments can be decommitted to any value. One example of such a
scheme is that of Pedersen’s commitment [28]. Specifically, let g and h be two
random generators of a group in which the discrete log problem is assumed to
be hard. Then, c = Comg,h(x) = gr · hx, where r ← Zq is random. This scheme
is perfectly hiding, and it can be shown to be computationally binding under
the discrete log assumption. However, if the discrete log of h with respect to g is
known, then it is possible to decommit to any value (if h = gα and α is known
to the committer, then it can define c = gy and then for any x it simply sets
r = y − α · x).

We define a common reference string (CRS) that contains the first message
of the commitment scheme. Thus, when the simulator chooses the CRS, it will
know the trapdoor, thereby enabling it to equivocate. Let Σ be a Sigma pro-
tocol for some language, and denote the messages of the proof that x ∈ L by
(a, e, z). Then, in the Fiat-Shamir transform, the prover uses the verifier chal-
lenge e = H(x, a). In our transform, the prover first computes a commitment to
a using randomness r, denoted c = Com(a; r), and sets e = H(x, c). Then, the
proof contains (a, r, z), and the verifier computes c = Com(a; r), e = H(x, c) and
verifies that (a, e, z) is an accepting proof that x ∈ L. Intuitively, since c is a
commitment to a, soundness is preserved like in the original Fiat-Shamir trans-
form. However, since the simulator can choose the common reference string, and
so can know the trapdoor, it can equivocate to any value it likes. Thus, the sim-
ulator can generate a commitment c that can be opened later to anything. Next,
it computes e = H(x, c). Finally, it runs the Sigma protocol simulator with the
verifier challenge e already known, in order to obtain an accepting proof (a, e, z).
Finally, it finds r such that c = Com(a; r) to “explain” c as a commitment to a.
This reverse order of operations is possible since the simulator can equivocate;
soundness is preserved since the real prover cannot.

As appealing as the above is, the proof of soundness is problematic since
the commitment is only computational binding and the reduction would need
to construct an adversary breaking the binding from any adversary breaking
the soundness. However, since a cheating prover outputs a single proof, such a
reduction seems problematic, even in the random oracle model.2 We therefore
use a dual-mode commitment (or hybrid trapdoor commitment [4]) which means
that there are two ways to choose the common reference: in one way the com-
mitment is perfectly binding, and in the other it is equivocal. This enables us to
prove soundness when the commitment is perfectly binding, and zero knowledge
when it is equivocal. We construct dual-mode commitments from any “hard”
language with an associated Sigma protocol (see Section 3.2). Thus, the security
of our transform for such languages requires no additional assumptions. We also

2 It may be possible to prove by relying on the extractability of the random oracle,
meaning that it is possible to “catch” the cheating prover’s queries to the random
oracle. We do not know how to do this in this context. In addition, our solution is
preferable since we do not even require extractability of random oracle queries.



demonstrate a concrete instantiation of our construction that is secure under
the DDH assumption, and requires only 4 exponentiations to generate a com-
mitment. Our DDH instantiation of this primitive appeared in [4] (for different
applications); we present the construction here in any case for completeness.

Open questions. The major question left open by our work is whether or
not it is possible to prove the security of our transform or a similar one using a
(concretely efficient) hash function whose security is based on a standard crypto-
graphic assumption. Note that even achieving a falsifiable assumption is difficult,
and this has been studied by [1] and [10]. However, we have the additional power
of a CRS, and this may make it easier.

Related work. Damg̊ard [7] used a very similar transform to obtain 3-round
concurrent zero knowledge in the CRS model. Specifically, [7] uses a trapdoor
commitment applied to the first prover message, as we do. This enables simula-
tion without rewinding and thus achieves concurrent zero knowledge. However,
as we have described, it seems that in our setting a regular tradpoor commit-
ment does not suffice since there is no interaction and thus no possibility of
rewinding the adversary (note that in the context of concurrent zero knowledge
it is problematic to rewind a cheating verifier when proving zero knowledge, but
there is no problem rewinding a cheating prover in order to prove soundness,
and this is indeed what [7] do).

The problem of constructing zero knowledge in the non-programmable ran-
dom oracle model was first considered by [27] with extensions to the UC setting
in [9]. However, their constructions are not completely non-interactive and re-
quire two messages. This is due to the fact that their aim is to solve the problem
of deniability and transferability of NIZK proofs, and so some interaction is nec-
essary (as proven in [27]). We also remark that the transform from Σ-protocols
to Ω-protocols used in their construction requires repeating the proof multiple
times, and so is far less efficient.

2 Definitions

2.1 Preliminaries

Let R be a relation; we denote the associated language by LR. That is, LR =
{x | ∃w : (x,w) ∈ R}. We denote the security parameter by n. We model a
random oracle simply as a random length-preserving function O : {0, 1}n →
{0, 1}n. In our work, we use the random oracle only to prove soundness, and
there is therefore no issue of “programmability”. When S is a set, x← S denotes
choosing x from S with a uniform distribution.

2.2 Sigma Protocols and NIZK

For the sake of completeness, we define Sigma protocol and adaptive non-interactive
zero knowledge (NIZK). Our formulation of non-interactive zero knowledge is



both adaptive (meaning that statements can be chosen as a function of the
common reference string) and considers the case where many proofs are given.

Sigma protocols. We briefly define Sigma protocols. For more details, see [8]
and [21, Ch. 7]. Let R be a binary polynomial-bounded relation. A Σ protocol
π = (P1, P2, VΣ) is a 3-round public-coin protocol: the prover’s first message is
denoted a = P1(x); the verifier’s message is a random string e ∈R {0, 1}n, and the
prover’s second message is denoted z = P2(x, a, e). We write VΣ(x, a, e, z) = 1 if
and only if the verifier accepts, and in this case we say tha transcript (a, e, z) is
accepting for x. We now formally define the notion of a Sigma-protocol:

Definition 1. A protocol π = (P1, P2, VΣ) is a Sigma-protocol for relation R if
it is a three-round public-coin protocol, and the following requirements hold:

– Completeness: If P and V follow the protocol on input x and private input
w to P where (x,w) ∈ R, then V always accepts.

– Special soundness: There exists a polynomial-time algorithm A that given
any x and any pair of accepting transcripts (a, e, z), (a, e′, z′) for x, where
e 6= e′, outputs w such that (x,w) ∈ R.

– Special honest verifier zero knowledge: There exists a probabilistic
polynomial-time simulator SΣ such that{

SΣ(x, e)
}
x∈L;e∈{0,1}n

≡
{
〈P (x,w), V (x, e)〉

}
x∈L;e∈{0,1}n

where SΣ(x, e) denotes the output of simulator M upon input x and e, and
〈P (x,w), V (x, e)〉 denotes the output transcript of an execution between P
and V , where P has input (x,w), V has input x, and V ’s random tape
(determining its query) equals e.

Adaptive non-interactive zero-knowledge. In the model of non-interactive
zero-knowledge proofs [2], the prover and verifier both have access to a pub-
lic common reference string (CRS). We present the definition of adaptive zero
knowledge, meaning that both the soundness and zero-knowledge hold when
statements can be chosen as a function of the CRS. We also consider the un-
bounded version, meaning that zero knowledge holds for any polynomial num-
ber of statements proven. We present the definition directly, and refer to [14,
Section 4.10] for motivation and discussion. We define soundness in the non-
programmable random oracle model, since this is what we use in our construc-
tion.

Definition 2. (adaptive non-interactive unbounded zero-knowledge): A triple
of probabilistic polynomial-time machines (GenCRS, P, V ) is called an adaptive
non-interactive unbounded zero-knowledge argument system for a language L ∈
NP with an NP-relation RL, if the following holds:

– Perfect completeness: For every (x,w) ∈ RL, Pr[V (x, ρn, P (x,w, ρn)) = 1] =
1 where ρn is randomly sampled according to GenCRS(1n).



– Adaptive computational soundness with a non-programmable random oracle:
For every probabilistic polynomial-time function f :{0, 1}poly(n) → {0, 1}n\L
and every probabilistic polynomial-time (cheating) prover B,

Pr
[
V O(f(ρn), ρn,BO(ρn)) = 1

]
< µ(n)

where ρn is randomly sampled according to GenCRS(1n) and O : {0, 1}∗ →
{0, 1}∗ is a random length-preserving function.

– Adaptive unbounded zero knowledge: There exists a probabilistic polynomial-
time simulator Szk such that for every probabilistic polynomial-time function

f :{0, 1}poly(n) → {0, 1}n × {0, 1}poly(n) ∩RL,

every polynomial p(·) and every probabilistic polynomial-time distinguisher
D, there exists a negligible function µ such that for every n,∣∣∣Pr

[
D
(
Rf (ρn, P

f (1n+p(n)))
)

= 1
]
− Pr

[
D
(
Szkf (1n+p(n)))

)
= 1
]∣∣∣ ≤ µ(n)

where ρn is randomly sampled according to GenCRS(1n), f1 and f2 denote
the first and second outputs of f respectively, and Rf (ρn, P

f (1n+p(n))) and
Szkf (1n+p(n)) denote the output from the following experiments:

Real proofs Rf (ρn, P
f (1n+p(n))):

1. ρ← GenCRS(1n): a common reference string is sampled

2. For i = 1, . . . , p(n) (initially x and π are empty):

(a) xi ← f1(ρn,x,π): the next statement xi to be proven is chosen.
(b) πi ← P (f1(ρn,x,π), f2(ρn,x,π), ρn): the ith proof is generated.
(c) Set x = x1, . . . , xi and π = π1, . . . , πi

3. Output (ρn,x,π).

Simulation Szkf (1n+p(n)):

1. ρ← Szk(1n): Simulator Szk (upon input 1n) outputs a reference string ρ

2. For i = 1, . . . , p(n) (initially x and π are empty):

(a) xi ← f1(ρn,x,π): the next statement xi to be proven is chosen.
(b) πi ← Szk(xi): Simulator Szk generates a simulated proof πi that xi ∈

L.
(c) Set x = x1, . . . , xi and π = π1, . . . , πi

3. Output (ρ,x,π).

Adaptive NIZK proof systems can be constructed from any (doubly) en-
hanced trapdoor permutation [11]; see [14, Appendix C.4.1] and [15] regarding
the assumption.



3 Dual-Mode Commitments

We use a commitment scheme in the CRS model with the property that it
is perfectly binding given the correctly constructed CRS, but is equivocal to a
simulator who generates the CRS in an alternative but indistinguishable way.
Stated differently, the simulator can generate the CRS so that it looks like a
real one, but a commitment can be decommitted to any value. We show how to
construct this from any “hard” NP-relation with a Sigma protocol (to be defined
below). This construction has the advantage that we obtain non-interactive zero
knowledge for such relations under no additional assumptions. This construction
is based on the commitment scheme from Sigma protocols that appeared in [6].
However, [6] constructed a standard commitment scheme, and we show how the
same ideas can be used to achieve a dual commitment scheme. Following this,
we show a concrete instantiation under the DDH assumption which is extremely
efficient.

Such a commitment was called a hybrid trapdoor commitment in [4], who
studied this primitive in depth and presented a number of constructions. In
particular, the DDH-based construction in [4] is identical to ours. We repeat it
here for the sake of completeness.

3.1 Definition

Before we show how to construct such commitments, we provide a formal defi-
nition.

Definition 3. A dual-mode commitment scheme is a tuple of probabilistic polynomial-
time algorithms (GenCRS,Com,Scom) such that

– GenCRS(1n) outputs a common reference string, denoted ρ,

– (GenCRS,Com): When ρ ← GenCRS(1n) and m ∈ {0, 1}n, the algorithm
Comρ(m; r) with a random r is a non-interactive perfectly-binding commit-
ment scheme,

– (Com,Scom): For every probabilistic polynomial-time adversary A and every
polynomial p(·), the output of the following two experiments is computation-
ally indistinguishable:

realCom,A(1n) simulationScom(1n)

1. ρ← GenCRS(1n) 1. ρ← Scom(1n)
2. For i = 1, . . . , p(n): 2. For i = 1, . . . , p(n):

(a) mi ← A(ρ, c, r) (a) ci ← Scom
(b) ri ← {0, 1}poly(n) (b) mi ← A(ρ, c, r)
(c) ci = Comρ(mi; ri) (c) ri ← Scom(mi)
(d) Set c = c1, . . . , ci (d) Set c = c1, . . . , ci

and r = r1, . . . , ri and r = r1, . . . , ri
3. Output A(ρ,m1, r1, . . . ,mp(n), rp(n)) Output A(ρ,m1, r1, . . . ,mp(n), rp(n))



3.2 Membership-Hard Languages with Efficient Sampling

Intuitively, a membership-hard language L is one for which it is possible to sample
instances of the problem in a way that it is hard to detect if a given instance
is in the language or not. In more detail, there exists a sampling algorithm SL
that receives for input a bit b and outputs an instance in the language together
with a witness w if b = 0, and an instance not in the language if b = 1. The
property required is that no polynomial-time distinguisher can know which bit
SL received. We let SxL denote the instance part of the output (without the
witness, in the case that b = 0). We now define this formally.

Definition 4. Let L be a language. We say that L is membership-hard with
efficient sampling if there exists a probabilistic polynomial-time sampler SL such
for every probabilistic polynomial-time distinguisher D there exists a negligible
function µ(·) such that∣∣∣Pr[D(SxL(0, 1n), 1n) = 1]− Pr[D(SL(1, 1n), 1n) = 1]

∣∣∣ ≤ µ(n)

Such languages can be constructed from essentially any cryptographic as-
sumption. Specifically, if one-way functions exist then there exists a pseudoran-
dom generator G : {0, 1}n → {0, 1}2n. Now, define L to be the language of all
images of G; i.e., L = {G(s) | s ∈ {0, 1}∗}, and define SL(0, 1n) = (G(Un), Un),
and SL(1, 1n) = U2n, where Uk is a uniformly distributed string of length k. It
is clear that this language is membership-hard with efficient sampling.

Nevertheless, we will be more interested in such languages that have efficient
Sigma protocols associated with them. One simple such examples is the language
of Diffie-Hellman tuples (where SL(0, 1n) outputs a random Diffie-Hellman tuple
(g, h, ga, ha) together with a, and SL(1, 1n) outputs a random non Diffie-Hellman
tuple (g, h, ga, hb), where a and b are random).

We remark that Feige and Shamir [12] consider the notion of an invulnerable
generator for a language. Their notion considers a relation for which it is possible
to generate an instance such that it is hard to find the associated witness. In
contrast, our notion relates to languages and not relations, and on deciding
membership rather than finding witnesses.

3.3 Dual-Mode Commitments from Membership-Hard Languages
with Sigma Protocols

We now construct a dual-mode commitment scheme from any language L that is
membership hard, and has an associated Sigma protocol. Recall that the verifier
message of a Sigma protocol is always a uniformly distributed e ∈R {0, 1}n. We
denote the first and second prover messages of the Sigma protocol on common
input x (and witness w for the prover) by a = P1(x,w) and z = P2(x,w, a, e), re-
spectively. We denote by SΣ the simulator for the Sigma protocol. Thus, SΣ(x, e)
outputs (a, z).



PROTOCOL 1 (Dual-Mode Commitment (General Construction))

– Regular CRS generation (perfect binding): Run the sampler SL
for the language L with input (1, 1n), and receive back an x (recall that
x /∈ L). The CRS is ρ = x.

– Commitment Com: To commit to a value m ∈ {0, 1}n, set e = m, run
SΣ(x, e) and obtain (a, z). The commitment is c = a.

– Decommitment: To decommit, provide e, z and the receiver checks that
VΣ(a, e, z) = 1.

– Simulator Scom:
1. Upon input 1n, simulator Scom runs the sampler SL for the language

L with input (0, 1n), and receives back (x,w) (recall that x ∈ L and
w is a witness to this fact). Then, Scom computes a = P1(x,w), sets
c = a and ρ = x, and outputs (c, ρ).

2. Upon input m ∈ {0, 1}n, simulator Scom sets e = m and outputs
z = P2(x,w, a, e).

The fact that the commitment scheme is perfectly binding in the regular CRS
case holds since x /∈ L and thus for every a, there exists a single e, z for which
(a, e, z) is an accepting proof. In contrast, in the alternative CRS generation
case, x ∈ L and the simulator knows the witness w. Thus, it can generate a
“commitment” a = P1(x,w), and then for any m ∈ {0, 1}t chosen later, it can
decommit to m by setting e = m, computing z = P2(x, e) and supplying (e, z).
Since (a, e, z) is a valid proof, and the Sigma protocol simulator is perfect, the
only difference between this and a real commitment is the fact that x ∈ L.
However, by the property of the sampler SL, this is indistinguishable from the
case that x /∈ L.

Theorem 2. Let L be a membership-hard language, and let (P1, P2, VΣ) be a
Sigma protocol for L. Then, Protocol 1 is a dual-mode commitment scheme.

Proof. The fact that Comρ(m; r) is perfectly binding when ρ ← GenCRS(1n)
follows from the fact that when x /∈ L it holds that for every a there exists a
single e such that VΣ(x, a, e, z) = 1.

We now show that the outputs of realCom,A(1n) and simulationScom(1n) (as
in Definition 3) are computationally indistinguishable. (We prove this first since
we will use it later to prove the computational hiding of (GenCRS,Com).) We
begin by modifying the realCom,A(1n) experiment to hybridCom,A(1n), where
the only difference is that the CRS is generated by running SL(0, 1n) in the way
that Scom generates it, instead of running SL(1, 1n). Apart from this, everything
remains exactly the same. (Observe that since Com runs the Sigma protocol simu-
lator, it makes no difference if x ∈ L or x /∈ L.) By the assumption that SxL(0, 1n)
is computationally indistinguishable from SL(1, 1n), it follows that the outputs
of realCom,A(1n) and hybridCom,A(1n) are computationally indistinguishable.
Next, we show that hybridCom,A(1n) and simulationScom(1n) are identically dis-
tributed. There are two differences between them. First, in simulation the real



Sigma-protocol prover is used instead of the simulator; second, in simulation
the value ci is generated before mi is given, in every iteration. Regarding the first
difference, the distributions are identical by the perfect zero-knowledge property
of SΣ . Regarding the second difference, once the real prover is used, it makes no
difference if ci is given before or after, since the distribution over ai is identical.
We conclude that hybridCom,A(1n) and simulationScom(1n) are identically dis-
tributed, and thus realCom,A(1n) and simulationScom(1n) are computationally
indistinguishable.

It remains to show that (GenCRS,Com) is computationally hiding as a com-
mitment scheme. In order to see this, observe that simulationScom(1n) is per-
fectly hiding. Intuitively, since it is computationally indistinguishable from a
real commitment, this proves computational hiding. More formally, for any pair
m0,m1 of the same length, the output of real with m0 is computationally indis-
tinguishable from the output of simulation with m0, and the output of real
with m1 is computationally indistinguishable from the output of simulation
with m1. (It is straightforward to modify the experiments to have a fixed mes-
sage, or to have A output a pair and choose one at random.) Since the commit-
ment in simulation is perfectly hiding, it follows that the output of simulation
with m0 is identical to the output of simulation with m1. This implies compu-
tational indistinguishability of the output of real with m0 from the output of
real with m1.

3.4 A Concrete Instantiation from DDH

In this section, we present a dual-mode commitment scheme from the DDH
assumption. This can be used for any transform, and may be more efficient if
the Sigma protocol for the language being used is less efficient. The complexity
is 4 exponentiations for a commitment (by the prover), and 4 exponentiations
for a decommitment (by the receiver).

Let G be the “generator algorithm” of a group in which the DDH assumption
is assumed to hold. We denote the output of G(1n) by (G, q, g, h) where G is the
description of a group of order q > 2n with two random generators g, h.

PROTOCOL 3 (Dual-Mode Commitment from DDH)

– Regular CRS generation (perfect binding): Run G(1n) to obtain
(G, q, g, h). Choose ρ1, ρ2 ∈R Zq and compute u = gρ1 and v = hρ2 . The
CRS is (G, q, g, h, u, v).

– Alternative CRS generation (equivocal): As above, except choose a
single ρ ∈R Zq and compute u = gρ and v = hρ.

– Commitment: To commit to a value m ∈ {0, 1}n, choose a random
z ∈R Zq and compute a = gz/um and b = hz/vm. The commitment is
c = (a, b).

– Decommitment: To decommit to c = (a, b), provide m, z and the re-
ceiver checks that gz = a · um and hz = b · vm.



The fact that the commitment scheme is perfectly binding in the regular CRS
case holds since (g, h, u, v) is not a Diffie-Hellman tuple. Thus, by the property
of the DH Sigma Protocol, for every (a, b) there exists a unique e for which
there exists a value z such that gz = a · ue and hz = b · ve. In contrast, in
the alternative CRS generation case, (g, h, u, v) is a Diffie-Hellman tuple and
the simulator knows the witness ρ. Thus, it can generate a = gr and b = hr

and then for any m ∈ {0, 1}n chosen later, it can decommit to m by computing
z = r + mρ and supplying (m, z). Since u = gρ and v = hρ it follows that
gz = gr+mρ = gr · (gρ)m = a · um and hz = hr+mρ = hr · (hρ)m = b · vm, as
required.

The proof of the following theorem follows directly from Theorem 2 and the
fact that the language of Diffie-Hellman tuples is membership hard, under the
DDH assumption.

Theorem 4. If the Decisional Diffie-Hellman assumption holds relative to G,
then Protocol 3 is a dual-mode commitment scheme.

4 The Non-Interactive Zero-Knowledge Transformation

We denote by P1, P2 the prover algorithms for a Sigma protocol for the relation
R. Thus, a proof of common statement x with witness w (for (x,w) ∈ R) is run by
the prover sending the verifier the first message a = P1(x,w), the verifier sending
a random query e ← {0, 1}t, and the prover replying with z = P2(x,w, e). We
denote the verification algorithm by VΣ(x, a, e, z).

PROTOCOL 5 (NIZK from Sigma Protocol for Relation R)

– Inputs: common statement x; the prover also has a witness w such that
(x,w) ∈ R

– Common reference string: the (regular) CRS ρ of a dual-mode com-
mitment scheme, and a key s for a hash function family H.

– Auxiliary input: 1n, where n ∈ N is the security parameter
– The prover algorithm P (x,w, ρ):

1. Compute a = P1(x,w)
2. Choose a random value r ∈ {0, 1}poly(n) and compute c = Comρ(a; r),

where Comρ(a; r) is the dual-mode commitment to a using random-
ness r and CRS ρ

3. Compute e = Hs(x, c)
4. Compute z = P2(x,w, a, e)
5. Output a proof π = (x, a, r, z)

– The verifier algorithm V (x, ρ, a, r, z):
1. Compute c = Comρ(a; r)
2. Compute e = Hs(x, c)
3. Output VΣ(x, a, e, z)



The intuition behind the transformation has been described in the introduc-
tion. We therefore proceed directly to prove its security.

4.1 Zero Knowledge

Lemma 1. Let Σ = (P1, P2, VΣ) be a Sigma protocol for a relation R and let
Com be a dual-mode commitment. Then, Protocol 5 with Σ is zero-knowledge for
the language LR in the common reference string model.

Proof. We construct a simulator Szk (as in Definition 2) for Protocol 5 as follows:

– Upon input 1n, Szk runs Scom(1n) for the dual-mode commitment scheme and
obtains the value ρ. In addition, Szk samples a key s for the hash function.
Szk outputs the CRS (ρ, s).

– Upon input x (for every x1, . . . , xp(n)), simulator Szk runs Scom to obtain
some c. Then, Szk computes e = Hs(x, c) and runs the simulator SΣ for the
Sigma protocol upon input (x, e). Let the output of the simulator be (a, z).
Then, Szk runs Scom(a) from the dual-mode commitment to obtain r such
that c = Comρ(a; r). Finally, Szk outputs (x, a, r, z).

Intuitively, the difference between a simulated proof and a real one is in the
dual-mode commitment. Note also that Szk uses the Sigma protocol simulator.
However, by the property of Sigma protocols, these messages have an identi-
cal distribution. Thus, we prove the zero-knowledge property by reducing the
security to that of the dual-commitment scheme, as in Definition 3.

First, we construct an alternative simulator S ′ who in every iteration (for
i = 1, . . . , p(n)) receives (x,w); i.e., S ′ receives both f1(ρ,x,π) and f2(ρ,x,π)
and so also receives the witness for the fact that x ∈ L. In the first stage of the
simulation, S ′ works exactly like Szk to generate the CRS (ρ, s). In addition, S ′
generates c by running Scom, just like Szk. However, in order to generate (a, z),
S ′ uses (x,w) and works as follows. It first computes e = Hs(x, c) exactly like
Szk. However, S ′ runs P1(x,w) to obtain a (instead of running SΣ), and then
runs P2(x,w, a, e) to obtain z. Finally, S ′ runs Scom(a) to obtain r such that
c = Comρ(a; r). The only difference between Szk and S ′ is how the values a, z
are obtained. Since for every e, SΣ outputs (a, z) that are distributed identically
as in a real proof with e, it holds that the output distributions of Szk and S ′ are
identical.

We now proceed to show that the output distribution of S ′ is computation-
ally indistinguishable to a real proof. Formally, let f = (f1, f2) be the function
choosing the inputs as in Definition 2. We construct an adversary A for the
dual-mode commitments of Definition 3, with input 1n:

1. A receives ρ, chooses a key s for the hash function family H, and sets the
CRS to be (ρ, s).

2. For i = 1, . . . , p(n) (x and π are initially empty):
(a) A receives (ρ, c, r) and knows m1, . . . ,mi−1 and x1, . . . , xi−1 (since these

were generated by A in previous iterations).



(b) For every j = 1, . . . , i − 1, A sets aj = mj , ej = Hs(xj , cj), zj =
P2(xj , wj , aj , ej), and πj = (xj , aj , rj , zj). Finally A sets the vectors
x = (x1, . . . , xi−1) and π = (π1, . . . , πi−1).

(c) A computes (xi, wi) = f((ρ, s),x,π)
(d) A outputs mi = ai = P1(xi, wi), as in Step 2(a) of the real experiment

in Definition 3
3. A receives ((ρ, s),m1, r1, . . . ,mp(n), rp(n)) and works as follows:

(a) For every i = 1, . . . , p(n), A sets ai = mi, computes the values ei =
Hs(xi,Com(mi; ri)), zi = P2(xi, ai, ei), and defines πi = (xi, ai, ri, zi).

(b) A outputs ((ρ, s), x1, . . . , xp(n), π1, . . . , πp(n))

Now, if A interacts in the “real commitment” experiment real for dual-mode
commitments, then its output is exactly the same output as in the real proofs
experiment Rf in Definition 2. This is because the CRS is generated according
to the dual commitment scheme, and the algorithm run by A to compute all
the (xi, ai, ri, zi) is exactly the same as the honest prover P (xi, wi, ρi). The only
difference is that A receives (ri, ci) externally. However, ci = Comρ(ai; ri) and
ri is uniformly distributed in this experiment. Thus, it is exactly the same as P
in Protocol 5.

In contrast, if A interacts in the “simulation” experiment simulation for
dual-mode commitments, then its output is distributed identically to S ′. This
is because the CRS ρ is computed as ρ ← Scom(1n), as too are ci ← Scom
and ri ← Scom(mi) in the dual-commitment simulation experiment, exactly as
computed by S ′.

Thus, by Definition 3, the output of S ′ is computationally indistinguishable
from a real proof. This implies that the output of Szk is computationally indis-
tinguishable from a real proof, as required by Definition 2.

4.2 Interactive Argument (Adaptive Soundness)

We now prove that Protocol 5 is a non-interactive argument system. In partic-
ular, it is computationally (adaptively) sound.

Lemma 2. Let Σ = (P1, P2, VΣ) be a Sigma-protocol for a relation R, let Com
be a perfectly-binding commitment, and let H be a non-programmable random
oracle. Then, Protocol 5 with Σ is a non-interactive argument system for the
language LR in the common reference string model.

Proof. Completeness is immediate. We proceed to prove adaptive soundness,
as in Definition 2. We will use the fact that for any function g, the relation
R = {(x, g(x)} is evasive on pairs (x,O(x)), where O is a (non-programmable)
random oracle. This means that, given oracle access to O, it is infeasible to find
a string x so that the pair (x,O(x)) ∈ R [3].

Assume x /∈ L. Then, by the soundness of the Sigma protocol, we have that
for every a there exists a single e ∈ {0, 1}n for which (a, e, z) is accepting,
for some z. Define the function g(x, c) = e, where there exist a, r, z such that
c = Com(a; r) and VΣ(x, a, e, z) = 1. We stress that since x /∈ L and since c is



perfectly binding, there exists a single value e that fulfills this property. Thus,
it follows that g is a function, as required.

Since g is a function, it follows that the relation R = {((x, c), g(x, c))} is
evasive, meaning that no polynomial-time machineA can find a pair (x, c) so that
O(x, c) = g(x, c), with non-negligible probability. Assume now, by contradiction,
that there exists a probabilistic polynomial-time function f and a probabilistic
polynomial-time cheating prover B such that V (f(ρn), ρn,B(ρn)) = 1 with non-
negligible probability (where ρn ← GenCRS(1n)).

We construct a probabilistic polynomial-time adversary A as follows. A runs
the regular generation of the dual-mode commitment scheme to obtain ρn. Then,
A runs B(ρn) and obtains a tuple (x, a, e, z). If V (f(ρn), ρn, (a, r, z)) = 1, then
A outputs (x,Com(a; r)) and halts. According to the contradicting assumption,
V (f(ρn), ρn, (a, r, z)) = 1 with non-negligible probability. This implies that with
non-negligible probability, it holds that VΣ(x, a,O(x,Com(a; r)), z) = 1. How-
ever, there is just a single value e for which VΣ(x, a,O(x,Com(a; r)), z) = 1.
Thus, this implies that O(x,Com(a; r)) = e, with non-negligible probability.
Stated differently, this implies that O(x,Com(a; r)) = g(x,Com(a; r)) with non-
negligible probability, in contradiction to the fact that any function g is evasive
for a (non-programmable) random oracle.

4.3 Summary

Combining Lemmas 1 and 2 with the fact that the dual-mode commitment
scheme is perfectly binding when the CRS is chosen correctly, we have:

Corollary 1. Let L be a language with an associated Sigma protocol. If dual-
mode commitments exist, then there exists a non-interactive zero-knowledge ar-
gument system for L in the non-programmable random-oracle model. Further-
more, zero-knowledge holds in the standard model.

In Theorem 2 we showed that dual-mode commitment schemes exist for ev-
ery membership-hard language with a Sigma protocol. Combining this with the
above corollary, we have:

Corollary 2. Let L be a membership-hard language with an associated Sigma
protocol. Then, there exists a non-interactive zero-knowledge interactive proof
system for L, in the non-programmable random oracle model. Furthermore, zero-
knowledge holds in the standard model.

Acknowledgements

We thank Ben Riva, Nigel Smart and Daniel Wichs for helpful discussions.

References

1. B. Barak, Y. Lindell and S. Vadhan. Lower Bounds for Non-Black-Box Zero
Knowledge. In the Journal of Computer and System Sciences, 72(2):321–391,
2006. (An extended abstract appeared in FOCS 2003.)



2. M. Blum, P. Feldman and S. Micali. Non-interactive Zero-Knowledge and its
Applications. In 20th STOC, pages 103–112, 1988.

3. R. Canetti, O. Goldreich and S. Halevi. The Random Oracle Methodology, Re-
visited. In the 30th STOC, pages 209-218, 1998.

4. D. Catalano and I. Visconti. Hybrid Commitments and their Applications to
Zero-Knowledge Proof Systems. Theoretical Computer Science, 374(1-3):229-
260, 2007.

5. R. Cramer, I. Damg̊ard and B. Schoenmakers. Proofs of Partial Knowledge and
Simplified Design of Witness Hiding Protocols. In CRYPTO’94, Springer-Verlag
(LNCS 839), pages 174–187, 1994.

6. I. Damg̊ard. On the Existence of Bit Commitments Schemes and Zero-
Knowledge Proofs. In CRYPTO’89, Springer-Verlag (LNCS 435), pages 17–27,
1989.

7. I. Damg̊ard. Efficient Concurrent Zero-Knowledge in the Auxiliary String Model.
In EUROCRYPT 2000, Springer (LNCS 1807), pages 418–430, 2000.

8. I. Damg̊ard. On Σ Protocols. http://www.daimi.au.dk/∼ivan/Sigma.pdf.

9. Y. Dodis, V. Shoup and S. Walfish. Efficient Constructions of Composable
Commitments and Zero-Knowledge Proofs. In CRYPTO 2008, Springer (LNCS
5157), pages 515–535, 2008.

10. Y. Dodis, T. Ristenpart and S.P. Vadhan. Randomness Condensers for Effi-
ciently Samplable, Seed-Dependent Sources. In the 9th TCC, Springer (LNCS
7194), pages 618–635, 2012.

11. U. Feige, D. Lapidot and A. Shamir. Multiple Non-Interactive Zero-Knowledge
Proofs Under General Assumptions. SIAM Journal on Computing, 29(1):1–28,
1999.

12. U. Feige and A. Shamir. Witness Indistinguishable and Witness Hiding Proto-
cols. In the 22nd STOC, pages 416–426, 1990.

13. A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identifica-
tion and Signature Problems. In CRYPTO 1986, Springer-Verlag (LNCS 263)
pages 186–194, 1986.

14. O. Goldreich. Foundation of Cryptography, Volume II. Cambridge University
Press, 2004.

15. O. Goldreich. Basing Non-Interactive Zero-Knowledge on (Enhanced) Trapdoor
Permutation: The State of the Art. Technical Report, 2009.
http://www.wisdom.weizmann.ac.il/∼oded/PSBookFrag/nizk-tdp.ps

16. O. Goldreich, S. Micali and A. Wigderson. How to Prove all NP-Statements
in Zero-Knowledge, and a Methodology of Cryptographic Protocol Design. In
CRYPTO’86, Springer-Verlag (LNCS 263), pages 171–185, 1986.

17. O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game –
A Completeness Theorem for Protocols with Honest Majority. In 19th STOC,
pages 218–229, 1987.

18. O. Goldreich and Y. Oren. Definitions and Properties of Zero-Knowledge Proof
Systems. Journal of Cryptology, 7(1):1–32, 1994.

19. S. Goldwasser and Y. Kalai. On the (In)security of the Fiat-Shamir Paradigm.
In the 44th FOCS, pages 102–113, 2003.

20. S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Inter-
active Proof Systems. SIAM Journal on Computing, 18(1):186–208, 1989.

21. C. Hazay and Y. Lindell. Efficient Secure Two-Party Protocols – Techniques
and Constructions. Springer, October 2010.



22. S. Jarecki and V. Shmatikov. Efficient Two-Party Secure Computation on Com-
mitted Inputs. In EUROCRYPT 2007, Springer (LNCS 4515), pages 97–114,
2007.

23. Y. Lindell and B. Pinkas. Secure Two-Party Computation via Cut-and-Choose
Oblivious Transfer. In Journal of Cryptology, 25(4):680722, 2012. (Extended
abstract appeared in TCC 2011, Springer (LNCS 6597), pages 329–346, 2011.)

24. Yehuda Lindell. Fast Cut-and-Choose Based Protocols for Malicious and Covert
Adversaries. In CRYPTO 2013, Springer (LNCS 8043) pages 1–17, 2013.

25. J.B. Nielsen. Separating Random Oracle Proofs from Complexity Theoretic
Proofs: The Non-committing Encryption Case. In CRYPTO 2002, Springer
(LNCS 2442), pages 111–126, 2002.

26. J.B. Nielsen and C. Orlandi. LEGO for Two-Party Secure Computation. In TCC
2009, Springer (LNCS 5444), pages 368–386, 2009.

27. R. Pass. On Deniability in the Common Reference String and Random Oracle
Model. In CRYPTO 2003, Springer (LNCS 2729), pages 316–337, 2003.

28. T.P. Pedersen. Non-interactive and Information-Theoretical Secure Verifiable
Secret Sharing. In CRYPTO’91, Springer-Verlag (LNCS 576) pages 129–140,
1991.

29. D. Pointcheval and J. Stern: Security Proofs for Signature Schemes. In EURO-
CRYPT 1996, Springe-Verlag (LNCS 1070), pages 387–398, 1996.

30. B. Schoenmakers and P. Tuyls. Practical Two-Party Computation Based on the
Conditional Gate. In ASIACRYPT 2004, Springer (LNCS 3329), pages 119–136,
2004.

31. A. Shelat, C.H. Shen. Two-Output Secure Computation with Malicious Adver-
saries. In EUROCRYPT 2011, Springer (LNCS 6632), pages 386–405, 2011.

32. Hoeteck Wee. Zero Knowledge in the Random Oracle Model, Revisited. In ASI-
ACRYPT 2009, Springer (LNCS 5912), pages 417–434, 2009.


	An Efficient Transform from Sigma Protocols to NIZK with a CRS and Non-Programmable Random Oracle

