
The Power of Negations in Cryptography?

Siyao Guo1, Tal Malkin2, Igor C. Oliveira2, and Alon Rosen3

1 Department of Computer Science and Engineering, Chinese Univ. of Hong Kong,
syguo@cse.cuhk.edu.hk

2 Department of Computer Science, Columbia University,
{tal,oliveira}@cs.columbia.edu

3 Efi Arazi School of Computer Science, IDC Herzliya, Israel,
alon.rosen@idc.ac.il

Abstract. The study of monotonicity and negation complexity for Bool-
ean functions has been prevalent in complexity theory as well as in com-
putational learning theory, but little attention has been given to it in the
cryptographic context. Recently, Goldreich and Izsak (2012) have initi-
ated a study of whether cryptographic primitives can be monotone, and
showed that one-way functions can be monotone (assuming they exist),
but a pseudorandom generator cannot.
In this paper, we start by filling in the picture and proving that many
other basic cryptographic primitives cannot be monotone. We then ini-
tiate a quantitative study of the power of negations, asking how many
negations are required. We provide several lower bounds, some of them
tight, for various cryptographic primitives and building blocks including
one-way permutations, pseudorandom functions, small-bias generators,
hard-core predicates, error-correcting codes, and randomness extractors.
Among our results, we highlight the following.

– Unlike one-way functions, one-way permutations cannot be mono-
tone.

– We prove that pseudorandom functions require logn−O(1) negations
(which is optimal up to the additive term).

– We prove that error-correcting codes with optimal distance parame-
ters require logn−O(1) negations (again, optimal up to the additive
term).

– We prove a general result for monotone functions, showing a lower
bound on the depth of any circuit with t negations on the bottom
that computes a monotone function f in terms of the monotone
circuit depth of f . This result addresses a question posed by Koroth
and Sarma (2014) in the context of the circuit complexity of the
Clique problem.

? The first author was partially supported by RGC GRF grant CUHK 410111. The
second and the third author were supported in part by NSF grants CCF-116702 and
CCF-1423306. The first and the third author did part of this work while visiting IDC
Herzliya, supported by the ERC under the European Union’s Seventh Framework
Programme (FP/2007-2013) Grant Agreement n. 307952. The fourth author was
supported by ISF grant no. 1255/12 and by the ERC under the European Union’s
Seventh Framework Programme (FP/2007-2013) Grant Agreement n. 307952.

1 Introduction

Why do block ciphers like AES (Advanced Encryption Standard) have so
many XOR gates dispersed throughout the levels of its circuit? Can we build
a universal hard-core bit alternative to the Goldreich and Levin one [20] that
only applies a small (say, constant) number of XORs? Why does the Goldreich,
Goldwasser, and Micali [18] construction of a pseudorandom function (PRF)
from a pseudorandom generator (PRG) heavily rely on selection functions, and
calls the PRG many times? Could there be a monotone construction of a PRF
from a PRG?

These are a few of the many fascinating questions related to the negation
complexity of cryptographic primitives. The negation complexity of a boolean
function f : {0, 1}n → {0, 1} is the minimum number of negation gates in any fan-
in two circuit with AND, OR, and NOT gates computing f . Note that negation
gates are equivalent to XOR gates (of fan-in 2), in the sense that any circuit with
t negation gates can be transformed into an equivalent circuit with t XOR gates,
and vice-versa.4 A function is monotone if and only if its negation complexity is
0.

In this paper, we initiate the investigation of the negation complexity of cryp-
tographic primitives. We take first steps in this study, providing some surprising
results, as well as pointing to some basic, intriguing problems that are still open.

This direction fits within the larger program of studying how simple basic
cryptographic primitives can be, according to various complexity measures such
as required assumptions, minimal circuit size, depth, etc (see, e.g., [4]). Exploring
such questions helps gaining a deeper theoretical understanding of fundamental
primitives and the relationships among them, and may provide the basis for
understanding and addressing practical considerations as well.

While the study of monotone classes of functions and negation complexity
has been prevalent in circuit complexity ([21,3,38,36,35,7,6,29,28], to name a
few) and computational learning theory (see e.g. [8,9,11,32,13]), little attention
has been given to it in the cryptographic context.

Recently, Goldreich and Izsak [19] have initiated a study of “cryptography
in the monotone world”, asking whether basic cryptographic primitives may be
monotone. They focus on one-way functions (OWF) and pseudorandom gener-
ators, and show an inherent gap between the two by proving: (1) if any OWF
exist, then there exist OWFs with polynomial-size monotone circuits, but (2)
no monotone function can be a PRG. Quoting from their paper: these two
results indicate that in the “monotone world” there is a fundamental gap be-
tween one-way functions and pseudorandom generators; thus, the “hardness-vs-
randomness” paradigm fails in the monotone setting. This raises the following
natural question:

Can other cryptographic primitives be computed by polynomial-size mono-
tone circuits?

4 ¬x is equivalent to x⊕ 1, while x⊕ y is equivalent to ¬(x ∧ y) ∧ (x ∨ y).

We consider this question for several primitives and building blocks, showing
negative answers for all of them. This may suggest the interpretation (or conjec-
ture) that in the “monotone world”, there is no cryptography except for one-way
functions. We then initiate a quantitative study (where our main contributions
lie), putting forward the question:

How many negations are required (for poly-size circuits) to compute fun-
damental cryptographic building blocks?

Markov [27] proved that the negation complexity of any function h : {0, 1}n →
{0, 1}m is at most dlog(n+ 1)e, and Fischer [14] proved that this transformation
can be made efficient (see Jukna [22] for a modern exposition). In light of these
results, is it the case that all natural cryptographic primitives other than OWFs
require Ω(log n) negations, or are there primitives that can be computed with,
say, a constant number of negations?

We state our results informally in the next section. Since our lower bounds
hold for well-known primitives, we postpone their definitions to Section 3.

2 Our Results

Our contributions alongside previously known results are summarized in Fig-
ure 1, together with the main idea in each proof (the definition of these primitives
can be found in Section 3). We explain and discuss some interesting aspects of
these results below, deferring complete details to the body of the paper.

Primitive Lower Bound Upper Bound Ref. Proof Ideas

OWF - (monotone) [19] Embedding into middle slice
OWP non-monotone logn + O(1) here Combinatorial and analytic proofs
PRG non-monotone logn + O(1) [19] AND of one or two output bits
SBG non-monotone ω(1) here Extension of [19]; Parity of Tribes

WPRF non-monotone (1
2

+o(1)) logn [9] Weak-learner for monotone functions
PRF logn− O(1) logn + O(1) here Alternating chains in the hypercube
ECC logn− O(1) logn + O(1) here Extension of [12]
HCB (1

2
−o(1)) logn (1

2
+o(1)) logn here Low influence and [16]

EXT Ω(logn) logn + O(1) here Low noise-sensitivity and [10]

Fig. 1. Summary of the negation complexity of basic cryptographic primitives and
building blocks. Boldface results correspond to new bounds obtained in this paper.
The logn+O(1) upper bound is Markov’s bound [27] for any Boolean function. Error-
correcting codes (ECC) and extractors (EXT) refer to constructions with good distance
and extraction parameters.

2.1 Cryptography is Non-Monotone

As mentioned above, [19] proved that if OWFs exist, then they can be mono-
tone, while PRGs cannot. We fill in the picture by considering several other
cryptographic primitives, and observing that none of them can be monotone
(see Figure 1).

A result of particular interest is the lower bound showing that one-way
permutations (OWP) cannot be monotone. We obtain this result by proving
that any monotone permutation f on n variables must satisfy f(x1, . . . , xn) =(
xπ(1), . . . , xπ(n)

)
, for some permutation π : [n] → [n] (finding the permutation

and inverting f can then be done by evaluating f on n inputs). This is surprising
in light of the [19] construction for OWFs. In particular, our result can be seen
as a separation between OWFs and OWPs in the monotone world.

We provide two proofs of our result. The first is based on analytical methods,
and was inspired by an approach used by Goldreich and Izsak [19]. The second
is more elementary, and relies on a self-contained combinatorial argument.

2.2 Highly Non-Monotone Primitives

We show that many central cryptographic primitives are highly non-monotone.
Some of our lower bounds demonstrate necessity of log n−O(1) negations, which
is tight in light of Markov’s log n+O(1) upper bound [27]. For some of the prim-
itives we give less tight Ω(log n) lower bounds.

Pseudorandom Functions (PRF). We show that PRFs can only be com-
puted by circuits containing at least log n−O(1) negations (which is optimal
up to the additive term). We prove this by exhibiting an adversary that dis-
tinguishes any function that can be implemented with fewer negations gates
from a random function. Our result actually implies that for any PRF family
{F (w, ·)}, for almost all seeds w, F (w, ·) can only be computed by circuits
with at least log n−O(1) negations.5

The distinguisher we construct asks for the values of the function on a fixed
chain from 0n to 1n and accept if the alternating number of this chain is
large. We note that the distinguisher suceeds for any function that has an
implementation with fewer negations than the lower bound, regardless of
the specific implementation the PRF designer had in mind. This can be
considered as another statistical test to run on proposed candidate PRF im-
plementations.

Error-Correcting Codes (ECC). As shown by Buresh-Oppenheim, Ka-
banets and Santhanam [12], if an ECC has a monotone encoding function
then one can find two codewords that are very close. This implies that there
is no monotone ECC with good distance parameters.

5 That is, if we consider the circuit computing the PRF family F (·, ·) as a single
function (with the seed as one of the inputs), then this circuit must have at least
logarithmically many negation gates.

We extend this result to show that, given a circuit with t negation gates com-
puting the encoding function, we can find two codewords whose Hamming
distance is O(2t ·m/n) (for codes going from n bits to m bits). Consequently,
this gives a log n − O(1) lower bound on the negation complexity of ECC
with optimal distance parameters.

Hard-core Bits (HCB). Recall that a Boolean function h : {0, 1}n → {0, 1}
is a hard-core predicate for a function f : {0, 1}n → {0, 1} if, given f(x), it is
hard to compute h(x). We show that general hard-core bit predicates must
be highly non-monotone. More specifically, there exists a family of one-way
functions fn for which any hard-core predicate requires Ω(log n) negations
(assuming one-way functions exist).
Our result follows via the analysis of the influence of circuits with few nega-
tions, and a corresponding lower bound on hard-core bits due to Goldmann
and Russell [16].

(Strong) Extractors (EXT). A strong extractor produces almost uniform
bits from weak sources of randomness, even when the truly random seed used
for extraction is revealed. We prove that any extractor function Ext : {0, 1}n×
{0, 1}s → {0, 1}100 that works for (n, n1/2−ε)-sources requires circuits with
Ω(log n) negations (see Section 3 for definitions).
This proof relies on the analysis of the noise sensitivity of circuits containing
negations, together with a technique from Bogdanov and Guo [10].

2.3 Non-trivial Upper Bound for Small-Bias Generators

The above lower bounds may suggest the possibility that, with the excep-
tion of OWFs, all cryptographic building blocks require Ω(log n) negations. We
show one example of a primitive – small-bias generator (SBG) – that can be
constructed with significantly fewer negations, namely, with any super-constant
number of negations (for example, log∗(n) such gates).

A SBG can be thought of as a weaker version of a PRG, where the output
fools linear distinguishers (i.e., it looks random to any distinguisher that can
only apply a linear test). Thus, any PRG is also a SBG, but not vice-versa. We
construct our SBG with few negations by outputting the input and an additional
bit consisting of a parity of independent copies of the Tribes function.

Since SBGs are not quite a cryptographic primitive (these can be constructed
unconditionally, and are not secure against polynomial adversaries), one may still
conjecture that all “true” cryptographic primitives with the exception of OWFs
require Ω(log n) negations. We do not know whether this is the case, and it
would be interesting to determine whether other primitives not covered in this
paper can be monotone.

2.4 Lower Bounds for Boolean Circuits with Bottom Negations

In addition to studying specific primitives, we investigate general structural
properties of circuits with negations. We prove a theorem showing that for mono-

tone functions, the depth of any circuit with negations at the bottom (input)
level only is lower bounded by the monotone depth complexity of the function
minus the number of negations in the circuit. This improves a result by Koroth
and Sarma [25] (who proved a multiplicative rather than additive lower bound),
and answers an open problem posed by them in the context of the circuit com-
plexity of the Clique problem. Our proof is inspired by ideas from [25], and
relies on a circular application of the Karchmer-Wigderson connection between
boolean circuits and communication protocols.

This result suggests that negations at the bottom layer are less powerful and
easier to study. In the Appendix we describe some techniques (following results
of Blais et al. [8]) that allow one to decompose arbitrary computations into
monotone and non-monotone components, and provide further evidence that
negations at the bottom are less powerful (see also the discussion in Section 6).

Organization. We provide the definitions for most of the primitives mentioned
in this paper in Section 3. Basic results used later in our proofs are presented in
Section 4, with some proofs deferred to Appendix A. Our main results appear
in Section 5. Finally, Section 6 discusses some open problems motivated by our
work.

3 Preliminaries and Notation

In this section, we set up notation and define relevant concepts. We refer the
reader to the textbooks [22], [5], [17], and [26] for more background in circuit
complexity, computational complexity, theory of cryptography, and communica-
tion complexity, respectively.

3.1 Basic Notation

We use [n] to denote the set {1, . . . , n}. Given a Boolean string w, we use |w|
to denote its length, and |w|1 to denote the number of 1’s in w. Unless explicitly
stated, we assume that the underlying probability distribution in our equations
is the uniform distribution over the appropriate set. Further, we let U` denote
the uniform distribution over {0, 1}`. We use log x to denote a logarithm in base
2, and lnx to refer to the natural base.

Given strings x, y ∈ {0, 1}n, we write x � y if xi ≤ yi for every i ∈ [n].
A chain X = (x1, . . . , xt) is a monotone sequence of strings over {0, 1}n, i.e.,
xi � xi+1 for every i ∈ [1, t − 1]. We say that a chain X = (x1, x2, . . . , xt)
is k-alternating with respect to a function f : {0, 1}n → {0, 1} if there exist
indexes i0 < i1 < . . . < ik such that f(xij) 6= f(xij+1), for every j ∈ [0, k − 1].
If this is true for every pair of consecutive elements of the chain, we say that
the chain is proper (with respect to f). We let a(f,X) be the size of the largest
set of indexes satisfying this condition. The alternating complexity of a Boolean

function f is given by a(f)
def
= maxX a(f,X), where X is a chain over {0, 1}n.

A function f : {0, 1}n → {0, 1} is monotone if f(x) ≤ f(y) whenever x � y. A

function g : {0, 1}n → {0, 1}m is monotone if every output bit of g is a monotone
Boolean function. Moreover, we say that a Boolean function f : {0, 1}n → {0, 1}
is anti-monotone if f is the negation of a monotone Boolean function.

3.2 Boolean Circuits and Negation Gates

Every Boolean circuit mentioned in this paper consists of AND, OR and NOT
gates, where the first two types of gates have fan-in two. Recall that a Boolean
function f : {0, 1}n → {0, 1} is monotone if and only if it is computed by a circuit
with AND and OR gates only.

For convenience, the size of a circuit C will be measured by its number of
AND and OR gates, and will be denoted by size(C). The depth of a circuit C,
denoted by depth(C), is the largest number of AND and OR gates in any path
from the output gate to an input variable. The depth of a Boolean function f
is the minimum depth of a Boolean circuit computing f . Similarly, the depth
of a monotone function f , denoted by depth+(f), is the minimum depth among
all monotone circuits computing f . We will also consider multi-output Boolean
circuits that compute Boolean functions f : {0, 1}n → {0, 1}m. We stress that
whenever we say that a function of this form is computed by a circuit with t
negations, it means that there exists a single circuit (with multiple output gates)
containing at most t negations computing f .

We say that a circuit contains negation gates at the bottom layer only if any
NOT gate in the circuit gets as input an input variable xi, for some i ∈ [n]. We
will also say that circuits of this form are DeMorgan circuits. Put another way,
a circuit C(x) of size s with t negations at the bottom layer can be written as
D(x, (x⊕ β)), where D is a monotone circuit of size s, β ∈ {0, 1}n with |β|1 = t
encodes the variables that appear negated in C, and x⊕β ∈ {0, 1}n is the string
obtained via the bit-wise XOR operation. This notation is borrowed from Koroth
and Sarma [25], which refers to β as the orientation vector.

3.3 Complexity Measures for Boolean Functions

Given a Boolean function f : {0, 1}n → {0, 1} and an index i ∈ [n], we

use Ii(f) to denote the influence of the i-th input variable on f , i.e., Ii(f)
def
=

Prx[f(x) 6= f(x⊕i)], where x⊕i denotes the string obtained from x by flipping its
i-th coordinate. The influence of f (also known as average-sensitivity) is defined

as I(f)
def
=
∑
i∈[n] Ii(f). We say that a Boolean function f is balanced or unbiased

if Prx[f(x) = 1] = 1/2. We use NSp(f) to denote the noise sensitivity of f under
noise rate p ∈ [0, 1/2], which is defined as Pr[f(X ⊕ Y) 6= f(X)], where X is
distributed uniformly over {0, 1}n, and Y is the p-biased binomial distribution
over {0, 1}n, i.e., each coordinate of Y is set to 1 independently with probability
p.

3.4 Pseudorandom Functions and Weak Pseudorandom Functions

Let Fn be the set of all Boolean functions on n variables, and F : {0, 1}m ×
{0, 1}n → {0, 1}. We say that F is an (s, ε)-secure pseudorandom function (PRF)
if, for every (non-uniform) algorithm A that can be implemented by a circuit of
size at most s, ∣∣∣ Pr

w∼{0,1}m

[
AF (w,·) = 1

]
− Pr
f∼Fn

[
Af = 1

] ∣∣∣ ≤ ε,
where Ah denotes the execution of A with oracle access to a Boolean function
h : {0, 1}n → {0, 1} (circuits with access to oracle gates are defined in the natural
way).

A weak pseudorandom function (WPRF) is defined similarly, except that
the distinguisher only has access to random examples of the form (x, F (w, x)),
where x is uniformly distributed over {0, 1}n. In particular, any (s, ε)-secure
pseudorandom function is an (s, ε)-secure weak pseudorandom function, while
the other direction is not necessarily true.

3.5 Pseudorandom Generators and Small-Bias Generators

A function G : {0, 1}n → {0, 1}m is an (s, ε)-secure pseudorandom generator

(PRG) with stretch `
def
= m− n if for every circuit C(z1, . . . , zm) of size s,∣∣∣ Pr

x∼Un
[C(G(x)) = 1]− Pr

y∼Um
[C(y) = 1]

∣∣∣ ≤ ε.
We say that a function g : {0, 1}n → {0, 1}m is an ε-secure small-bias gener-

ator (SBG) with stretch ` = m− n if, for every nonempty set S ⊆ [m],∣∣∣ Pr
x∼Un, y=g(x)

[∑
i∈S

yi ≡ 1 (mod 2)
]
− 1

2

∣∣∣ ≤ ε.
Observe that small-bias generators can be seen as weaker pseudorandom gener-
ators that are required to be secure against linear distinguishers only. We refer
the reader to Naor and Naor [30] for more information about the constructions
and applications of such generators.

3.6 One-Way Functions, One-Way Permutations, and Hard-Core
Bits

We say that a function f : {0, 1}n → {0, 1}m is an (s, ε)-secure one-way
function (OWF) if for every circuit C of size at most s,

Pr
x∼Un, y=f(x)

[C(y) ∈ f−1(y)] ≤ ε.

If m = n, we say that f is length-preserving. If in addition f is a one-to-one
mapping, we say that f is an (s, ε)-secure one-way permutation (OWP).

We say that a function h : {0, 1}n → {0, 1} is an (s, ε)-secure hard-core bit
for a function f : {0, 1}n → {0, 1}m if, for every circuit C of size s,∣∣∣ Pr

x∼Un
[C(f(x)) = h(x)]− 1

2

∣∣∣ ≤ ε.
3.7 Extractors and Error-Correcting Codes

The min-entropy of a random variable X, denoted by H∞(X), is the largest
real number k such that Pr[X = x] ≤ 2−k for every x in the range of X. A
distribution X over {0, 1}n with H∞(X) ≥ k is said to be an (n, k)-source.
Given random variables X and Y with range {0, 1}m, we let

δ(X,Y)
def
= max

S⊆{0,1}m

∣∣Pr[X ∈ S]− Pr[Y ∈ S]
∣∣

denote their statistical distance. We say that X and Y are ε-close if δ(X,Y) ≤ ε.
We say that a function Ext : {0, 1}n × {0, 1}s → {0, 1}m is a (strong) (k, ε)-

extractor (EXT) if, for any (n, k)-source X, the distributions (Us,Ext(X,Us))
and Us+m are ε-close.6

Given strings y1, y2 ∈ {0, 1}m, we let

∆(y1, y2)
def
=
|{i ∈ [m] | y1i 6= y2i }|

m

be their relative Hamming distance. Given a function E : {0, 1}n → {0, 1}m, we
say that E has relative distance γ if for every distinct pair of inputs x1, x2 ∈
{0, 1}n, we have∆(E(x1), E(x2)) ≥ γ. As a convention, we will refer to a function
of this form as an error-correcting code (ECC) whenever we are interested in the
distance between its output strings (also known as “codewords”).

4 Basic Results and Technical Background

4.1 Karchmer-Wigderson Communication Games

Karchmer-Wigderson games [24] are a powerful tool in the study of cir-
cuit depth complexity. We focus here on games for monotone functions. Let
f : {0, 1}n → {0, 1} be a monotone function, and consider the following deter-
ministic communication game between two players named Alice and Bob. Alice
gets an input x ∈ f−1(1), while Bob receives y ∈ f−1(0). The goal of the players
is to communicate the minimum number of bits (using an interactive protocol),
and to output a coordinate i ∈ [n] for which xi = 1 and yi = 0. The monotonicity
assumption on f guarantees that such coordinate always exists.

Proposition 1 (Karchmer and Wigderson [24]). Let f : {0, 1}n → {0, 1}
be a monotone function. There exists a monotone circuit Cf of depth d that
computes f if, and only if, there exists a protocol Πf for the (monotone) KW-
game of f with communication cost d.

6 Two occurrences of the same random variable in an expression refer to the same
copy of the variable.

4.2 Markov’s Upper Bound

The following result was obtained by Markov [27].

Proposition 2 (Markov [27]). Let f : {0, 1}n → {0, 1}m be an arbitrary func-
tion. Then f is computed by a (multi-output) Boolean circuit containing at most
dlog(n+ 1)e negations.

This result implies that many of our lower bounds are tight up to an additive
term independent of n. Some of our proofs also rely on the following relation
between negation complexity and alternation.

Proposition 3 (Markov [27]). Let f : {0, 1}n → {0, 1} be a Boolean function
computed by a circuit with at most t negations. Then a(f) = O(2t).

4.3 The Flow of Negation Gates

It is useful in some situations to decompose the computation of a function into
monotone and non-monotone components. This idea has been applied success-
fully to obtain almost optimal bounds on the learnability of functions computed
with few negation gates (Blais et al. [8]). An important lemma used in their
paper can be stated as follows.

Lemma 1 (Blais et al. [8]). Let f : {0, 1}n → {0, 1} be a Boolean function
computed by a circuit C with at most t negations. Then f can be written as
f(x) = h(g1(x), . . . , gT (x)), where each function gi is monotone, T = O(2t),
and h is either the parity function, or its negation.

A drawback of this statement is that the computational complexity of each
gi is not related to the size of C. Roughly speaking, the proof of this result uses
a circuit for f in order to gain structural information about f , and then rely on
a non-constructive argument. We observe that, by relaxing the assumption on
h, we can prove the following effective version of Lemma 1.7

Lemma 2. Let f : {0, 1}n → {0, 1} be a Boolean function computed by a cir-
cuit C of size s containing t negation gates. Then f can be written as f(x) =
h(g1(x), . . . , gT (x)), where each function gi is computed by a monotone circuit
of size at most s, T = 2t+1−1, and h : {0, 1}T → {0, 1} is computed by a circuit
of size at most 5T .

We state below a more explicit version of Lemma 2 for circuits with a single
negation gate and several output bits. The proof of this result follows from the
same argument used to derive Lemma 2, whose proof we give in Section A.

7 This result was obtained during a discussion with Clement Canonne, Li-Yang Tan,
and Rocco Servedio.

Lemma 3. Let f : {0, 1}n → {0, 1}u be computed by a circuit of size s con-
taining a single negation gate. Assume that the j-th output bit of f is com-
puted by the function fj : {0, 1}n → {0, 1}. Then, there exist monotone functions
m : {0, 1}n → {0, 1} and mj,` : {0, 1}n → {0, 1}, where j ∈ [u] and ` ∈ {0, 1},
which are computed by monotone circuits of size at most s, and a function
h : {0, 1}3 → {0, 1}, such that:

(i) For every j ∈ [u], fj(x) = h(m(x),mj,0(x),mj,1(x)).
(ii) For every j ∈ [u] and x ∈ {0, 1}n, mj,0(x) ≤ mj,1(x).

(iii) The function h is defined as h(z, y1, y0)
def
= yz.

From a programming perspective, Lemma 3 shows that a single negation gate
in a Boolean circuit can be interpreted as an if-then-else statement involving
monotone functions. Conversely, the selection procedure computed by h can be
implemented with a single negation.

For convenience of the reader, we sketch the proof of these results in Section
A, where we also discuss the expressiveness of negations at arbitrary locations
compared to negations at the bottom layer of a circuit. Lemmas 1 and 2 can be
used interchangeably in our proofs.

4.4 Useful Inequalities

Some of our proofs rely on the following results for Boolean functions.

Proposition 4 (Fortuin, Kasteleyn, and Ginibre [15]). If g : {0, 1}n →
{0, 1} and f : {0, 1}n → {0, 1} are monotone Boolean functions, then

Pr
x

[f(x) = 1 ∧ g(x) = 1] ≥ Pr
x

[f(x) = 1] · Pr
x

[g(x) = 1].

The same inequality holds for anti-monotone functions. In particular, for mono-
tone f, g : {0, 1}n → {0, 1}, following inequality holds

Pr
x

[f(x) = 0 ∧ g(x) = 0] ≥ Pr
x

[f(x) = 0] · Pr
x

[g(x) = 0].

A stronger version of this inequality that will be used in some of our proofs is
presented below.

Proposition 5 (Talagrand [37]). For any pair of monotone Boolean func-
tions f, g : {0, 1}n → {0, 1}, it holds that

Pr
x

[f(x) = 1 ∧ g(x) = 1] ≥ Pr
x

[f(x) = 1] · Pr
x

[g(x) = 1] + ψ
(∑
i∈[n]

Ii(f) · Ii(g)
)
,

where ψ(x)
def
= c · x/ log (e/x), and c > 0 is a fixed constant independent of n.

Proposition 6 (Kahn, Kalai, and Linial [23]). Let f : {0, 1}n → {0, 1} be a
balanced Boolean function. Then there exists an index i ∈ [n] such that Ii(f) =

Ω
(

logn
n

)
.

Finally, we will make use of the following standard concentration bound (cf.
Alon and Spencer [2]).

Proposition 7. Let X1, . . . , Xm be independent {0, 1} random variables, where

each Xi is 1 with probability p ∈ [0, 1]. In addition, set X
def
=
∑
iXi, and µ

def
=

E[X] = pm. Then, for any fixed ζ > 0, there exists a constant cζ > 0 such that

Pr[|X − µ| > ζµ] < 2e−cζµ.

5 Main Results

5.1 One-Way Functions versus One-Way Permutations

Goldreich and Izsak [19] proved that if one-way functions exist, then there
are monotone one-way functions. We show below that this is not true for one-
way permutations. In other words, one-way permutations are inherently non-
monotone. This lower bound follows easily via the following structural result for
monotone permutations.

Proposition 8. Let f : {0, 1}n → {0, 1}n be a one-to-one function. If f is
monotone, then there exists a permutation π : [n] → [n] such that, for every
x ∈ {0, 1}n, f(x) = xπ(1) . . . xπ(n). In particular, there exists a (uniform) poly-
nomial size circuit that inverts f on every input y = f(x).

Proof. Let fi : {0, 1}n → {0, 1} be the Boolean function corresponding to the i-
th output bit of f . Since f is monotone, each function fi is monotone. Consider
functions f` and fk, where ` 6= k. By Talagrand’s inequality (Proposition 5),

Pr
x

[f`(x) = 1 ∧ fk(x) = 1]

≥ Pr
x

[f`(x) = 1] · Pr
x

[fk(x) = 1] + ψ
(∑
i∈[n]

Ii(f`) · Ii(fk)
)
. (1)

Since f is a permutation, Prx[f`(x) = 1 ∧ fk(x) = 1] = 1/4 and Prx[f`(x) =
1] = Prx[fk(x) = 1] = 1/2. Consequently, it follows from Equation 1 and the
definition of ψ that ∑

i∈[n]

Ii(f`) · Ii(fk) = 0.

In other words, f` and fk depend on a disjoint set of input variables. Since this
is true for every pair ` and k with ` 6= k, and every output bit of f is non-
constant, there exists a permutation π : [n]→ [n] such that, for every i, j ∈ [n],
if Ii(fj) > 0 then i = π(j). Moreover, as f is monotone and one-to-one, we
must have fj(x) = xπ(j), for every j ∈ [n]. The corresponding permutation can
be easily recovered from f by evaluating this function on every indicator string
ei ∈ {0, 1}n, where eij = 1 if and only if i = j. This completes the proof of our
result.

We remark that a simple extension of this proof allows us to rule out mono-
tone one-way functions f : {0, 1}n → {0, 1}n−k where each pre-image set f−1(x)
has size exactly 2k (i.e., regular OWFs), and some relaxations of this notion.

Proposition 8 implies that any circuit computing a one-way permutation con-
tains at least one negation gate. It is not clear how to extend its proof to obtain
a stronger lower bound on the negation complexity of one-way permutations,
as Talagrand’s inequality holds for monotone functions only. Although we leave
open the problem of obtaining better lower bounds, we give next an alternative
proof of Proposition 8 that does not rely on Talagrand’s result.

Proof. Let Sk
def
= {x ∈ {0, 1}n | |x|1 = k}, where k ∈ [0, n]. In other words,

Sk is simply the k-th slice of the n-dimensional Boolean hypercube. Initially,
we prove the following claim: For every set Sk, f(Sk) = Sk. In other words, f
induces a permutation over each set of inputs Sk. We then use this result to
establish Proposition 8.

First, observe that f(0n) = 0n. Otherwise, there exists an input x 6= 0n such
that f(x) = 0n. Since 0n � x and f is monotone, we get that f(0n) � f(x),
which contradicts the injectivity of f . This establishes the claim for S0. The
general case follows by induction on k. Assume the result holds for any k′ < k,
and consider an arbitrary y ∈ Sk. Since f is one-to-one, there exists x ∈ S` such
that f(x) = y, where ` ≥ k. If ` 6= k, there exists x′ ≺ x such that x′ ∈ Sk. Let

y′
def
= f(x′). Using that f is monotone and x′ ≺ x, we get that y′ � y. Since f is

one-to-one, y′ ≺ y, thus y′ ∈ Sk′ for some k′ < k. This is in contradiction with
our induction hypothesis and the injectivity of f , since f(Sk′) = Sk′ , x

′ ∈ Sk,
and y′ = f(x′) ∈ Sk′ . This completes the induction hypothesis, and the proof of
our claim.

Now let π : [n] → [n] be the permutation such that f−1(ei) = eπ(i), where
ej ∈ {0, 1}n is the input with 1 at the j-th coordinate only. Clearly, for every
x ∈ S0 ∪ S1, f(x) = xπ(1) . . . , xπ(n). On the other hand, for every x ∈ Sk with
k > 1, it follows from the monotonicity of f that∨

i : xi=1

f(ei) � f(x),

where the disjunction is done coordinate-wise. Finally, it follows from our pre-
vious claim that we must also have f(x) ∈ S|x|1 . Therefore,∨

i : xi=1

f(ei) = f(x).

Consequently, for every x ∈ {0, 1}n, it follows that f(x) = xπ(1) . . . xπ(n), which
completes the proof.

5.2 Pseudorandom Generators and Small-Bias Generators

In contrast to the situation for one-way functions, Goldreich and Izsak [19]
presented an elegant proof that pseudorandom generators cannot be monotone.

More specifically, their result shows that the output distribution of a monotone
function G : {0, 1}n → {0, 1}n+1 can be distinguished from random either by the
projection of one of its output bits, or via the conjunction of two output bits.

Recall from Section 3 that small-bias generators can be seen as restricted
pseudorandom generators that are only required to be secure against linear tests.
We prove next that the techniques from [19] can be used to show that there are
no (1/nω(1))-secure monotone small-bias generators with 1 bit of stretch. We
observe later in this section that such generators can be constructed with any
super-constant number of negation gates.

Proposition 9. For any monotone function G : {0, 1}n → {0, 1}n+1, there ex-
ists a (non-uniform) linear test D : {0, 1}n+1 → {0, 1} such that∣∣∣ Pr

x∼Un
[D(G(x)) = 1]− 1

2

∣∣∣ = Ω

(
1

n2

)
.

Proof. The proof follows closely the argument in [19], combined with an ap-
propriate application of the FKG inequality (Proposition 4). Let Gi : {0, 1}n →
{0, 1} be the Boolean function corresponding to the i-th output bit of G, where
i ∈ [n+ 1]. Observe that if there exists i such that∣∣∣ Pr

x∼Un
[Gi(x) = 1]− 1

2

∣∣∣ = Ω

(
1

n2

)
,

then there is a trivial linear distinguisher for G.
Assume therefore that, for every i ∈ [n+1], Gi is almost balanced. In particu-

lar, each function Gi is δ(n)-close under the uniform distribution to an unbiased

function G̃i : {0, 1}n+1 → {0, 1}, where δ(n) = o((log n)/n). It follows from

Proposition 6 that each function G̃i has an influential variable. More precisely,
there exists γ : [n+ 1]→ [n] such that

Iγ(i)(G̃i) = Ω

(
log n

n

)
,

for every i ∈ [n + 1]. As each Gi is δ(n)-close to G̃i, it follows that Iγ(i)(Gi) =

Ω
(

logn
n

)
as well.

By the pigeonhole principle, there exist distinct indexes i and j such that
γ(i) = γ(j). It follows from Proposition 5 that

Pr
x

[Gi(x) = 1 ∧Gj(x) = 1]

≥ Pr
x

[Gi(x) = 1] · Pr
x

[Gj(x) = 1] + ψ
(∑
k∈[n]

Ik(Gi) · Ik(Gk)
)

≥ Pr
x

[Gi(x) = 1] · Pr
x

[Gj(x) = 1] +Ω
(
ψ
(log2 n

n2

))
≥ Pr

x
[Gi(x) = 1] · Pr

x
[Gj(x) = 1] +Ω

(log n

n2

)
.

On the other hand, Proposition 4 implies that

Pr
x

[Gi(x) = 0 ∧Gj(x) = 0] ≥ Pr
x

[Gi(x) = 0] · Pr
x

[Gj(x) = 0].

Combining both inequalities, and using the assumption that each output bit of
G is almost balanced, we get that:

Pr
x

[Gi(x) +Gj(x) = 0]

= Pr
x

[Gi(x) = 1 ∧Gj(x) = 1] + Pr
x

[Gi(x) = 0 ∧Gj(x) = 0]

≥ Pr
x

[Gi(x) = 1] · Pr
x

[Gj(x) = 1] + Pr
x

[Gi(x) = 0] · Pr
x

[Gj(x) = 0] +Ω
(log n

n2

)
≥ 1

2
−O

(
1

n2

)
+Ω

(log n

n2

)
=

1

2
+Ω

(log n

n2

)
.

Therefore, the linear function D(y)
def
= yi + yj can distinguish the output of G

from random with the desired advantage, which completes the proof.

In contrast, we show next that there are small-bias generators with super-
polynomial security that can be computed with any super-constant number of
negations. Let Tribess,t : {0, 1}s·t → {0, 1} be the (monotone) Boolean function
defined as

Tribess,t(x1, . . . , xs·t) =

s−1∨
i=0

t∧
j=1

xi·t+j .

Further, we use Tribesm : {0, 1}m → {0, 1} to denote the function Tribess,t, where
s is the largest integer such that 1− (1− 2−t)s ≤ 1/2, and t = m/s (i.e., we try
to make Tribes as balanced as possible as a function over m variables).

Proposition 10. Let f : {0, 1}n → {0, 1} be f(x)
def
= ⊕ki=1Tribesn/k(x(i)), where

x(i) denotes the i-th block of x with length n/k. Let 1 ≤ k(n) ≤ n/ log n, and

G : {0, 1}n → {0, 1}n+1 be defined by G(x)
def
= (x, f(x)), Then, there exists a

constant C > 0 such that, for any linear function D : {0, 1}n+1 → {0, 1},∣∣∣ Pr
x∼Un

[D(G(x)) = 1]− 1

2

∣∣∣ ≤ (C · (k/n) · log(n/k))
k
.

In particular, when k = ω(1), we can get a small-bias generator with negli-
gible error that can be computed with roughly log k negations (via Proposition
2). Interestingly, for k = 2 we obtain an SBG computed with a single negation
and security Θ̃(n−2), essentially matching the lower bound for monotone SBGs
given by Proposition 9.

Proof. We assume the reader is familiar with basic concepts from analysis of

Boolean functions (cf. O’Donnell [31]). Suppose that D(y)
def
=
∑
i∈S yi (mod 2),

where S ⊆ [n+1] is nonempty. If n+1 /∈ S, using that the first n output bits of G
are uniformly distributed over {0, 1}n, we get that |Prx[D(G(x)) = 1]−1/2 | = 0.

Assume therefore that n+ 1 ∈ S, and let S′
def
= S\{n+ 1}. Then,∣∣∣ Pr

x∼Un

[
D(G(x)) = 1

]
− 1

2

∣∣∣∣ =
∣∣∣ Pr
x∼Un

[
f(x) +

∑
i∈S′

xi ≡ 1 (mod 2)
]
− 1

2

∣∣∣
=
∣∣∣ Pr
x∼Un

[∑
i∈S′

xi 6≡ f(x) (mod 2)
]
− 1

2

∣∣∣
def
= p.

Let f− : {−1, 1}n → {−1, 1} be the corresponding version of f where we map
0 to 1, and 1 to −1, as usual. Observe that, under this correspondence,∑

i∈S′
xi 6≡ f(x) (mod 2) ⇐⇒ χS′(x) · f−(x) = −1.

Therefore,

p =
∣∣∣(1

2
− 1

2
· Ex∼{−1,1}n

[
χS′(x) · f−(x)

])
− 1

2

∣∣∣
=
∣∣∣(1

2
− 1

2
· f̂−(S′)

)
− 1

2

∣∣∣
=

1

2
· |f̂−(S′)|.

In other words, in order to upper bound the distinguishing probability p, it

is enough to upper bound |f̂−(S′)|, where S′ ⊆ [n]. Using that x(i) and x(j) are

disjoint for i 6= j and f−(x) =
∏
i∈[k] Tribes

−
n/k(x(i)), it follows that f̂−(S′) is a

product of Fourier coefficients of the corresponding Tribes functions. It is known
that

max
T⊆[m]

∣∣T̂ribes−m(T)
∣∣ = O

(
logm

m

)
as m → ∞ (see e.g. O’Donnell [31]). Consequently, since we have m = n/k, we
get that

p =
1

2
· |f̂−(S′)| ≤ 1

2
· max
T⊆[n/k]

∣∣ ̂Tribes−n/k(T)
∣∣k ≤ (C · (k/n) · log(n/k))

k
,

for an appropriate constant C.

It is possible to use other monotone functions for the construction in Propo-
sition 10, but our analysis provides better parameters with Tribes.

5.3 Pseudorandom Functions

In this section we prove that a pseudorandon function is a highly non-
monotone cryptographic primitive. For simplicity, we will not state the most
general version of our result. We discuss some extensions after its proof.

Proposition 11. If F : {0, 1}m × {0, 1}n → {0, 1} is a (poly(n), 1/3)-secure
pseudorandom function, then any Boolean circuit computing F contains at least
log n−O(1) negation gates.

Proof. Consider the following algorithm Dh that has membership access to an

arbitrary function h : {0, 1}n → {0, 1}, and computes as follows. Let X def
=

(e0, e1, . . . , en) be the chain over {0, 1}n with ei
def
= 1i0n−i. After querying h

on each input e0, . . . , en and computing a(h,X), D accepts h if and only if
a(h,X) ≥ n/4. This completes the description of D. Clearly, this algorithm can
be implemented in polynomial time.

Observe that if f ∼ Fn is a random Boolean function over n variables,
then Ef [a(f,X)] = n/2. In addition, it follows from a standard application of
Proposition 7 that |a(f,X)−n/2| ≤ n/4 with probability exponentially close to 1.
Therefore, under our assumption that F is a (poly(n), 1/3)-secure pseudorandom
function,

1

3
≥
∣∣∣ Pr
w∼{0,1}n

[DF (w,·) = 1]− Pr
f∼Fn

[Df = 1]
∣∣∣

≥
∣∣∣ Pr
w∼{0,1}n

[DF (w,·) = 1]− (1− o(1))
∣∣∣,

which implies in particular that Pr[DF (w,·) = 1] ≥ 2/3 − o(1). Therefore, there

must exist some seed w∗ for which the resulting function Fw∗
def
= F (w∗, ·) over

n-bit inputs satisfies a(Fw∗ ,X) ≥ n/4. It follows from Proposition 3 that if C is
a circuit with t negations computing Fw∗ , then

n/4 ≤ a(Fw∗ ,X) ≤ a(Fw∗) ≤ c · 2t,

where c is a fixed positive constant. Consequently, t ≥ log n−O(1). Finally, it is
clear that any circuit for F also requires log n−O(1) negations, which completes
the proof.

Note that we can replace 1/3 with any constant in [0, 1). The proof of Propo-
sition 11 also implies that if F is a sufficiently secure pseudorandom function,
then for most choices of the seed w ∈ {0, 1}m, the resulting function F (w, ·)
over n input variables requires log n−O(1) negations. Further, observe that our
distinguisher is quite simple, and makes n+ 1 non-adaptive queries.

The same proof does not work for weak pseudorandom functions. In this case,
most random examples obtained from the oracle are concentrated around the
middle layer of the hypercube, and one cannot construct a chain. We remark,
however, that weak pseudorandom functions cannot be monotone, as there are
weak learning algorithms for the class of monotone functions (cf. Blum, Burch,
and Langford [9]). We discuss the problem of obtaining better lower bounds for
WPRFs in Section 6. (The upper bound on the negation complexity of WPRFs
follows via standard techniques, see Section 5.5 and Blais et al. [8].)

5.4 Error-Correcting Codes

In this section, we show that circuits with few negations cannot compute
error-correcting codes with good parameters. The proof generalizes the argu-
ment given by Buresh-Oppenheim, Kabanets and Santhanam [12] in the case of
monotone error-correcting codes.

Proposition 12. Let E : {0, 1}n → {0, 1}m be an error-correcting code with
relative distance γ > 0. If C is a circuit with t negations that computes E, then
t ≥ log n− log(1/γ)− 1.

Proof. Assume that E : {0, 1}n → {0, 1}m is computed by a (multi-output) cir-
cuit C0 with t negation gates, and let x1, . . . , xn be its input variables. For
convenience, we write C0

i to denote the Boolean function computed by the i-th
output gate of C0. We proceed as in the proof of Lemma 2. More precisely, we
remove one negation gate during each step, but here we also inspect the be-
havior of the error-correcting code on a particular set of inputs of interest. Let

X def
= (e0, e1, . . . , en) be the chain over {0, 1}n with ei

def
= 1i0n−i.

It follows from an easy generalization of Lemma 3 that there exist functions
f : {0, 1}n → {0, 1}, h : {0, 1}3 → {0, 1}, and gi,b : {0, 1}n → {0, 1}, where i ∈
[m] and b ∈ {0, 1}, for which the following holds.

– f is monotone;

– h is the addressing function h(a, d0, d1)
def
= da;

– for every x ∈ {0, 1}n and i ∈ [m],

E(x)i = h(f(x), gi,0(x), gi,1(x)).

– there exist (multi-output) circuits C1,0 and C1,1 over input variables x1, . . . , xn
such that, for every i ∈ [m] and b ∈ {0, 1},

C1,b(x)i = gi,b(x).

– each circuit C1,b contains at most t− 1 negations.

Since e0 ≺ e1 ≺ . . . ≺ en and f is monotone, there exists k ∈ [0, n] such
that f(e`) = 0 if and only if ` < k. By the pigeonhole principle, f is constant
on a (continuous) subchain X 1 ⊆ X of size at least (n + 1)/2, and there exists
a constant b ∈ {0, 1} such that

E(ei) = g1,b(e
i) . . . gm,b(e

i),

whenever ei ∈ X 1. Consequently, there exists a (multi-output) circuit C1 com-
puted with at most t− 1 negations that agrees with E on every ei ∈ X 1.

Observe that this argument can be applied once again with respect to X 1

and C1. Therefore, it is not hard to see that there must exist a chain X t ⊆ X of
size w ≥ (n+ 1)/2t and a monotone (multi-output) circuit Ct such that

Ct(ei) = E(ei),

for every ei ∈ X t.
Assume that X t = (ej , ej+1, . . . , ej+w−1), and let Y def

= (yj , . . . , yj+w−1),

where yi
def
= E(ei). Since Ct is monotone and X t is a chain over {0, 1}n, we get

that Y is a chain over {0, 1}m. By the pigeonhole principle, there exists an index
k ∈ [j + 1, j +w− 1] for which yj−1 � yj and |yj |1 − |yj−1|1 ≤ (m+ 1)/w. Now
using that E computes an error-correcting code of relative distance at least γ,
it follows that

γ ≤ ∆(yj , yj−1) ≤ m+ 1

w
· 1

m
≤ 2t

n+ 1
· m+ 1

m
,

which completes the proof of our result.

It is possible to show via a simple probabilistic construction that there is
a sequence of error-correcting codes En : {0, 1}n → {0, 1}O(n) with relative dis-
tance, say, γ = 0.01 (see e.g. Arora and Barak [5]). Proposition 12 implies that
computing such codes requires at least log n − O(1) negation gates, which is
optimal up to the additive term via Markov’s upper bound (Proposition 2).

5.5 Hard-core Bits

We prove in this section that general hard-core predicates must be highly
non-monotone. This result follows from a lower bound on the average-sensitivity
of such functions due to Goldmann and Russell [16], together with structural
results about monotone Boolean functions and Lemma 1. Roughly speaking,
our result says that there are one-way functions that do not admit hardcore
predicates computed with less than (1/2) · log n negations (assuming that one-
way functions exist).

Proposition 13. Assume there exists a family f = {fn}n∈N of (poly(n), n−ω(1))-
secure one-way functions, where each fn : {0, 1}n → {0, 1}n. Then, for every ε >
0, there exists a family gε = {gn}n∈N of (length-preserving) (poly(n), n−ω(1))-
secure one-way functions for which the following holds. If h = {hn}n∈N is a
(poly(n), n−ω(1))-secure hard-core bit for gε, then for every n sufficiently large,
any Boolean circuit computing hn contains at least (1/2− ε) log n negations.

Proof. It follows from the main result of Goldmann and Russell [16] that un-
der the existence of one-way functions, there exists a one-way function family
gδ = {gn}n∈N that only admits hard-core bit predicates with average-sensitivity
Ω(n1−δ). Our result follows easily once we observe that the average-sensitivity
of Boolean functions computed with t negations is O(2t ·

√
n).8

First, if f : {0, 1}n → {0, 1} is a monotone Boolean function, then I(f) =
O(
√
n) (see e.g. O’Donnell [31]). On the other hand, it follows from Lemma

1 that any Boolean function h : {0, 1}n → {0, 1} computed by a circuit with t

8 This result is from Blais et al. [8], and we include its short argument here for com-
pleteness.

negation gates can be written as h(x) = P (m1(x), . . . ,mT (x)), where T = O(2t),
each function mi is monotone, and P is either the parity function or its negation.
Therefore, using the definition of influence,

I(h) = I(P (m1, . . . ,mT)) ≤
∑
i∈[T]

I(mi) ≤ T ·O(
√
n) = O(2t ·

√
n),

which completes the proof.

This result is almost optimal, as any function f : {0, 1}n → {0, 1} can be
(1/nω(1))-approximated by a Boolean function computed with (1/2 + o(1)) log n
negations (check Blais et al. [8] for more details). More precisely, if h is a hard-

core bit for f , its approximator h̃ is also hard-core for f , as the inputs f(x) given
to the distinguisher are produced with x ∼ Un.

5.6 Randomness Extractors

In this section, we show in Proposition 14 that strong (n0.5−ε, 1/2)-extractors
can only be computed by circuits with Ω(log n) negation gates, for any constant
0 < ε ≤ 1/2. We proceed as follows. First, we argue that such extractors must
have high noise sensitivity. The proof of this result employs a technique from
Bogdanov and Guo [10]. We then upper bound the noise sensitivity of circuits
with few negations. Together, these claims provide a trade-off between the pa-
rameters of the extractor, and the minimum number of negations in any circuit
computing the extractor.

For convenience, we view the extractor Ext : {0, 1}n ×{0, 1}s → {0, 1}m as a
family of functions

HExt
def
= {hw : {0, 1}n → {0, 1}m | hw = Ext(·, w), where w ∈ {0, 1}s},

i.e., the family of functions obtained from the extractor by fixing its seed. Simi-
larly, every such family can be viewed as a strong extractor in the natural way.

Lemma 4. Let 0 ≤ p ≤ 1/2, 0 ≤ γ ≤ 1/4, and H ⊆ {h | h : {0, 1}n →
{0, 1}m} be a family of functions. Assume that NSp(hi) ≤ γ for every function
hi : {0, 1}n → {0, 1} that computes the i-th output bit of some function in H,
where i ∈ [m]. Then there exists a distribution D over {0, 1}n with min-entropy
H∞(D) = n · log(1

1−p) such that the statistical distance between (H,H(D)) and

(H,Um) is at least (1− 2
√
γ − 2−0.1m)(1− 2

√
γ).

Proof. For a fixed y ∈ {0, 1}n, let Dy denote a random variable distributed
according to y ⊕X, where X is the p-biased binomial distribution over {0, 1}n.
Since p ≤ 1/2, observe that the min-entropy of Dy is precisely

H∞(Dy) = − log max
z∈{0,1}n

Pr[y ⊕X = z] = − log Pr[y ⊕ X = y]

= − log (1− p)n = n · log

(
1

1− p

)
.

We will need the following result.

Claim. For any fixed h ∈ H,

Ey∼{0,1}n [δ(h(Dy),Um)] ≥ (1− 2
√
γ − 2−0.1m)(1− 2

√
γ). (2)

We use this claim to complete the demonstration of Lemma 4, then return
to its proof. Observe that, for any fixed y ∈ {0, 1}n,

δ((H,H(Dy)), (H,Um)) = Eh∼H[δ(h(Dy),Um)]. (3)

It follows from Equation 3 that

Ey∼{0,1}n [δ((H,H(Dy)), (H,Um))] = Ey∼{0,1}n [Eh∼H[δ(h(Dy),Um)]]

= Eh[Ey[δ(h(Dy),Um)]]

(Using Equation 2) ≥ Eh[(1− 2
√
γ − 2−0.1m)(1− 2

√
γ)]

= (1− 2
√
γ − 2−0.1m)(1− 2

√
γ).

In particular, there exists y ∈ {0, 1}n such that

δ((H,H(Dy)), (H,Um)) ≥ (1− 2
√
γ − 2−0.1m)(1− 2

√
γ),

which completes the proof of Lemma 4.
We proceed now to the proof of our initial claim. Fix a function h ∈ H. By

the definition of noise sensitivity and our assumption on H, for every function
hi : {0, 1}n → {0, 1} obtained from a function h ∈ H as the projection of the
i-th output bit, we have

Pr
y

[hi(Dy) 6= hi(y)] = Pr
y

[hi(y ⊕X) 6= hi(y)] ≤ γ.

Using the linearity of expectation, we obtain

Ey[∆(h(Dy), h(y))] ≤ γ.

By Markov’s inequality,

Pr
y

[∆(h(Dy), h(y)) ≤ 1/4] ≥ 1− 4γ.

Using an averaging argument, with probability at least 1−
√

4γ over the choice
of y, we have that

Pr[∆(h(Dy), h(y)) ≤ 1/4] ≥ 1−
√

4γ. (4)

For any fixed y, consider the following statistical test,

Ty
def
= {z ∈ {0, 1}m | ∆(z, h(y)) ≤ 1/4}.

The probability that Um ∈ Ty can be upper bounded via a standard inequality
by

Pr
z∼Um

[z ∈ Ty] ≤ 2m·H2(1/4)

2m
≤ 2−0.1m, (5)

where H2 : [0, 1]→ [0, 1] is the binary entropy function, and we use the fact that
H2(1/4) ≤ 0.9. Combining Equations 4 and 5, we get

Pr
y

[
(Pr
X

[h(Dy) ∈ Ty]− Pr
z∼Um

[z ∈ Ty]) ≥ 1−
√

4γ − 2−0.1m
]
≥ 1−

√
4γ,

which implies that

Pr
y

[δ(h(Dy),Um) ≥ 1− 2
√
γ − 2−0.1m] ≥ 1− 2

√
γ.

Finally, since δ(·) is non-negative and γ ≤ 1/4, it follows that

Ey[δ(h(Dy),Um)] ≥ (1− 2
√
γ − 2−0.1m)(1− 2

√
γ),

which completes the proof of the claim.

We are now ready to prove a lower bound on the negation complexity of
strong extractors.

Proposition 14. Let 0 < α < 1/2 be a constant, and m(n) ≥ 100. Further,
suppose that H ⊆ {h | h : {0, 1}n → {0, 1}m} is a family of functions such that
each output bit hi : {0, 1}n → {0, 1} of a function h ∈ H is computed by a circuit

with t negations. Then, if H is an (n
1
2−α, 1/2)-extractor,

t ≥ α log n−O(1).

Proof. It is known that for any monotone function g : {0, 1}n → {0, 1} and
p(n) ∈ (0, 1/2), NSp(g) = O(

√
n ·p) (see e.g. O’Donnell [31]). Using an argument

similar to the one employed in the proof of Proposition 13, it follows from Lemma
1 that if f : {0, 1}n → {0, 1} is a Boolean function computed by a circuit with t
negations, then

NSp(f) ≤ C1 · 2t
√
n · p def

= γ,

where C1 > 0 is a fixed constant. In other words, this upper bound on the
noise sensitivity and our assumption on H allow us to apply Lemma 4 with an
appropriate choice of parameters, which we describe next.

We choose a 0 ≤ p ≤ 1
2 such that n · log 1

(1−p) = n
1
2−α. Observe that we can

take p ≤ C2n
− 1

2−α, for an appropriate constant C2 > 0. Let C3 be a sufficiently
large constant such that C1C22−C3 < 1/64, and suppose that t < α log n − C3.
For this setting of parameters, we obtain

γ = C1 · 2t ·
√
n · p <

1

64
.

By Lemma 4, there exists a distribution D of min-entropy H∞(D) = n log 1
1−p =

n
1
2−α for which

δ((H,H(D)), (H,Um)) ≥ (1− 2
√
γ − 2−0.1m)(1− 2

√
γ)

> (
3

4
− 2−0.1m) · 3

4
≥ 1

2
,

which contradicts our assumption that H is an (n
1
2−α, 1/2)-extractor. Therefore,

t ≥ α log n− C3 = α log n−O(1),

as desired.

Observe that Proposition 14 provides an almost tight lower bound on the
number of negations for extractors with rather weak parameters: in order to
extract from reasonable sources only 100 bits that are not ridiculously far from
uniform, the corresponding circuits need Ω(log n) negations.

5.7 Negations at the Bottom Layer and Circuit Lower Bounds

In this section we solve a problem posed by Koroth and Sarma [25]. Our
proof is inspired by ideas introduced in their paper. Our main contribution is
the the following general proposition.

Proposition 15. Let f : {0, 1}n → {0, 1} be a monotone Boolean function, and
C be a circuit computing f with negation gates at the bottom layer only. Then,

depth(C) + negations(C) ≥ depth+(f).

Proof. Let d
def
= depth(C), and t

def
= negations(C). The idea is to use C, a

non-monotone circuit for f , to solve the corresponding monotone Karchmer-
Wigderson game of f with communication at most d+ t. It follows from Propo-
sition 1 that depth+(f) ≤ d+ t, which completes the proof. More details follow.

Recall that in the monotone Karchmer-Wigderson game for f , Alice is given
a string x ∈ f−1(1), Bob is given y ∈ f−1(0), and their goal is to agree on a
coordinate i such that xi = 1 and yi = 0. Let T ⊂ [n] be the set of variables
that occur negated in C, where |T | = t. Given a string x ∈ {0, 1}n, we write
xT to denote the substring of x obtained by concatenating the bits indexed
by T . During the first round of the protocol, Alice sends xT to Bob. If among
these coordinates there is an index i ∈ T for which xi = 1 and yi = 0, the
protocol terminates with a correct solution. Otherwise, Bob defines a new input

y′ ∈ {0, 1}n for him as follows: y′j
def
= xj if j ∈ T , otherwise y′j

def
= yj . For

convenience, Alice sets x′
def
= x.

It is not hard to see that if there was no good index i ∈ T , then f(x′) = 1
and f(y′) = 0. Clearly, 1 = f(x) = f(x′), since x = x′. On the other hand, if
there is no good index i, y′ is obtained from y simply by flipping some bits of

y from 1 to 0. In other words, y′ � y, and the monotonicity of f implies that
f(y′) ≤ f(y) = 0.

Crucially, the players now have inputs x′, y′ ∈ {0, 1}n that agree on ev-
ery bit indexed by T . Therefore, without any communication, they are able to
simplify the original circuit C in order to obtain a monotone circuit C̃ with

input variables indexed by [n]\T . Let x̃
def
= x′[n]\T and ỹ

def
= y′[n]\T be the cor-

responding projections of x′ and y′. Clearly, C̃(x̃) = C(x′) = f(x′) = 1, and
C̃(ỹ) = C(y′) = f(y′) = 0. Furthermore, C̃ computes some monotone function
f̃ : {0, 1}[n]\T → {0, 1}.

Alice and Bob simulate together the standard Karchmer-Wigderson protocol
Π granted by Proposition 1, and obtain an index j ∈ [n]\T for which x̃j = 1
and ỹj = 0. Observe that this stage can be executed with communication cost

depth(C̃) ≤ depth(C) = d. However, since x agrees with x̃ on every bit indexed
by [n]\T , and similarly for y and ỹ, it follows that xj = 1 and yj = 0. Put another
way, Alice and Bob have solved the monotone Karchmer-Wigderson game for f
with communication at most t+ d, which completes the proof of our result.

An interesting aspect of this proof is that it relies on both directions of the
Karchmer-Wigderson connection. Proposition 15 and previous work on mono-
tone depth lower bounds provide a trade-off between circuit depth and negation
complexity for DeMorgan circuits solving the clique problem.

Proposition 16 (Raz and Wigderson [33]). Let k-Clique : {0, 1}(
n
2) → {0, 1}

be the Boolean function that is 1 if and only if the input graph G contains a clique
of size k. If C is a monotone circuit that computes k-Clique for k = n/2, then
depth(C) ≥ γ · n, where γ > 0 is a fixed constant.

Corollary 1. There exists a fixed constant γ > 0 for which the following holds.
If δ + ε ≤ γ, then any DeMorgan circuit of depth δn solving the (n/2)-Clique
problem on n-vertex graphs contains at least εn negation gates.

This result indicates that negation gates at the bottom layer are much easier
to handle from the point of view of complexity theory than negations located at
arbitrary positions of the circuit (see also Proposition 17 in Section A).

6 Open Problems and Further Research Directions

While our results provide some strong (indeed, optimal) bounds, they also
leave open surprisingly basic questions.

For example, it seems reasonable, in light of our results, to think that most
cryptographic primitives require Ω(log n) negations. Nevertheless, for a basic
primitive like a pseudorandom generator (that cannot be monotone), we leave
open the following question: Is there a pseudorandom generator computed with
a single negation gate? We stress that our question refers to a single circuit
with multiple output bits computing the PRG. If one can use different circuits
for distinct output bits, then the work of Applebaum, Ishai, and Kushilevitz [4]

provides strong evidence that there are PRGs computed with a constant number
of negations.

Having negation gates at the bottom level may be easier to study, and with
some work we can show (in results omitted from the current paper) that no func-
tion with large enough stretch computed with a single negation at the bottom
layer can be a small-bias generator (and thus not a pseudorandom generator
either).

Another important open problem relates to the negation complexity of WPRF
(weak pseudorandom functions, cf. Akavia et al. [1]), or, viewed from the learn-
ing perspective, weak-learning functions computed with a single negation. While
for strong PRFs, even non-adaptive ones, we have obtained an Ω(log n) lower
bound, as far as we know, there may exist WPRFs computed by circuits with a
single negation gate. Again, when restricting ourselves to negations at the bot-
tom, we can prove some partial results (it is not hard to prove that a function
computed by a circuit with a constant number of negations at the bottom layer
cannot be a WPRF).

Finally, we have not imposed additional restrictions on the structure of
Boolean functions computing cryptographic primitives. For instance, due to effi-
ciency concerns, it is desirable that such circuits have depth as small as possible,
without compromising the security of the underlying primitive. It is known that
Markov’s upper bound of O(log n) negations fails under restrictions of this form
(cf. Santha and Wilson [34]; see also Hofmeister [21]). In particular, this situation
sheds some light into why practical implementations have far more negations (or
XORs) when compared to the theoretical lower bounds described in our work.
Here we have not investigated this phenomenon, and it would be interesting to
see if more specific results can be obtained in the cryptographic context.

Acknowledgments. We would like to thank Ilan Orlov for helpful conversa-
tions during an early stage of this work, Rocco Servedio for suggesting an initial
construction in Proposition 10, and Andrej Bogdanov for helpful discussions
that allowed us to extend some results. We also thank the referees for several
suggestions that allowed us to improve the presentation.

References

1. Adi Akavia, Andrej Bogdanov, Siyao Guo, Akshay Kamath, and Alon Rosen. Can-
didate weak pseudorandom functions in AC0◦MOD2. In Innovations in Theoretical
Computer Science (ITCS), pages 251–260, 2014.

2. Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley-Interscience,
2008.

3. Kazuyuki Amano and Akira Maruoka. A superpolynomial lower bound for a circuit
computing the clique function with at most (1/6)log log n negation gates. SIAM
J. Comput., 35(1):201–216, 2005.

4. Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. SIAM
J. Comput., 36(4):845–888, 2006.

5. Sanjeev Arora and Boaz Barak. Complexity Theory: A Modern Approach. Cam-
bridge University Press, 2009.

6. Robert Beals, Tetsuro Nishino, and Keisuke Tanaka. More on the complexity of
negation-limited circuits. In Symposium on Theory of Computing (STOC), pages
585–595, 1995.

7. Robert Beals, Tetsuro Nishino, and Keisuke Tanaka. On the complexity of
negation-limited boolean networks. SIAM J. Comput., 27(5):1334–1347, 1998.

8. Eric Blais, Clement C. Canonne, Igor C. Oliveira, Rocco A. Servedio, and Li-Yang
Tan. Learning circuits with few negations. Preprint, 2014.

9. Avrim Blum, Carl Burch, and John Langford. On learning monotone boolean
functions. In Symposium on Foundations of Computer Science (FOCS), pages
408–415, 1998.

10. Andrej Bogdanov and Siyao Guo. Sparse extractor families for all the entropy. In
Innovations in Theoretical Computer Science (ITCS), pages 553–560, 2013.

11. Nader H. Bshouty and Christino Tamon. On the fourier spectrum of monotone
functions. J. ACM, 43(4):747–770, 1996.

12. Joshua Buresh-Oppenheim, Valentine Kabanets, and Rahul Santhanam. Uniform
hardness amplification in NP via monotone codes. Electronic Colloquium on Com-
putational Complexity (ECCC), 13(154), 2006.

13. Dana Dachman-Soled, Homin K. Lee, Tal Malkin, Rocco A. Servedio, Andrew
Wan, and Hoeteck Wee. Optimal cryptographic hardness of learning monotone
functions. Theory of Computing, 5(1):257–282, 2009.

14. Michael J. Fischer. The complexity of negation-limited networks - A brief survey.
In Automata Theory and Formal Languages, pages 71–82, 1975.

15. Cees M. Fortuin, Pieter W. Kasteleyn, and Jean Ginibre. Correlation inequal-
ities on some partially ordered sets. Communications in Mathematical Physics,
22(2):89–103, 1971.

16. Mikael Goldmann and Alexander Russell. Spectral bounds on general hard-core
predicates. In Symposium on Theoretical Aspects of Computer Science (STACS),
pages 614–625, 2000.

17. Oded Goldreich. Foundations of Cryptography: Volume 1, Basic Tools. Cambridge
University Press, 2007.

18. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. J. ACM, 33(4):792–807, 1986.

19. Oded Goldreich and Rani Izsak. Monotone circuits: One-way functions versus
pseudorandom generators. Theory of Computing, 8(1):231–238, 2012.

20. Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way func-
tions. In Symposium on Theory of Computing (STOC), pages 25–32, 1989.

21. Thomas Hofmeister. The power of negative thinking in constructing threshold
circuits for addition. In Structure in Complexity Theory Conference, pages 20–26,
1992.

22. Stasys Jukna. Boolean Function Complexity - Advances and Frontiers. Springer,
2012.

23. Jeff Kahn, Gil Kalai, and Nathan Linial. The influence of variables on Boolean
functions. In Symposium on Foundations of Computer Science (FOCS), pages
68–80, 1988.

24. Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectivity require
super-logarithmic depth. In Symposium on Theory of Computing (STOC), pages
539–550, 1988.

25. Sajin Koroth and Jayalal Sarma. Depth lower bounds against circuits with sparse
orientation. In International Conference on Computing and Combinatorics (CO-
COON), pages 596–607, 2014.

26. Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge Uni-
versity Press, 1997.

27. A. A. Markov. On the inversion complexity of a system of functions. J. ACM,
5(4):331–334, 1958.

28. Hiroki Morizumi. Limiting negations in formulas. In International Colloquium on
Automata, Languages and Programming (ICALP), pages 701–712, 2009.

29. Hiroki Morizumi. Limiting negations in non-deterministic circuits. Theoretical
Computer Science, 410(38-40):3988–3994, 2009.

30. Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions
and applications. SIAM J. Comput., 22(4):838–856, 1993.

31. Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press,
2014.

32. Ryan O’Donnell and Karl Wimmer. Kkl, kruskal-katona, and monotone nets.
SIAM J. Comput., 42(6):2375–2399, 2013.

33. Ran Raz and Avi Wigderson. Monotone circuits for matching require linear depth.
J. ACM, 39(3):736–744, 1992.

34. Miklos Santha and Christopher B. Wilson. Limiting negations in constant depth
circuits. SIAM J. Comput., 22(2):294–302, 1993.

35. Shao Chin Sung and Keisuke Tanaka. An exponential gap with the removal of one
negation gate. Inf. Process. Lett., 82(3):155–157, 2002.

36. Shao Chin Sung and Keisuke Tanaka. Limiting negations in bounded-depth cir-
cuits: An extension of Markov’s theorem. Inf. Process. Lett., 90(1):15–20, 2004.

37. Michel Talagrand. How much are increasing sets positively correlated? Combina-
torica, 16(2):243–258, 1996.

38. Éva Tardos. The gap between monotone and non-monotone circuit complexity is
exponential. Combinatorica, 8(1):141–142, 1988.

A The Flow of Negations in Boolean Circuits

In this section we discuss how to move negations in a Boolean circuit in order
to explore different aspects of these gates.

A.1 Moving Negations to the Top of the Circuit

For convenience of the reader, we include here a proof for the following struc-
tural result about negation gates.

Lemma 5 (Blais et al. [8]). Let f : {0, 1}n → {0, 1} be a Boolean function
computed by a circuit C with at most t negations. Then f can be written as
f(x) = h(g1(x), . . . , gT (x)), where each function gi is monotone, T = O(2t),
and h is either the parity function, or its negation.

Proof. Recall from Proposition 3 that if a Boolean function f is computed by

a circuit with t negations, then k
def
= a(f) ≤ O(2t). The claimed result follows

easily once we “f -slice” the boolean hypercube, as described next. For any i ∈
{0, 1, . . . , k}, let

Ti = {x ∈ {0, 1}n | a(f, Y) ≤ i, for any chain Y starting at x}.

Observe that Ti is a monotone set: if x ∈ Ti and x � y, then y ∈ Ti. In addition, it
is clear that T0 ⊂ T1 ⊂ . . . ⊂ Tk = {0, 1}n. Finally, for every i ∈ {0, 1, . . . , k−1},
it is not hard to see that Ti+1 \ Ti 6= ∅, since k = a(f).

Let S0
def
= T0. Observe that 1n ∈ T0, hence S0 is nonempty. For any j ∈

{1, . . . , k}, set Sj
def
= Tj \ Tj−1. It follows from the preceding discussion that the

family S = {S0, S1, . . . , Sk} is a partition of the n-dimensional boolean cube into
nonempty sets.

Next, we prove the following claim: There exists a vector b = (b0, b1, . . . , bk) ∈
{0, 1}k+1 with the following properties:

(i) For each 0 ≤ i ≤ k, and for any xi ∈ Si, we have f(xi) = bi.
(ii) For each 0 < i ≤ k, we have bi = 1− bi−1.

(iii) For each 0 ≤ i ≤ k, given any xi ∈ Si, there exist elements x0, x1, . . . , xi−1

in S0, S1, . . . , Si−1, respectively, such that Y = (xi, xi−1, . . . , x0) is a chain
starting at xi with a(f, Y) = i. Further, every proper chain Y starting at xi

with a(f, Y) = i is of this form, i.e., its elements belong to distinct sets Sj ,
where j < i.

The construction of this vector and the proof of these items is by induction on
i ∈ [0, k]. For i = 0, we set b0 = f(1n), and observe that the result is true using
the definition of S0 and T0. Consider now an element yi ∈ Si, where i > 0, and
assume that items (i), (ii), and (iii) hold for any smaller index. Since yi ∈ Si,
there exists a proper chain Y = (yi, yi−1, . . . , y0) with a(f, Y) = i. Since this
chain cannot be extended to a larger chain starting at yi, it follows from the
induction hypothesis that, for every 0 < j ≤ i, f(yj) = 1− f(yj−1) = 1− bj−1.
In particular, we can set bi = 1 − bi−1, since our initial element yi ∈ Si was
arbitrary. Finally, the remaining part of item (iii) follows once we consider the
subchain Y ′ = (yi−1, . . . , y0), and apply the induction hypothesis.

Finally, we use items (i) and (ii) to prove the lemma. Recall that every
family Ti is monotone, where i ∈ {0, 1, . . . , k}. In other words, there exist k + 1
monotone functions gi : {0, 1}n → {0, 1} such that g−1i (1) = Ti, where i ∈ [0, k].
As observed before, Sk = Tk \ Tk−1 is nonempty. In particular, 0n ∈ Sk. If

f(0n) = 0, we let h : {0, 1}k+1 → {0, 1} be the parity function
∑k
j=0 yi (mod 2).

Otherwise, we let h be the complement of the parity function. It follows from (i)
and (ii) that, for every x ∈ {0, 1}n, we have f(x) = h(g0(x), . . . , gk(x)), which
completes the proof.

By relaxing the assumption on h, we can prove the following effective version
of Lemma 1.

Lemma 6. Let f : {0, 1}n → {0, 1} be a Boolean function computed by a circuit
C of size s containing t negation gates, where t ≥ 0. Then f can be written as

f(x) = h(g1(x), . . . , gT (x)), where each function gi is computed by a monotone
circuit of size at most s, T = 2t+1 − 1, and h : {0, 1}T → {0, 1} is computed by
a circuit of size at most 5T .

Proof. The proof is by induction on t. The base case t = 0 is trivial. Now let
t ≥ 1, and assume the statement holds for any function computed by circuits with
at most t′ < t negations. Let f : {0, 1}n → {0, 1} be a Boolean function computed
by a circuit C of size s that contains t negations. Let x1, . . . xn, f1, . . . , fs be
the functions computed at each internal node of C, and df1e, . . . , dfse be the
corresponding gates, i.e., each dfie ∈ {AND,OR,NOT}. Furthermore, assume
that this sequence is a topological sort of the nodes of the circuit, in the sense
that the inputs of each gate dfie are fi1(x) and fi2(x), with i1, i2 < i. Let i∗ ∈ [s]
be the index of the first NOT gate in C according to this sequence.

Consider a new circuit C ′ over n+1 variables x1, . . . , xn, y, where C ′ computes
exactly as C, except that the output value of fi∗ is replaced by the new input y.

By construction, C ′ is a circuit of size at most s containing t′
def
= t−1 negations,

and it computes some Boolean function f ′ : {0, 1}n+1 → {0, 1}. Applying the
induction hypothesis, we get that

f ′(x, y) = h′(g′1(x, y), . . . , g′T ′(x, y)), (6)

where each g′i is computed by a monotone circuit of size at most s, T ′ ≤ 2t
′+1−1,

and h′ : {0, 1}T ′ → {0, 1} admits a circuit of size 5T ′. In addition, notice that

f(x) =

{
f ′(x, 1) if fi∗(x) = 1,

f ′(x, 0) otherwise.
(7)

Let fi be the input wire of dfi∗e. Since dfi∗e = NOT, we obtain using Equation
7 that

f(x) = h̃(fi(x), f ′(x, 0), f ′(x, 1)), (8)

where h̃(z, y1, y0)
def
= yz is a function over three input bits that is computed by

a circuit of size at most 5. Furthermore, combining Equations 6 and 8, it follows
that

f(x) = h̃(fi(x), h′(g′1(x, 0), . . . , g′T ′(x, 0)), h′(g′1(x, 1), . . . , g′T ′(x, 1)))

= h(fi(x), g′1,0(x), . . . , g′T ′,0(x), g′1,1(x), . . . , g′T ′,1(x)),

where g′j,b(x)
def
= g′j(x, b), for j ∈ [T ′] and b ∈ {0, 1}, and h : {0, 1}2T ′+1 → {0, 1}

is the function obtained by setting

h(v0, v1, . . . , vT ′ , vT ′+1, . . . , v2T ′)
def
= h̃(v0, h

′(v1, . . . , vT ′), h(vT ′+1, . . . , v2T ′)).

Using our assumption on i∗, it follows that fi is computed by a monotone circuit
of size s. It is also clear that each g′j,b admits a monotone circuit of size s. Further,
observe that

2T ′ + 1 ≤ 2(2t
′+1 − 1) + 1 = 2(2t − 1) + 1 = 2t+1 − 1

def
= T.

Finally, using the induction hypothesis and the upper bound on the circuit size
of h̃, we get that h is computed by a circuit of size at most

5 + 5T ′ + 5T ′ = 5(2T ′ + 1) = 5T,

which completes the proof of Lemma 2.

It is possible to show that the upper bound on T in the statement of Lemma
7 is essentially optimal. This follows from the connection between the number
of negation gates in a Boolean circuit for a function f and the alternation com-
plexity of f , as discovered by Markov [27] (see e.g. Blais et al. [8] for further
details).

A.2 Moving Negations to the Bottom of the Circuit

We recall the following basic fact about negations.

Fact 1 Let C be a Boolean circuit of size s containing a negation gate at depth
d ≥ 1. Then C can be transformed into an equivalent circuit C ′ of size s without
this negation gate that contains at most 2d−1 additional negations at the bottom
layer.

Proof. The result is immediate from the application of DeMorgan rules for
Boolean connectives.

We observe below that this result is optimal. Put another way, a negation
gate at an arbitrary location can be more powerful than a linear number of
negations at the bottom layer.

Proposition 17. There exists an explicit Boolean function f : {0, 1}n → {0, 1}
that admits a linear size circuit C containing a single negation gate, but for which
any equivalent circuit C ′ with negation gates at the bottom layer only requires n
negations.

Proof. Let f(x) = 1 if and only if x = 0n. Clearly, f can be computed by a
circuit with a single negation, since this function is the negation of a monotone
function. The lower bound follows using an argument from [25]. Assume that
f(x) = D(x, (x ⊕ β)), where D is a monotone circuit. We need to prove that

βi = 1 for every i ∈ [n]. Consider inputs z
def
= 0n and ei

def
= 0i−110n−i. By

definition, f(z) = 1 and f(ei) = 0, thus D(0n, 0n ⊕ β) = D(0n, β) = 1 and
D(ei, ei⊕β) = D(ei, β

⊕i) = 0. If βi = 0, then (0n, β) ≺ (ei, β
⊕i), and since D is

monotone, we get D(0n, β) ≤ D(ei, β
⊕i). However, this is in contradiction with

the value of f on z and ei, which implies that βi = 1.

	The Power of Negations in Cryptography

