
(Efficient) Universally Composable Oblivious
Transfer Using a Minimal Number

of Stateless Tokens

Seung Geol Choi1,?, Jonathan Katz2,??, Dominique Schröder3,? ? ?,
Arkady Yerukhimovich4,†, and Hong-Sheng Zhou5,‡

1 United States Naval Academy, choi@usna.edu
2 University of Maryland, jkatz@cs.umd.edu

3 Saarland University, ds@ca.cs.uni-saarland.de
4 MIT Lincoln Laboratory, arkady@cs.umd.edu

5 Virginia Commonwealth University, hszhou@vcu.edu

Abstract. We continue the line of work initiated by Katz (Eurocrypt
2007) on using tamper-proof hardware for universally composable secure
computation. As our main result, we show an efficient oblivious-transfer
(OT) protocol in which two parties each create and exchange a single,
stateless token and can then run an unbounded number of OTs. Our
result yields what we believe is the most practical and efficient known
approach for oblivious transfer based on tamper-proof tokens, and
implies that the parties can perform (repeated) secure computation of
arbitrary functions without exchanging additional tokens.

Motivated by this result, we investigate the minimal number of stateless
tokens needed for universally composable OT/ secure computation. We
prove that our protocol is optimal in this regard for constructions making
black-box use of the tokens (in a sense we define). We also show that
nonblack-box techniques can be used to obtain a construction using only
a single stateless token.

1 Introduction

The universal composability (UC) framework [6] provides a way of analyzing
protocols while ensuring strong security guarantees. In particular, protocols
proven secure in this framework remain secure when run concurrently with

? Work done in part at the University of Maryland and Columbia University.
?? Work supported in part by NSF awards #1111599 and #1223623.

? ? ? Work done in part at the University of Maryland, and supported by the German
Ministry for Education and Research (BMBF) through funding for the Center for
IT-Security, Privacy, and Accountability (CISPA www.cispa-security.org) and
also by an Intel Early Career Award.

† Work done in part at the University of Maryland.
‡ Work done at the University of Maryland, and supported by an NSF CI postdoctoral

fellowship.

arbitrary other protocols in a larger networked environment. Unfortunately,
most interesting cryptographic tasks are impossible to realize in the “plain”
UC framework when an honest majority cannot be assumed and, in particular,
in the setting of two-party secure computation [8, 9, 36]. This stark negative
result has motivated researchers to explore various extensions/variants of the
UC framework in which secure computation can be achieved [7], with notable
examples being the assumption of a common reference string (CRS) [6, 8, 10] or
a public-key infrastructure [6, 3]. In the real world, implementing either of these
approaches seems to require the existence of some trusted entity that parties
agree to use (though see [11] for some ideas on using a naturally occurring high-
entropy source in place of a CRS).

Katz [32] suggested using tamper-proof hardware tokens for UC computation.
That is, Katz proposed a model where parties can construct hardware tokens
to compute functions of their choice such that an adversary given a token TF
for a function F can do no more than observe the input/output characteristics
of this token. The motivation for this being that the existence of tamper-proof
hardware can be viewed, in principle, as a physical assumption rather than an
assumption of trust in some external entity. (In fact, in Katz’s model the parties
may create the tamper-proof tokens themselves—rather than obtain them from
a trusted provider [28]—and a malicious party can put any algorithm on a token
it creates.) In addition, secure hardware may also potentially result in more
efficient protocols; indeed, it has been suggested for improving efficiency in other
settings (e.g., [17, 13, 14, 5, 27, 31, 34, 22]). In addition to introducing the model,
Katz showed that tamper-proof hardware tokens can be used for universally
composable computation of arbitrary functions. His work motivated an extensive
amount of follow-up work [12, 37, 23, 15, 24, 25, 19] that we discuss in detail later.

As our main result, we show here a new protocol for universally composable 1-
out-of-2 string oblivious transfer (OT) based on tamper-proof hardware tokens,
secure against a static, malicious adversary. Our work yields what we believe
to be the most practical and efficient known protocol since it simultaneously
achieves all the following (which are not achieved all at once by any other
solution; see Table 1 for a detailed comparison):

– Our protocol is based on stateless tokens, which seem easier/cheaper to
create in practice and are (automatically) resistant to resetting attacks.

– Our protocol requires the parties to exchange a single pair of tokens. This
can be done in advance, before the parties’ inputs are known. Furthermore,
the tokens can be used to implement an unbounded number of oblivious
transfers, rather than requiring the parties to exchange a fresh pair of tokens
for every oblivious transfer they want to compute. Thus, by relying on known
completeness results [33, 30], the parties can use the same tokens to perform
an unlimited number of secure computations (of possibly different functions,
and on different inputs).

– Our protocol is efficient. It is black-box, and each OT needs mostly standard
symmetric-key operations along with only a few (unique) digital signatures.

Moreover, any desired number of OTs can be obtained (in parallel) in
constant rounds.

– If the total number of OTs is a priori bounded, then a variant of our protocol
can realize any bounded number of OTs in constant rounds based only on
the existence of collision-resistant hash functions.

Inspired by our result, we investigate the minimal number of stateless tokens
needed for universally composable OT/secure computation. We show that
two tokens—one created by each party—are needed even to obtain a single
universally composable OT as long as only “black-box techniques” are used.
(We explain what we mean by “black-box techniques” in the relevant section of
our paper.) Our protocol, above, is thus optimal in this regard. Our impossibility
result is somewhat surprising, since a single stateful token suffices for OT [19].
Our results thus demonstrate an inherent difference between stateful and
stateless tokens.

Since protocols based on nonblack-box techniques tend to be impractical,
our work pins down the minimal number of stateless tokens needed as far as
practical protocols are concerned. From a theoretical point of view, however, it
is still interesting to completely resolve the question. In this vein, we show a
protocol for carrying out an unbounded number of secure computations using
only a single (stateless) token. Our construction uses a variant of the nonblack-
box simulation technique introduced by Barak [2].

In summary, our work shows that efficient, universally composable oblivious
transfer can be realized from two stateless tokens without any additional setup
assumptions, and is unlikely using a single stateless token. On the other hand,
using (inefficient) nonblack-box techniques, a single stateless token serves as a
sufficient setup for general universally-composable two-party computation.

1.1 Related Work

Katz’s original protocol for secure computation using tamper-proof tokens [32]
required stateful tokens and relied on number-theoretic assumptions (specifically,
the DDH assumption). Subsequent work has mainly focused on improving one
or both of these aspects of his work.

Several researchers have explored constructions using stateless tokens. State-
less tokens are presumably easier and/or cheaper to build, and are resistant
to resetting attacks whereby an adversary cuts off the power supply and thus
effectively “rewinds” the token. Chandran et al. [12] were the first to eliminate
the requirement of stateful tokens. They construct UC commitments based on
the existence of one-way functions, and oblivious transfer based on any enhanced
trapdoor permutation (eTDP). They also introduce a variant security model in
which an adversary need not know the code of the tokens he produces, thus
capturing scenarios where an adversary may pass along tokens whose code he

doesn’t know, e.g., via token replication. (We do not consider this model here.6)
From a practical perspective, however, their work has several drawbacks. Their
OT protocol makes nonblack-box use of the underlying primitives, runs in Θ(λ)
rounds (where λ is the security parameter), and uses the heavy machinery of
concurrent non-malleable zero-knowledge. Improving upon their work, Goyal et
al. [25] show a black-box construction of oblivious transfer; their protocol runs
in constant rounds assuming a collision-resistant hash function, or Θ(λ/ log λ)
rounds based on one-way functions. However, their protocol requires the parties
to exchange Θ(λ) tokens for every oblivious transfer the parties wish to execute.
Compared with these results, our protocol is much more efficient at the expense
of the stronger assumption of existence of unique signature schemes.

A second direction has explored the possibility of eliminating computational
assumptions altogether. This line of work was initiated by Moran and Segev [37],
who showed how to realize statistically secure UC commitments using a single
stateful token. (Note that commitment does not imply OT, or general secure
computation, in the unconditional setting.) Their construction can be used
for any bounded number of commitments, still using only one token, and the
authors note that they can achieve an unbounded number of commitments (with
computational security) based on one-way functions. Goyal et al. [25] show
an unconditional construction of oblivious transfer (and hence general secure
computation) using Θ(λ) stateful tokens. Recently, Döttling et al. [19] show how
to construct unconditionally secure OT using only a single stateful token. Goyal
et al. [24] showed that unconditional security from stateless tokens is impossible
(unless the token model is extended to allow tokens to encapsulate each other). If
such encapsulation is allowed, then they show how to realize statistically secure
OT in constant rounds using Θ(λ) stateless tokens.

Kolesnikov [34] showed an efficient construction of oblivious transfer from
stateless tokens. However, his work is not in the UC setting, and he achieves only
covert security [1] rather than security against malicious parties. Dubovitskaya
et al. [21] constructed an OT protocol from two stateful tokens. Their work
assumes tokens are not reused (it is not clear how this is enforced), and is also
not in the UC setting.

Our work in relation to prior work. For our main result, we carefully
combine the techniques of [25] and [19] to achieve the most practical and efficient
known protocol for universally composable OT based on tamper-proof hardware
tokens. Our protocol uses two stateless tokens (one per party), and can be
used for either a bounded number of OTs (assuming the existence of collision-
resistant hash functions) or for an unbounded number of OTs (additionally
assuming the existence of unique signatures or, equivalently, verifiable random

6 Although we do not formally consider this model, it appears that our efficient, two-
token protocol would remain secure in that model since the simulator in our security
proof does not refer to the code of the tokens.

stateless tokens stateful tokens
Here 1 Here 2 [12] [25] [24] [32] [25] [19]

Tokens: 2 2 2 Θ(λ) Θ(λ) 2 Θ(λ) 1
Rounds: Θ(1) Θ(1) Θ(λ) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)
Asmpt.: CRHF, VRF CRHF eTDP CRHF TE DDH none none
OTs: unbounded bounded unbounded 1 1 unbounded 1 bounded

Table 1. Universally composable OT based on tamper-proof hardware tokens. The
security parameter is denoted by λ and TE means token encapsulation.

functions (VRFs)). Both instantiations run in constant rounds.7 A detailed
comparison of this protocol to relevant prior work is given in Table 1.

In addition to the above, we show two other results: there is no “black-box”
construction of universally composable OT using fewer than two stateless tokens,
but universally composable coin tossing (and hence OT) can be based on a single
stateless token using nonblack-box techniques.

Concurrent work. Independently, Döttling et al. [20] show a different nonblack-
box construction of UC coin-tossing from a single stateless token, and argue
(without proof) that nonblack-box techniques are needed. Here, we provide
a rigorous version of their argument. Our efficient, black-box OT protocol
using two stateless tokens—which we consider our primary contribution—has
no analog in their work.

2 Preliminaries

Let λ be the security parameter. For a set S, we let x ← S denote choosing x
uniformly at random from S. We assume readers are familiar with pseudorandom
functions, collision-resistant hash functions, strong extractors, commitment
schemes, digital signature schemes, message-authentication codes (MACs), and
witness-indistinguishable arguments of knowledge (WI-AoKs). Due to space
restrictions, we omit the formal definitions; here, we mainly introduce notation.

Throughout the paper, a pseudorandom function is denoted by PRF, and it
is assumed that the output length is sufficiently long so that it can be truncated
to the appropriate length. We let MAC = (Sig,Vrfy) be a deterministic message-
authentication code, where Vrfy is a canonical verification procedure that checks
the validity of a tag τ by recomputing it. We slightly abuse the notation to let
(Kg,Sig,Vrfy) also denote a digital signature scheme (the context should make
it obvious whether the notation indicates a MAC or a signature). A digital
signature scheme is called unique if for every possible verification key vk and
every message m, there is a unique signature σ such that Vrfyvk(m,σ) = 1. Dodis

7 The CRHF assumption is only used to make our protocols constant round by
instantiating constant round statistically-hiding commitments. Thus, we can instead
instantiate our protocols in Θ(λ/ log λ) rounds using only one-way functions.

and Yampolskiy [18] give an efficient construction for unique signatures based
on a certain number-theoretic assumption. Let Ext : {0, 1}2λ×{0, 1}d → {0, 1}λ
denote a strong randomness extractor where the source has length 2λ and the
seed has length d. If the min-entropy of the source is at least 2λ−O(log λ), the
output is statistically close to uniform.

We use SCom to denote a (possibly interactive) statistically-hiding and
computationally-binding commitment scheme [16, 26] and Com to denote a
(possibly interactive) computationally-hiding and strongly-binding commitment
scheme. We let comm ← Com(m; rm, r̆m) denote a commitment to a message m,
where the sender (resp., receiver) uses uniform random coins rm (resp., r̆m)
and the final transcript is comm; sometimes we omit r̆m when it is clear
from the context. (We also use similar notation for SCom.) In a strongly
binding commitment scheme [29], with overwhelming probability over the
receiver’s coins r̆m, for any commitment com there is at most one (m, rm)
such that com = Com(m; rm, r̆m). Although this definition is stronger than
usual, the Naor scheme [38] satisfies it. Without loss of generality, we assume
a canonical decommit phase in which the sender sends m together with
the randomness rm (i.e., decomm = (m, rm)). Then the receiver runs the
algorithm Open(comm,m, rm) which checks if (m, rm) is consistent with the
transcript comm. If so, Open outputs m; otherwise it outputs ⊥.

Linear algebra. By F2 we denote the finite field with two elements. If a ∈ Fλ2
and b ∈ Fk2 are two column-vectors, then (abT) = (aibj)ij ∈ Fλ×k2 is the outer

product (or tensor product) of a and b, and aTb =
∑λ
i=1 aibi ∈ F2 the inner

product.
Let C ∈ Fλ×2λ

2 . Then dim(ker(C)) ≥ λ. Let B = {b1, . . . , bλ} ⊆ ker(C) be a
linearly independent set. One can choose a set B∗ = {bλ+1, . . . , b2λ} such that
B ∪ B∗ is a basis of F2λ

2 . Let ei ∈ Fλ2 be the ith unit-vector. Then, there exists
a matrix G ∈ Fλ×2λ

2 such that Gbi = ei for i = 1, . . . , λ and Gbi = 0 for i =
λ+1, . . . , 2λ. This matrix is called the complementary matrix of C and we denote
by G← Comp(C) its computation. It holds that rank(G) = λ and B∗ ⊆ ker(G).
For such C and G, we can always solve the linear system Cx = r, Gx = s by
solving CxB∗ = r and GxB = s independently with xB ∈ span(B) ⊆ ker(C)
and xB∗ ∈ span(B∗) ⊆ ker(G), and then setting x := xB + xB∗ .

Token functionality. We model tamper-proof hardware tokens as an ideal
functionality in the UC framework, following Katz [32]; see Figure 1. Our ideal
functionality models stateful tokens: although all our protocols use stateless
tokens, an adversarially generated token may be stateful.

Oblivious-transfer functionality. The OT functionality is standard, but
we wish here to model a multi-session variant where the sender and receiver
repeatedly (in different sub-sessions) execute any agreed-upon number m of
parallel OTs (in a given sub-session). We refer to this functionality as Fmulti-OT,
and describe it in Figure 2. We note that the sub-sessions are executed
sequentially. Additionally, as highlighted in [25], the sender is notified each time
the receiver obtains output. We define the bounded OT functionality similarly

Functionality Fwrap

The functionality is parameterized by a polynomial p(·) and an implicit
security parameter λ.

Create: Upon receiving an input (create, 〈sid,C,U〉,M) from a party C (i.e.,
the token creator), where U is another party (i.e., the token user) in the system
and M is an interactive Turing machine, do:

If there is no tuple of the form 〈C,U, ?, ?, ?〉 stored, store
〈C,U,M, 0, ∅〉. Reveal (create, 〈sid,C,U〉) to the adversary.

Ready: Upon receiving a message (ready, 〈sid,C,U〉) from the adversary,
send (ready, 〈sid,C,U〉) to U.

Execute: Upon receiving an input (run, 〈sid,C,U〉,msg) from the user U, find
the unique stored tuple 〈C,U,M, i, state〉. If no such tuple exists, do nothing.
Otherwise, do:

If the Turing machine M has never been used yet, i.e., i = 0, then
choose ω uniformly at random from {0, 1}p(λ) and set state := ω before
running the Turing machine. Run (out, state′) ← M(msg; state) for
at most p(λ) steps where out is the response and state′ is the new
state of M (set out :=⊥ and state′ := state if M does not respond
in the allotted time). Send (response, 〈sid,C,U〉, out) to U. Erase
〈C,U,M, i, state〉 and store 〈C,U,M, i+ 1, state′〉.

Fig. 1. The ideal Fwrap functionality for stateful tokens.

except that the sender and receiver only execute a single sub-session of m parallel
OTs. This allows the sender and receiver to execute any bounded number of OTs.

3 Efficient Oblivious Transfer Using Two Stateless
Tokens

In this section, we first give the details of our unbounded OT protocol. Then,
in Section 3.3 we briefly sketch how this protocol can be modified to achieve
a bounded OT protocol using only CRHFs. We provide some intuition and
background before giving the details of our protocol. Our starting point is the
unconditionally secure OT protocol from [19], which uses a single stateful token.
We sketch a simplified version of their protocol for the case of a single OT carried
out between the sender S with input (x0, x1) ∈ {0, 1}λ×{0, 1}λ and the receiver
R with input b ∈ {0, 1}. We canonically identify the vector space Fλ2 with the set
{0, 1}λ of strings of length λ. The main steps of the protocol are as follows:

1. S creates a token TS holding random vector a ∈ F2λ
2 and matrix B ∈ F2λ×2λ

2

and gives it to R.

Functionality Fmulti-OT

Fmulti-OT interacts with sender S, receiver R, and the adversary. The
functionality is parameterized by a security parameter λ. It also maintains
a variable curr-id initialized to ⊥.

Upon receiving (send, 〈sid, S,R〉, ssid, 〈m, {(x0i , x1i)}mi=1〉) from S with x0i , x
1
i ∈

{0, 1}λ, if curr-id 6∈ {⊥, ssid} then ignore it. Otherwise, set curr-id := ssid
and record 〈ssid,m, {(x0i , x1i)}mi=1〉, and reveal (send, 〈sid, S,R〉, ssid) to the
adversary. Ignore further (send, 〈sid, S,R〉, ssid, . . .) inputs with this ssid.

Upon receiving (receive, 〈sid, S,R〉, ssid, 〈m, {bi}mi=1〉) from R with bi ∈ {0, 1},
if curr-id 6∈ {⊥, ssid} then ignore it. Otherwise, set curr-id := ssid and record the
tuple 〈ssid,m, {bi}mi=1〉, and reveal (receive, 〈sid,S,R〉, ssid) to the adversary.
Ignore further (receive, 〈sid, S,R〉, ssid, . . .) inputs with this ssid.

Upon receiving (go, 〈sid, S,R〉, ssid) from the adversary, ignore it if curr-id 6=
ssid, or either 〈ssid,m, {(x0i , x1i)}mi=1〉 or 〈ssid,m, {bi}mi=1〉 is not recorded.
Otherwise, do the following: set curr-id := ⊥, return (received, 〈sid,S,R〉, ssid)
to S, and return (received, 〈sid, S,R〉, ssid, {xbii }

m
i=1) to R. Ignore further

(go, 〈sid, S,R〉, ssid) messages with this ssid from the adversary.

Fig. 2. The Fmulti-OT functionality.

2. R chooses a random matrix C ∈ Fλ×2λ
2 and sends it to S. In turn, S computes

ã := Ca, B̃ := CB, and a complementary matrix G ∈ Fλ×2λ
2 to C and sends

these to R.
3. R sends random h ∈ F2λ

2 to S. Then, S sends x̃0 := x0 + GBh and x̃1 :=
x1 +GBh+Ga to R.

4. R queries the token with a random z ∈ F2λ
2 such that zTh = b. The token

will in turn output V := azT +B. Then R checks that CV = ãzT + B̃ and,
if this is the case, outputs xb := x̃b−GV h. (Otherwise it detects that S was
cheating.)

The basic idea of their protocol is as follows. The receiver R performs a
secret sharing of its input b into shares z and h; by using only h with the
sender S and only z with the token, R maintains the privacy of b. In order
to obtain the output xb, the receiver R has to compute the mask (i.e., GBh
or GBh + Ga). This is achieved by querying the token with z, since GV h =
G(azT + B)h = b(Ga) + GBh. To ensure that the token outputs the correct
value V , the receiver checks that CV = ãzT + B̃. Since the token does not
know C, incorrect behavior is detected with overwhelming probability. To achieve
security against a malicious receiver, it is crucial that the receiver is only able
to query the token once, and this is enforced by making the token stateful. In
particular, the token “self destructs” after the first query by the receiver.

Using stateless tokens. We carefully combine the techniques of [19] with ideas
from [25] so that we can use two stateless tokens instead of one stateful token.
This entails several difficulties:

Multiple queries. A stateless token can be executed multiple times while the
token remains oblivious about it (in contrast, stateful tokens “self destruct”
after their use [23]), so we need to ensure that a malicious party queries the
token only once. Motivated by similar techniques in [25], we handle this issue
by modifying the token so that it only replies to authenticated inputs. That
is, instead of querying z directly to the token, R queries (comz, z, rz, σz)
where comz is a commitment to z, the value σz is a digital signature on
comz (received from S) with respect to a verification key vkS, and z, rz is the
decommitment of comz (see the discussion below about why this technique
is useful).

Extracting the inputs. Using a stateless token additionally introduces the dif-
ficulty of extracting the sender’s inputs during the simulation. Extraction
from a stateful token is possible by having the simulator rewind the token
and query it multiple times. (The fact that the simulator can query the token
multiple times is an advantage of the simulator over the real-world parties.)
Once we move to a stateless token in the real world, and authenticate the
queries as described above, even the simulator is no longer able to rewind
and send multiple (authenticated) queries to the token.
To resolve this issue we introduce a second stateless token TR sent from the
receiver to the sender which allows directly extracting the sender’s inputs.

At a high level, the above results in the following changes to the protocol:

1. The receiver sends a token TR to the sender. (The behavior of this token will
become clear below.)

2(a). S generates a statistically hiding8 commitment com ← SCom(a‖B) and
sends com to R. Then, R chooses a matrix C and authenticates com by
computing σ := SigskR(com‖C) (where skR is a secret key also embedded in
TR), and sends C and σ to S.

2(b). S queries TR on input (C, com, decom, σ). The token checks that the
signature σ is valid and that decom is a valid opening of com; otherwise
it aborts. TR returns ã := Ca and B̃ := CB together with a signature
σ′ := SigskR(ã‖B̃). Then S sends (ã, B̃, σ′) to R.

Intuitively, the value (a,B) remains hidden from a corrupted R as before. For
a corrupted sender, the simulator will emulate Fwrap and observe the inputs
to TR. To guarantee that the simulator extracts the sender’s inputs correctly, it is
necessary that the sender queries the token exactly once with a value (a,B). The
binding property of the commitment scheme, together with the unforgeability of
the signature scheme, guarantees that S can make at most one valid query to the
token. The unforgeability of the signature scheme assures that S must query the
token at least once to generate a valid next message of the protocol. A similar
argument holds for the inputs (comz, z, rz, σz) to the sender’s token TS.

8 We were not able to prove security using a computationally hiding commitment
scheme. Indeed, it is an interesting open problem to achieve a constant-round OT
protocol with two stateless tokens based only on one-way functions.

On input (key):
ouput vkS.

On input (ssid, i, comz, z, rz, σz):
v := VrfyvkS(ssid‖i‖comz, σz)

if z = Open(comz, z, rz) and v = 1
a := PRFka(ssid‖i)
B := PRFkB (ssid‖i)
V := azT +B
w := SigskS(ssid‖i)
output (V,w)

else output (⊥,⊥)

Fig. 3. The Turing machine MS

to be embedded in the sender-
created token TS. It is initialized with
(skS, vkS, ka, kB) given by the creator.

On input (key):
ouput vkR.

On input (ssid, i, coma‖B , a, B, ra‖B , σa‖B):
v := VrfyvkR(ssid‖i‖0‖coma‖B , σa‖B)

if a‖B = Open(coma‖B , a‖B, ra‖B)
and v = 1

ã := Ca; B̃ := CB;

σã‖B̃ := SigskR(ssid‖i‖1‖ã‖B̃)

output (ã, B̃, σã‖B̃)

else output (⊥,⊥,⊥)

Fig. 4. The Turing machine MR to be
embedded in the receiver-created token
TR. It is initialized with (skR, vkR, C)
given by the creator.

Malicious tokens. There is one additional issue to be taken care of. The above
protocol is secure assuming the tokens are generated as specified by the protocol.
However, a malicious token may try to leak some information about the other
party’s queries to the token creator. For example, a malicious token TR∗ may
output (ã, B̃, σ′) where the bits of σ′ leak information about (a,B). To protect
against this, we require the underlying signature scheme to be unique; then, σ′

carries no more information about (a,B) than (ã, B̃) does. This ensures that
the only information leakage that can occur is from a token abort. For TS, this
type of leakage is already handled by the protocol of [19]. For TR, we handle the
leakage using strong extractors; see the formal description of the protocol below.

The above suffices for a single OT from each pair of tokens. To achieve an
unbounded number of OTs we replace all the secret keys and secret inputs with
pseudorandom values output by a pseudorandom function.

3.1 The Protocol

The protocol π between a sender S and a receiver R consists of an initial token-
exchange phase after which the parties can carry out an unlimited number of
oblivious transfers. We describe π now; see also Figure 8.

Token-exchange phase. Each party generates a single token and sends it
to the other party. The sender’s token TS encapsulates the code described in
Figure 3, where ka, kB ,← {0, 1}λ and (skS, vkS) ← Kg(). The receiver’s token
TR encapsulates the code described in Figure 4, where (skR, vkR) ← Kg() and
C ← F2λ×4λ

2 . Formally, each party sends the relevant code to Fwrap using an
appropriate (create, . . .) message. Then, S runs TR(key) to obtain vkR; likewise,
R obtains vkS by running TS(key). Finally, R sends C to S, and in turn S computes
the complementary matrix G← Comp(C) and sends it to R.

Oblivious transfer phase. Following the token-exchange phase, the parties
can sequentially run an unbounded number of sub-sessions where in each sub-

session they carry out any desired number m of oblivious transfers. (Each
sub-session uses only a constant number of rounds.) In each sub-session, S
gets (send, 〈sid,S,R〉, ssid, 〈m, {(x0

i , x
1
i)}mi=1〉) and R gets (receive, 〈sid,S,R〉,

ssid, 〈m, {bi}mi=1〉) from the environment, and they execute the following protocol:

S→ R: For i ∈ [m], the sender computes ai := PRFka(ssid‖i) and Bi :=
PRFkB (ssid‖i). Here, we have ai ∈ F4λ

2 , Bi ∈ F4λ×4λ
2 . Then, the sender

commits to (ai, Bi) by executing comai‖Bi ← SCom(ai‖Bi; rai‖Bi), and sends
{comai‖Bi}mi=1 to R.

R→ S: R chooses hi ← F4λ
2 and zi ← F4λ

2 subject to the constraint that
bi = zT

i hi, and commits to zi by executing comzi ← SCom(zi; rzi). It
next authenticates the commitment comai‖Bi by computing σai‖Bi :=
SigskR(ssid‖i‖0‖comai‖Bi) for i ∈ [m]. Finally, it sends {(σai‖Bi , comzi)}mi=1

to S.
S→ R: The sender checks if VrfyvkR(ssid‖i‖0‖comai‖Bi , σai‖Bi) = 1 for i ∈

[m]; if the check fails, then S aborts the protocol. For i ∈ [m], the
sender runs the token TR with (ssid, i, comai‖Bi , ai, Bi, rai‖Bi , σai‖Bi)

and obtains in return (ãi, B̃i, σãi‖B̃i). Then S checks that ãi = Cai,

B̃i = CBi, VrfyvkR(ssid‖i‖1‖ãi‖B̃i, σãi‖B̃i) = 1 for i ∈ [m]; if the check

fails, S aborts the protocol. Otherwise, for i ∈ [m] it authenticates the
commitment comzi by computing σzi := SigskS(ssid‖i‖comzi). Finally, it

sends {(ã, B̃, σãi‖B̃i , σzi)}
m
i=1 to R.

R→ S: The receiver checks that VrfyvkR(ssid‖i‖1‖ãi‖B̃i, σãi‖B̃i) = 1, and

VrfyvkS(ssid‖i‖comzi , σzi) = 1 for i ∈ [m]. If this check fails, it aborts
the protocol. Otherwise, R runs the token TS with (ssid, i, comzi , zi, rzi , σzi)
and obtains in return (Vi, wi), for i ∈ [m]. The receiver checks that
VrfyvkS(ssid‖i, wi) = 1 and CVi = ãiz

T
i + B̃i for i ∈ [m]. If the check fails,

then it aborts the protocol. Otherwise, it sends {(hi, wi)}mi=1 to S.
S→ R: The sender checks that VrfyvkS(ssid‖i, wi) = 1 for i ∈ [m]; if not, it aborts

the protocol. Otherwise, for i ∈ [m] it chooses v0
i , v

1
i ← {0, 1}d and computes

x̃0
i := Ext(GBihi, v

0
i)⊕x0

i and x̃1
i := Ext(GBihi +Gai, v

1
i)⊕x1

i . Here d is an
appropriate seed length for the extractor. Finally it sends {(v0

i , v
1
i , x̃

0
i , x̃

1
i)}mi=1

to the receiver.
R→ S: For i ∈ [m], the receiver computes xbii := x̃bii ⊕ Ext(GVihi, v

bi
i) and

outputs it.

Theorem 1 Assume PRF is a pseudorandom function, SCom is statistically
hiding and computationally binding, and (Kg,Sig,Vrfy) is a unique signature
scheme. Then protocol π securely realizes Fmulti-OT in the Fwrap-hybrid model.

3.2 Proof Idea

In this section, we briefly sketch the main ideas behind the proof of Theorem 1.
A complete proof is deferred to the full version.

S R

Token exchange:

ka, kB ← {0, 1}λ; (skS, vkS)← Kg() C ← F2λ×4λ
2 ; (skR, vkR)← Kg()

generate token TS as in Figure 3 generate token TR as in Figure 4

� TS, TR -
Run TR(key) to get vkR. Run TS(key) to get vkS

� C

G← Comp(C)
G -

Oblivious transfer:
(ssid,m, {(x0

i , x
1
i)}

m
i=1) (ssid,m, {bi}mi=1)

For i ∈ [m] :
ai := PRFka (ssid, i)
Bi := PRFkB (ssid, i)
comai‖Bi ← SCom(ai‖Bi; rai‖Bi)

{comai‖Bi}
m
i=1 -

For i ∈ [m] :
σai‖Bi := SigskR

(ssid‖i‖0‖comai‖Bi)
hi ← F4λ

2

zi ← {zi ∈ F4λ
2 | z

T
i hi = bi}

comzi ← SCom(zi; rzi)

�
{(σai‖Bi , comzi)}

m
i=1

For i ∈ [m] :
If VrfyvkR

(ssid‖i‖0‖comai‖Bi , σai‖Bi) 6= 1

then abort
Run TR(ssid, i, comai‖Bi , ai, Bi, rai‖Bi , σai‖Bi)

to get (ãi, B̃i, σãi‖B̃i
)

If ãi 6= Cai or B̃i 6= CBi, then abort

If VrfyvkR
(ssid‖i‖1‖ãi‖B̃i, σãi‖B̃i) 6= 1

then abort
σzi := SigskS

(ssid‖i‖comzi)
{(ãi, B̃i, σãi‖B̃i , σzi)}

m
i=1-

For i ∈ [m] :
If one of the following fails, abort:

VrfyvkR
(ssid‖i‖1‖ãi‖B̃i, σãi‖B̃i)

VrfyvkS
(ssid‖i‖comzi , σzi)

Run TS(ssid, i, comzi , zi, rzi , σzi)
to get (Vi, wi)

If VrfyvkS
(ssid‖i, wi) 6= 1

or CVi 6= ãiz
T
i + B̃i

then abort

� {(hi, wi)}mi=1

For i ∈ [m] :
If VrfyvkS

(ssid‖i, wi) 6= 1, then abort

v0i , v
1
i ← {0, 1}

d

x̃0
i := Ext(GBihi, v

0
i)⊕ x0

i

x̃1
i := Ext(GBihi +Gai, v

1
i)⊕ x1

i

{(v0i , v
1
i , x̃

0
i , x̃

1
i)}

m
i=1-

For i ∈ [m] :

output x̃
bi
i ⊕ Ext(GVihi, v

bi
i)

Fig. 5. An OT protocol π from two stateless tokens.

To show security of the protocol, we need to construct a simulator Sim for

any non-uniform ppt environment Z such that exec
Fwrap

π,A,Z ≈ idealFmulti-OT,Sim,Z ,
where A is the dummy adversary. Below, we briefly sketch the ideas used to
construct such a simulator. Note that we assume w.l.o.g. that the adversary
never asks the same query twice.

Sender corruption. First, recall that the token TR takes as input (ssid, i,
comai‖Bi , ai, Bi, rai‖Bi , σai‖Bi) and returns (ãi, B̃i, σãi‖B̃i). Our protocol forces

the malicious sender S∗ to query TR on exactly one input (ai‖Bi) for a fixed index
i. This allows Sim to extract the input from the protocol transcript. To see this,
note that the receiver authenticates the inputs to its token TR, which in turn
authenticates its output. Thus, if the malicious sender does not query the token
TR but sends a “valid” tuple (ãi‖B̃i, σãi‖B̃i), then this immediately contradicts
the unforgeability of the underlying signature scheme. Also, S∗ cannot query TR
with two different values (ai‖Bi), (a′i‖B′i) (for a fixed i) without contradicting
the unforgeability of the signature σai‖Bi or the binding of comai‖Bi .

Next, consider the maliciously generated token TS∗ . Its input consists of a
tuple (ssid, i, comzi , zi, rzi , σzi), and its output is (Vi, wi). The input is chosen
carefully in combination with the protocol execution such that the output of
the token does not reveal any information about the choice bit bi = zT

i hi of the
receiver. Observe that the signature σzi depends only on vkS and comzi in the
information thoeretic sense, since we use a unique signature scheme. Therefore,
the token knows nothing about hi. Also, the signature wi depends only on vkR
and (ssid, i) in the information theoretic sense, and it does not contain any
information about zi.

Still, the token TS∗ may send some limited amount of information about the
previous executions to S∗ by aborting the protocol. Observe that according to
our definition of the functionality, OT sub-sessions are executed in a sequential
manner, and aborting is allowed only once. Thus, the number ` of successful
sub-sessions so far can encode some information of the input history of TS∗ up
to O(log λ) bits. Therefore, even with this leakage, the adversary S∗ has only a
negligible advantage in predicting bi. To see this, note that bi = zT

i hi remains
unfixed given O(log λ) bits of zi.

Receiver corruption. First, recall that the input to the token TS is (ssid, i, comzi ,
zi, rzi , σzi) and that its output is (Vi, wi). As in the malicious sender case, our
protocol forces the malicious receiver R∗ to query the token on exactly one
input zi for each i. By observing this query, the simulator Sim can extract the
input b̂i = zT

i hi of R∗. This property is achieved using the unforgeability of the
signature scheme and the binding of the commitment scheme SCom. That is,
the unforgeability guarantees that the token runs only on the input (including
comzi) authenticated by the honest sender, and the binding of comzi disables
the malicious receiver R∗ to query the token on two distinct zis.

Next, consider the maliciously generated token TR∗ . The input to the token
and its output are carefully handled such that it does not reveal information
about (x0

i , x
1
i) of the sender. To see this, recall the token TR∗ takes as input

(ssid, i, comai‖Bi , ai, Bi, rai‖Bi , σai‖Bi) and returns (ãi, B̃i, σãi‖B̃i). In particular,

since we use a unique signature scheme, the signature σãi‖B̃i information-

theoretically depends only on (vkR, ãi, B̃i), so any malicious attempt by R∗ and
TR∗ to gain information about (ai, Bi) beyond (comai‖Bi , ãi, B̃i) is not possible.

Still, the token TR∗ may reveal to the environment some limited amount of
information about the previous executions to R∗ by aborting the protocol (only
allowed one-time), that is, the number ` of successful sub-sessions so far can
encode some information of the input history of TR∗ . This value ` can encode at
most O(log λ) bits. Using appropriate extractors in computing the masks for x̃0

i

and x̃1
i , we can handle this amount of leakage.

3.3 Bounded Oblivious Transfer from Collision Resistant Hash
Functions

The bounded OT protocol between a sender S and a receiver R consists of an
initial token-exchange phase after which the parties can carry out a bounded
number of oblivious transfers in a single sub-session. We describe π now; see
also Figure 8. Here, let (Sig,Vrfy) be a MAC scheme.

The main intuition for this protocol is that if we allow only one sub-session
to be executed, then we only need to worry about covert channels that transmit
information observed by each party/token so far up to the covert communication.
We do not need to worry about a later sub-session sending information about a
prior sub-session. This allows us to eliminate the need for unique signature and
use MACs instead, thus giving a protocol based only on the existence of CRHFs.

We eliminate the unique signatures in two ways. First, some of the checks
in the unbounded protocol can be removed. In particular, in the protocol,
the receiver doesn’t check the authentication on comzi before forwarding it
to the sender-created token TS. This is because it cannot contain any useful
information about zi beyond comzi . For other checks, unique signatures are
replaced with (roughly) the following technique: a party A commits to a
MAC key, authenticates the message using the MAC key, and later sends the
decommitment. Due to the unforgeablity of MAC, the party A makes sure that
B runs the token only once before receiving messages of B derived from the
token execution result. Given the decommitment, the other party B can check
that all the messages from A so far have been legitimate.

Token-exchange phase. Each party generates a single token and sends it to the
other party. The sender’s token TS encapsulates the code described in Figure 6,
where ka, kB , kw, kW , s2 ← {0, 1}λ. The receiver’s token TR encapsulates the
code described in Figure 7, where s ← {0, 1}λ and C ← F2λ×4λ

2 . Formally,
each party sends the relevant code to Fwrap using an appropriate (create, . . .)
message. Finally, R sends C to S, and in turn S computes the complementary
matrix G← Comp(C) and sends it to R.

Oblivious-transfer phase. Following the token-exchange phase, the parties
enter the oblivious transfer phase, where m OT instances are executed in
parallel. In this phase, S gets (send, 〈sid,S,R〉, 〈m, {(x0

i , x
1
i)}mi=1〉) and R gets

On input (i, comz, z, rz, τz):
v := Vrfys2(i‖comz, τz)
if z = Open(comz, z, rz) and v = 1
a := PRFka(i); B := PRFkB (i)
w := PRFkw (i); rw := PRFkW (i)
V := azT +B
output (V,w, rw)

else output (⊥,⊥,⊥)

Fig. 6. The Turing machine MS

to be embedded in the sender-
created token TS. It is initialized
with (ka, kB , kw, kW , s2) given by the
creator.

On input (i, coma‖B , a, B, ra‖B , τa‖B):
v := Vrfys(i‖0‖coma‖B , τa‖B)
if a‖B = Open(coma‖B , a‖B, ra‖B)

and v = 1

ã := Ca; B̃ := CB;

τã‖B̃ := Sigs(i‖1‖ã‖B̃)

output (ã, B̃, τã‖B̃)

else output (⊥,⊥,⊥)

Fig. 7. The Turing machine MR to be
embedded in the receiver-created token
TR. It is initialized with (s, C) given by
the creator

(receive, 〈sid,S,R〉, 〈m, {bi}mi=1〉) from the environment, and they execute the
following protocol:

S→ R: For i ∈ [m], the sender computes ai := PRFka(i), Bi := PRFkB (i),

wi := PRFkw(i), and rwi := PRFkW (i), and chooses ui ← {0, 1}8λ
2+3λ. Here,

we have ai ∈ F4λ
2 , Bi ∈ F4λ×4λ

2 , and wi ∈ {0, 1}λ. Then, the sender commits
to (ai, Bi), wi, and ui by executing comai‖Bi ← SCom(ai‖Bi; rai‖Bi), and
comwi ← Com(wi; rwi), and comui ← Com(ui; rui), respectively.
The sender sends {(comai‖Bi , comwi , comui)}mi=1 to R.

R→ S: The receiver commits to s by executing coms ← Com(s; rs). It also
chooses zi ← F4λ

2 , and commits to zi by executing comzi ← SCom(zi; rzi).
It next authenticates the commitment comai‖Bi by computing

τai‖Bi := Sigs(i‖0‖comai‖Bi) for i = 1, . . . ,m.

Finally, it sends (coms, {(τai‖Bi , comzi)}mi=1) to S.
S→ R: For i ∈ [m], the sender runs the token TR with (i, comai‖Bi , ai, Bi, rai‖Bi ,

τai‖Bi) and obtains in return (ãi, B̃i, τãi‖B̃i). Then S checks that ãi = Cai

and B̃i = CBi for i ∈ [m]. If the check fails, S aborts the protocol. Otherwise,
S computes Ui := ui ⊕ (ãi‖B̃i‖τãi‖B̃i) for i ∈ [m] and sends {Ui}mi=1 to R.

R→ S: R sends the decommitment (s, rs) of coms to S.
S→ R: The sender validates all values transmitted so far as follows: It checks

that s = Open(coms, s, rs) and that Vrfys(i‖0‖comai‖Bi , τai‖Bi) = 1, as well

as Vrfys(i‖1‖ãi‖B̃i, τãi‖B̃i) = 1 for i ∈ [m]. If the check fails, then S aborts

the protocol. Otherwise, for i ∈ [m] it authenticates the commitment comzi

by computing τzi := Sigs2(i‖comzi). Finally, it sends ({(ui, rui , τzi)}mi=1)
to R.

R→ S: For i ∈ [m], the receiver checks that ui = Open(comui , ui, rui); if
not, it aborts. Then R sets ãi‖B̃i‖τãi‖B̃i := Ui ⊕ ui. It next checks that

S R

Token exchange:

ka, kB , kw, kW , s2 ← {0, 1}λ C ← F2λ×4λ
2 ; s← {0, 1}λ

generate token TS as in Fig 6 generate token TR as in Fig 7

� TS, TR -
� C

G← Comp(C)
G -

Oblivious transfer:
(m, {(x0

i , x
1
i)}

m
i=1) (m, {bi}mi=1)

For i ∈ [m] :
ai := PRFka (i);Bi := PRFkB (i)
wi := PRFkw (i); rwi := PRFkW (i)

ui ← {0, 1}8λ
2+3λ

comai‖Bi ← SCom(ai‖Bi; rai‖Bi)
comwi ← Com(wi; rwi)
comui ← Com(ui; rui)

{(comai‖Bi , comwi , comui)}
m
i=1- coms ← Com(s; rs)

For i ∈ [m] :
τai‖Bi := Sigs(i‖0‖comai‖Bi)
zi ← F4λ

2 ; comzi ← SCom(zi; rzi)

For i ∈ [m] : �
coms, {(τai‖Bi , comzi)}

m
i=1

Run TR(i, comai‖Bi , ai, Bi, rai‖Bi , τai‖Bi)

to get (ãi, B̃i, τãi‖B̃i
)

If ãi 6= Cai or B̃i 6= CBi, then abort

Ui := ui ⊕ (ãi‖B̃i‖τãi‖B̃i)
{Ui}mi=1 -

� (s, rs)
// send decommitment of coms

If s 6= Open(coms, s, rs), then abort
For i ∈ [m] :

If Vrfys(i‖0‖comai‖Bi , τai‖Bi) 6= 1 or

Vrfys(i‖1‖ãi‖B̃i, τãi‖B̃i) 6= 1

then abort
τzi := Sigs2 (i‖comzi)

{(ui, rui , τzi)}
m
i=1 - For i ∈ [m] :

(ãi‖B̃i‖τãi‖B̃i) := ui ⊕ Ui
If ui 6= Open(comui , ui, rui) or

Vrfys(i‖1‖ãi‖B̃i, τãi‖B̃i) 6= 1,

then abort
Run TS(i, comzi , zi, rzi , τzi)

to get (Vi, w
′
i, r
′
wi

)

If w′i 6= Open(comwi , w
′
i, r
′
wi

)

or CVi 6= ãiz
T
i + B̃i, then abort

For i ∈ [m] : � {(hi, w′i)}
m
i=1 hi ← {hi ∈ F4λ

2 | z
T
i hi = bi}

If w′i 6= wi, abort

v0i , v
1
i ← {0, 1}

d

x̃0
i := Ext(GBihi, v

0
i)⊕ x0

i

x̃1
i := Ext(GBihi +Gai, v

1
i)⊕ x1

i

{(v0i , v
1
i , x̃

0
i , x̃

1
i)}

m
i=1 - For i ∈ [m] :

output x̃
bi
i ⊕ Ext(GVihi, v

bi
i)

Fig. 8. A bounded OT protocol π from two stateless tokens.

Vrfys(i‖1‖ãi‖B̃i, τãi‖B̃i) = 1 for i ∈ [m]. If this check does not hold, it

aborts the protocol. Otherwise, for i ∈ [m], it runs the token TS with
(i, comzi , zi, rzi , τzi) and obtains in return (Vi, w

′
i, r
′
wi). The receiver checks

that w′i = Open(comwi , w
′
i, r
′
wi), that CVi = ãiz

T
i + B̃i, and that w′i 6= ⊥ for

i ∈ [m]. If the check fails, then it aborts the protocol. Otherwise, it chooses
hi ← F4λ

2 subject to the constraint that bi = zT
i hi for i ∈ [m], and sends

{(hi, w′i)}mi=1 to S.
S→ R: The sender checks that wi = w′i for i ∈ [m]; if not, it aborts the protocol.

Otherwise, for i ∈ [m] it chooses v0
i , v

1
i ← {0, 1}d and computes x̃0

i :=
Ext(GBihi, v

0
i) ⊕ x0

i and x̃1
i := Ext(GBihi + Gai, v

1
i) ⊕ x1

i . Finally it sends
{(v0

i , v
1
i , x̃

0
i , x̃

1
i)}mi=1 to the receiver.

R→ S: For i ∈ [m], the receiver computes xbii := x̃bii ⊕ Ext(GVihi, v
bi
i) and

outputs it.

4 Black-Box Impossibility of OT Using One Stateless
Token

In the previous section we showed that an unbounded number of universally
composable OTs (and hence universally composable secure computation) is
possible by having the parties exchange two stateless tokens. We show here that a
construction of (even a single) OT using one stateless token is impossible using
black-box techniques alone. Here, by “black-box” we refer to the simulator’s
access to the code M encapsulated in the token. Note that the token model as
defined by Katz [32] is inherently nonblack-box and, in particular, the simulator
is given the codeM that the malicious party submits to Fwrap. Nevertheless, an
examination of the proof of security of our two-token protocol in Section 3— as
well as the proofs of security in almost all prior work [12, 37, 23, 15, 24, 25, 19]—
shows that the simulator only uses this code in a black-box fashion, namely, by
running the code to observe its input/output behavior but without using any
internal structure of the code itself. We formalize this in what follows.

Specifically, we consider simulators of the form Sim = (Simcode,Simbb), where
Simcode gets the codeM that the adversary submits to Fwrap, and then runs Simbb

as a subroutine while giving it oracle access to M. Inspired by [8, 9] we show
that, restricting to such simulators, constructions of OT from one stateless token
are impossible. Intuitively, for any such protocol proven secure using black-box
techniques, Simbb must be able to extract the input of a corrupted token-creating
party by interacting with M in a black-box fashion. The real-world adversary
can then use Simbb to extract the input of the honest token-creating party by
running Simbb and answering its oracle queries by querying the token itself; for
stateless tokens, querying the token (in the real world) is equivalent to black-box
access to M (in the ideal world).

Theorem 2 There is no protocol π that uses one stateless token to securely
realize FOT in the Fwrap-hybrid model whose security is proven using a simulator
Sim = (Simcode,Simbb) as defined above.

Proof (Sketch) For completeness, the (single-session) OT functionality FOT

is given in Figure 9. Let π be a protocol between a sender S and a receiver
R, in which a single token is sent from the sender to the receiver. (The other
case is handled analogously.) Consider the following environment Z ′ and dummy
adversary A′ corrupting the sender: Z ′ chooses random bits s0, s1, and b, and
instructs the sender to run π honestly on input (s0, s1), including submitting
some code to Fwrap to create a token. Once the honest receiver outputs s, then
Z ′ outputs 1 if s = sb and 0 otherwise.

Suppose that π securely realizes FOT, where security is proved via a
simulator Sim = (Simcode,Simbb) as previously described. In the course of the
proof, Simbb plays the role of a receiver while interacting with A′, and Simcode

provides Simbb with black-box access to whatever code A′ submits to Fwrap. At
some point during its execution, Simbb must send some inputs (s̃0, s̃1) to the ideal
functionality FOT. It is not hard to see that we must have (s̃0, s̃1) = (s0, s1) with
all but negligible probability.

We now consider a different environment Z and an adversary A corrupting
the receiver. Z chooses random bits s0, s1, b and provides (s0, s1) as input to the
honest sender; it outputs 1 iff A outputs (s0, s1). Note that A receives a token
from the honest sender as specified by π. Adversary A works as follows:

Run Simbb, relaying messages from the honest sender to this internal
copy of Simbb. Whenever Simbb makes a query to Simcode to runM (the
code created by the honest sender) on some input q, adversary A runs
the token with input q (formally, A sends (run, 〈sid,S,R〉, q) to Fwrap

and gives the response to Simbb). At some point, Simbb sends (s̃0, s̃1)
to FOT, at which point A outputs (s̃0, s̃1) and halts.

The key point is that because the token is stateless, there is no difference
between Simcode running the code M, and A querying the token via Fwrap.
Thus, A provides a perfect simulation for Simbb, and we conclude that (s̃0, s̃1) =
(s0, s1) with all but negligible probability in an execution of π in the Fwrap-hybrid
world. But this occurs with probability at most 1/2 in an ideal-world evaluation
of FOT. Thus, Z can distinguish between the real- and ideal-world executions,
contradicting the claimed security of π. ut

5 Coin Tossing Using One Stateless Token

In the previous section we showed that universally composable OT cannot
be realized from one stateless token if only “black-box techniques” are used.
We complement that result by showing that UC secure computation from one
stateless token is feasible via nonblack-box techniques. Here, we find it somewhat
simpler to construct a protocol for universally composable coin tossing rather
than OT. (The coin-tossing functionality Fcoin is defined in the natural way; see
Figure 10 .) Note that coin tossing suffices for general secure computation under
a variety of cryptographic assumptions [10, 35].

Functionality FOT

FOT interacts with sender S, receiver R, and the adversary.

Upon receiving an input (send, 〈sid, S,R〉, 〈x0, x1〉) from S with x0, x1 ∈ {0, 1},
record the tuple 〈x0, x1〉, and reveal (send, 〈sid, S,R〉) to the adversary. Ignore
further (send, . . .) inputs.

Upon receiving an input (receive, 〈sid, S,R〉, b) from R with b ∈ {0, 1}, record
the bit b, and reveal (receive, 〈sid,S,R〉) to the adversary. Ignore further
(receive, . . .) inputs.

Upon receiving a message (go, 〈sid,S,R〉) from the adversary, ignore the
message if 〈x0, x1〉 or b is not recorded. Otherwise, do the following: return
(received, 〈sid, S,R〉) to S, and return (received, 〈sid, S,R〉, xb) to R. Ignore
further (go, 〈sid, S,R〉) messages from the adversary.

Fig. 9. The ideal FOT functionality for bit-OT.

Functionality Fcoin

Fcoin interacts with two parties, Alice A and Bob B, and the adversary. The
functionality is parameterized by a security parameter λ. It also maintains
variables (bA, bB, coins) initialized to (false, false,⊥).

Upon receiving an input (toss, 〈sid,A,B〉) from party P ∈ {A,B}, then set
bP := true, and reveal (toss, 〈sid,A,B〉, P) to the adversary. Ignore further
(toss, 〈sid,A,B〉) inputs from the party P .

Upon receiving a message (go, 〈sid,A,B〉, P) from the adversary for P ∈
{A,B}, ignore the message if bA = false or bB = false. Otherwise, do the
following: if coins = ⊥, i.e, coins has not been set yet, then randomly choose
u ← {0, 1}λ and set coins := u; return (coin, 〈sid,A,B〉, coins) to party P .
Ignore further (go, 〈sid,A,B〉, P) messages for the party P from the adversary.

Fig. 10. The ideal Fcoin functionality for coin tossing.

At a high level, our protocol follows the general structure of Blum’s coin-
tossing protocol [4]. This protocol consists of three moves. In the first move (B1),
Alice commits to a random x and sends comx to Bob, who in return chooses a
random value y and sends it to Alice (B2). In the last move (B3), Alice sends
the decommitment to x and both parties output x⊕ y.

To obtain a UC coin-tossing protocol that follows this basic approach, we
need to be able to simulate each party. In particular, if Alice is malicious then
the simulator needs to extract the message contained in comx (extractability),
whereas when Bob is corrupted the simulator needs to open the commitment
in an arbitrary way (equivocation). We achieve both goals by having Bob send
a single stateless token TB to Alice. This token behaves in two different ways,
depending on its input. The first task of the token is to generate a random value

e upon seeing comx (we discuss the details later); the second task is to generate
a notification t for Bob that Alice knows the decommitment x. The value e is
used for equivocation, and the notification t gives the simulator the ability to
extract x. We give further details next. In the high-level description here, we
assume the token is created honestly; we deal with a potentially malicious token
when we formally define the protocol, below.

Achieving extractability. Similar to Section 3, the token only works on
authenticated inputs. That is, whenever Alice wants to query the token on some
inputs, she needs to first ask Bob to compute a MAC on those inputs. In order
to achieve extractability, we let Alice query the token on input (comx, x, rx, τx),
where comx ← SCom(x; rx) comes from Alice and τx is a MAC tag on comx.
The output of the token is a random value t that can be seen as a notification to
Bob that Alice knows the decommitment x. As in the previous OT protocol, the
authentication of the inputs guarantees that Alice makes exactly one valid query
to the token: more than one valid query would imply that Alice has violated
security of the MAC or binding of comx; if Alice makes no query, then she
cannot guess t. By forcing Alice to query the token exactly once, we can now
easily construct a simulator that extracts the value x while emulating Fwrap.
Modifying Blum’s coin-tossing protocol, we have the following step:

(B1) Alice commits to x by executing comx ← SCom(x; rx). She sends the
commitment comx to Bob, who in turn computes a tag τx on comx and sends
τx to Alice. Alice runs the token with (comx, x, rx, τx) to obtain output t,
and sends t to Bob. Bob checks if t is correct.

Achieving equivocation. Toward this goal, we further modify the protocol
and the token. Alice sends comx and a dummy commitment comM before getting
the tag τx on comx‖comM from Bob. The token also gets as an additional input
this commitment comM ; it outputs a random value e on input (comx, comM , τx)
and a random value t on input (comx, comM , x, rx, τx). In step (B3), instead of
sending the decommitment (x, rx) of comx to Bob, Alice sends x together with
a witness-indistinguishable (WI) proof that either x is a valid decommitment
of comx, or comM contains code that outputs the actual output e of the token
TB. (This is where we use the nonblack-box techniques of Barak [2].)
Due to the binding property of comM , and because the notification e is
unpredictable, Alice cannot commit to such code in comM . The simulator,
however, takes advantage of the fact that it obtains the code of the token
generated by Bob while emulating Fwrap. Then, as in [2], the simulator’s ability to
predict the output of the token beforehand can be used to achieve equivocation.
We remark that in contrast to Barak’s work, we do not need to use universal
arguments; this is because Fwrap is parameterized with a fixed polynomial
bounding the running time of the token (whereas Barak had to handle any
polynomial running time).

More formally, we change the protocol as follows:

Token The token input is either (comx, comM , τx) or (comx, x, rx, comM , τx)
and in both cases it checks the validity of τx before responding. In the first

Alice (A) Bob (B)

Token exchange: s, t, rt, e← {0, 1}λ

(0)� TB Construct TB as in Figure 12

Coin tossing: H ← H; comt ← Com(t; rt)

x← {0, 1}2λ; comx ← SCom(x; rx) (1)� H, comt

comM ← Com(H(0λ); rM)

(2)
comx, comM- τx := Sigs(comx‖comM)

(3)� e, τx

e′ := TB(comx, comM , τx)
(t′, r′t) := TB(comx, x, rx, comM , τx)
If e′ 6= e or t′ 6= Open(comt, t

′, rt′), abort

v ← {0, 1}d; x̃ := Ext(x, v)

(4)
t′, v - If t 6= t′, then abort

(5)� y
y ← {0, 1}λ

generate WI argument of knowledge Π
either ∃ x, rx s.t.
x = Open(comx, x, rx) ∧ x̃ = Ext(x, v)

or ∃ M, rM s.t.
H(M) = Open(comM , H(M), rM) ∧ e =M(comx, comM , τx)

output x̃⊕ y (6)
x̃, Π - if Π verifies, output x̃⊕ y

Fig. 11. A coin-tossing protocol ψ from a single stateless token.

case, the token outputs a random value e. In the second case, it returns a
random value t.

Protocol Once Alice obtains the token, she runs the following protocol with
Bob:

(B1) Alice commits to x and sends comx together with a dummy com-
mitment comM to Bob. In turn, Bob authenticates comx‖comM using a
MAC and sends (τx, e) to Alice. Alice invokes the token twice, first with
(comx, comM , τx) and then with (comx, x, rx, comM , τx), obtaining the values
e′ and t′, respectively. She checks if e = e′ and, if so, sends t′ to Bob. Finally,
Bob checks if t′ = t.

(B2) Bob sends Alice a random value y.
(B3) Alice sends x together with a WI proof that either (i) (x, rx) is the

decommitment of comx, or (ii) comM is a commitment to a Turing machine
M such that M(comx, comM , τx) = e.

5.1 Formal Description of the Protocol

The protocol ψ between Alice A and Bob B consists of an initial token-exchange
phase, followed by a coin-tossing phase for generating a random λ-bit string. We
now describe ψ formally; see also Figure 11.

On input (comx, comM , τx) do:
if Vrfys(comx‖comM , τx) = 1

output e
else output ⊥

On input (comx, x, rx, comM , τx) do:
if Vrfys(comx‖comM , τx) = 1

and x = Open(comx, x, rx)
output (t, rt)

else output (⊥,⊥)

Fig. 12. The Turing machine M embedded in the sender-created token TB. Here,
e, s, t, rt ∈ {0, 1}λ are chosen uniformly at random and embedded in the token.

Token-exchange phase. Bob generates a single token TB and sends it to Alice.
Bob’s token TB encapsulates the codeM described in Figure 12, where s, e, t, rt
are each chosen uniformly from {0, 1}λ.

Coin-tossing phase. In this phase, Alice and Bob proceed as follows.

B→ A: Bob chooses a collision-resistant hash function H ← H. He also commits
to the value t (that he used when creating the token) by executing comt ←
Com(t; rt). He sends H, comt to Alice.

A→ B: Alice chooses a value x ← {0, 1}2λ and commits to x and H(0λ) by
executing comx ← SCom(x; rx) and comM ← Com(H(0λ); rM). She sends
comx and comM to Bob.

B→ A: Bob generates a MAC tag τx := Sigs(comx‖comM), and sends (e, τx) to
Alice. Recall that Bob has already chosen e and embedded the value in the
token TB in the token exchange phase.

A→ B: Alice runs the token TB with (comx, comM , τx) and obtains e′ in
response. Then she runs the token with (comx, x, rx, comM , τx) and obtains
(t′, r′t). Alice checks if e′ = e and t′ = Open(comt, t

′, r′t). If not, she aborts
the protocol. Otherwise, she chooses v ← {0, 1}d and sends (t′, v) to Bob,
where d is an appropriate seed length for the extractor.

B→ A: Bob checks that t = t′, and aborts if not. Otherwise he chooses y ←
{0, 1}λ and sends it to Alice.

A→ B: Alice sends x̃ := Ext(x, v) and gives a WI argument of knowledge that
(H, comx, comM , e, τx, v, x̃) belongs to the NP language L defined by the
following relation RL:

RL((H, comx, comM , e, τx, v, x̃), (α, β)) = 1 if either one of the following holds:

(i) α = Open(comx, α, β) and x̃ = Ext(α, v).

(ii) H(α) = Open(comM , H(α), β). In addition, treating α as the description of a
Turing machine, the execution of α(comx, comM , τx) outputs e in time at most
p(λ), where p is the polynomially bounded running time defined by Fwrap.

If the proof succeeds, both parties output x̃⊕ y.

Theorem 3 Assume Com is computationally hiding and strongly binding, SCom
is statistically hiding and computationally binding, MAC is a deterministic,
unforgeable message-authentication code, H is a family of collision-resistant
hash functions, and the proof system is a witness-indistinguishable argument
of knowledge. Then ψ securely realizes Fcoin in the Fwrap-hybrid model.

5.2 Proof Idea

In this section, we briefly sketch the main ideas behind the proof of Theorem 3.
A complete proof is deferred to the full version.

To show the security of the protocol, we need to construct a simulator Sim

for any ppt environment Z such that exec
Fwrap

A,π,Z ≈ idealFcoin,Sim,Z , where A is
the dummy adversary. Below, we briefly provide ideas for simulation.

Corrupting Alice. Note that Alice cannot commit to a TM M in comM that
will output e, since e is chosen at random independently. Therefore, from the
collision-resistance of H, Alice has to show that x̃ = Ext(x, v) in the WI proof.
Since v appears in the communication transcript, by forcing malicious Alice A∗

to query TB with x exactly once, the simulator Sim can extract the value x̃ from
binding of comx. Then, upon receiving the random string coins from Fcoin, the
simulator can send y = x̃ ⊕ coins to A∗. To see how the protocol forces exactly
one query to the token, note that malicious Alice is not able to generate a valid
t without querying TB, since t is random and comt is hiding. Also, note that A∗

cannot query TB with different xs without contradicting the unforgeability of
the tag τx and/or the binding of comx. This allows the simulator to extract the
value of x.

Corrupting Bob. The simulator Sim needs to equivocate the value x̃ so that it
may hold that x̃ = coins ⊕ y, where coins is the random string from Fcoin. This
is achieved as follows. While emulating Fwrap, the simulator obtains the token
codeM generated by Bob, then it generates comM ← Com(H(M);RM). Given
the hiding property of comM , the simulated transcript is indistinguishable from
that in the Fwrap-hybrid world. Now, with the witness (M, RM) in the WI proof,
the simulator can send any value x̃.

References

1. Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient protocols
for realistic adversaries. In 4th Theory of Cryptography Conference—TCC 2007,
volume 4392 of LNCS, pages 137–156. Springer, 2007.

2. B. Barak. How to go beyond the black-box simulation barrier. In 42nd Annual
Symposium on Foundations of Computer Science (FOCS), pages 106–115. IEEE,
2001.

3. B. Barak, R. Canetti, J. B. Nielsen, and R. Pass. Universally composable protocols
with relaxed set-up assumptions. In 45th Annual Symposium on Foundations of
Computer Science (FOCS), pages 186–195. IEEE, 2004.

4. M. Blum. Coin flipping by telephone. In Proc. IEEE COMPCOM, pages 133–137,
1982.

5. S. Brands. Untraceable off-line cash in wallets with observers (extended abstract).
In Advances in Cryptology—Crypto ’93, volume 773 of LNCS, pages 302–318.
Springer, 1994.

6. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd Annual Symposium on Foundations of Computer Science
(FOCS), pages 136–145. IEEE, 2001. Latest version available at http://eprint.

iacr.org/2000/067, December 2005.

7. R. Canetti. Obtaining universally compoable security: Towards the bare bones of
trust (invited talk). In Advances in Cryptology — Asiacrypt 2007, volume 4833 of
LNCS, pages 88–112. Springer, 2007.

8. R. Canetti and M. Fischlin. Universally composable commitments. In Advances
in Cryptology — Crypto 2001, volume 2139 of LNCS, pages 19–40. Springer, 2001.

9. R. Canetti, E. Kushilevitz, and Y. Lindell. On the limitations of universally
composable two-party computation without set-up assumptions. Journal of
Cryptology, 19(2):135–167, 2006.

10. R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-
party and multi-party secure computation. In 34th Annual ACM Symposium on
Theory of Computing (STOC), pages 494–503. ACM Press, 2002.

11. R. Canetti, R. Pass, and A. Shelat. Cryptography from sunspots: How to use an
imperfect reference string. In 48th Annual Symposium on Foundations of Computer
Science (FOCS), pages 249–259. IEEE, 2007.

12. N. Chandran, V. Goyal, and A. Sahai. New constructions for UC secure
computation using tamper-proof hardware. In Advances in Cryptology —
Eurocrypt 2008, volume 4965 of LNCS, pages 545–562. Springer, 2008.

13. D. Chaum and T. P. Pedersen. Wallet databases with observers. In Advances in
Cryptology — Crypto ’92, volume 740 of LNCS, pages 89–105. Springer, 1993.

14. R. Cramer and T. P. Pedersen. Improved privacy in wallets with observers
(extended abstract). In Advances in Cryptology — Eurocrypt ’93, volume 765
of LNCS, pages 329–343. Springer, 1993.

15. I. Damg̊ard, J. B. Nielsen, and D. Wichs. Universally composable multiparty
computation with partially isolated parties. In 6th Theory of Cryptography
Conference — TCC 2009, volume 5444 of LNCS, pages 315–331. Springer, 2009.

16. I. Damg̊ard, T. P. Pedersen, and B. Pfitzmann. On the existence of statistically
hiding bit commitment schemes and fail-stop signatures. Journal of Cryptology,
10(3):163–194, 1997.

17. Y. Desmedt and J.-J. Quisquater. Public-key systems based on the difficulty
of tampering (is there a difference between DES and RSA?). In Advances in
Cryptology — Crypto ’86, volume 263 of LNCS, pages 111–117. Springer, 1987.

18. Y. Dodis and A. Yampolskiy. A verifiable random function with short proofs and
keys. In S. Vaudenay, editor, 8th Intl. Workshop on Theory and Practice in Public
Key Cryptography(PKC 2005), volume 3386 of LNCS, pages 416–431. Springer,
Jan. 2005.

19. N. Döttling, D. Kraschewski, and J. Müller-Quade. Unconditional and composable
security using a single stateful tamper-proof hardware token. In 8th Theory of
Cryptography Conference — TCC 2011, volume 6597 of LNCS, pages 164–181.
Springer, 2011.

20. N. Döttling, T. Mie, J. Müller-Quade, and T. Nilges. Basing obfuscation on simple
tamper-proof hardware assumptions. Cryptology ePrint Archive, Report 2011/675,
2011. http://eprint.iacr.org/.

21. M. Dubovitskaya, A. Scafuro, and I. Visconti. On efficient non-interactive
oblivious transfer with tamper-proof hardware. Cryptology ePrint Archive, Report
2010/509, 2010.

22. M. Fischlin, B. Pinkas, A.-R. Sadeghi, T. Schneider, and I. Visconti. Secure
set intersection with untrusted hardware tokens. In Cryptographers’ Track —
RSA 2011, volume 6558 of LNCS, pages 1–16. Springer, 2011.

23. S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. One-time programs. In Advances
in Cryptology — Crypto 2008, volume 5157 of LNCS, pages 39–56. Springer, 2008.

24. V. Goyal, Y. Ishai, M. Mahmoody, and A. Sahai. Interactive locking, zero-
knowledge PCPs, and unconditional cryptography. In Advances in Cryptology —
Crypto 2010, volume 6223 of LNCS, pages 173–190. Springer, 2010.

25. V. Goyal, Y. Ishai, A. Sahai, R. Venkatesan, and A. Wadia. Founding cryptography
on tamper-proof hardware tokens. In 7th Theory of Cryptography Conference —
TCC 2010, volume 5978 of LNCS, pages 308–326. Springer, 2010.

26. I. Haitner and O. Reingold. Statistically-hiding commitment from any one-way
function. In 39th Annual ACM Symposium on Theory of Computing (STOC),
pages 1–10. ACM Press, 2007.

27. C. Hazay and Y. Lindell. Constructions of truly practical secure protocols using
standard smartcards. In ACM CCS ’08: 15th ACM Conf. on Computer and
Communications Security, pages 491–500. ACM Press, 2008.

28. D. Hofheinz, J. Müller-Quade, and D. Unruh. Universally composable zero-
knowledge arguments and commitments from signature cards. In Proc. 5th Central
European Conference on Cryptology (MoraviaCrypt), 2005.

29. O. Horvitz and J. Katz. Bounds on the efficiency of “black-box” commitment
schemes. In ICALP 2005: 32nd Intl. Colloquium on Automata, Languages, and
Programming (ICALP), volume 3580 of LNCS, pages 128–139. Springer, 2005.

30. Y. Ishai, M. Prabhakaran, and A. Sahai. Founding cryptography on oblivious
transfer - efficiently. In D. Wagner, editor, Advances in Cryptology — Crypto 2008,
volume 5157 of LNCS, pages 572–591. Springer, 2008.

31. K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. Embedded SFE:
Offloading server and network using hardware tokens. In Financial Cryptography
and Data Security 2010, volume 6052 of LNCS, pages 207–221. Springer, 2010.

32. J. Katz. Universally composable multi-party computation using tamper-proof
hardware. In Advances in Cryptology — Eurocrypt 2007, volume 4515 of LNCS,
pages 115–128. Springer, 2007.

33. J. Kilian. Founding cryptography on oblivious transfer. In STOC, pages 20–31,
1988.

34. V. Kolesnikov. Truly efficient string oblivious transfer using resettable tamper-
proof tokens. In 7th Theory of Cryptography Conference — TCC 2010, volume
5978 of LNCS, pages 327–342. Springer, 2010.

35. H. Lin, R. Pass, and M. Venkitasubramaniam. A unified framework for concurrent
security: Universal composability from stand-alone non-malleability. In 41st
Annual ACM Symposium on Theory of Computing (STOC), pages 179–188. ACM
Press, 2009.

36. Y. Lindell. General composition and universal composability in secure multiparty
computation. Journal of Cryptology, 22(3):395–428, 2009.

37. T. Moran and G. Segev. David and Goliath commitments: UC computation for
asymmetric parties using tamper-proof hardware. In Advances in Cryptology —
Eurocrypt 2008, volume 4965 of LNCS, pages 527–544. Springer, 2008.

38. M. Naor. Bit commitment using pseudorandomness. Journal of Cryptology,
4(2):151–158, 1991.

