
Can Optimally-Fair Coin Tossing be
Based on One-Way Functions?

Dana Dachman-Soled1, Mohammad Mahmoody2, and Tal Malkin3

1 University of Maryland
danadach@ece.umd.edu

2 University of Virginia
mohammad@cs.virginia.edu

3 Columbia University and Bar-Ilan University
tal@cs.columbia.edu

Abstract. Coin tossing is a basic cryptographic task that allows two distrustful
parties to obtain an unbiased random bit in a way that neither party can bias the
output by deviating from the protocol or halting the execution. Cleve [STOC’86]
showed that in any r round coin tossing protocol one of the parties can bias the
output by Ω(1/r) through a “fail-stop” attack; namely, they simply execute the
protocol honestly and halt at some chosen point. In addition, relying on an earlier
work of Blum [COMPCON’82], Cleve presented an r-round protocol based on
one-way functions that was resilient to bias at most O(1/

√
r). Cleve’s work left

open whether ”‘optimally-fair”’ coin tossing (i.e. achieving bias O(1/r) in r

rounds) is possible. Recently Moran, Naor, and Segev [TCC’09] showed how
to construct optimally-fair coin tossing based on oblivious transfer, however,
it was left open to find the minimal assumptions necessary for optimally-fair
coin tossing. The work of Dachman-Soled et al. [TCC’11] took a step toward
answering this question by showing that any black-box construction of optimally-
fair coin tossing based on a one-way functions with n-bit input and output needs
Ω(n/ logn) rounds.
In this work we take another step towards understanding the complexity of
optimally-fair coin-tossing by showing that this task (with an arbitrary number
of rounds) cannot be based on one-way functions in a black-box way, as long
as the protocol is ”‘oblivious”’ to the implementation of the one-way function.
Namely, we consider a natural class of black-box constructions based on one-
way functions, called function oblivious, in which the output of the protocol does
not depend on the specific implementation of the one-way function and only
depends on the randomness of the parties. Other than being a natural notion on
its own, the known coin tossing protocols of Blum and Cleve (both based on one-
way functions) are indeed function oblivious. Thus, we believe our lower bound
for function-oblivious constructions is a meaningful step towards resolving the
fundamental open question of the complexity of optimally-fair coin tossing.

Key words: Coin-Tossing, One-Way Functions, Black-Box Separations.

2

1 Introduction

In this work, we address the fundamental problem of secure, two-party coin-tossing,
where two mutually distrustful parties wish to generate a common random bit. A secure
coin-tossing scheme has the following complementary properties: (1) Security—even
if one of the parties deviates arbitrarily from the protocol, the output bit of the honest
party should be almost completely unbiased (namely be equal to 1 with probability that
is at most negligibly far from 1/2) and (2) Correctness—when both parties follow the
protocol they are guaranteed to output the same random bit. Unfortunately, a classic
result by Cleve [Cle86] shows that even if the party which deviates from the protocol
misbehaves only by choosing whether or not to abort early (this is known as a fail-stop
adversary), then secure coin-tossing cannot be achieved. In particular, Cleve proved
that for any coin tossing protocol running for r̂ rounds, there exists an efficient fail-stop
adversary that can bias the output bit of the honest party by at least Ω(1/r̂).

It turns out that in a weaker model we can, in fact, construct secure coin-tossing
protocols. An early result by Blum [Blu82] uses one-way functions (OWF) to construct
a weak coin tossing protocol where no party can increase the probability of 0 or 1 by
more than negligible by deviating from the protocol or halting. In a weak coin tossing
protocol whenever a party aborts, the other party is not required output anything. Weak
coin tossing can be useful for scenarios where Alice and Bob each have a preferred
outcome in mind (e.g., Alice wants 0 and Bob wants 1) simply because if any party
aborts the other one can take their desired outcome as the output. However, note that
the weak coin tossing definition doesn’t preclude the possibility that a malicious party
can cause the output to always be either 0 or abort; indeed this is the case for Blum’s
protocol (where a malicious party can discover first the emerging output and then
choose whether to abort or continue). In contrast, in a strong coin tossing protocol
(which is the focus of our work), the protocol always requires an output. A strong coin
tossing protocol with bias at most δ is one where each honest party always announces
an output (even if the other party aborted), and yet no malicious party can bias the
honest party’s output (in any direction) by more than δ. The weak coin tossing protocol
of Blum was used as a building block by Cleve [Cle86] to construct a strong coin
tossing protocol that (for any polynomial r̂) runs for r̂ rounds and for which no efficient
adversary can bias the output bit by more than O(1/

√
r̂). In our work, whenever not

explicitly mentioned, we are referring to strong coin tossing protocols.

The question of closing the gap between this best known upper bound (O(1/
√
r̂)

based on OWF) and lower bound (Ω(1/r̂) regardless of any assumption) remained
unresolved for more than two decades. A few years ago, the gap was closed by Moran
et al. [MNS09] who constructed a protocol for coin tossing whose bias matches the
lower-bound of [Cle86]. Specifically, for any r̂ they constructed an O(r̂)-round protocol
with the property that no efficient adversary can bias the output by more than O(1/r̂).
Thus, they demonstrated that the O(1/r̂) lower-bound is tight. We call a protocol which
achieves bias O(1/r̂) optimally-fair, because no protocol can achieve asymptotically-

3

lower bias. The protocol of [MNS09], however, uses general secure computation
and thus requires the strong assumption that protocols for oblivious transfer exist.
In contrast, the coin tossing protocol of Blum [Blu82] and the protocol of [Cle86]
achieving bias of O(1/

√
r̂) can be constructed from any one-way function, and in fact,

rely only on the existence of a commitment scheme. This leads us to our main question:

Can optimally-fair coin tossing be based on one-way functions?

This question was already asked by Moran et al. [MNS09] as a challenging open
problem. Indeed, the question of whether one-way functions suffice for optimally-fair
coin-tossing seems to be a difficult problem and remains open, despite much effort.
A partial answer to the main question above was presented in the work of Dachman-
Soled et al. [DSLMM11]. Informally, they show that if C is a black-box construction
of optimally-fair coin tossing based on one-way functions with input and output length
n, then the number of rounds of interaction in C is at least Ω(n/ log n). Thus, they
rule out such black-box constructions with a “small” number of rounds. However, their
results say nothing about constructions with a higher number of rounds. For example,
they do not rule out the possibility of constructing coin-tossing protocols from one-
way functions of input size n, which have r̂ = n3 number of rounds and for which no
efficient adversary can bias the output by more than 1/n3 = 1/r̂.

In this work, we make an important step towards answering our main question.
In particular, we manage to remove the limitation on the round complexity in the
impossibility result of [DSLMM11]. Indeed, we consider protocols with an arbitrary
polynomial number of rounds: r̂ = poly(n). However, we introduce another limitation:
our impossibility results only rule out protocols which posses the following property.

Definition 1 (Function-Obliviousness:). A coin-tossing protocol Cf = ⟨Af ,Bf ⟩
based on one-way functions is called function-oblivious if the outcome of the coin
tossing protocol ⟨Af (rA),B

f (rB)⟩, when both parties are honest, depends only on the
random tapes rA, rB of the two parties and not on the choice of one-way function f .

Function-obliviousness captures the intuition that the one-way function f is being
used only to achieve security for the coin-tossing protocol but does not affect correct-
ness. In this work, we rule out (fully) black-box constructions of optimally-fair coin-
tossing protocols which are function-oblivious from one-way functions.

Theorem 1 (Main Theorem, Informal). There is no (fully) black-box and function-
oblivious construction of optimally-fair coin-tossing protocols from one-way functions.

Our result is incomparable to that of [DSLMM11]: we restrict ourselves to function-
oblivious protocols but handle protocols with arbitrary polynomial number of rounds.

We believe that function-obliviousness is a natural assumption on coin-tossing pro-
tocols. Indeed, the known one-way-function based coin tossing protocols of Blum [Blu82]

4

and Cleve [Cle86], as well as any other protocols based only on commitment schemes,
are function-oblivious. The notion of function-obliviousness as defined in Definition 1
can be directly generalized to other pairs of primitives as well, and so understanding
the limits of oblivious black-box constructions could be considered as a first step
towards understanding the full power of black-box constructions. Thus, introducing
the notion of oblivious black-box constructions, as a natural form of black-box
constructions, is a conceptual contribution of our work. On a technical level, to deal
with function-oblivious protocols, we introduce several new techniques which were
not needed/applicable in the case of black-box O(n/ log n)-round protocols. These
techniques also may be of independent interest and indicate that we are making progress
on a fundamental question by considering this class of protocols. Thus, we believe that
our partial negative result is meaningful and improves our understanding of the relative
complexity of one-way functions and optimally-fair coin-tossing protocols.

An important remaining open question is whether function-obliviousness is nec-
essary for our result, or we can completely rule out any black-box construction of
optimally-fair coin tossing from one-way functions. Our results together with those
of [DSLMM11] indicate that if any such construction exists, it must have many
(ω(n/ log n)) rounds, and must use the one-way function in a novel way, not only for
commitment but to determine the coin toss outcome even when both parties are honest.

1.1 Black-Box Separations

One of the main goals of modern cryptography has been to identify the mini-
mal assumptions necessary to construct secure cryptographic primitives. For ex-
ample, [Yao82,GM84,Rom90,HILL99,GGM86,LR88,IL89,NY89,Nao91] have shown
that private key encryption, pseudorandom generators, pseudorandom functions and
permutations, bit commitment, and digital signatures exist if and only if one-way
functions exist. On the other hand, some cryptographic primitives such as public key
encryption, oblivious transfer, and key agreement are not known to be equivalent
to one way functions. Thus, it is natural to ask whether the existence of one-way
functions implies these primitives. However, it seems unclear how to formalize such
a question; since it is widely believed that both one-way functions and public key
encryption exist, this would imply in a trivial logical sense that the existence of one-
way functions implies the existence of public key encryption. Thus, we can only
hope to rule out restricted types of constructions that are commonly used to prove
implications in cryptography. Impagliazzo and Rudich [IR89] were the first to develop
a framework and techniques to rule out the existence of an important class of reductions
between primitives known as black-box reductions. Intuitively, this is a reduction
where the primitive is treated as an oracle or a “black-box”. There are actually several
flavors of black-box reductions (fully black-box, semi black-box and weakly black-box
[RTV04]). In our work, we only deal with fully black-box reduction, and so we will
focus on this notion here.

5

Informally, a fully black-box reduction from a primitiveQ to a primitive P is a pair
of oracle PPT machines (G;S) such that the following two properties hold:

Correctness: For every implementation f of primitive P , g = Gf implements Q.
Security: For every implementation f of primitive P , and every adversary A, if A

breaks Gf (as an implementation of Q) then SA;f breaks f .

We remark that an implementation of a primitive is any specific scheme that meets
the syntactical requirements of that primitive (e.g., an implementation of a public-key
encryption scheme provides samplability of key pairs, encryption with the public-key,
and decryption with the private key). Correctness thus states that when G is given
oracle access to any valid implementation of P , the result is a valid implementation
of Q. Furthermore, security states that any adversary breaking Gf yields an adversary
breaking f . The reduction here is fully black-box [RTV04] in the sense that the
adversary S breaking f uses A in a black-box manner.

Separation from One-Way Functions. A common technique to separate a cryptographic
primitive P from one-way functions is to show that any implementation of P in the
random oracle can be broken by an attacker that asks “a few” (more specifically
2o(n)) queries to the random oracle (e.g. see [BM07] or [DSLMM11]). The reason,
roughly speaking, is that if a 2o(n) attacker Adv exists, the security reduction could
turn Adv into a 2o(n)-query attack to invert the random oracle, which is not possible
[IR89,GT00].4 We will also take this approach in this work.

1.2 Related Work

Cleve and Impagliazzo [CI93] showed that the bias O(1/
√
r̂) is optimal when the

attacker is computationally unbounded, and so their result does not resolve our main
question.5 However, using the result of [CI93], Dachman-Soled et al. [DSLMM11]
gave a partial answer to the question of whether optimally-fair coin-tossing can be
constructed in a black-box manner from one-way functions. As mentioned previously,
they showed that if C is a construction of optimally-fair coin tossing based on one-way
functions with input and output length n, then the number of rounds of interaction in
C is at least Ω(n/ log n). More specifically, [DSLMM11] shows how to “compile out”
the random oracle from the coin-tossing protocol by asking (poly(n))r̂ oracle queries
by the parties where r̂ is the number of rounds of the protocol. Note that whenever r̂ =

o(n/ log n), the number of queries asked by the parties will be (poly(n))r̂ = 2o(n), and
using the result of [CI93] for the no-oracle protocols one obtains a 2o(n)-query attacker
for one of the parties A or B in the with-oracle protocol which, as explained above,
leads to a black-box separation. Unfortunately, the techniques of [DSLMM11] do not

4 Note that this technique works even if the attacker is not efficient.
5 Although, as we will see, we use the results and approach of [CI93] as a starting point.

6

seem to extend to the case where r̂ = ω(n/ log n) since in this case, the adversarial
strategy will require (poly(n))ω(n/ logn) = 2ω(n) number of queries which is in fact
enough to successfully invert the random oracle and does not lead to contradiction.

We also mention two other works, which deal with seemingly unrelated problems
to ours, but leverage similar techniques. The first work of Haitner et al. [HOZ13]
considers the question of constructing protocols for semi-honest no-input two-party
computation in the random oracle model. They show that any semi-honest no-input
two-party functionality which can be realized in the random oracle model, is trivial
in the sense that, essentially, it can also be realized in the information-theoretic semi-
honest setting with no random oracle. Note, however, that our coin-tossing in the semi-
honest setting is trivial and our setting deals with malicious adversaries, so the result of
[HOZ13] does not apply to our case. Mahmoody et al. [MMP13] consider semi-honest,
deterministic functionalities with polynomial-sized domains and show that any such
functionality which can be realized in the random oracle model is “trivial” in the same
sense as above. As in our work, both of the above works utilize the “Eve” algorithm
of [BM09] and rely on its specific properties (as described in Lemma 1). Moreover,
some of the techniques in the work of [MMP13], where one of the players resamples a
fake view and proceeds to compute using this fake view, are similar to our techniques.
See the Technical Overview Section (Section 1.3) for additional details.

1.3 Technical Overview

We consider two-party coin tossing protocols C = ⟨A,B⟩ with r̂ rounds (i.e., 2r̂

messages). Let C denote the outcome of coin tossing protocol C = ⟨A,B⟩ and let Tj

denote the transcript of the protocol immediately after message j is sent. Moreover,
since we consider the setting where one party may abort early, we denote by Cj the
output of the other party, when one party aborts before sending the j-th message.

Cleve and Impagliazzo [CI93] showed that for any coin tossing protocol we have
that with probability at least 1/5 over the choice of random tapes of the parties, there
is some point in the execution of the protocol that |E[C | Tj] − E[C | Tj+1]| ≥
Ω(1/

√
r̂). Moreover, in [CI93], it was observed that if for some x, y, we have that an

x-fraction of the executions of the coin-tossing protocol with uniformly chosen random
tapes for the two parties reach a point where |E[C | Tj]−E[Cj | Tj]| ≥ y then the
party who sends the mesasge j has a strategy for biasing the output towards either 0 or
1 by Ω(x ·y) by aborting before sending the j-th message when the above event occurs.
Thus, the fact that with probability 1/5 there is some point in the execution such that
|E[C|Tj] − E[C|Tj+1]| ≥ Ω(1/

√
r̂) immediately implies a strategy for either A or B

for imposing bias Ω(1/
√
r̂).

In our work, we extend the [CI93] observation in two ways. First, we allow a
party to condition not just on the current transcript, but on its entire view and abort
before sending message j when |E[C | VA,j]−E[Cj | VA,j]| ≥ y, where A is the party
sending the j-th message and VA,j denotes her partial view right before sending the j-th

7

message. Additionally, we allow a party to abort immediately after sending a message.
More specifically, we allow a party to abort immediately after sending message j when
|E[C | Tj]−E[Cj+2 | Tj]| ≥ y. Although this is technically equivalent to waiting to
get the (j+1)-st message and aborting immediately after, it will be conceptually helpful
to think of the party as aborting immediately after sending the j-th message. In what
follows, we refer to the above described strategies as “[CI93]-type strategies”. We do
not consider our extensions of the [CI93] strategies as our main technical contribution,
but we consider tham as useful tools for our proofs.

In our setting, we would like to apply the result of [CI93] in the random oracle model
(see Section 1.1). The reason is that, it is well-known that, roughly speaking, (even
inefficient) attacks in the random oracle model imply black-box separations from one-
way functions. One might might correctly say that it is in fact impossible to break a coin-
tossing protocol in the random oracle model through a fail-stop attack, simply because
the parties can trivially use oracle’s answer to a fixed query as their output. However,
recall that: (1) our goal is to obtain black-box separations from one-way functions and
the mentioned trivial protocol does not work when the random oracle is substituted
with an actual one-way function, and (2) we are in fact focusing on function-oblivious
protocols that prevent using the random oracle for obtaining the output.

Unfortunately, a straightforward implementation of [CI93] in the random oracle
model (where expectations are taken also over the choice of oracle) fails due to the fact
that in order for the [CI93] techniques to go through, it must be the case that E[Cj |
Tj−1] = E[Cj | Tj] (or at least that |E[Cj | Tj−1] − E[Cj | Tj]| = o(1/

√
r̂)) in all

rounds. However, due to dependencies between parties’ views created by the random
oracle (in addition to the dependencies created by the transcript) it may in fact be the
case that |E[Cj | Tj−1] − E[Cj | Tj]| = Ω(1/

√
r̂) in the random oracle model. I.e.,

the distribution over views of B till end of round j, denoted by VB,j , conditioned on
Tj−1 may be very far from the the distribution over VB,j conditioned on Tj . This is due
to the fact oracle answers received by A during the computation of Tj can affect the
distribution over views of B even though A sends the j’th message.

A natural approach to solving the above problem, would be to leverage the
results of [IR89,BM09] on finding so-called “intersection queries” in 2-party protocols.
Intersection queries are queries made by both parties A,B during an execution of a
protocol in the random oracle model. Intuitively, it is these intersection qeries that
cause dependencies between the views of A and B. Moreover, in [IR89,BM09], it was
shown that an eavesdropping adversary “Eve” can with high probability find all these
intersection queries made by A and B, while making only a polynomial number of
queries to the random oracle. Intuitively, one could hope that by running the “Eve”
protocol of [IR89,BM09] after each pass of the protocol (which we call running the
Eve protocol alongside the main protocol) these intersection queries could be found
before they are made, thus eliminating dependencies between the views of A and B.
It turns out that there is a subtle problem here: In order for [CI93] techniques to go
through, we must prevent intersection queries even between Eve queries made alongside

8

the j-th message (sent by A) and private queries that were made previously by B.
Unfortunately, this property is not guaranteed by the Eve algorithm of [IR89,BM09].
However, [DSLMM11] showed that the Eve algorithm can be modified (becoming
far less efficient) to guarantee that the above does not occur. Using such (inefficient)
Eve [DSLMM11] still managed to rule out optimally-fair coin-tossing protocols with
O(n/ log n) number of rounds, where n is the input-output length of the one-way
function. In this work, we shall find a different approach that allows us to deal with
an arbitrary polynomial number of rounds.

Our approach. In the following,D denotes the distribution over views of A,B running
the coin-tossing protocol C with uniformly random coins. Additionally, for joint random
variables X,Y , we denote by X | Y the distribution over X drawn fromD, conditioned
on Y . Mi denotes the i-th message of the coin-tossing protocol and Ti denotes the
transcript which includes both the messages M1, . . . ,Mi of the protocol C as well as
Evei, the information “Eve” has learned by making her queries alongside in the first
i messages. Finally, the partial view of a party after the i-th message is sent, denoted
by VA,i or VB,i includes its random tape rA or rB, its queries to the oracle and the
responses, as well as the transcript M1, . . . ,Mi of the C protocol.

We consider the “middle value”: MV = EVB,j ,Evej |Tj+1
[E[C | VB,j ,Evej]], where

A sends the (j + 1)’st message of the protocol. We shall clarify that for brevity, in our
notation above Evej is consistent with Tj+1 from which we are sampling VB,j (even
though this his not explicitly mentioned). Intuitively, this means that we sample views
of B, VB,j , conditioned on the transcript at the j + 1-st pass (which A knows before
B) and look at the expectation of the outcome of the coin-toss conditioned on these
views, VB,j . Then we take the expectation over these expected values. Here, we give
some intuition as to why MV is significant for our analysis. Observe that B, given its
real view can of course compute E[C | VB,j ,Evej] = E[C | VB,j ,Tj], which is the
expected value of the outcome of the coin-toss, C, from B’s point-of-view. Note that A
cannot compute this value since conditioned on its view, it does not know the real VB,j .
Before computing its message in the j + 1-st pass, A would only be able to compute
EVB,j ,Evej |Tj

[E[C | VB,j ,Evej]], the expectation when views of B, VB,j are sampled
conditioned on only Tj , which is equivalent to E[C|Tj]. However, after computing
Tj+1, A gets more information about B’s view and thus can get a better estimate of
B’s real expected value by sampling views of B, VB,j conditioned on Tj+1. It is this
advantage which we leverage in the final strategy in order to allow A to impose bias.

In the following we give some more details of our approach. First, using a similar
argument to that of [CI93] shows that one of the following cases occurs:

1. With probability at least 1/20 there is some point in the execution such that
E[C|Tj]−MV ≥ Ω(1/

√
r).

2. With probability at least 1/20 there is some point in the execution such that MV −
E[C|Tj+1] ≥ Ω(1/

√
r).

9

3. With probability at least 1/20 there is some point in the execution such that MV −
E[C|Tj] ≥ Ω(1/

√
r).

4. With probability at least 1/20 there is some point in the execution such that
E[C|Tj+1]−MV ≥ Ω(1/

√
r).

For each of the above cases, we need to come up with corresponding strategies that
allow A or B to impose bias on the final outcome. It turns out that Cases 1 and 2 give
rise to adversarial strategies for biasing towards 0, while Cases 3 and 4 will give rise to
adversarial strategies for biasing towards 1. In the following, we give some intuition for
the analysis of cases 1 and 2; cases 3 and 4 are entirely analogous.

It is not difficult to see (details can be found in Section ??) that if Case 1 occurs,
then one of the following will occur:

– With probability Ω(1/r̂1/4) there is a (first) point where E[C | Tj] − E[Cj+2 |
Tj] ≥ Ω(1/

√
r̂).

– With probability Ω(1/r̂1/2) there is a (first) point where E[C | Tj] − E[Cj+2 |
Tj] ≥ Ω(1/r̂1/4).

– With probability Ω(1/r̂1/4) there is a (first) point where E[C | VB,j ,Evej] −
E[Cj+2 | VB,j ,Evej] ≥ Ω(1/

√
r̂).

– With probability Ω(1/r̂1/4) there is a (first) point where E[C | VB,j ,Evej] −
E[Cj+2 | VB,j ,Evej] ≥ Ω(1/

√
r̂).

By directly using [CI93]-type strategies we can impose bias of Ω(1/r̂3/4) when any
of the above items occurs. On the other hand, if Case 2 occurs then we have either:

– with probability at least 1/40 there is a (first) point where E[Cj+1 | Tj+1]−E[C |
Tj+1] ≥ Ω(1/

√
r̂), or:

– with probability at least 1/40 there is a (first) point where EVB,j ,Evej |Tj+1
[E[C |

VB,j ,Evej]]−E[Cj+1 | Tj+1] ≥ Ω(1/
√
r̂).

Again, if the first item above occurs, we can impose bias of Ω(1/
√
r̂) using [CI93]-

type strategies. However, in order to utilize the second item above, which we refer to
as Case (2b), to impose ω(1/r̂) bias, we need quite a bit of additional work. More
specifically, we show that in order to leverage Case (2b), it is sufficient to present a way
to simulate a fake transcripts Tj+1, which we denote by T′

j+1 such that:

– Real transcripts Tj+1 and fake transcripts T′
j+1 are distributed nearly identically.

– The expected value of outcomes conditioned on views of B sampled w.r.t. the real
transcript Tj+1 = tj+1 is nearly the same as the expected value of outcomes
conditioned on views of B sampled w.r.t. T′

j+1 = tj+1. Formally, we have that:
EVB,j ,Evej |Tj+1

[E[C | VB,j ,Evej]] ≈ EVB,j ,Evej |T′
j+1

[E[C | VB,j ,Evej]].
– T′

j+1 reveals almost no information about the real VA,j+1.

10

In what follows, we give some intuition as to how the simulated T′
j+1 is constructed.

We note that some of the techniques we use here are similar to those used by [MMP13].
In order to construct T′

j+1, we critically use independence of the views of A and B (once
the Eve queries have been made). We sample a fake view for A, V′

A,j+1, conditioned
only on Tj and use it to compute a fake next message M′

j+1. Then we run the Eve
algorithm (pretending that M′

j+1 is the real j+1-st message) carefully choosing which
queries to answer w.r.t. the real oracle and which queries to “lie” about. The main
idea (although the actual algorithm is slightly more complicated) is the following: All
queries made by Eve that are in V′

A,j+1 are answered according to V′
A,j+1, all queries

made by Eve that are in the real VA,j+1 and not in V′
A,j+1 are answered uniformly at

random. All remaining queries are asked to the oracle and the response from the oracle
is returned. Now, intuitively, items (1) and (2) above hold since by independence, it
is highly likely that all “modified” Eve queries (i.e. queries that appear in VA,j+1 or
V′
A,j+1) do not intersect with the real VB,j . For item (3), recall that T′

j+1 is computed by
“ignoring” the real VA,j+1, sampling a new V′

A,j+1 and continuing with the computation
as though V′

A,j+1 were the real view. Intuitively, T′
j+1 is close to independent of VA,j+1

(conditioned on Tj) and so knowledge of T′
j+1 does not give additional information on

VA,j+1 beyond what is already given by Tj .

Properties (1) and (2) are used to argue that if with high probability there is a first
point where EVB,j ,Evej |Tj+1

[E[C | VB,j ,Evej]]− E[Cj+1 | Tj+1] is large (as occurs in
Case (2b)) then with high probability there is a first point where EVB,j ,Evej |T′

j+1
[E[C |

VB,j ,Evej]]−E[Cj+1 | T′
j+1] is large (see Claim 1 for the precise statement).

Property (3) is used to argue that EVB,j ,Evej |T′
j+1

[E[C | VB,j ,Evej]] is close to
E[C | T′

j+1] (see Claim 2 for the precise statement). To give some intuition into
why this holds, note that E[C | T′

j+1] can be re-written as: EVA,j+1,VB,j |T′
j+1

[E[C |
VA,j+1,VB,j]]. Now, the quantity EVB,j ,Evej |T′

j+1
[E[C | VB,j ,Evej]] is nearly the

same, except views of B, VB,j are sampled conditioned on T′
j+1, but views of A,

VA,j+1, are sampled conditioned only on (VB,j ,Evej) (which in particular includes
Tj). Intuitively, this reflects the fact that T′

j+1 does not provide additional information
about the real view of A, VA,j+1 over what is contained in Tj . However, the fact
that T′

j+1 does not leak additional information on VA,j+1, is not sufficient to argue
that EVB,j ,Evej |T′

j+1
[E[C | VB,j ,Evej]] is close to E[C | T′

j+1]. This is because T′
j+1

still contains additional Eve queries which, although they do not provide additional
information about VA,j+1, do provide additional overall information about the oracle.
Thus, in order for item (3) to hold, we need the additional “function-obliviousness”
property (see Property 1) which guarantees that the outcome C of the coin-toss does
not depend on the oracle, but only on the random tapes of the two parties. We note
that this is the only place in the proof where the “fuction-obliviousness” property
is used. Thus, as long as we can sample partial views of A and B, VA,j+1,VB,j

according to the correct distribution, we can compute the expected value of the coin
toss C(VA,j+1,VB,j) = C(rA, rB).

11

When the above are combined, we get that with high probability there is a first
point where E[C | T′

j+1]−E[Cj+1 | T′
j+1] is large, which means that an adversary can

impose bias by adopting a [CI93]-type strategy.

Unfortunately, the actual argument is somewhat more complicated than what is
described above, because once the adversarial party A′ playing the role of A has
computed the simulated transcript T′

j+1 and the associated information (which we
denote by Kj+1), A′ cannot just throw away the additional information in Kj+1 and
start afresh when computing expectations in the j + 3-rd pass. This is because just the
fact that A′ has not aborted itself gives information that might impact the expected
value of the coin toss. Thus, A′ cannot decide to abort by conditioning only on T′

j+3,
but must additionally condition on its extra knowledge Kj+1, which it obtained in the
previous round, when deciding whether or not to abort. Therefore, all the information in
the Kj variables must be used when A′ computes subsequent expectations. Moreover,
when V′

A,j+1 is sampled (in order to compute T′
j+1), it must be consistent not only with

Tj but also with the additional knowledge Kj collected thus far. See Section ?? for the
precise description and analysis of the final adversarial strategy.

2 Preliminaries

Definition 2 (Black-Box Coin Tossing from One-Way Functions). For (interactive)
oracle algorithms A,B we call C = ⟨A,B⟩ a black-box construction of coin tossing with
bias at most δ based on one-way functions with input/output length n, if the following
properties hold:

– The parties A and B get access to private randomness rA, rB and common input 1n

and run in time poly(n) and interact for r̂(n) = poly(n) number of rounds. The
transcript of their interaction determines an output a. Also, if during the protocol, A
(resp. B) receives the special message⊥ (denoting that the other party has stopped
playing in the protocol) then A (resp. B) outputs a bit a (resp b) on their own which
will be the output of the protocol.

– Completeness: For any function f , if A and B are given oracle access to f and
execute the protocol honestly, then the output is an unbiased random bit.

– Security: There is an oracle algorithm S running in polynomial time over its input
length with the following property. Given any adversary A (playing on behalf
of A or B) that achieves bias δ(n) over common input 1n w.r.t a function f ,
Sf,A(1n, 11/δ(n)) breaks the security of f as a one-way function.

2.1 The Eavesdropper Algorithm Eve

In this section, we recall the Eve algorithm, first introduced by Impagliazzo and
Rudich [IR89] in the context of separating one-way function and key agreement. The

12

Eve algorithm of [IR89] was later improved by Barak and Mahmoody [BM13]. In our
work, we will use the Eve algorithm of [BM13] in a black-box manner. Thus, we do not
describe the algorithm itself, and simply state the properties we will need from the Eve
algorithm of [BM13] in the following lemma.

Lemma 1 (Implied by Theorem 4.2 in [BM13]). Let C = ⟨A,B⟩ be an oracle
protocol in which the parties A,B ask at most m queries each from the oracle O. Then
there is an Eve algorithm who only gets to see the public messages and asks her own
oracle queries after each message is sent and on input parameter ϵ < 1/100:

– poly(m/ϵ)-Efficiency: Eve is deterministic and, over the randomness of the oracle
and A and B’s private randomness, the expected number of Eve queries from the
oracle O is at most (10m/ϵ)10.

– (1 − ϵ)-Security: Let Ti = M1, . . . ,Mi||Evei be the transcript of messages sent
between A and B so far, including the the additional information that Eve has
learned till the end of the i’th pass. Let (VA,VB) | Ti be the joint distribution over
the views (VA,VB) of A and B only conditioned on Ti. By VA | Ti and VB | Ti

we refer to the projections of D(Ti) over its first or second components. Then, with
probability at least 1 − ϵ over the randomness of A, B, and the random oracle O,
the following holds at all moments during the protocol when Eve is done with her
learning phase in that round:
1. The statistical distance between VA | Ti × VB | Ti and D(Ti) is at most ϵ.

Namely: ∆(VA | Ti × VB | Ti, (VA,VB) | Ti) ≤ ϵ.
2. For every oracle query q /∈ Evei it holds that Pr(VA,VB)|Ti

[q ∈ QVA
∪QVB

] ≤ ϵ.

In the following, we will run the Eve algorithm with input parameter ϵ = 1
3mr̂4 .

For simplicity of the notation and when it is clear from the context, in the following,
for probabilities and expected values taken over (VA,VB) ∼ D, instead of writing
E(VA,VB)∼D or Pr(VA,VB)∼D, we simply write E and Pr.

We consider coin-tossing protocols C, where the Eve algorithm is run alongside the
protocol and Eve queries are made immediately after every message Mj is sent. We
denote by Evej the set of queries made by the Eve algorithm up to and including the
queries made immediately after the j-th message is sent. We denote by Tj , the transcript
of the protocol with the Eve queries made alongside. Thus, Tj = M1, . . . ,Mj ||Evej .

3 Types of Coin Tossing Protocols We Consider

Consider a coin-tossing protocol C = ⟨A,B⟩ with r̂ = r̂(k) = poly(k) rounds and 2r̂

passes. For 1 ≤ w ≤ r̂, let C2w−1 denote the output of party B in the case that A aborts
before sending the 2w − 1-st message. Similarly, For 1 ≤ w ≤ r̂, let C2w denote the
output of party A in the case that B aborts before sending the 2w-th message.

13

Let VA,j (resp. VB,j) denote the partial view of A (resp. B) up to and including pass
j. In particular, VA,j consists of the transcript Mj thus far as well as the random tape rA
of A and the queries and responses, QVA,j

, that have been made by A thus far. VB,j and
QVB,j

are defined analogously.

We consider the distribution D to be the distribution over pairs of complete views
(VA,2r̂,VB,2r̂) (also denoted simply by VA,VB) generated by a run of C with a random
oracle. More specifically, a draw from D is obtained as follows:

– Draw O ∼ Υ , rA, rB ← {0, 1}p(n), for some polynomial p(·) and execute C =

⟨A,B⟩ with O, rA, rB.
– Output the views (VA,VB) resulting from the execution of C = ⟨A,B⟩ above.

We prove our result for so-called instant constructions as defined in [DSLMM11].
Instant constructions are coin-tossing protocols where for 1 ≤ w ≤ r̂, A (resp. B)
computes the value C2w (resp. C2w+1) before sending message M2w−1 (resp. M2w).
Thus, in case a party (say A) aborts before sending message M2w+1, then B can simply
output its precomputed value C2w+1 which depends only on B’s view at the point right
after B computed message M2w without making any additional oracle queries. It is not
hard to see that the restriction of instant constructions can be removed as was shown
by [DSLMM11]. This is a subtle argument relying on the fact that our ultimate goal
is to rule out separations from one-way functions and not random oracles (since in the
random oracle model coin tossing is trivial). In the following we sketch the argument
of [DSLMM11] on why assuming the protocol to be instant is w.l.o.g.

Instant vs. General Protocols. Dealing with non-instant protocols can be done exactly
as it was done in [DSLMM11], so in this work we focus on instant protocols and leave
the full discussions on dealing with non-instant protocols for the full version of the
paper. However, here we give a sketch of how this can be done. Firstly, note that any
general coin tossing protocol using an oracle can be made “almost instant” without
losing the security as follows. Whenever a party A (or B) wants to send a message
Mi, they also go ahead and ask any oracle query that they would need to ask in case the
other party halts the execution of the protocol and not sent Mi+1. This way, the protocol
becomes almost instant because the only time that the instant property might be violated
is when the first message is aborted by Alice in which case, Bob might still need to query
the oracle to decide the output. However, as shown in [DSLMM11], it is always possible
to “fix” a “small” set S of queries of the random oracle in a way that (1) Bob does not
ask any query to decide the output if he gets aborted in the first message, and (2) the
protocol remains as secure. Roughly speaking, the set S is determined (and its answers
are fixed) as follows. The set S contains any query q that has a “non-negligible” chance
of being asked by Bob in case of not receiving the first message. It is easy to show that
|S| ≤ poly(n), and by sampling (and fixing) the answer of the queries in S, Bob will
not need to ask any oracle queries in case of getting aborted in the first round. Finally,

14

observe that a partially-fixed random oracle is still one-way and so one can apply the
argument of our work for the instant protocols to the final instant protocol.

We consider coin-tossing protocols that are so-called “function oblivious.” As
defined in Definition 1, these are coin-tossing protocols such that the outcome of
protocol Cf = ⟨Af ,Bf ⟩ when both parties are honest depends only on the random
tapes rA, rB of the two parties and not on the choice of one-way function f . We denote
by C(rA, rB) the output of protocol C when run with random tapes rA, rB. When the
settings of rA, rB are clear from context, we denote the output of the protocol by C.

We are now ready to state our main theorem.

Theorem 2 (Main Theorem, Formal). There is no (fully) black-box construction of
an r̂ = r̂(n)-round, function-oblivious coin-tossing protocol Cf = ⟨Af ,Bf ⟩ with bias
o(1/r̂3/4) from one-way functions.

4 Proof of the Main Theorem

Towards proving Theorem 2, we begin with the following fact, which follows straight-
forwardly from [CI93].

Fact 1 Let C be a coin-tossing protocol and let {Y1, . . . , Y2r̂} be a set of random
variables, where Yj is associated with some state of protocol C immediately after the
j-th message (Mj ,Evej) has been computed.

– For 1 ≤ w ≤ r̂, set j = 2w − 2 and define the indicator variable IValAj+1
in the

following way: IValAj+1
= 1 if |E[C|Yj+1]−E[Cj+1|Yj+1]| ≥ β and for 1 ≤ ℓ ≤

w, IValA2ℓ−1
= 0. Otherwise IValAj+1

= 0.
– For 1 ≤ w ≤ r̂, set j = 2w and define the indicator variable IValAj+1

in the
following way: IValBj = 1 if |E[C|Yj]−E[Cj+2|Yj]| ≥ β and for 1 ≤ ℓ ≤ w,
IValB2ℓ = 0. Otherwise IValBj = 0.

If for some (α, β)
r̂∑

w=1

Pr[IValA2w−1
= 1] ≥ α

then player A has a fail-stop strategy for imposing bias ±1/2 · α · β on C by aborting
before sending message M2j−1 either when E[C|Y2w−1] − E[C2w−1|Y2w−1] ≥ β or
when E[C|Y2w−1]−E[C2w−1|Y2w−1] ≤ −β. An analogous claim holds for player B.

If for some (α, β),
r̂∑

w=1

Pr[IValB2w = 1] ≥ α

15

then player B has a fail-stop strategy for imposing bias±1/2·α·β on C by aborting after
sending message M2j either when E[C|Y2w]−E[C2w+2|Y2w] ≥ β or when E[C|Y2w]−
E[C2w+2|Y2w] ≤ −β. An analogous claim holds for player A.

The following fact is implicit in [CI93]:

Fact 2 With prob. at least 1/5 over choice of random tapes and oracle there is some
point in the execution such that |E[C|Tj]−E[C|Tj+1]| ≥ Ω(1/

√
r).

Let us choose the quantity

MV = EVB,j ,Evej |Tj+1
[E[C|VB,j ,Evej]]

as the ”middle value.”

Thus, it must be the case that either with prob. at least 1/10 there is some point in
the execution such that |E[C|Tj]−MV| ≥ Ω(1/

√
r). OR with prob. at least 1/10 there

is some point in the execution such that |MV −E[C|Tj+1]| ≥ Ω(1/
√
r).

In particular, there are four possible cases.

1. With probability 1/20 there is some point s.t. E[C|Tj]−MV ≥ Ω(1/
√
r).

2. With probability 1/20 there is some point s.t. MV −E[C|Tj+1] ≥ Ω(1/
√
r).

3. With probability 1/20 there is some point s.t. MV −E[C|Tj] ≥ Ω(1/
√
r).

4. With probability 1/20 there is some point s.t. E[C|Tj+1]−MV ≥ Ω(1/
√
r).

Note that Cases 1 and 2 will give rise to adversarial strategies for biasing towards 0,
while Cases 3 and 4 will give rise to adversarial strategies for biasing towards 1. In the
following, we analyze only cases 1 and 2; cases 3 and 4 are entirely analogous.

Lemma 2. Assume Case 1 occurs with probability at least 1/20, then there is a strategy
that biases the output by Ω(1/

√
r).

Proof. Assume that Case (1) occurs. Then this means that with prob. at least 1/20 there
is some point in the execution such that

E[C | Tj]−MV = E[C | Tj]−EVB,j ,Evej |Tj+1
[E[C | VB,j ,Evej]] ≥ Ω(1/

√
r).

Fix Tj+1 such that Case (1) occurs. Note that Tj+1 completely defines Tj and so the
quantity above can be calculated for every valid Tj+1. Now, for each such Tj+1 we
must have that one of the following two subcases occurs:

(1a) PrVB,j ,Evej |Tj+1
[E[C | VB,j ,Evej]−E[C | Tj] ≥ Ω(1/r̂1/4)] ≥ Ω(1/

√
r̂) OR

(1b) PrVB,j ,Evej |Tj+1
[E[C | VB,j ,Evej]−E[C | Tj] ≥ Ω(1/

√
r)] ≥ Ω(1/r̂1/4).

16

To see this, assume towards contradiction that neither item (1a) nor item (1b) occur.
Then this means that when VB,j is sampled conditioned on Tj+1, we have that the
contribution from VB,j such that E[C | VB,j ,Evej] − E[C | Tj] ≥ Ω(1/

√
r) and

E[C | VB,j ,Evej]−E[C | Tj] ≤ Ω(1/r̂1/4) is at most o(1/r̂1/4) · 1/r̂1/4 = o(1/
√
r̂).

Additionally, the contribution from VB,j such that E[C | VB,j ,Evej] − E[C | Tj] ≥
Ω(1/r̂1/4) is at most o(1/

√
r̂) · 1 = o(1/

√
r̂). This is a contradiction to Case 1

occurring.

Now, if item (1a) occurs then this means that either with probability Ω(1/r̂1/4) we
have that E[C | Tj] − E[Cj+2 | Tj] ≥ Ω(1/

√
r̂) occurs OR that with probability

Ω(1/r̂1/4) we have that E[C | VB,j ,Evej] − E[C | Tj] ≥ Ω(1/
√
r̂) AND E[C |

Tj]−E[Cj+2 | Tj] ≤ o(1/
√
r̂).

In the first case, B can employ the following strategy:

Abort immediately after sending message Mj if:

E[C|Tj]−E[Cj+2|Tj] ≥ Ω(1/
√
r̂)

By Fact 1 the strategy above imposes bias of at least Ω(1/r̂3/4) towards 0.

In the second case, note that since Cj+2 is a function of only VA,j+1, we have by
the properties of the Eve algorithm given in Lemma 1 we have that with probability
1 − O(1/r̂2), we have that |E[Cj+2 | Tj] − E[Cj+2 | VB,j ,Evej]| ≤ O(1/r̂2). Thus,
in this case, we have that with probability Ω(1/r̂1/4), E[C | VB,j ,Evej] − E[Cj+2 |
VB,j ,Evej] ≥ Ω(1/

√
r̂) and in this case, B can employ the following strategy:

Abort immediately after sending message Mj if:

E[C | VB,j ,Evej]−E[Cj+2 | VB,j ,Evej] ≥ Ω(1/
√
r̂)

Thus by Fact 1 the above strategy imposes bias of at least Ω(1/r̂3/4) towards 0.

The analysis for item (1b) is entirely analogous.

Lemma 3. Assume Case 2 occurs with porbability at least 1/20, then there is a strategy
that biases the output by Ω(1/r̂3/4).

Proof. Case (2) implies that one of the following occurs with prob. at least 1/40:

(2a)
E[Cj+1 | Tj+1]−E[C | Tj+1] ≥ Ω(1/

√
r̂)

(2b)

MV−E[Cj+1 | Tj+1] = EVB,j ,Evej |Tj+1
[E[C | VB,j ,Evej]]−E[Cj+1 | Tj+1] ≥ Ω(1/

√
r̂)

17

Note that in Case (2a), A can employ the following strategy:

Abort before sending message Mj+1 if:

E[C | Tj+1]−E[Cj+1 | Tj+1] ≥ Ω(1/
√
r̂)

and thus, by Fact 1 imposes bias Ω(1/
√
r̂) towards 0. Thus, to complete the lemma,

we need to show that if Case (2b) occurs with probability at least 1/40 then there is a
strategy for imposing bias of Ω(1/r̂3/4) on the outcome.

Since this case becomes more complicated, we devote the following section to show
how to deal with Case (2b).

4.1 Analysis for Case (2b)

The protocol C′ The modified protocol C′ will execute the regular C protocol with
Eve queries made alongside. B behaves as in the original protocol. A′ behaves as A in
the original protocol and additionally computes extra state information Ki and related
values in each round i.

For each pass 0 ≤ j ≤ 2r̂ − 1, we consider the distribution Dextend,j+1, which is
a distribution over a tuple consisting of partial views VA,j+1,VB,j+1, transcripts (with
Eve queries alongside) Tj+1, and additional knowledge Kj+1 generated by a random
execution of C′ with random oracle O.

More specifically, a draw from Dextend,j+1 is obtained as follows:

– Draw O ∼ Υ , rA′ , rB ← {0, 1}p
′(n), for some polynomial p′(·) and execute C′ =

⟨A′,B⟩ with O, rA′ , rB.
– Output a tuple consisting of the views VA,j+1,VB,j+1, transcript Tj+1, and

additional state information Kj+1 resulting from the execution of C′ = ⟨A′, B⟩
above.

We are now ready to describe how Kj+1 is computed: For j = 0, the variable K0

is set to empty. For each round 1 ≤ w ≤ r̂, set j = 2(w − 1). A′ computes the state
information Kj+1 in the following way:

– Sample a random partial view V′
A,j+1 from Dextend,j+1(Tj ,Kj). Recall that this

denotes the distribution Dextend, conditioned on the current transcript with Eve
queries, Tj , and the additional state information Kj . Note that V′

A,j+1 includes the
next message, M′

j+1.
– We run a modified version of the Eve algorithm, called the Eve′ algorithm. For each

pass ℓ, let QEve′ℓ
denote the set of queries and responses made by Eve′ in the j-th

pass. In the j + 1-st pass do the following: Run the Eve algorithm at pass j + 1

18

conditioned on Tj ||M′
j+1 (i.e. as if M′

j+1 is the real next message). Answer oracle
queries made by Eve′ in the following way6:

• If the query q appears in V′
A,j+1, answer according to V′

A,j+1 (without querying
the oracle).

• Otherwise, if for some i ≤ j, the query q appears in QEve′i
\ QV′

A,i
, respond

according to the value listed in QEve′i
(without querying the oracle).

• Otherwise, if a query q appears in VA,j , sample and return a uniformly random
string (without querying the oracle).

• Otherwise, query the oracle and return the oracle’s response.

– We denote by T′
j+1 the fake transcript generated. More specifically, T′

j+1 =

Tj ||M′
j+1||QEve′j+1

.
– Set Kj+1 and Kj+2 to be Kj with the variables V′

A,j+1, QEve′j+1
appended.

Intuitively, the point of the protocol C′ is that it allows a malicious A to sample
fake transcripts T′

j+1, which, conditioned on Tj ,Kj , are distributed (almost) identically
to real transcripts Tj+1, but reveal (almost) no additional information about the real
VA,j+1, beyond what was revealed by Tj ,Kj . In particular, a ”‘fake”’ view V′

A,j+1,
independent of the real VA,j+1, is sampled and a fake next message M′

j+1 is computed.
Now, when we run the Eve′ algorithm, ideally we would like to answer all oracle queries
q appearing in QV′

A,j+1
dishonestly according to V′

A,j+1 and all other queries honestly
according to the real oracle. However, there is a sublte issue here: Queries in the real
QVA,j+1

may be ”‘incorrectly”’ distributed if they are answered according to the real
oracle. In particular, queries which appear in QEve′i

\QV′
A,i

and do not appear in V′
A,j+1,

must be answered according to the value listed there (regardless of whether they are in
VA,j+1). Queries which do not appear in QV′

A,j+1
and do not appear in QEve′i

\ QV′
A,i

,
but do appear in QVA,j+1

are answered uniformly at random.

We are now ready to describe the final adversarial strategy:

– Set f(r̂) = 1/
√
r̂ or f(r̂) = 1/r̂1/4.

– Play the role of A′ in an execution C′, while interacting with an honest B.
– Abort immediately before sending message Mj+1 if:

E[C|T′
j+1,Kj]−E[Cj+1|T′

j+1,Kj] = Ω(f(r̂))

Fact 1 implies that all we need to show is that the event occurs “frequently.” More
specifically, we prove the following lemma, which is sufficient for completing the proof
of Case (2b).

Lemma 4. If Case (2b) occurs with probability 1/40 then either:

6 We assume that Eve′ never re-queries a query that is already contained in Evej

19

– With probability Ω(1/r̂1/2) over executions of C′ and choice of oracle O there is a
first message j where

E[C|T′
j+1,Kj]−E[Cj+1|T′

j+1,Kj] = Ω(1/r̂1/4)

– With probability Ω(1/r̂1/4) over executions of C′ and choice of oracle O there is a
first message j where

E[C|T′
j+1,Kj]−E[Cj+1|T′

j+1,Kj] = Ω(1/r̂1/2)

Before proving Lemma 4, we introduce the following notation. For f(r̂) = 1/
√
r̂

or f(r̂) = 1/r̂1/4 and for every j = 0, 1 ≤ j ≤ 2r̂, we define the indicator
random variables IfEVj

and IfEV′
j

which are set before the j-th message is sent during

an execution of C′. For j = 0, IfEV′
0
= 0 and IfEV0

= 0. For j ≥ 1, IfEV′
j+1

, IfEV′
j+2

are
set to 1 if:

– IfEV′
j
= 1 OR

– EVB,j |T′
j+1=t′j+1,Kj=kj

[E[C|VB,j ,Kj = kj]]−EVB,j |T′
j+1=t′j+1,Kj=kj

[Cj+1(VB,j)] =

Ω(f(r̂)).

For j ≥ 1, IfEVj+1
, IfEVj+2

are set to 1 if:

– IfEVj
= 1 OR

– EVB,j |T′
j+1=tj+1,Kj=kj

[E[C|VB,j ,Kj = kj]]−EVB,j |T′
j+1=tj+1,Kj=kj

[Cj+1(VB,j)] =

Ω(f(r̂)).

Note that in the last expression, we condition on T′
j+1 = tj+1. This means that

Tj+1 = tj+1 is sampled via a run of the protocol C′. Then, the expectation above is
computed using this same value of tj+1, but conditioning on the variable T′

j+1 being
equal to this value.

Let the event Bj be the event that upon a draw from Dextend,j+1 there is a query
q such that q ∈ QVB,j

∩ (QV′
A,j+1

∪ QVA,j+1
) and q /∈ Evej . Note that by Lemma 1,

for each j, the probability that Bj occurs is at most 3m
3mr̂4 = O(1/r̂4). Let DGoodj

extend,j+1

denote the distribution Dextend,j+1, conditioned on Bj .

By Dextend we denote the distribution Dextend,2r̂. Additionally, for joint random
variables X,Y , we denote by X | Y the distribution over X drawn from Dextend,
conditioned on Y .

We first consider three important properties of the C′ protocol which which will
help us prove the lemma:

20

Property 1 (Tj+1 and T′
j+1 are close). The two distributions

DGoodj
T′

j+1
(Tj = tj ,Kj = kj) DGoodj

Tj+1
(Tj = tj ,Kj = kj)

are identical.

Since Bj occurs with probability at most O(1/r̂4), Property 1 immediately implies
the following: With probability 1 − O(1/r̂2) over Tj = tj ,Kj = kj drawn from
Dextend, we have that

DT′
j+1

(Tj = tj ,Kj = kj) DTj+1(Tj = tj ,Kj = kj)

are O(1/r̂2)-close.

Property 2 (VB conditioned on Tj+1 or T′
j+1 are close). For every 1 ≤ j ≤ 2r̂, the

two distributions

DGoodj
VB,j

(T′
j+1 = tj+1,Kj = kj) DGoodj

VB,j
(Tj+1 = tj+1,Kj = kj)

are identical.

Since Bj occurs with probability at most O(1/r̂4), Property 2 immediately implies
the following: For every 1 ≤ j ≤ 2r̂, we have that with probability 1 − O(1/r̂2) over
draws of Tj+1 = tj+1 and Kj = kj from Dextend, the statistical distance between the
following:

DVB,j
(T′

j+1 = tj+1,Kj = kj) DVB,j
(Tj+1 = tj+1,Kj = kj)

is at most O(1/r̂2).

Property 3 (T′
j+1 does not reveal much information about VA,j). With probability 1−

O(1/r̂2) over Tj = tj ,T
′
j+1 = tj ||m′

j+1, eve
′
j+1,Kj = kj drawn from Dextend, we

have that

DVA,j+1
(T′

j+1 = t′j+1,Kj = kj) DVA,j+1
(Tj = tj ,Kj = kj)

are O(1/r̂2)-close.

We defer the proofs of Properties 1, 2, 3 to the full version and now complete the
proof of Lemma 4 via the following claims and facts:

Claim 1 If Case (2b) occurs with probability 1/40 then either:

– With probability Ω(1/r̂1/2) there is a first point where

EVB,j ,Evej |T′
j+1,Kj

[E[C|VB,j ,Evej ,Kj]]−EVB,j |T′
j+1,Kj

[Cj+1(VB,j)] = Ω(1/r̂1/4).

21

– With probability Ω(1/r̂1/4) there is a first point where

EVB,j ,Evej |T′
j+1,Kj

[E[C|VB,j ,Evej ,Kj]]−EVB,j |T′
j+1,Kj

[Cj+1(VB,j)] = Ω(1/r̂1/2).

Claim 2 With probability 1−O(1/r̂2), we have that

|E[C|T′
j+1,Kj]−EVB,j ,Evej |T′

j+1,Kj
[E[C|VB,j ,Evej ,Kj]]| = O(1/r̂2).

Fact 3 We have the following equivalence:

E[Cj+1|T′
j+1,Kj]] = EVB,j |T′

j+1,Kj
[Cj+1(VB,j)]

The above immediately imply Lemma 4. We now proceed to prove Claims 1 and 2

Proof. (Claim 1) The hypothesis of Claim 1 and Markov’s inequality imply that one of
the following must occur:

– With probability Ω(1/r̂1/2) there is a first point where

EVB,j ,Tj |Tj+1,Kj
[E[C|VB,j ,Tj ,Kj]]−EVB,j |Tj+1,Kj

[Cj+1(VB,j)] ≥ Ω(1/r̂1/4)

– With probability Ω(1/r̂1/4) there is a first point where

EVB,j ,Tj |Tj+1,Kj
[E[C|VB,j ,Tj ,Kj]]−EVB,j |Tj+1,Kj

[Cj+1(VB,j)] ≥ Ω(1/r̂1/2)

Let us assume that the first case above occurs. The analysis for the remaining case
is entirely analogous. Now, by Claim 2 we have that with probability 1−O(1/r̂2), over
Tj+1 = tj+1,Kj = kj drawn fromDextend the distributions VB,j | Tj+1 = tj+1,Kj =

kj and VB,j | T′
j+1 = tj+1,Kj = kj are O(1/r̂2)-close.

Thus, we have that with probability Ω(1/r̂1/2) over Tj+1 = tj+1,Kj = kj drawn
from Dextend

EVB,j ,Tj |T′
j+1=tj+1,Kj

[E[C|VB,j ,Tj ,Kj]]−EVB,j |T′
j+1=tj+1,Kj

[Cj+1(VB,j)] = Ω(1/r̂1/4).

(4.1)

By definition of If=1/r̂1/4

EVj+1
we have by (4.1) that Pr[If=1/r̂1/4

EVj+1
= 1 for some 1 ≤

j ≤ 2r̂] = Ω(1/r̂1/2). In the following, we will use this fact to show that

Pr[I
f=1/r̂1/4

EV′
j+1

= 1 for some 1 ≤ j ≤ 2r̂] = Ω(1/r̂1/2) as well. This will immediately
imply the Claim.

First, for 1 ≤ w ≤ r̂, where j = 2w − 2, we define

v2w−1 = Pr[I
f=1/r̂1/4

EVj+1
= 1 ∧ I

f=1/r̂1/4

EVj
= 0 ∧ I

f=1/r̂1/4

EV′
j

= 0]

y2w−1 = Pr[I
f=1/r̂1/4

EV′
j+1

= 1 ∧ I
f=1/r̂1/4

EVj
= 0 ∧ I

f=1/r̂1/4

EV′
j

= 0].

22

Now, we have by Claim 1 that for every 1 ≤ w ≤ r̂, j = 2w − 2, one of the following
occurs:

– Pr[I
f=1/r̂1/4

EVj
= 0 ∧ I

f=1/r̂1/4

EV′
j

= 0] = O(1/r̂2)

– The distributions Tj+1,Kj | I
f=1/r̂1/4

EVj
= 0, I

f=1/r̂1/4

EV′
j

= 0 and T′
j+1,Kj |

I
f=1/r̂1/4

EVj
= 0, I

f=1/r̂1/4

EV′
j

= 0 are at most O(1/r̂2)-far.

We show that in both cases, we must have that

v2w−1 = y2w−1 ±O(1/r̂2). (4.2)

In the first case, we clearly must have that 0 ≤ v2w−1, y2w−1 ≤ O(1/r̂2). In the
second case, we bound the difference between v2w−1, y2w−1 in the following way:

v2w−1 = Pr[I
f=1/r̂1/4

EVj+1
= 1 ∧ I

f=1/r̂1/4

EVj
= 0 ∧ I

f=1/r̂1/4

EV′
j

= 0]

= Pr[I
f=1/r̂1/4

EVj+1
= 1 | If=1/r̂1/4

EVj
= 0, I

f=1/r̂1/4

EV′
j

= 0] · Pr[If=1/r̂1/4

EVj
= 0 ∧ I

f=1/r̂1/4

EV′
j

= 0]

=
(
Pr[I

f=1/r̂1/4

EV′
j+1

= 1 | If=1/r̂1/4

EVj
= 0, I

f=1/r̂1/4

EV′
j

= 0]±O(1/r̂2)
)

· Pr[If=1/r̂1/4

EVj
= 0 ∧ I

f=1/r̂1/4

EV′
j

= 0]

= Pr[I
f=1/r̂1/4

EV′
j+1

= 1 ∧ I
f=1/r̂1/4

EVj
= 0, I

f=1/r̂1/4

EV′
j

= 0]±O(1/r̂2)

= y2w−1 ±O(1/r̂2),

where the third equality follows since I
f=1/r̂1/4

EVj+1
, I

f=1/r̂1/4

EV′
j+1

are completely determined

by Tj+1,Kj and T′
j+1,Kj , respectively.

Now, using the definition of If=1/r̂1/4

EVj+1
and (4.2) above, we have that

Pr[I
f=1/r̂1/4

EVj+1
= 1 for some j = 2w − 2, 1 ≤ w ≤ r̂] ≤

r̂∑
w=1

v2w−1 + y2w−1

≤ O(1/r̂) + 2

r̂∑
w=1

y2w−1.

Moreover, (4.1) implies that

Ω(1/r̂1/2) = Pr[I
f=1/r̂1/4

EVj+1
= 1 for some j = 2w − 2, 1 ≤ w ≤ r̂]

≤ O(1/r̂) + 2
r̂∑

w=1

y2w−1.

23

Thus, it must be the case that

r̂∑
w=1

y2w−1 =
r̂∑

w=1

Pr[I
f=1/r̂1/4

EV′
2w−1

= 1 ∧ I
f=1/r̂1/4

EV2w−2
= 0 ∧ I

f=1/r̂1/4

EV′
2w−2

= 0]

= Ω(1/r̂1/2).

Finally, by definition, this implies that with probability Ω(1/r̂1/2) over Dextend we

have some j such that If=1/r̂1/4

EVj
= 0, I

f=1/r̂1/4

EV′
j

= 0 and

EVB,j ,Evej |T′
j+1,Kj

[E[C|VB,j ,Evej ,Kj]]−EVB,j |T′
j+1,Kj

[Cj+1(VB,j)] = Ω(1/r̂1/4).

and so the claim is proved.

Proof. (Claim 2) Towards proving the claim, note that by Lemma 1 we have that with
probability 1−O(1/r̂4) for every j

VA,j ,VB,j | Tj VA,j | Tj × VB,j | Tj

are O(1/r̂4)-close.

Thus, by applying Markov’s inequality, we have that with probability 1−O(1/r̂2),
for every 1 ≤ j ≤ 2r̂,

VA,j ,VB,j | T′
j+1,Kj VA,j | T′

j+1,Kj × VB,j | T′
j+1,Kj

are O(1/r̂2)-close.

Now, by applying Property 3 we have that for every 1 ≤ j ≤ 2r̂ with probability
1−O(1/r̂2), over draws of Tj = tj ,T

′
j+1 = tj ||m′

j+1, eve
′
j+1,Kj = kj ,

VA,j | T′
j+1,Kj × VB,j | T′

j+1,Kj VA,j | Tj ,Kj × VB,j | T′
j+1,Kj

are O(1/r̂2)-close.

By combining the above, we have that for every j, with probability 1 − O(1/r̂2),
over draws of Tj = tj ,T

′
j+1 = tj ||m′

j+1, eve
′
j+1,Kj = kj ,

VA,j ,VB,j | T′
j+1,Kj , VA,j | Tj ,Kj × VB,j | T′

j+1,Kj (4.3)

are O(1/r̂2)-close.

Now, let us consider the expression EVB,j ,Tj |T′
j+1,Kj

[E[C | VB,j ,Tj ,Kj]] and the
expression E[C | T′

j+1,Kj]. If we expand notation, we have that:

EVB,j ,Tj |T′
j+1,Kj

[E[C | VB,j ,Tj ,Kj]] = EVB,j ,Tj |T′
j+1,Kj

[EVA,2r̂,VB,2r̂|Tj ,Kj ,VB,j
[C(VA,2r̂,VB,2r̂)]].

24

and that
E[C|T′

j+1,Kj] = EVA,2r̂,VB,2r̂|T′
j+1,Kj

[C(V iewA,2r̂,VB,2r̂)].

Due to the function-obliviousness property (see Property 1), we have that C(VA,VB)

depends only on the random tapes rA, rB of A,B, which are contained in the partial
views VA,j ,VB,j , and so

EVB,j ,Tj |T′
j+1,Kj

[EVA,VB|Tj ,Kj ,VB,j
[C(rA, rB)]] = EVB,j ,Tj |T′

j+1,Kj
[EVA,j |Tj ,Kj ,VB,j

[C(rA, rB)]]

and that
E[C|T′

j+1,Kj] = EVA,j ,VB,j |T′
j+1,Kj

[C(rA, rB)].

Next, we have by Lemma 1 and Markov’s inequality, that with probability 1−O(1/r̂2),

VA,j | VB,j ,Tj ,Kj VA,j | Tj ,Kj

are O(1/r̂2)-close.

Thus, we have that with probability 1−O(1/r̂2):∣∣∣EVB,j ,Tj |T′
j+1,Kj

[E[C | VB,j ,Tj ,Kj]]−EVB,j ,Tj |T′
j+1,Kj

[EVA,j |Tj ,Kj
[C(VA,j ,VB,j)]]

∣∣∣ = O(1/r̂2).

Equivalently, we have that with probability 1−O(1/r̂2) over draws of Tj = tj ,T
′
j+1 =

tj ||m′
j+1, eve

′
j+1,Kj = kj :∣∣∣EVB,j ,Tj |T′
j+1,Kj

[E[C | VB,j ,Tj ,Kj]]−EVA,j |Tj ,Kj×VB,j |T′
j+1,Kj

[C]
∣∣∣ = O(1/r̂2).

Finally, by applying (4.3), and since VB,j ,Tj and VB,j ,Evej contain the same
information, we have that with all but O(1/r̂2) probability,∣∣∣EVB,j ,Evej |T′

j+1,Kj
[E[C|VB,j ,Evej ,Kj]]−EVA,j ,VB,j |T′

j+1,Kj)[C(VA,j ,VB,j)]
∣∣∣ = O(1/r̂2).

Equivalently, we have that with all but O(1/r̂2) probability,∣∣∣E[C|T′
j+1,Kj]−EVB,j ,Evej |T′

j+1,Kj
[E[C|VB,j ,Evej ,Kj]]

∣∣∣ = O(1/r̂2),

and so the claim is proved.

References

[Blu82] Manuel Blum. Coin flipping by telephone - a protocol for solving impossible
problems. In COMPCON, pages 133–137, 1982.

[BM07] Boaz Barak and Mohammad Mahmoody. Lower bounds on signatures from
symmetric primitives. In FOCS: IEEE Symposium on Foundations of Computer
Science (FOCS), 2007.

25

[BM09] Boaz Barak and Mohammad Mahmooody. Merkle puzzles are optimal–an o(n2)-
query attack on key exchange from a random oracle. In CRYPTO, pages 0–0, 2009.

[BM13] Boaz Barak and Mohammad Mahmoody. Merkle’s key agreement protocol is
optimal - an O(n2)-query attack on any key exchange from random oracles. 2013.
http://www.cs.cornell.edu/ mohammad/files/papers/MerkleFull.pdf.

[CI93] Richard Cleve and Russell Impagliazzo. Martingales, collective coin flipping and
discrete control processes. Unpublished, 1993.

[Cle86] Richard Cleve. Limits on the security of coin flips when half the processors are
faulty (extended abstract). In STOC, pages 364–369, 1986.

[DSLMM11] Dana Dachman-Soled, Yehuda Lindell, Mohammad Mahmoody, and Tal Malkin.
On the black-box complexity of optimally-fair coin tossing. In TCC, pages 450–
467, 2011.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. J. ACM, 33(4):792–807, 1986.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci.,
28(2):270–299, 1984.

[GT00] Rosario Gennaro and Luca Trevisan. Lower bounds on the efficiency of generic
cryptographic constructions. In FOCS, pages 305–313, 2000.

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A
pseudorandom generator from any one-way function. SIAM J. Comput.,
28(4):1364–1396, 1999.

[HOZ13] Iftach Haitner, Eran Omri, and Hila Zarosim. Limits on the usefulness of random
oracles. In TCC, pages 437–456, 2013.

[IL89] Russell Impagliazzo and Michael Luby. One-way functions are essential for
complexity based cryptography (extended abstract). In FOCS, pages 230–235,
1989.

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of
one-way permutations. In STOC, pages 44–61, 1989.

[LR88] Michael Luby and Charles Rackoff. How to construct pseudorandom permutations
from pseudorandom functions. SIAM J. Comput., 17(2):373–386, 1988.

[MMP13] Mohammad Mahmoody, Hemanta K. Maji, and Manoj Prabhakaran. Limits of
random oracles in secure computation. To Appear in: Innovations in Theoretical
Computer Science (ITCS), 2013.

[MNS09] Tal Moran, Moni Naor, and Gil Segev. An optimally fair coin toss. In TCC, pages
1–18, 2009.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. J. Cryptology, 4(2):151–
158, 1991.

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and their
cryptographic applications. In STOC, pages 33–43, 1989.

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures.
In STOC, pages 387–394, 1990.

[RTV04] Omer Reingold, Luca Trevisan, and Salil Vadhan. Notions of reducibility between
cryptographic primitives. In TCC, pages 1–20, 2004.

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions. In FOCS,
pages 80–91, 1982.

