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Abstract. We qualitatively separate semi-honest secure computation of non-trivial
secure-function evaluation (SFE) functionalities from existence of key-agreement
protocols. Technically, we show the existence of an oracle (namely, PKE-oracle)
relative to which key-agreement protocols exist; but it is useless for semi-honest
secure realization of symmetric 2-party (deterministic finite) SFE functionalities,
i.e. any SFE which can be securely performed relative to this oracle can also be
securely performed in the plain model.
Our main result has following consequences.

– There exists an oracle which is useful for some 3-party deterministic SFE;
but useless for semi-honest secure realization of any general 2-party (deter-
ministic finite) SFE.

– With respect to semi-honest, standalone or UC security, existence of key-
agreement protocols (if used in black-box manner) is only as useful as the
commitment-hybrid for general 2-party (deterministic finite) SFE function-
alities.

This work advances (and conceptually simplifies) several state-of-the-art tech-
niques in the field of black-box separations:

1. We introduce a general common-information learning algorithm (CIL) which
extends the “eavesdropper” in prior work [1,2,3], to protocols whose mes-
sage can depend on information gathered by the CIL so far.

2. With the help of this CIL, we show that in a secure 2-party protocol using an
idealized PKE oracle, surprisingly, decryption queries are useless.

3. The idealized PKE oracle with its decryption facility removed can be mod-
eled as a collection of image-testable random-oracles. We extend the anal-
ysis approaches of prior work on random oracle [1,2,4,5,3] to apply to this
class of oracles. This shows that these oracles are useless for semi-honest
2-party SFE (as well as for key-agreement).

These information theoretic impossibility results can be naturally extended to
yield black-box separation results (cf. [6]).
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1 Introduction

Public-key encryption (PKE) is an important security primitive in a system involving
more than two parties. In this work, we ask if PKE could be useful for protecting two
mutually distrusting parties against each other, if there is no other party involved. More
specifically, we ask if the existence of PKE can facilitate 2-party secure function evalu-
ation (SFE). Informally, our main result in this work shows the following:

The existence of PKE (as a computational complexity assumption, when used in
a black-box manner) is useless for semi-honest secure evaluation of any finite,
deterministic 2-party function.

Here, a complexity assumption being “useless” for a task means that the task can be
realized using that assumption alone (in a black-box manner) if and only if it can be
realized unconditionally (i.e., information-theoretically).4 As is typical in this line of
research, our focus is on deterministic functions whose domain-size is finite. (However,
all our results extend to the case when the domain-size grows polynomially in the secu-
rity parameter; our proofs (as well as the results we build on) do not extend to exponen-
tially growing domain-sizes, though.) Technically, we show an “oracle-separation” re-
sult, by presenting a randomized oracle which enables PKE in the information-theoretic
setting, but does not enable SFE for any 2-party function for which SFE was impossible
without the oracle. Then, using standard techniques, this information theoretic impossi-
bility result is translated into the above black-box separation result [6]. While the above
statement refers to semi-honest security, as we shall shortly see, a similar statement
holds for security against active corruption, as well.

It is instructive to view our result in the context of “cryptographic complexity” the-
ory [7]: with every (finite, deterministic) multi-party function f , one can associate a
computational intractability assumption that there exists a secure computation protocol
for f that is secure against semi-honest corruption.5 Two assumptions are considered
distinct unless they can be black-box reduced to each other. Then, the above result im-
plies that secure key agreement (i.e., the interactive analog of PKE) does not belong to
the universe of assumptions associated with 2-party functions. However, it is not hard
to see that there are 3-party functions f such that a semi-honest secure protocol for f
(in the broadcast channel model) is equivalent to a key agreement protocol.6 Thus we
obtain the following important conclusion:

4 The task here refers to 2-party SFE in the “plain” model. We do not rule out the possibility that
PKE is useful for 2-party SFE in a “hybrid” model, where the parties have access to a trusted
third party.

5 This is the simplest form of assumptions associated with functionalities in [7], where a more
general framework is presented.

6 As an example, consider the 3-party function f(x, y, z) = x⊕ y. A semi-honest secure proto-
col π for f over a broadcast channel can be black-box converted to a key-agreement protocol
between Alice and Bob, where, say, Alice plays the role of the first party in π with the key
as its input, and Bob plays the role of the second and third parties with random inputs. Con-
versely, a key-agreement protocol can be used as a black-box in a semi-honest secure protocol
for f , in which the first party sends its input to the second party encrypted using a key that the
two of them generate using the key-agreement protocol.



The set of computational complexity assumptions associated (in the above sense)
with 3-party functions is strictly larger than the set associated with 2-party
functions.

This answers an open question posed in [7], but raises many more questions. In partic-
ular, we ask if the same conclusion holds if we consider (n + 1)-party functions and
n-party functions, for every n > 2.

Another consequence of our main result is its implications for SFE secure against
active corruption. Following a related work in [5], using characterizations of functions
that have SFE protocols secure against semi-honest and active corruptions [8,9,10,11],
we obtain the following corollary of our main result.

The existence of PKE (as a black-box assumption) is exactly as useful as a
commitment functionality (given as a trusted third party) for secure evaluation
of any finite, deterministic 2-party function. This holds for semi-honest security,
standalone active security and UC-security.

Note that for semi-honest security, the commitment functionality is not useful at all
(since semi-honest parties can commit using a trivial protocol), and this agrees with the
original statement. The interesting part of the corollary is the statement about active
(standalone or UC) security. Commitment is a “minicrypt” functionality that can be im-
plemented using one-way functions (in the standalone setting) or random oracles. PKE,
on the other hand, is not a minicrypt primitive [1]. Yet, in the context of guaranteeing se-
curity for two mutually distrusting parties, computing a (finite, deterministic) function,
without involving a trusted third party, PKE is no more useful than the commitment
functionality.

In the rest of this section, we state our main results more formally, and present an
overview of the techniques. But first we briefly mention some of the related work.

1.1 Related Work

Impagliazzo and Rudich [1] showed that random oracles are not useful against a com-
putationally unbounded adversary for the task of secure key agreement. This analysis
was recently simplified and sharpened in [2,3]. Haitner, Omri, and Zarosim [12,3] show
that random oracles are essentially useless in any inputless protocol.7

Following [1] many other black-box separation results have appeared (e.g. [13,14,15,16,17]).
In particular, Gertner et. al [18] insightfully asked the question of comparing oblivious-
transfer (OT) and key agreement (KA) and showed that OT is strictly more complex (in
the sense of [1]). Another trend of results has been to prove lower-bounds on the effi-
ciency of the implementation in black-box constructions (e.g. [19,20,21,22,23,2,22]).
A complementary approach has been to find black-box reductions when they exist
(e.g. [24,25,26,27,28]). Also, results in the black-box separation framework of [1,6]

7 Ideally, a result similar to that of [3] should be proven in our setting of secure function evalu-
ation too, where parties do have private inputs, as it would extend to randomized functions as
well. While quite plausible, such a result remains elusive.



have immediate consequences for computational complexity theory. Indeed, as men-
tioned above, separations in this framework can be interpreted as new worlds in Im-
pagliazzo’s universe [29].

Our work relies heavily on [5], where a similar result was proven for one-way func-
tions instead of PKE. While we cannot use the result of [5] (which we strictly improve
upon) in a black-box manner, we do manage to exploit the modularity of the proof there
and avoid duplicating any significant parts of the proof.

1.2 Our Contribution

For brevity, in the following we shall refer to “2-party deterministic SFE functions
with polynomially large domains” simply as SFE functions. Also, we consider security
against semi-honest adversaries in the information theoretic setting, unless otherwise
specified (as in Corollary 1).

Our main result establishes that there exists an oracle which facilitates key-agreement
while being useless to 2-party SFE.

Theorem 1. There exists an oracle PKE such that, the following hold:

– There is a secure key-agreement protocol (or equivalently, a semi-honest secure
3-party XOR protocol) using PKE.

– A general 2-party deterministic function f , with a polynomially large domain, has a
semi-honest secure protocol against computationally unbounded adversaries using
PKE if and only if f has a perfectly semi-honest secure protocol in the plain model.

As discussed below, this proof breaks into two parts — a compiler that shows that
the decryption queries can be omitted, and a proof that the oracle without the decryp-
tion queries is not useful for SFE. For proving the latter statement, we heavily rely on
a recent result from [5] for random oracles; however, this proof is modular, involving
a “frontier analytic” argument, which uses a few well-defined properties regarding the
oracles. Our contribution in this is to prove these properties for a more sophisticated
oracle class (namely, family of image-testable random oracles), rather than random or-
acles themselves.

As in [5], Theorem 1 translates to a black-box separation of the primitive PKE from
non-trivial SFE. Also, it yields the following corollary, that against active corruption,
our PKE oracle is only as useful as the commitment-hybrid model, as far as secure
protocols for 2-party SFE is concerned.

Corollary 1. There exists an oracle PKE such that, the following hold:

– There is a secure key-agreement protocol (or equivalently, a semi-honest secure
3-party XOR protocol) using PKE.

– A general 2-party deterministic function f , with a polynomially large domain, has
a statistically semi-honest, standalone or UC-secure protocol relative to PKE if
and only if f has a perfectly, resp., semi-honest, standalone or UC-secure protocol
in the commitment-hybrid.



Apart from there results, and their implications to the complexity of 2-party and 3-
party functions, we make important technical contributions in this work. As described
below, our “common-information learner” is simpler than that in prior work. This also
helps us handle a more involved oracle class used to model PKE. Another module in
our proof is a compiler that shows that the decryption facility in PKE is not needed in a
(semi-honest secure) protocol that uses PKE, even if the PKE is implemented using an
idealized oracle.

1.3 Technical Overview

The main result we need to prove (from which our final results follow, using arguments
in [5]) is that there is an oracle class PKEκ relative to which secure public-key encryp-
tion (i.e., 2-round key agreement) protocol exists, but there is no secure protocol for any
non-trivial SFE function relative to it.

The oracle class PKEκ is a collection of following correlated oracles:

– Gen(·): It is a (length-tripling injective) random oracle which maps secret keys sk
to respective public keys pk.

– Enc(·, ·): For each public key pk, it is an independently chosen (length tripling
injective) random oracle which maps messages m to cipher texts c.

– Dec(·, ·): Given a valid secret key sk and a valid cipher text c it outputsm such that
message m was encrypted using public key pk = Gen(sk).

– Additionally, it provides test oracles Test which output whether a public key pk is a
valid public key or not; and whether a cipher text c has been created using a public
key pk or not.

Note that without the Test oracle, this oracle class can be used to semi-honest se-
curely perform OT; hence, all 2-party SFE will be trivial relative to it (see discussion
in [18,30]). The main technical contribution of this paper is the negative result which
shows that the above mentioned oracle class PKEκ is useless for 2-party SFE against
semi-honest adversaries.

This is shown in two steps:

1. First, we show that the decryption oracle Dec(·, ·) is not useful against semi-honest
adversaries. That is, given a (purported) semi-honest secure protocol ρ for a 2-party
SFE f we compile it into another semi-honest secure protocol Π (with identical
round complexity, albeit polynomially more query complexity) which has slightly
worse security but performs no decryption-queries.

2. Finally, we observe that the oracle class “PKEκ minus the decryption oracle” is
identical to image-testable random-oracles. And we extend the negative result of
[5] to claim that this oracle class is useless for 2-party SFE.

The key component in both these steps is the Common Information Learner al-
gorithm, relative to image-testable random oracle class. But we begin by introducing
image-testable random oracles.



Image-testable Random-oracle Class. It is a pair of correlated oracles (R, T ), where R
is a (length-tripling injective) random oracle and test oracle T which outputs whether a
point in range has a pre-image or not. We consider keyed-version of these oracle, where
for each key in an exponentially large key-space K we have an independent copy of
image-testable random oracle.

Note that the answer to an image test query can slightly change the distribution of
exponentially many other queries; namely, when we know that y is not in the image
of R, the answer to any query x for R will not be uniformly distributed (because it
cannot be y). However, since the number of tested images are polynomial-size and the
number of possible queries to R are exponentially large, this will affect the distribution
of the answers by R only negligibly. Also, because of the expansion of the random
oracle R, the fraction of the image-size of R is negligibly small relative to the range
of R. So an algorithm, with polynomially-bounded query complexity, who queries the
test oracle T has negligible chance of getting a positive answer (i.e. an image) without
actually calling R. We emphasize that our whole analysis is conditioned on this event
(i.e. accidentally discovering y in the image of the oracle) not taking place; and this
requires careful accounting of events because it holds only for (polynomially) bounded
query algorithms.

Common Information Learner. The common information learner is a procedure that can
see the transcript of an oracle-based protocol between Alice and Bob, and by making
a polynomial number of publicly computable queries to the oracle, derives sufficient
information such that conditioned on this information, the views of Alice and Bob are
almost independent of each other. Our common information learner is similar in spirit
to those in [1,2,5,3] but is different and more general in several ways:

– Handling Image-Testable Oracles. Our common information learner applies to
the case when the oracle is not just a random oracle, but an image-testable random
oracle family.8

– Interaction between Learner and the System. It is important for the first part
of our proof (i.e. compiling out the decryption queries) that the common informa-
tion learner interacts with the protocol execution itself. That is, at each round the
information gathered by the common information learner is used by the parties in
subsequent rounds. We require the common information learner to still make only a
polynomial number or oracle queries while ensuring that conditioned on the infor-
mation it gathers, the views of the two parties remain almost independent. In show-
ing that the common information learner is still efficient, we show a more general
result in terms of an interactive process between an oracle system (the Alice-Bob
system, in our case) and a learner, both with access to an arbitrary oracle (possibly
correlated with the local random tapes of Alice and Bob).

– Simpler Description of the Learner. The common information learner in our work
has a simpler description than that in [1,2,5]. Our learner queries the random oracle
with queries that are most likely to be queried by Alice or Bob in a protocol exe-
cution. The learner in [2,5] is similar, but uses probabilities not based on the actual

8 The work of [3] also handles a larger set of oracles than random oracles (called simple oracle),
but that class is not known to include image-testable oracles as special case [31].



protocol, but a variant of it; this makes the description of their common informa-
tion learner more complicated, and somewhat complicates the proofs of the query
efficiency of the learner.9

Showing that Image-Testable Random Oracles are Useless for SFE. In [5] it was shown
that random oracles are useless for SFE. This proof is modular in that there are four
specific results that depended on the nature of the oracle and the common information
learner. The rest of the proof uses a “frontier analytic” argument that is agnostic to the
oracle and the common information learner. Thus, in this work, to extend the result of
[5] to a family of image-testable random oracles, we need only ensure that these four
properties continue to hold. The four properties are as follows:

1. Alice’s message conditioned on the view of the CIL is almost independent of Bob’s
input, see Section 6.1 item 1.

2. Safety holds with high probability, see Section 6.1 item 2.
3. A strong independence property of Alice’s and Bob’s views conditioned on that of

the CIL, see Section 6.1 item 3.
4. Finally, local samplability and oblivious rerandomizability of image-testable ran-

dom oracles which permit simulation of alternate views, see Section 6.

Compiling Out the Decryption Queries. The main idea behind compiling out the de-
cryption queries is that if Alice has created a ciphertext by encrypting a message using
a public-key that was created by Bob, and she realizes that there is at least a small (but
significant) probability that Bob would be querying the decryption oracle on this cipher-
text (since he has the secret key), then she would preemptively send the actual message
to him. We need to ensure two competing requirements on the compiler:

1. Security. Note that with some probability Alice might send this message even if
Bob was not about to query the decryption oracle. To argue that this is secure, we
need to argue that a curious Bob could have called the decryption oracle at this
point, for the same ciphertext.

2. Completeness. We need to ensure that in the compiled protocol, Bob will never
have to call the decryption oracle, as Alice would have sent him the required de-
cryptions ahead of time.

For security, firstly we need to ensure that Alice chooses the set of encryptions to be
revealed based only on the common information that Alice and Bob have. This ensures
that Bob can sample a view for himself from the same distribution used by Alice to
compute somewhat likely decryption queries, and obtain the ciphertext and secret-key
from the decryption query made in this view. The one complication that arises here is
the possibility that the secret-key in the sampled view is not the same as the secret-key
in the actual execution. To rule this out, we rely on the independence of the views of
the parties conditioned on the common information. This, combined with the fact that
it is unlikely for a valid public-key to be discovered by the system without either party

9 [1] uses an indirect mechanism to find the heavy queries, and reasoning about their common
information learner is significantly more involved.



having actually called the key-generation oracle using the corresponding secret-key, we
can show that it is unlikely for a sampled view to have a secret-key different from the
actual one.

For completeness of the compiler, we again rely on the common information learner
to ensure that if Alice uses the distribution based on common information to compute
which decryption queries are likely, then it is indeed unlikely for Bob to make a decryp-
tion query that is considered unlikely by Alice.

1.4 Overview of the paper

The full version of the paper is available at [32]. In Section 2 we formally define all
the relevant oracle classes. Section 3 introduces relevant definitions and notations for
this paper. The efficiency of an algorithm which performs heavy-queries is argued in
Section 4.1. This is directly used to provide an independence learner for protocols where
parties do not have private inputs in Section 4.2. In Section 5 we show that for 2-
party deterministic SFE Decryption queries in PKEκ are useless. Next, in Section 6,
we extend Lemma 2 to protocols where parties have private inputs. Finally, we prove
our main result (Theorem 1) in Section 7.

2 Oracle Classes

General class of oracles shall be represented by O. We are interested in three main
classes of oracles, each parameterized by the security parameter κ.

2.1 Image-testable Random Oracle Class

The set Oκ consists of the all possible pairs of correlated oracles O ≡ (R, T ) of the
form:

1. R : {0, 1}κ 7→ {0, 1}3κ is a function, and
2. T : {0, 1}3κ 7→ {0, 1} is defined by: T (β) = 1 if there exists α ∈ {0, 1}κ such

that R(α) = β; otherwise T (β) = 0.

This class of oracles is known as image-testable random oracle class. Based on the
length of the query string we can uniquely determine whether it is a query to R or T
oracle. We follow a notational convention. Queries to R oracle shall be denoted by α
and its corresponding answer shall be denoted by β.

2.2 Keyed Version of Image-testable Random Oracle Class

Given a class K of keys,10 consider the following oracle O(K): For every k ∈ K, let
O(k) ∈ Oκ. Given a query 〈k, q〉, where k ∈ K and q is the query to an oracle in Oκ,
answer it with O(k)(q). Let O(K)

κ be the set of all possible oracles O(K). This class of
oracle O(K)

κ is called keyed-version of image-testable random oracle class.
10 Note that the description of the keys in K is poly(κ); so the size of the set K could possibly

be exponential in κ.



2.3 Public-key Encryption Oracle

We shall use a “PKE-enabling” oracle similar to the one used in [18]. With access to
this oracle, a semantically secure public-key encryption scheme can be readily con-
structed,11 yet we shall show that it is useless for SFE. This oracle, which we will
call PKEκ (or simply PKE, when κ is understood), is a collection of the oracles
(Gen,Enc,Test1,Test2,Dec) defined as follows:

– Gen: It is a length-tripling random oracle from the set of inputs {0, 1}κ to {0, 1}3κ.
It takes as input a secret key sk and provides a public-key pk corresponding to it,
i.e. Gen(sk) = pk.

– Enc: This is an “encryption” oracle. It can be defined as a collection of length-
tripling random oracles, keyed by strings in {0, 1}3κ. For each key pk ∈ {0, 1}3κ,
the oracle implements a random function from {0, 1}κ to {0, 1}3κ. When queried
with a (possibly invalid) public key pk, and a message m ∈ {0, 1}κ, this oracle
provides the corresponding cipher text c ∈ {0, 1}3κ for it, i.e. Enc(pk,m) = c.

– Test1: It is a test function which tests the validity of a public key, i.e. given a
public-key pk, it outputs 1 if and only if there exists a secret key sk such that
Gen(sk) = pk.

– Test2: It is a test function which tests the validity of a public key and cipher text
pair, i.e. given a public-key pk and cipher text c, it outputs 1 if and only if there
exists m such that Enc(pk,m) = c.

– Dec: This is the decryption oracle, from {0, 1}κ×{0, 1}3κ to {0, 1}κ∪{⊥}, which
takes a secret-key, cipher-text pair (sk, c) and returns the lexicographically smallest
m such that Enc(Gen(sk),m) = c. If no such m exists, it outputs ⊥.

We note that the encryption oracle produces cipher texts for public keys pk irre-
spective of whether there exists sk satisfying Gen(sk) = pk. This is crucial because we
want to key set K to be defined independent of the Gen oracle.

PKEκ Without Dec. We note that if we remove the oracle Dec, the above oracle is
exactly the same as the image-testable random oracle O(K)

κ , with K = {0, 1}3κ ∪ {⊥}.
Here we identify the various queries to PKEκ with queries to O(K)

κ as follows: Gen(sk)
corresponds to the query 〈⊥, sk〉, Enc(pk,m) corresponds to 〈pk,m〉, Test1(pk) cor-
responds to 〈⊥, pk〉 and Test2(pk, c) corresponds to 〈pk, c〉.

3 Preliminaries

We say a = b ± c if |a− b| ≤ c. We shall use the convention that a random variable
shall be represented by a bold face, for example X; and a corresponding value of the
random variable without bold face, i.e. X in this case. We say that two distributions D1

and D2 are ε-close to each other if ∆ (D1,D2) ≤ ε.

11 To encrypt a message of length, say, κ/2, a random string of length κ/2 is appended to it, and
passed to the “encryption” oracle, along with the public-key.



Two-party Secure Function Evaluation. Alice and Bob have inputs x ∈ X and y ∈ Y
and are interested in evaluating f(x, y) securely, where f is a deterministic function
with output space Z .

Protocols and Augmented Protocols. We shall consider two-party protocols π between
Alice and Bob relative to an oracle class. Alice and Bob may or may not have private
inputs for the parties. An augmentation of the protocol with a third party Eve, repre-
sented as π+, is a three party protocol where parties have access to a broadcast channel
and speak in following order: Alice, Eve, Bob, Eve, and so on. In every round one party
speaks and then Eve speaks.

Views of Parties. We shall always consider Eve who have no private view; her com-
plete view is public. Such Eve shall be referred to as public query-strategy. Transcript
message sent by Eve in a round is her sequence of oracle query-answer pairs per-
formed in that round. The oracle query-answer sets of Alice, Bob and Eve are rep-
resented by PA, PB and PE , respectively. The transcript is represented by m (note
that m only contains messages from Alice and Bob). View of Eve is VE = (m,PE);
view of Alice is VA = (x, rA,m, PA, PE) (where x is Alice’s private input and rA
is her local random tape; in input-less protocols x is not present) and view of Bob is
VB = (y, rB ,m, PB , PE).

If i is odd then Alice performs local query-answers PA,i and sends the message
mi in that round followed by Eve message PE,i. If i is even then Bob sends the mes-
sage mi, followed by Eve message PE,i. View of Alice up to round i is represented
by V (i)

A = (x, rA,m
(i), P

(i)
A , P

(i)
E ), where m(i) = m1 . . .mi; and P (i)

A and P (i)
E are

similarly defined.

Relative to oracle class O(K)
κ . Our sample space is distribution over complete Alice-

Bob joint views when: rA
$←U, rB

$←U and O $←O(K)
κ .

Definition 1 (Canonical). A canonical sequence of query-answer pairs is a sequence
of query-answer pairs such that an R-query of form 〈k, α〉 is immediately followed by a
T-query of form 〈k, β〉, where the query 〈k, α〉 was answered by β.

Definition 2 (Normal Form for Protocols). A three party protocol between Alice, Bob
and (public query strategy) Eve is in normal form, if:

1. In every round Alice or Bob sends a message; followed by a sequence of query-
answer pairs from Eve. We allow Alice and Bob to base their messages on prior
messages broadcast by Eve.

2. In rounds i = 1, 3, . . . Alice sends the message mi; and in i = 2, 4, . . . Bob sends
a message.

3. In every round i after Alice/Bob has sent the message mi, Eve broadcasts PE,i.
4. Alice, Bob and Eve always perform canonical queries.



4 Common Information Learner

In this section we shall introduce a Heavy-query Performer algorithm (see Fig. 2). Us-
ing this heavy querier, we shall augment any two-party protocol with a third party algo-
rithm. Relative to the oracle class O(K)

κ we show that the distribution of Alice-Bob joint
views is (nearly) independent of each other conditioned on the transcript of the aug-
mented protocol. Thus, the third party is aptly called an common information learner
(see Eveπ in Fig. 3).

4.1 Heavy-query Performer

In this section we shall introduce a Heavy-query Performer algorithm. Let O be a finite
class of oracles with finite domain D. Our experiment is instantiated by an oracle sys-
tem Σ and a deterministic “Heavy-query Performer”H (with implicit parameter σ, see
Fig. 2).

The oracle system Σ takes a random tape as input which has finite length. Let S be
the set of pairs of random tape r for Σ and oracle O ∈ O. The system Σ could possibly
be computationally unbounded; but its round complexity is finite.

Consider the experiment in Fig. 1.

1. Let DS be a distribution over S such that Supp(DS) = S. Sample (r,O) ∼ DS.
2. Start an interactive protocol between ΣO(r), i.e. the oracle system Σ with access to

oracle O and local random tape r, and the heavy-query performerH.

Fig. 1: Protocol between Oracle system Σ and the Heavy-query PerformerH.

We emphasize that the heavy-query performer H never performs a query unless its
answer is uncertain. If the answer to the query q∗ in uncertain, we say that the answer
to this query has (max) entropy. Let QΣ

(〈
ΣO(r),H

〉)
represent the query-answer set

of the oracle system Σ when its local random tape is r, has oracle access to O and is
interacting with the heavy-query performerH. Similarly,QH

(〈
ΣO(r),H

〉)
represents

the query-answer set of the heavy-query performer H which were actually performed
to the oracle when Σ has local random tape r and has oracle access to O. Note that
QΣ

(〈
ΣO(r),H

〉)
and QH

(〈
ΣO(r),H

〉)
could possibly be correlated to each other.

Efficiency of the Heavy-query Performer. We argue that the expected query complexity
of the heavy-query performer cannot be significantly larger than the query complexity
of the system Σ itself:

Lemma 1 (Efficiency of Heavy-query Performer). LetDS be a joint distribution over
the space S as defined above. For every (randomized) oracle system Σ, the expected
query complexity of the heavy-query performer H (presented an Fig. 2) is at most 1

σ



After every message sent by the oracle system Σ, perform the following step:

– Repeatedly call Heavy-Query-Finder to obtain a query-answer pair (q∗, a∗); and add
the query-answer pair (q∗, a∗) to the transcript T . Until it reports that there are no
more heavy queries left.

Heavy-Query-Finder: Let T be the transcript between the oracle system Σ and heavy-
query performerH. The messages added byΣ are represented by TΣ and the set of query-
answer pairs added by H are represented by TH. It has an implicit parameter σ, which is
used to ascertain whether a query is heavy or not.

1. For every q ∈ D \ TH, compute the probability that Σ performs the query q when
(r̃, Õ) ∼ DS conditioned on transcript T .

2. If there is no query q with probability ≥ σ then report that there are no more heavy
queries left and quit. Otherwise, let q∗ be the lexicographically smallest such query.

3. If the answer to q∗ is uncertain (given the transcript T ) then query O at q∗ and obtain
the answer a∗. Otherwise, let a∗ be the fixed answer to q∗.

4. Return (q∗, a∗).

Fig. 2: Heavy-Query-PerformerH.

times the expected query complexity of the oracle system Σ in the experiment shown in
Fig. 1. Formally,

E
(r,O)∼DS

[∣∣QH (〈ΣO(r),H
〉)∣∣] ≤ E(r,O)∼DS

[∣∣QΣ (〈ΣO(r),H
〉)∣∣]

σ

In particular, the probability thatH asks more than E(r,O)∼DS [|QΣ(〈ΣO(r),H〉)|]
σ2 queries

is at most σ.

The proof is provided in the full version of the paper [32]. We mention some highlights
of the current proof. The proof is significantly simpler and is more general than the ones
presented in [2,3] because our learner is directly working with heavy queries rather than
concluding the heaviness of the queries being asked by the learner. Also note that in our
setting the oracles might be correlated with local random tape of the system Σ; and
the future messages of the oracle system Σ could, possibly, depend on prior messages
of H. We also note that the same proof also works in the setting where Σ cannot read
the transcript T 12 but H also considers queries performed in the future by Σ while
computing the set of heavy-queries.13 We emphasize that it is possible that the future
messages of the oracle system Σ could possible depend on the prior messages sent by
the heavy-query performer H. This property is inherited by Lemma 2, which (in turn)
is crucially used by Theorem 2.
12 More specifically, it cannot read TH; note that Σ already knows the part TΣ generated by Σ

itself.
13 Note that if Σ can also read from T then the distribution of future queries is not well defined.

But if Σ cannot read T , then future queries are well defined after (r,O) is instantiated.



Specific to Image-testable Random-oracles. Relative to the oracle class O(K)
κ , we can

make an assumption that after performing a R-query 〈k, α〉 and receiving β as answer,
it immediately performs the next query as 〈k, β〉. Note that this query has no entropy
(because this query will surely be answered 1); and, hence, need not be performed to
the oracle.

4.2 Common Information Learner for Input-less Protocols

In this section we shall consider two-party protocols where parties have access to an or-
acle O ∈ O(K)

κ . For a two-party input-less protocol π, we augment it with the following
eavesdropper strategy, referred as Eveπ , to obtain π+:

1. Interpret the two-party oracle protocol π as the oracle system Σ in Fig. 1. Messages
produced by Alice or Bob in round i is interpreted as the message of Σ.

2. Define O = O(K)
κ and DS as the uniform distribution over O and the space of local

random tapes of Alice and Bob.
3. Let Eveπ be the heavy-query performer algorithm in Fig. 2 instantiated with a suitably

small parameter σ.

Fig. 3: Eavesdropper strategy to augment an input-less protocol π.

Note that the query-complexity of Eveπ is poly(κ) with 1 − 1/poly(κ) probability, if
σ is set to 1/poly(κ) and the query complexity of the parties in π is (at most) poly(κ)
(due to Lemma 1).

Lemma 2 (Common Information Learner for Input-less Protocols). Let π be an
input-less protocol in normal form between Alice and Bob relative to O(K)

κ , and Eveπ
be as defined in Fig. 3. Let the distributions V

(i)
AB and V

(i)
A×B for each round i of π be

as follows:

1. V
(i)
AB = (V

(i)
A ,V

(i)
B );

2. Distribution V
(i)
A×B defined as: Sample V

(i)
E ∼ V

(i)
E and output (VA, VB) ∼

(V
(i)
A |V

(i)
E )× (V

(i)
B |V

(i)
E ).

For every ε = 1/poly(κ), there exists a choice of Eveπ’s parameter σ = 1/poly(κ)
such that, for every i,

∆
(
V

(i)
AB ,V

(i)
A×B

)
≤ ε.

Below, we sketch the ideas behind proving this lemma. Interested reader may refer to
the full version of this paper [32] for the proof.



The case of random oracles. First we consider the case of random oracles without
image-testing. This case was already analyzed in [1,2], but it will be helpful to rephrase
this proof, so that we can extend it to the case when image-testing is present. At the
beginning of the execution, the views of Alice and Bob are indeed independent of each
other. As the execution progresses, at each round, we introduce a “tidy” distribution over
(VA, VB , VE), which has the following properties: a tidy distribution is obtained simply
by restricting the support of the real execution to “good” tuples. Below, (PA, PB , PE)
stand for the query-answer sets of (VA, VB , VE).

Definition 3 (Good). Three query-answer sets PA, PB and PE are called good, repre-
sented by Good(PA, PB , PE), if Consistent(PA ∪ PB ∪ PE) and PA ∩ PB ⊆ PE .

This has the consequence that a tidy distribution is identical to a “conditional prod-
uct distribution” – i.e., a distribution which, when conditioned on each Eve view in
its support, is a product distribution – when restricted to the same support as the tidy
distribution.

When the execution evolves for one step (an Alice or Bob round), we start with the
tidy distribution at that step, but will end up with a distribution that is not tidy. This
distribution is again tidied up to obtain a new tidy distribution.

Then we argue the following:
1. Claim: At any point, the tidy distribution is close to a “conditional product distri-

bution” – i.e., a distribution which, when conditioned on each Eve view in its support,
is close to a conditional product distribution.
This closeness property is maintained inductively. Indeed, during an Eve round, it is
easy to see that the distance from the conditional product distribution can only decrease.
In an Alice or Bob step, we bound the additional distance from a conditional product
distribution using the fact that, since Eve had just finished its step before the beginning
of the current step, every query not in Eve’s view was of low probability for either party
(“lightness” guarantee). A lightness threshold parameter for Eve controls this additional
distance.

2. Claim: After each Alice or Bob step, the statistical difference incurred in modi-
fying the resulting distribution to become a tidy distribution is small.
Note that in an Alice or Bob step, even tough we start from a tidy distribution, after
that step, tuples that are not good can indeed be introduced. But their probability mass
can be bounded by the fact that the tidy distribution was close to a conditional product
distribution.

Thus at each step, the statistical difference from the actual execution incurred by
tidying up can be bounded, as well as the distance of the tidy distribution from a con-
ditional product distribution. By choosing the lightness threshold parameter for Eve to
be sufficiently small, after a polynomial number of steps, we obtain that the distribution
of (VA, VB , VE) in the actual execution is close to a tidy distribution, which is in turn
close to a conditional product distribution.

We remark that, the “lightness” guarantee in [2] was ensured directly for the tidy
distribution. However, it is enough to ensure that the lightness holds for the original
distribution, since the tidy distribution is obtained by restricting the support of the actual
distribution (without changing the relative probabilities within the support). This allows
for a more modular description of the Eve’s dropper’s algorithm, independent of the



definition of the tidy distributions. This turns out to be helpful when we move to the
setting of image-testable random oracles, where the tidy distributions are much more
complicated.

The case of image-testable random oracles. To adapt the above argument to accommo-
date test queries, we need to change several elements from above. Firstly, we replace
the notion of good tuples, with a more refined notion of “nice” tuples, which takes into
account the presence of positive test queries. (As it turns out, negative test queries by
themselves have a negligible effect in the probability of individual views.)

Given a query-answer set P relative to O(K)
κ , we say that a query q = 〈k, β〉 ∈

K× {0, 1}3κ is unexplained if (q, 1) ∈ P (i.e. T (q) = 1) but there is no q′ = 〈k, α〉 ∈
K × {0, 1}κ such that (q, β) ∈ P (i.e. R(q′) = β). We define T1Guess(P ) as the total
number of unexplained queries in P .

Definition 4 (Typical and Nice Views). A query-answer set P relative to O(K)
κ is typ-

ical, represented by Typical(P ), if T1Guess(P |k) = 0, for every k ∈ K.
Alice, Bob and Eve views in a normal protocol are called nice, represented as

Nice(VA, VB , VE) if:

1. Consistent(PA, PB , PE), Good(PA, PB , PE), and
2. Typical(PA ∪ PB ∪ PE), Typical(PA \ PE) and Typical(PB \ PE).

Apart from replacing goodness with niceness, the tidy distributions we use are dif-
ferent in a few other important ways. Firstly, a tidy distribution’s support would typ-
ically not contain all the nice tuples in the actual execution; we remove certain kinds
of nice tuples too from the support, to ensure that test queries do not lead to increased
distance from a conditional product distribution. Secondly, to ensure that a tidy distri-
bution is identical to a conditional product distribution, when the latter is restricted to
the supported of the former, we let it be different from the actual distribution restricted
to the same support. The definition of niceness however, ensures that this difference is
at most a 1 ± negl factor point-wise. (The 1 ± negl factor corresponds to the negative
test queries in the actual distribution, which are ignored in defining the probabilities in
a tidy distribution.)

More formally, let Ai, Bi and Ei denote the set of possible views of Alice, Bob
and Eve respectively, after i steps of the augmented protocol execution (where each
“round” consists of an Alice or Bob step, and an Eve step). To specify a tidy distribution
Γ over the views after i steps of the augmented protocol we need to specify two sets
S(i)A ⊆ Ai × Ei and S(i)B ⊆ Bi × Ei. Then the distribution is defined as follows:

Γ (VA, VB , VE) =


Z · γ(VA, VE) · γ(VB , VE) if (VA, VE) ∈ S(i)A , (VB , VE) ∈ S(i)B ,

and Nice(VA, VB , VE)

0 otherwise

Here Z is a normalization factor, and γ(VA, VE) = 2−rN−3w where r is the length
of the random tape in VA and w is the number of random oracle queries (not including
test queries) in PA \ PE . Note that by restricting to Nice(VA, VB , VE), the positive test



queries are taken into account by the definition of Γ , but the number of negative test
queries in the views are not accounted for. But the probability of (VA, VB , VE) in an
actual distribution of any protocol, when restricted to the support of Γ , can be shown to
be Γ (VA, VB , VE)(1± negl).

Another major difference in our proof is the tidying up operation itself. Unlike in the
random oracle case, we need to introduce a tidying up step even during the Eve round. In
fact, this tidying up is done per query that Eve makes. Before each fresh query that Eve
makes, we tidy up the distribution to ensure that at most one of Alice or Bob could have
made that query previously. Further, after an Eve test query that is answered positively
for which Eve does not have an explanation (i.e., none of the random oracle queries
that Eve has made so far returned the image being tested), we remove the possibility
that neither party has an explanation. (By tidying up before this query, we would have
already required that at most one party had made that query previously; the current
tidying up ensures that, exactly one party has an explanation for this query.)

Though this tidying up is carried per query that Eve makes, we ensure that the
entire statistical difference incurred by the tidying up process during one round of Eve’s
execution is bounded in terms of the distance to the conditional product distribution at
the start of this round. Indeed, this latter distance can only decrease through out Eve’s
round.

The tidying up procedure when Alice or Bob makes a query is similar to that in the
case of the random oracle setting. It ensures that the tidied up distribution is close to a
conditional product distribution, and the additional distance can be bounded in terms
of the lightness threshold parameter for Eve, as before.

With these modifications, the resulting proof follows the outline mentioned above.
At each round we tidy up the distribution over (VA, VB , VE), by incurring a statistical
difference related to the distance between the previous tidy distribution and a condi-
tional product distribution. In turn, we bound the increase in the latter distance (during
Alice’s and Bob’s rounds) in terms of the lightness guarantee by Eve.

As a direct consequence of Lemma 2, we can conclude that:

Corollary 2. There is no key-agreement protocol relative to O(K)
κ , for any key set K.

5 Compiling out Decryption Queries

In this section we show that a family of PKE-enabling oracles is only as useful as
a family of image testable random oracles, for semi-honest SFE. Combined with the
result that this image testable random oracle family is useless for SFE, we derive the
main result in this paper, that PKE is useless for semi-honest SFE.

As pointed out by [18], care must be taken in modeling such an oracle so that it does
not allow oblivious transfer. In our case, we need to separate it from not just oblivious
transfer but any non-trivial SFE.

In our proof we shall use the oracle PKEκ defined in Section 2.3. This oracle fa-
cilitates public-key encryption (by padding messages with say κ/2 random bits before
calling Enc), and hence key agreement. But, as mentioned before, by omitting the Dec
oracle, the collection (Gen,Enc,Test1,Test2) becomes an image-testable random ora-
cle family O(K). As we will see in Section 6, an image-testable random oracle is not



useful for SFE or key agreement. The challenge is to show that even given the de-
cryption oracle Dec, which does help with key-agreement, the oracle remains useless
for SFE. [18] addressed this question for the special case of oblivious transfer, rely-
ing on properties that are absent from weaker (yet non-trivial) SFE functionalities. Our
approach is to instead show that the decryption facility is completely useless in SFE,
by giving a carefully compiled protocol whereby the parties help each other in finding
decryptions of ciphertexts without accessing Dec oracle, while retaining the security
against honest-but-curious adversaries. We show the following.

Theorem 2. SupposeΠ is anN -round 2-party protocol with input domain X ×Y , that
uses the oracle PKEκ. Then for any polynomial poly, there is an N -round protocol Π∗

using the oracle O(K)
κ that is as secure as Π against semi-honest adversaries, up to a

security error of |X ||Y|/poly(κ).

Below we present the compiler used to prove this theorem, and sketch why it works.
The full proof appears in the full version of the paper [32].

The Idea Behind the Compiler. For ease of presentation, we assume here that the ora-
cles Gen(·) and Enc(·, ·) are injective (which is true, except with negligible probability,
because they are length tripling random oracles). Conceptually the compiler is simple:
each party keeps track of the ciphertexts that it created that the other party becomes “ca-
pable of” decrypting and sends the message in the ciphertext across at the right time.
This will avoid the need for calling the decryption oracle. But we need to also argue
that the compilation preserves security: if the original protocol was a secure protocol
for some functionality, then so is the compiled protocol. To ensure this, a party, say
Bob, should reveal the message in an encryption it created only if there is a high prob-
ability that Alice (or a curious adversary with access to Alice) can obtain that message
by decryption. Further, the fact that Bob found out that Alice could decrypt a ciphertext
should not compromise Bob’s security. This requires that just based on common in-
formation between the two parties it should be possible to accurately determine which
ciphertexts each party can possibly decrypt. This is complicated by the fact that the
protocol can have idiosyncratic ways of transferring ciphertexts and public and private
keys between the parties, and even if a party could carry out a decryption, it may choose
to not extract the ciphertext or private key implicit in its view. By using the common
information learner for image testable random oracles, it becomes possible to

Definition of the Compiler. Given a 2-party protocol Π , with input domains X ×Y , we
define the compiled protocol Π∗ below. Π has access to PKEκ, where as Π∗ will have
access to the interface of PKEκ consisting only of (Gen,Enc,Test1,Test2) (or equiv-
alently, to O(K)

κ as described in Section 2). For convenience, we require a normal form
for Π that before making a decryption query Dec(sk, c) a party should make queries
Gen(sk),Test1(pk) and Test2(pk, c) where pk was what was returned by Gen(sk).

We define Π∗ in terms of a 3-party protocol involving Alice0,Bob0,Eve, over a
broadcast channel. In the following we will define Alice0 and Bob0; this then defines
an (inputless) system Σ which consists of them interacting with each other internally,
while interacting with an external party; in Σ, the inputs to Alice0 and Bob0 are picked



uniformly at random. Then, Eve is defined to be H for the system Σ, as defined in
Fig. 3: after each message from Σ (i.e., from Alice or Bob), Eve responds with a set of
publicly computable queries to the oracle. Finally, Π∗ is defined as follows: Alice runs
Alice0 and Eve internally, and Bob runs Bob0 and Eve.14

So to complete the description of the compiled protocol, it remains to define the
programs Alice0 and Bob0. We will define Alice0; Bob0 is defined symmetrically.

Alice0 internally maintains the state of an execution of Alice’s program in Π (denoted by
AliceΠ ). In addition, Alice0 maintains a list LA of entries of the form (m, pk, c), one for
every call Enc(pk,m) = c that AliceΠ has made so far, along with such triples from the
(secondary) messages from Bob0.
Corresponding to a single messagemi from Alice inΠ , Alice0 will send out two messages
— a primary message mi and a secondary message CA,i (with an intermediate message
from Eve) — as follows. (For the sake of brevity we ignore the boundary cases i = 1 and
i− 1 being the last message in the protocol; they are handled in a natural way.)
The list LA,, before receiving the i− 1st message, is denoted by LA,i−2.

– On receiving mi−1 and CB,i−1 from Bob0 (and the corresponding messages from
Eve), first Alice sets LA,i−1 := LA,i−2 ∪ CB,i−1 (where CB,i−1 is parsed as a set
of entries of the form (m, pk, c)).

– Then Alice0 passes onmi−1 to AliceΠ , and AliceΠ is executed. During this execution
AliceΠ is given direct access to (Gen,Enc,Test1,Test2); but for every query of the
form Dec(sk, c) from AliceΠ , Alice0 obtains pk = Enc(sk) and checks if any entry
in LA,i−1 is of the form (m, pk, c) for some m. If it is, Alice0 will respond to this
query with m. Otherwise Alice0 responds with⊥. At the end of this computation, the
message output by AliceΠ is sent out as mi.
Also Alice updates the list LA,i−1 (which was defined above as LA,i−2 ∪CB,i−1) to
LA,i by including in it a tuple (m, pk, c) for each encryption query Enc(pk,m) = c
that AliceΠ made during the above execution.

– Next it reads a message from Eve. Let T (i) denote the entire transcript at this point
(including messages sent by Alice0, Bob0 and Eve). Based on this transcript Alice0
computes a set DT (i)

B of ciphertexts that Bob is “highly likely” to be able to decrypt
in the next round, but has not encrypted itself,a and then creates a message CA,i
that would help Bob decrypt all of them without querying the decryption oracle. The
algorithm AssistA used for this is detailed below in Fig. 5. Alice finishes her turn by
sending out CA,i.

a The threshold δ used in defining DT (i)

B by itself does not make it highly likely for the
honest Bob to be able to decrypt a ciphertext. However, as we shall see, this will be
sufficient for a curious Bob to be able to decrypt with high probability.

Fig. 4: Definition of Alice0 procedure.

14 Note that Eve follows a deterministic public-query strategy, and can be run by both parties.
Alternately, in Π∗, one party alone could have run Eve. But letting both parties run Eve will
allow us to preserve the number of rounds exactly, when consecutive messages from the same
party are combined into a single message.



For each possible view VB of BobΠ at the point T (i) is generated let,

dB(VB) := {(pk, c)|∃sk s.t. [Gen(sk) = pk], [Test1(pk) = 1], [Test2(pk, c) = 1] ∈ VB
and 6 ∃m s.t. [Enc(pk,m) = c] ∈ VB}.

We define the set

DT (i)

B := {(pk, c)|Pr[(pk, c) ∈ dB(VB)|T (i)] > δ} (1)

where the probability is over a view VB for BobΠ sampled conditioned on T (i), in the
interaction between Σ (i.e., Alice0 and Bob0 with a random input pair) and Eve.a The
threshold δ which will be set to an appropriately small quantity (larger than, but polyno-
mially related to, σ associated with Eve).
The message CA,i is a set computed as follows: for each (pk, c) ∈ DT (i)

B , if there is an m
such that Enc(pk,m) = c appears in LA,i, then the triple (m, pk, c) is added to CA,i. If
for any (pk, c), if there is no such m, then the entire protocol is aborted.

a Even though we define Alice0 in terms of a probability that is in terms of the behavior
of a system involving Alice0, we point out that this probability is well-defined. This is
because the probability computed in this round refers only to the behavior of the system
up till this round. Also Eve, which is also part of the system generating T (i), depends
only on the prior messages from Alice0.

Fig. 5: Procedure AssistA for computing CA,i.

Security of the Compiled Protocol. To formally argue the security of the compiled
protocol we must show an honest-but-curious simulator with access to either party in
an execution of Π , which can simulate the view of an honest-but-curious adversary in
Π∗. Here we do allow a small (polynomially related to σ), but possibly non-negligible
simulation error. We give a detailed analysis of such a simulation in the full version of
the paper. Below we sketch some of the important arguments.

Firstly, it must be the case that the probability of Alice0 aborting in Π∗ while com-
puting a secondary message CA,i, is small. Suppose, with probability p Alice fails to
find an encryption for some (pk, c) ∈ DT (i)

B . Then, by the independence property guar-
anteed by Lemma 2, with about probability δp this Alice execution takes place in con-
junction with a Bob view VB such that (pk, c) ∈ dB(VB). This would mean that with
close to probability δp we get an execution of the original protocol Π in which (pk, c)
is present in the parties’ views, but neither Alice nor Bob created this ciphertext. This
probability must then be negligible.

The more interesting part is to show that it is safe to reveal an encrypted message,
when there is only a small (but inverse polynomial) probability that the other party
would have decrypted it. For concreteness, consider when the honest-but-curious ad-
versary has access to Alice. In the execution of Π∗ it sees the messages CB,i that are
sent by Bob (assuming Bob does not abort). These contain the messages for each (pk, c)
pair inDT

A where T is the common information so far. So we need to show that the sim-



ulator would be able to extract all these messages as well. Consider a (pk, c) ∈ DT
A . If

Alice’s view contains an Enc query that generates c, or a Gen query that generates pk,
then the simulator can use this to extract the encrypted message. Otherwise it samples
a view A′ for Alice consistent with T , but conditioned on (pk, c) ∈ dA(A

′) (such A′

must exist since (pk, c) ∈ DT
A ). Then A′ does contain a secret key sk′ for pk that Alice

will use to decrypt the ciphertext.
However, note that the view of the oracle inA′ need not be consistent with the given

oracle. Thus it may not appear meaningful to use sk′ as a secret key. But intuitively, if
it is the case that with significant probability Alice did not generate pk herself, then
it must have been generated by Bob, and then the only way Alice could have carried
out the decryption is by extracting Bob’s secret key from the common information.
Thus this secret key is fixed by the common information. Further, by sampling an Alice
view in which a secret key for pk occurs, this secret key must, with high probability
agree with the unique secret key implicit in the common information. Formalizing this
intuition heavily relies on the independence characterization: otherwise the common
information need not fix the secret key, even if it fixes the public key.

In the full version of this paper we give a detailed proof of security of Π∗, by
defining a complete simulation, and using a coupled execution to analyze how good the
simulation is. We show that the compiled protocol is as secure as the original protocol
up to a security error of O|X ||Y|(N(σ/δ + δ)) = O(1/poly) by choosing appropriate
parameters, assuming |X ||Y| is polynomial.

The proof relies on Lemma 2. It shows that even when the protocol allows the parties
to use the information from the common information learner, it holds that the views of
the two parties (in an inputless version of the protocol considered in the proof) are
nearly independent of each other’s, conditioned on the common information gathered
by Eve.

6 Limits of Image-testable Random Oracles

Applying the compiler from the above section, we can convert a protocol using the PKE
oracle to one using an image-testable random oracle O(K). Then, to complete the proof
of Theorem 1 it will suffice to prove the following result, which asserts that no protocol
ρ using O(K) can be a secure realization of f , if f is semi-honest non-trivial.

Lemma 3. Suppose ρ is a 1−λ(κ) semi-honest secure protocol (with round complexity
N ) for 2-party finite semi-honest non-trivial f relative to oracle class O(K)

κ , for any key
set K. There exists Λ = 1/poly(·) such that, for infinitely many κ, we have λ(κ) >
Λ(N,κ).

The proof of this lemma follows the proof of a similar result of [5], which considered
the class of random oracles instead of image-testable random-oracles. The proof in [5]
uses a detailed frontier analysis, in which the following two properties of the random or-
acles (informally stated here) were used, which we extend to the case of image-testable
random oracles.

1. Local Samplability: We need Bob to sample hypothetical Bob view V ′B , based on
his actual view VB , but without exactly knowing what view VA Alice has. A crucial



step in this is to sample a new query-answer set P ′B which is consistent with PE ;
and this sampling has to be independent of the exact query-answer set PA of Alice.

2. Oblivious Re-randomizability: Once Bob has sampled a hypothetical Bob view, it
needs to simulate the view further (for just one round, before the next message from
Alice arrives). This simulation includes answering further queries to the (hypotheti-
cal) oracle. A crucial step in this is to answer these new queries with answers which
are consistent with Alice’s query-answer set PA, but are otherwise independent of
PB . That is, in simulating answers to further oracle queries, Bob should rerandom-
ize the part of the oracle which is consistent with the actual Bob query-answer pairs
PB .

Local samplability is a direct consequence of Lemma 2, which characterized the views
in the actual execution of the prototocl as close to a conditional product distribution. For
proving the oblivious rerandomization property, we need to specify the rerandomization
procedure. Such a procedure for the case of random oracles was provided in [5]. In
Fig. 6 we extend this to the case of image-testable random oracles.

Suppose Alice has private query-answer sequence PA, Eve has PE and Bob has
PB . Assume that Bob has been provided with P ′B ; and Typical(PA ∪ P ∪ PE) and
Good(PA, P, PE) hold, for P ∈ {PB , P ′B}.
Let D be the set of R-queries in PB which are not already included in Q(PE ∪ P ′B).
We re-emphasize that the queries in Q(PB) ∩ Q(P ′B) outside Q(PE) could possible by
inconsistently answered.
Initialize a global set Rlocal = ∅.
Query-Answering (q) :

1. If q is answered in PE ∪ P ′B use that answer.
2. If q = 〈k, α〉 is a new R-query and q ∈ D, answer with a $← {0, 1}3κ. Add 〈k, a〉 to
Rlocal.

3. If q is a T-query which is already in Rlocal then answer 1.
4. Otherwise (i.e. if the conditions above are not met) forward the query to the actual

oracle and obtain the answer a.

Fig. 6: Bob’s algorithm to answer future queries using re-randomization (oblivious to
PA).

We need to show that the result of the simulated execution using the rerandomized
oracle is close to that of an actual execution with the hypothetical view V ′B that was
sampled. Formally, the analysis requires the following “safety” property to hold with
high probability, when Bob samples V ′B at a point when the views are (VA, VB , VE).

Definition 5 (Safety). For Alice view VA, pair of Bob views (VB , V
′
B) and Eve view

VE , we define the following predicate:

Safety(VA, (VB , V
′
B), VE):=Nice(VA, VB , VE) ∧ Nice(VA, V

′
B , VE).



In the full version we show that at all rounds of the protocol, the safety condition
is satisfied with high probability. The proof, again, is a consequence of the fact that the
actual distributions are close to tidy distributions, and the tidy distributions are close to
conditional product distributions.

6.1 Extending to Protocols with Inputs

The final ingredient we need to extend the proof in [5] to the case of image-testable
random oracles is to extend our common information learner to protocols with private
inputs for Alice and Bob. As was done in [5], such a common information learner can
be easily reduced to one for inputless protocols, as long as the domain size of the inputs
is polynomial in the security parameter.15 For this we transform the given protocol to
an inputless protocol by randomly sampling inputs for Alice and Bob. We augment the
protocol ρwhere parties have private inputs with an eavesdropper strategy as guaranteed
by Lemma 2 when we assume that parties have picked their input uniformly at random.
This augmented protocol is referred to as ρ+.

By choosing the threshold parameter σ of the eavesdropper to be suitably small, we
can ensure the following strong independence properties:

1. Suppose i is an even round in the augmented protocol ρ+. If x ∈ X and y, y′ ∈ Y
are likely inputs at V (i)

E (transcript of the augmented protocol), then the message
sent by Alice is nearly independent of Bob’s private input being y or y′.

2. Suppose i is an even round in the augmented protocol ρ+. If x ∈ X and y, y′ ∈ Y
are likely inputs at V (i)

E , then sample a Alice-Bob joint view (V
(i+1)
A , V

(i)
B ) just

after Alice has sent the messagemi+1. Conditioned on the transcript V (i)
E , message

sent by Alice mi+1 and Bob input being y′, sample a new Bob view V ′
(i)
B . With

high probability: Safety(V (i+1)
A , (V

(i)
B , V ′

(i)
B ), V

(i)
E ) holds, i.e. Nice(V (i+1)

A , V
(i)
B , V

(i)
E )

and Nice(V
(i+1)
A , V ′

(i)
B , V

(i)
E ).

3. For an even round i, and likely inputs x ∈ X and y, y′ ∈ Y the distribution of
(V

(i+1)
A , V

(i)
B V ′

(i)
B ) is close to a product distribution where each component is in-

dependently sampled conditioned on (V
(i)
E ,mi+1).

Analogous conditions hold when i is odd. For a formal version of this result, refer to
the full version of the paper [32].

Given the above results, the frontier analysis of [5] can be carried out for image-
testable random oracles.

7 Putting Things Together

Now we show how to complete the proof of Theorem 1. Suppose f is a 2-party finite
semi-honest non-trivial SFE. Assume that there exists a 1 − negl(κ) secure protocol ρ
relative to oracle class PKEκ, with round complexity N . By Theorem 2, we construct a

15 Note that we depend on the input domains being of polynomial size also for applying the
decomposability characterization of [8,10].



1−λ∗(κ) secure protocol ρ∗ relative to oracle class O(K)
κ , where λ∗ could be arbitrarily

small 1/poly and K = {0, 1}2κ ∪ {⊥}.
Now, if we choose λ∗ in Lemma 3 to be sufficiently small so that λ∗(κ) < Λ(N,κ),

ρ∗ contradicts Lemma 3 and hence also the assumption that ρ is a (1− negl(κ)) secure
protocol for semi-honest non-trivial f relative to PKEκ. Note that this result crucially
relies on the fact that Theorem 2 preserves round-complexity and the simulation error
exhibited in Lemma 3 is function of only round complexity (and independent of the
query complexity).

8 Conclusions and Open Problems

As mentioned in the introduction, our result can be set in the larger context of the
“cryptographic complexity” theory of [7]: with every (finite, deterministic) multi-party
function f , one can associate a computational intractability assumption that there exists
a secure computation protocol for f that is secure against semi-honest corruption. The
main result of this work shows that the set of such assumptions associated with 3-party
functions is strictly larger than the set associated with 2-party functions. However, we
do not characterize this set either for the 3-party case or for the 2-party case.

It remains a major open problem in this area to understand what all computational
intractability assumptions could be associated with multi-party functions. For the 3-
party case, this question is far less understood than that for 2-party functions. Intuitively,
there are many more “modes of secrecy” when more than two parties are involved, and
these modes will be associated with a finer gradation of intractability assumptions. Our
result could be seen as a first step in understanding such a finer gradation. It raises the
question whether there are further modes of secrecy for larger number of parties, and if
they always lead to “new” complexity assumptions.

Stepping further back, the bigger picture involves randomized and reactive func-
tionalities, various different notions of security, and “hybrid models” (i.e., instead of
considering each multi-party function f and a secure protocol for it in plain model, we
can consider a pair of functions (f, g) and consider a secure protocol for f given ideal
access to g). The cryptographic complexity questions of such functions remain wide
open.
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