
Obfuscation for Evasive Functions

Boaz Barak1, Nir Bitansky2 ?, Ran Canetti2,3 ??,
Yael Tauman Kalai1, Omer Paneth3 ? ? ?, and Amit Sahai4 †

1 Microsoft Research
2 Tel Aviv University
3 Boston University

4 UCLA

Abstract. An evasive circuit family is a collection of circuits C such that for
every input x, a random circuit from C outputs 0 on x with overwhelming prob-
ability. We provide a combination of definitional, constructive, and impossibility
results regarding obfuscation for evasive functions:

1. The (average case variants of the) notions of virtual black box obfuscation
(Barak et al, CRYPTO ’01) and virtual gray box obfuscation (Bitansky and
Canetti, CRYPTO ’10) coincide for evasive function families. We also define
the notion of input-hiding obfuscation for evasive function families, stipulat-
ing that for a random C ∈ C it is hard to find, given O(C), a value out-
side the preimage of 0. Interestingly, this natural definition, also motivated
by applications, is likely not implied by the seemingly stronger notion of
average-case virtual black-box obfuscation.

2. If there exist average-case virtual gray box obfuscators for all evasive func-
tion families, then there exist (quantitatively weaker) average-case virtual
gray obfuscators for all function families.

3. There does not exist a worst-case virtual black box obfuscator even for eva-
sive circuits, nor is there an average-case virtual gray box obfuscator for
evasive Turing machine families.

4. Let C be an evasive circuit family consisting of functions that test if a low-
degree polynomial (represented by an efficient arithmetic circuit) evaluates
to zero modulo some large prime p. Then under a natural analog of the dis-
crete logarithm assumption in a group supporting multilinear maps, there
exists an input-hiding obfuscator for C. Under a new perfectly-hiding multi-
linear encoding assumption, there is an average-case virtual black box ob-
fuscator for the family C.

? Supported by an IBM Ph.D. Fellowship and the Check Point Institute for Information Security.
?? Supported by the Check Point Institute for Information Security, an NSF EAGER grant, and an NSF Algorithmic foun-

dations grant 1218461.
? ? ? Work done while the author was an intern at Microsoft Research New England. Supported by the Simons award for

graduate students in theoretical computer science and an NSF Algorithmic foundations grant 1218461.
† Work done in part while visiting Microsoft Research, New England. Research supported in part from a DARPA/ONR

PROCEED award, NSF grants 1228984, 1136174, 1118096, and 1065276, a Xerox Faculty Research Award, a Google
Faculty Research Award, an equipment grant from Intel, and an Okawa Foundation Research Grant. This material is based
upon work supported by the Defense Advanced Research Projects Agency through the U.S. Office of Naval Research
under Contract N00014-11-1-0389. The views expressed are those of the author and do not reflect the official policy or
position of the Department of Defense, the National Science Foundation, or the U.S. Government.

1 Introduction

The study of Secure Software Obfuscation — or, methods to transform a program (say
described as a Boolean circuit) into a form that is executable but otherwise completely
unintelligible — is a central research direction in cryptography. In this work, we study
obfuscation of evasive functions— an evasive function family is a collection Cn of
Boolean circuits mapping some domain D to {0, 1} such that for every x ∈ D the
probability over C ← Cn that C(x) = 1 is negligible. Focusing on evasive functions
leads us to new notions of obfuscation, as well as new insights into general-purpose
obfuscation.

Why Study Obfuscation of Evasive Functions? To motivate the study of the obfuscation
of evasive functions, let us consider the following scenario taken from [13]: Suppose
that a large software publisher discovers a new vulnerability in their software that causes
the software to behave in undesirable ways on certain (rare) inputs. The publisher then
designs a software patch P that tests the input x to see if it falls into the set S of bad
inputs, and if so outputs 1 to indicate that the input x should be ignored. If x /∈ S,
the patch outputs 0 to indicate that the software can behave normally. If the publisher
releases the patch P “in the clear”, an adversary could potentially study the code of
P and learn bad inputs x ∈ S that give rise to the original vulnerability. Since it can
take months before a majority of computers install a new patch, this would give the
attacker plenty of time to exploit this vulnerability on unpatched systems even when the
set S of bad inputs was evasive to begin with. If instead, the publisher could obfuscate
the patch P before releasing it, then intuitively an attacker would gain no advantage
in finding an input x ∈ S from studying the obfuscated patch. Indeed, assuming that
without seeing P the attacker has negligible chance of finding an input x ∈ S, it makes
sense to model P as an evasive function.

Aside from the motivating scenario above, evasive functions are natural to study
in the context of software obfuscation because they are a natural generalization of the
special cases for which obfuscation was shown to exist in the literature such as point
functions [8], hyperplanes [10], and conjunctions [6].5 Indeed, as we shall see, the study
of obfuscation of evasive functions turns out to be quite interesting from a theoretical
perspective, and sheds light on general obfuscation as well.

What notions of obfuscation makes sense for evasive functions? As the software
patch problem illustrates, a very natural property that we would like is input hiding:
Given an obfuscation of a random circuit C ← Cn, it should be hard for an adversary
to find an input x such that C(x) = 1. It also makes sense to consider (average case
versions of) strong notions of obfuscation, such as “virtual black box” (VBB) obfusca-
tion introduced by Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan and Yang [3],
which, roughly speaking, states that any predicate of the original circuit C computed
from its obfuscation could be computed with almost the same probability by an effi-
cient simulator having only oracle (i.e., black box) access to the function (see Section 2
for a formal definition). One can also consider the notion of “virtual gray box” (VGB)

5 Conjunctions are not necessarily evasive, however the interesting case for obfuscation is large
conjunctions which are evasive.

introduced by Bitansky and Canetti [4], who relaxed the VBB definition to allow the
simulator to run in unbounded time (though still with only a polynomial number of
queries to its oracle). Another definition proposed in [3], with a recent construction
given by [15], is of “indistinguishability obfuscation” (IO). The actual meaning of IO
is rather subtle, and we discuss it in Section 1.2.

1.1 Our results

We provide a combination of definitional, constructive, and impossibility results regard-
ing obfuscation for evasive functions. First, we formalize the notion of input-hiding
obfuscation for evasive functions (as sketched above). We give evidence that this no-
tion of input-hiding obfuscation is actually incomparable to the standard definition of
VBB obfuscation. While it is not surprising that input-hiding obfuscation does not im-
ply VBB obfuscation, it is perhaps more surprising that VBB obfuscation does not
imply input-hiding obfuscation (under certain computational assumptions). Intuitively,
this is because VBB obfuscation requires only that predicates of the circuit being ob-
fuscated are simulatable, whereas input hiding requires that no complete input string x
that causes C(x) = 1 can be found.

Second, we formalize a notion of perfect circuit-hiding obfuscation, which asks that
for every predicate of the circuit C ← Cn, the probability that the adversary can guess
the predicate (or its complement) given an obfuscation of C is negligibly close to the
expected value of the predicate over C ← Cn. We then show that for any evasive circuit
family C, this simple notion of obfuscation is equivalent to both average-case VBB
obfuscation and average-case VGB obfuscation. Thus, in particular, we have:

Theorem 1 (Informal) For every evasive function collection C and obfuscator O, it
holds that O is an average-case VBB obfuscator for C if and only if it is an average-
case VGB obfuscator for C.

We also show that evasive functions are at the heart of the VGB definition in the
sense that if it is possible to achieve VGB obfuscators for all evasive circuit families then
it is possible to achieve a slightly weaker variant of VGB obfuscation for all circuits:

Theorem 2 (Informal) If there exists an average-case VGB obfuscator for every eva-
sive circuit family then there exists a “weak” average-case VGB obfuscator for every
(not necessarily evasive) circuit family.

The notion of “weak” VGB obfuscation allows the simulator to make a slightly
super-polynomial number of queries to its oracle. It also allows the obfuscating algo-
rithm to be inefficient. The latter relaxation is not needed if we assume the existence of
indistinguishability obfuscators for all circuits, as conjectured in [15].

We then proceed to give new constructions of obfuscators for specific natural fam-
ilies of evasive functions. We focus on functions that test if a bounded (polynomial)
degree multivariate polynomial, given by an arithmetic circuit, evaluates to zero mod-
ulo some large prime p. We provide two constructions that build upon the approximate
multilinear map framework developed by Garg, Gentry, and Halevi [14] and continued

by Coron, Lepoint, and Tibouchi [12]. We first construct an input-hiding obfuscator
whose security is based on a variant of the discrete logarithm assumption in the mul-
tilinear setting. We then construct a perfect circuit-hiding obfuscator based on a new
assumption, called perfectly-hiding multilinear encoding. Very roughly, we assume that
given encodings of k and r · k, for a random r and k, the value of any predicate of k
cannot be efficiently learned.

Theorem 3 (Informal) Let C be the evasive function family that tests if a bounded
(polynomial) degree multivariate polynomial, given by an arithmetic circuit, evaluates
to zero modulo some large prime p. Then: (i) Assuming the existence of a group sup-
porting a multilinear map in which the discrete logarithm problem is hard, there exists
an input-hiding obfuscator for C, and (ii) Under the perfectly-hiding multilinear encod-
ing assumption, there exists an average-case VBB obfuscator for all log-depth circuits
in C.

These constructions can be combined to obtain a single obfuscator for testing if an
input is in the zero-set of a bounded-degree polynomial, that simultaneously achieves
input-hiding and average-case VBB obfuscation. We give an informal overview of our
construction in Section 3.

Finally, we complement our constructive results by giving two impossibility results
regarding the obfuscation of evasive functions. First, we show impossibility with respect
to evasive Turing Machines:

Theorem 4 (Informal) There exists a class of evasive Turing MachinesM such that
no input-hiding obfuscator exists with respect toM and no average-case VGB obfus-
cator exists with respect toM.

We also show that there exist classes of evasive circuits for which VBB obfuscation is
not possible. However, here we only rule out worst case obfuscation:

Theorem 5 (Informal) There exists a class of evasive circuits C such that no worst-
case VBB obfuscator exists with respect to C.

1.2 Alternative approaches to obfuscation

We briefly mention two other approaches to general program obfuscation. One is to use
the notion of indistinguishability obfuscation (IO) [3]. Indeed, in a recent breakthrough
result, Garg, Gentry, Halevi, Raykova, Sahai and Waters [15] propose a candidate gen-
eral obfuscation mechanism and conjecture that it is IO for all circuits. Improved vari-
ants of this construction have been proposed in [7, 2]. Roughly speaking, IO implies
that an obfuscation of a circuit C hides “as much as possible” about the circuit C in
the sense that if O is an IO obfuscator, and there exists some other obfuscator O′ (with
not too long output) that (for instance) achieves input hiding or VBB obfuscation for C,
then O(C) will achieve the same security as well [16]. However, while IO obfuscators
have found uses for many cryptographic applications [15, 18, 17], its hard to quantify
what security is obtained by directly obfuscating a function with an IO obfuscator since

for most classes of functions we do not know what “as much as possible” is. In particu-
lar, IO obfuscators are not known to imply properties such as input hiding or VBB/VGB
for general circuits. For insance, the “totally unobfuscatable functions” of [3] (which
are functions that are hard to learn but whose canonical representation can be recovered
from any circuit) can be trivially IO-obfuscated, but this clearly does not give any mean-
ingful security guarantees. Furthermore, we do not know whether IO obfuscators give
guarantees such as input hiding or VBB on any families of evasive functions beyond
those families that we already know how to VBB-obfuscate. Thus our work here can be
seen as complementary to the question of constructing indistinguishability obfuscators.
Furthermore, the hardness assumptions made in this work are much simpler than those
implied by the IO security of any of the above candidates.

Another approach is to consider obfuscation mechanisms in idealized models where
basic group operations are modeled as calls to abstract oracles. Works along this line,
using different levels of abstraction, include [15, 11, 7, 2]. It should be stressed however
that, as far as we know, proofs of security in any of these idealized models bear no
immediate relevance to the security of obfuscation schemes in the plain model.

1.3 Organization of the paper

In Section 2 we formally define evasive function families and the various notions of
obfuscation that apply to them, and show equivalence between several of these notions.
Section 3 contains our constructions for obfuscating zero-testing functions for low de-
gree polynomials. In Section 4 we show that obtaining virtual gray box obfuscation for
evasive functions implies a weaker variant of VGB for all functions. Section 5 con-
tains our impossibility results for worst-case VBB obfuscation of evasive circuits and
average-case VGB obfuscation of evasive Turing machines.

2 Evasive Circuit Obfuscation

Let C = {Cn}n∈N be a collection of circuits such that every C ∈ Cn maps n input bits
to a single output bit, and has size poly(n). We say that C is evasive if on every input,
a random circuit in the collection outputs 0 with overwhelming probability:6

Definition 2.1 (Evasive Circuit Collection). A collection of circuits C is evasive if
there exist a negligible function µ such that for every n ∈ N and every x ∈ {0, 1}n:

Pr
C←Cn

[C(x) = 1] ≤ µ(n) .

An equivalent definition that will be more useful to us states that given oracle access
to a random circuit in the collection it is hard to find an input that maps to 1.

Definition 2.2 (Evasive Circuit Collection - Alternative Definition). A collection of
circuits C is evasive if for every (possibly inefficient)A and for every polynomial q there

6 To avoid confusion, we note that the notion here is unrelated (and quite different) from the
notion of evasive relations in [9].

exist a negligible function µ such that and for every n ∈ N:

Pr
C←Cn

[C(AC[q(n)](1n)) = 1] ≤ µ(n) .

Where C[q(n)] denotes an oracle to the circuit C which allows at most q(n) queries.

2.1 Definitions of Evasive Circuit Obfuscation

We start by recalling the syntax and functionality requirement for circuit obfuscation as
defined in [3].

Definition 2.3 (Functionality of Circuit Obfuscation). An obfuscator O for a circuit
collection C is a PPT algorithm such that for all C ∈ C, O(C) outputs a description of
a circuit that computes the same function as C.

We suggest two new security notions for obfuscation of evasive collections: perfect
circuit-hiding and input-hiding. Both notions are average-case notions, that is, they only
guarantee security when the obfuscated circuit is chosen at random from the collection.

The notion of input hiding asserts that given an obfuscation of a random circuit in
the collection, it remains hard to find input that evaluates to 1.

Definition 2.4 (Input-Hiding Obfuscation). An obfuscator O for a collection of cir-
cuits C is input-hiding if for every PPT adversary A there exist a negligible function µ
such that for every n ∈ N and for every auxiliary input z ∈ {0, 1}poly(n) to A:

Pr
C←Cn

[C(A(z,O(C))) = 1] ≤ µ(n) ,

where the probability is also over the randomness of O.

Our second security notion of perfect circuit-hiding asserts that an obfuscation of a
random circuit in the collection does not reveal any partial information about original
circuit. We show that for evasive collections, this notion is equivalent to existing defi-
nitions of average-case obfuscation such as average-case virtual black-box (VBB) [3],
average-case virtual gray-box (VGB) [4], and average-case oracle indistinguishability
[8].

Definition 2.5 (Perfect Circuit-Hiding Obfuscation). Let C be a collection of circuits.
An obfuscator O for a circuit collection C is perfect circuit-hiding if for every PPT
adversary A there exist a negligible function µ such that for every balanced predicate
P , every n ∈ N and every auxiliary input z ∈ {0, 1}poly(n) to A:

Pr
C←Cn

[A(z,O(C)) = P(C)] ≤ 1

2
+ µ(n) ,

where the probability is also over the randomness of O.

Remark 2.1 (On Definition 2.5). The restriction to the case of balanced predicates is
made for simplicity of exposition only. We note that the proof of Theorem 2.1 implies
that Definition 2.5 is equivalent to a more general definition that considers all predicates.

Remark 2.2 (On extending the definitions for non-evasive functions). The definitions of
input-hiding and perfect circuit-hiding obfuscation are tailored for evasive collections
and clearly cannot be achieved for all collections of circuits. For the case of input-
hiding, this follows directly from Definition 2.2 of evasive collections. For the case of
perfect circuit-hiding, consider the non-evasive collection C such that for every C ∈ C,
C(0n) outputs the first bit of C. Clearly, no obfuscator can preserve functionality while
hiding the first bit of the circuit.

2.2 On the Relations Between the Definitions

An input-hiding obfuscation is not necessarily perfect circuit-hiding since an input-
hiding obfuscation might always include, for example, the first bit of the circuit in
the output. In the other direction we do not believe that every perfect circuit-hiding
obfuscation is also input hiding. Intuitively, the reason is that the perfect circuit-hiding
obfuscation only prevents the adversary from learning a predicate of the circuit. Note
that there may be many inputs on which the circuit evaluates to 1, and therefore, even
if the obfuscation allows the adversary to learn some input that evaluates to 1, it is not
clear how to use such an input to learn a predicate of the circuit.

In the full version of this paper [1] we give an example of an obfuscation for some
evasive collection that is perfect circuit-hiding but not input-hiding. The example is
based on a worst case obfuscation assumption for hyperplanes [10]. Nonetheless, we
prove that for evasive collections where every circuit only evaluates to 1 on a polynomial
number of inputs, every perfect circuit-hiding obfuscation is also input-hiding.

2.3 Perfect Circuit-Hiding Obfuscation is Equivalent to Existing Notions

We start by recalling the average-case versions of existing security definitions of obfus-
cation.

Definition 2.6 (Average-Case Virtual Black-Box (VBB) from [3]). An obfuscator O
for a collection of circuits C is average-case VBB if for every PPT adversary A there
exists a PPT simulator Sim and a negligible function µ such that for every predicate P ,
every n ∈ N and every auxiliary input z ∈ {0, 1}poly(n) to A:∣∣∣∣ Pr

C←Cn
[A(z,O(C)) = P(C)]− Pr

C←Cn
[SimC(z, 1n) = P(C)]

∣∣∣∣ ≤ µ(n) ,

where the probability is also over the randomness of O and Sim.

The notion of VGB relaxes VBB by considering a computationally unbounded sim-
ulator, however, the number of queries the simulator makes to its oracle is bounded.

Definition 2.7 (Average-Case VGB Obfuscation from [4]). An obfuscator O for a
collection of circuits C is average-case VGB if for every PPT adversary A there exists
a negligible function µ, a polynomial q and a (possibly inefficient) simulator Sim such

that for every predicate P , every n ∈ N and every auxiliary input z ∈ {0, 1}poly(n) to
A: ∣∣∣∣ Pr

C←Cn
[A(z,O(C)) = P(C)]− Pr

C←Cn
[SimC[q(n)](z, 1n) = P(C)]

∣∣∣∣ ≤ µ(n) ,

where C[q(n)] denotes an oracle to the circuit C which allows at most q(n) queries
and where the probability is also over the randomness of O and Sim.

The notion of oracle indistinguishability was originally formulated in the context
of point functions, and here we give a variation of it for general collections. Similarly
to our new notions, this definition is meaningful for evasive collections, but not for
arbitrary collections.
Definition 2.8 (Average-Case Oracle-Indistinguishability Obfuscation from [8]).
An obfuscator O for a collection of circuits C is average-case oracle indistinguish-
able if for every PPT adversary A that outputs one bit, the following ensembles are
computationally indistinguishable:

– {(C,A(z,O(C))) | C ← Cn}n∈N,z∈{0,1}poly(n) ,
– {(C,A(z,O(C ′))) | C,C ′ ← Cn}n∈N,z∈{0,1}poly(n) .

The following theorem showing that, for evasive collections, the above notions
are all equivalent to perfect circuit-hiding is proven in the full version of this paper
[1]. We note that, for general circuits, average-case VBB and average-case VGB may
not be equivalent (follows from [4, Proposition 4.1]). The equivalence of average-case
VBB and average-case oracle-indistinguishability was proven for point functions by
Canetti [8]. We generalize the claim for all evasive functions.
Theorem 2.1. Let O be an obfuscator for an evasive collection C. The following state-
ments are equivalent:

1. O is perfect circuit-hiding (Definition 2.5).
2. O is average-case VBB (Definition 2.6).
3. O is average-case VGB (Definition 2.7).
4. O is average-case oracle-indistinguishability (Definition 2.8).

Remark 2.3 (On evasive obfuscation with a universal simulator). It follows from the
proof of Theorem 2.1 that every obfuscatorO for an evasive collection C that is average-
case VBB-secure (or average-case VGB-secure) can be simulated as follows: given an
adversary A, the simulator Sim simply executes A on a random obfuscation O(C ′)
of a circuit C ′ sampled uniformly from the collection C. The simplicity of the above
simulator can be demonstrated as follows:

– The simulator is universal, that is, the same algorithm Sim can simulate every ob-
fuscatorO and family C given only black box access toO and the ability to sample
uniformly from C.

– The simulator only makes black-box use of the adversary A. This is in contrast
to the case of worst-case VBB-security where non-black simulators are required
([8, 20]).

– The simulator does not make any calls to its oracle. This is in contrast to the case of
non-evasive function where, for example, the possibility of obfuscating learnable
functions can only be demonstrated by a simulator that queries it oracle.

3 Obfuscating Root Sets of Low Degree Polynomials

In this section, we present constructions of input-hiding obfuscation and of perfect
circuit-hiding obfuscation for a subclass of evasive collections. We will be able to
obfuscate collections that can be expressed as the zero-set of some low-degree poly-
nomial. More concretely, we say that a collection C is of low arithmetic degree if for
every n, there is a θ(n)-bit prime p, and a polynomial size low degree arithmetic circuit
U(k, x) over Zp where k ∈ Z`p, x ∈ Zmp such that Cn = {Ck}k∈Z`

p
and Ck(x) = 1 iff

U(k, x) = 0.
Note that the Schwartz-Zippel Lemma, together with the fact that U(k, x) is of low

degree implies that for every x ∈ Zmp either

Pr
k←Z`

p

[Ck(x) = 0] = negl(n) or, Pr
k←Z`

p

[Ck(x) = 0] = 1 .

Thus, there exists a single function h such that the collection {Ck − h}k∈Z`
p

is evasive,
where h(x) = 1 iff:

Pr
k←Z`

p

[Ck(x) = 0] = 1 .

In other words, a collection of low arithmetic degree is either evasive or it is a “transla-
tion” of an evasive collection by a fixed, efficiently computable (in RP) function that is
independent of the key. Therefore, we can restrict ourselves WLOG to evasive collec-
tion of low arithmetic degree.

Both constructions will be based on graded encoding as introduced by Garg, Gen-
try, and Halevi [14]. The high-level idea behind both constructions is as follows. The
obfuscation of a circuit Ck will contain some encoding of the elements of k. Using
this encoding, an evaluator can homomorphically evaluate the low-degree polynomial
U(k, x). Then, the evaluator tests whether the output is an encoding of 0 and learns the
value of Ck(x).

The two constructions will encode the key k in two different ways, and their security
will be based on two different hardness assumptions. The security of the input-hiding
construction will be based on a discrete-logarithm-style assumption on the encoding.
The obfuscation will support evasive collections of low arithmetic degree defined by a
polynomial size circuit U(k, x) of total degree poly(n). This class of circuits is equiva-
lent to polynomial size arithmetic circuits of depthO(log2(n)) and total degree poly(n)
[19]. The security of the perfect circuit-hiding construction will be based on a new as-
sumption called the perfectly-hiding multilinear encoding assumption. The obfuscation
will support evasive collections defined by a polynomial size circuit U(k, x) of depth
O(log(n)). We also discuss a stronger variant of this assumption, which like in the
input-hiding construction, supports arbitrary arithmetic circuits with total polynomial
degree.

3.1 Graded Encoding

We start by defining a variant of the symmetric graded encoding scheme from ([14]),
used in our construction, and by specifying hardness assumptions used.

Definition 3.1. A d-graded encoding system consists of a ring R and a collection of
disjoint sets of encodings

{
S

(α)
i |α ∈ R, 0 ≤ i ≤ d

}
. The scheme supports the follow-

ing efficient procedures:

– Instance Generation: given security parameter n and the parameter d, Gen(1n, 1d)
outputs public parameters pp.

– Encoding: given the public parameters pp and α ∈ R, Enc(pp, α)

outputs u ∈ S(α)
1 .

– Addition and Negation: given the public parameters pp and two encodings
u1 ∈ S

(α1)
i , u2 ∈ S

(α2)
i , Add(pp, u1, u2) outputs an encoding in S(α1+α2)

i , and
Neg(pp, u1) outputs an encoding in S(−α1)

i .
– Multiplication: given the public parameters pp and two encodings u1 ∈ S(α1)

i1
,

u2 ∈ S(α2)
i2

such that i1 + i2 ≤ d, Mul(pp, u1, u2) outputs an encoding in S(α1·α2)
i1+i2

.
– Zero Test: given the public parameters pp and an encodings u, Zero(pp, u) outputs

1 if u ∈ S(0)
d and 0 otherwise.

The main difference between this formulation and the formulation in [14] is that we
assume that there is an efficient procedure for generating level 1 encoding of every ring
element. In [14], it is only possible to obliviously generate an encoding of a random
element in R, without knowing the underlying encoded element. While we currently
do not know how how to use the construction of [14] to instantiate our scheme, we can
get a candidate construction with public encoding based on the construction of [12], by
publishing encodings of all powers of 2 as part of the public parameters. The known
candidate constructions involve noisy encodings. Since in our construction we use at
most O(d) operations, we may set the noise parameter to be small enough so that it
can be ignored. Therefore, from hereon, we omit the management of noise from the
interfaces of the graded encoding.

Our first hardness assumption (used in the construction of input-hiding obfuscation)
is that the encoding function is one-way. That is, given the output of Enc(pp, α) for
randomly generated parameters pp and a random ring element α ∈R R, it is hard to
find α.

Our second hardness assumption (used in the construction of perfect circuit-hiding
obfuscation) is a new assumption called perfectly-hiding multilinear encoding. The as-
sumption states that given level 1 encodings of r and r ·k for random r, k ∈ R, the value
of any one bit predicate of k cannot be efficiently learned. The perfectly-hiding multi-
linear encoding assumption can be shown to hold in an ideal model where the encoding
is generic (such as the generic ideal models described in [7, 2]).

Assumption 3.1 (perfectly-hiding multilinear encoding). For every PPT adversary
A that outputs one bit, the following ensembles are computationally indistinguishable:

–
{
pp, k,A(Enc(pp, r),Enc(pp, r · k)) : k, r ← R, pp← Gen(1n, 1d)

}
,

–
{
pp, k,A(Enc(pp, r),Enc(pp, r · k′)) : k, k′, r ← R, pp← Gen(1n, 1d)

}
.

We note that both of the above assumptions do not hold for the candidate construction
of [14] (assuming there is an efficient encoding procedure for every ring element). How-
ever, they are possibly satisfied by other constructions. In particular, to our knowledge

there are no known attacks violating this assumption for the candidate construction of
[12].

3.2 Input-hiding Obfuscation

Let Cn be an evasive collection defined by the arithmetic circuit U(k, x), k ∈ Z`p, x ∈
Zmp of degree d = poly(n). The obfuscator will make use of a d-symmetric graded
encoding scheme over the ring Zp. For every k ∈ Z`p the obfuscation O(Ck) generates
parameters pp ← Gen(1n, 1d) for the graded encoding, and outputs a circuit that has
the public parameters pp and the encodings {Enc(pp, ki)} for i ∈ [`] hardwired into
it. The circuit O(Ck), on input x ∈ Zmp , first generates encodings {Enc(pp, xi)} for
i ∈ [m], and uses the evaluation functions of the graded encoding system to compute
an encoding u ∈ S(U(k,x))

d . O(Ck) then uses the zero test to check whether u ∈ S(0)
d .

If so it outputs 1 and otherwise it outputs 0.
More concretely, the encoding u ∈ S(U(k,x))

d is obtained by computing the encoded
value for every wire of the arithmetic circuit U(k, x). For every gate in the circuit con-
necting the wires w1 and w2 to w3, given encodings

uw1
∈ S(α1)

d1
, uw2

∈ S(α2)
d2

,

for the values on wiresw1 andw2, an encoding uw2 of the value on wirew3 is computed
as follows. If the gate is an addition gate we first obtain encodings

u′w1
∈ S(α1)

max(d1,d2), u
′
w2
∈ S(α2)

max(d1,d2) ,

by multiplying either uw1
or uw2

by the appropriate encoding of 1. The encodings
u′w1

, u′w2
are added to obtain the encoding uw3

∈ S(α1+α2)
max(d1,d2). If the gate is a multipli-

cation gate, we multiply the encodings uw1
, uw2

to obtain the encoding uw3
∈ S(α1·α2)

d1+d2
.

Note that the degree of the encoding computed for every is at most the degree of the
polynomial computed by the wire and therefore does not exceed d.

Theorem 3.2. O is an input-hiding obfuscator for C, assuming Enc is one-way.

Proof. We need to prove that O satisfies both the functionality requirement and the se-
curity requirement. The functionality requirement follows immediately from the guar-
antees of the graded encoding scheme. Thus, we focus on proving the security require-
ment. To this end, fix any PPT adversary A, and suppose for the sake of contradiction
that for infinitely many values of n,

Pr
k←Z`

p

[Ck(A(O(Ck))) = 1] ≥ 1

poly(n)
. (1)

Next we prove that there exists a PPT adversary A′ that brakes the one-wayness
of the encoding. The adversary A′ will make use of the the helper procedure Simplify
described in the following claim:

Claim 3.3. There exists an efficient procedure Simplify that, given a multivariate non-
trivial polynomial P : Z`p → Zp of total degree d, represented as an arithmetic circuit,
outputs a set of multivariate polynomials {Pj}j∈[`] (represented as arithmetic circuits)
such that:

1. Pj is a multivariate non-trivial polynomial of total degree d.
2. For every r ∈ Z`p such that P (r) = 0 there exist j ∈ [`] such that P (r) = 0 but the

univariate polynomial Q(x) = P (r1, . . . , rj−1, x, rj+1 . . . , r`) is non-trivial.

We note that a very similar claim was proven by Bitansky et al. [5, Proposition 5.15].
We reprove it here for completeness

Proof (Claim 3.3). Given an arithmetic circuit computing a multivariate polynomial
P : Z`p → Zp of total degree d such that P 6≡ 0, the procedure Simplify is as follows:

1. Set P1 = P . repeat the following for j = 1 to `.
2. Decompose Pj as follows:

Pj(kj , . . . , k`) =

d∑
i=1

kij · Pj,i(kj+1, . . . , k`).

3. Set Pj+1 to be the non-zero polynomial Pj,i with the minimal i.

Note that decomposing an arithmetic circuit into homogeneous components can be
done efficiently. It is left to show that for every r ∈ Z`p if P (r) = 0 then there exists
j ∈ [`] such that

Q(x) = Pj(x, rj+1, . . . , r`) 6≡ 0 ,

and
Pj(rj , rj+1, . . . , r`) = 0.

The proof is by induction on j. The base case is when j = 1, for which it holds that:

P1(x1, . . . , x` 6≡ 0

P1(r1, . . . , r`) = 0 .

For any 1 ≤ j < `, suppose that:

Pj(xj , . . . , x`) 6≡ 0

Pj(rj , . . . , r`) = 0

Pj(x, rj+1, . . . , r`) ≡ 0 ;

then, by the construction of Pj+1 from Pj ,

Pj+1(xj+1, . . . , x`) 6≡ 0

Pj+1(rj+1, . . . , r`) = 0 .

If this inductive process reaches P`, then it holds that:

P`(x`) 6≡ 0

P`(r`) = 0 ,

which already satisfies the claim. ut

The adversaryA′. A′ is given the public parameters pp, and an encoding u of a random
element r ∈ Zp. A′ is defined as follows:

1. A′ samples a random index i ∈ [`] and a random element kj ← Zp for every
j ∈ [`] \ {i}.

2. A′ generates a random obfuscation O(Ck) from the encodings {Enc(kj)}j∈[`]\{i}
and using his input u as the encoding of ki.

3. A′ executes A(O(Ck)) and obtains an input x. If O(Ck)(x) 6= 1, A′ aborts.
4. Otherwise, A′ executes the helper procedure Simplify on the polynomial U(·, x)

with the values of x fixed and obtains the polynomials {Pj}j∈[`].
5. A′ constructs the univariate polynomial Q(x) = Pi(k1, . . . , ki−1, x, ki+1, . . . , k`)

(the rest of the elements of k are known to A′).
6. If Q ≡ 0, A′ aborts, otherwise it outputs a random root of Q.

We show that A′ outputs the correct value of r with noticeable probability. By our
assumption on A, O(Ck)(x) 6= 1 with some noticeable probability ε. In this case, it
follows from the correctness of O that U(k, x) = 0. Let j be the index guaranteed by
Claim 3.3. Since the distribution of k1, . . . , k` is independent from the choice of i, it
follows that conditioned on the event U(k, x) = 0, i = j with probability 1/`. In this
case by Claim 3.3 it holds that Pi(k) = 0 but the univariate polynomial P defined above
is not identically zero, which means that r is one of the at most d roots of P . Therefore,
A′ will output the correct root with probability at least ε/(`d). ut

3.3 Perfect Circuit-Hiding Obfuscation

Let Cn be an evasive collection defined by the arithmetic circuit U(k, x), k ∈ Z`p, x ∈
Zmp of depth degree h = O(log(n)). The obfuscator will make use of a d-symmetric
graded encoding scheme for d = 2h over the ring Zp. For every k ∈ Z`p, the obfusca-
tion O(Ck) generates parameters pp ← Gen(1n, 1d) for the graded encoding, samples
random elements r1, . . . r` ∈ Zp, and outputs a circuit that has the public parame-
ters pp hardwired into it, and for every for i ∈ [`], has the encodings Enc(pp, ri) and
Enc(pp, ri · ki) hardwired into it.

The circuit O(Ck), on input x ∈ Zmp , does the following: For i ∈ [m], it generates
the encodings Enc(pp, r′i) and Enc(pp, r′i · xi) where r′i = 1 (Note that when encoding
the input we do not need r′i to be random for security. We only use r′i the make the
encoding of the input x and the key k have the same format). Using the evaluation
functions of the graded encoding system, O(Ck) then computes a pair of encodings
u0 ∈ S(r̃)

d and u1 ∈ S(r̃·U(k,x))
d for some r̃ 6= 0 that is a function of r1, . . . , r`. Finally,

it uses the zero test to check whether u1 ∈ S
(0)
d . If so it outputs 1 and otherwise it

outputs 0.
We next elaborate on how this encoded output is computed. The circuit O(Ck)

evaluates the arithmetic circuit U(k, x) gate by gate, as follows: Fix any gate in the
circuit connecting the wires w1 and w2 to w3. Suppose that for wires w1 and w2 we
have the pairs of encodings

(uw1
0 , uw1

1) ∈ S(r̃1)
d1
× S(r̃1·α1)

d1
, (uw2

0 , uw2
1) ∈ S(r̃2)

d2
× S(r̃2·α2)

d2
,

where r̃1, r̃2 6= 0 (supposedly the value on the wire w1 is α1 and the value on wire w2

is α2). If the gate is a multiplication gate, one can compute an encoding for wire w3, by
simply computing the pair of encodings:

(uw3
0 , uw3

1) ∈ S(r̃1·r̃2)
d1+d2

× S(r̃1·r̃2·α1·α2)
d1+d2

.

If the gate is an addition gate we compute uw3
0 in the same way. We also compute the

encodings:
u
w3,1

1 , u
w3,2

1 ∈ S(r̃1·r̃2·α1)
d1+d2

× S(r̃1·r̃2·α2)
d1+d2

,

which can then be added to get:

uw3
1 ∈ S

(r̃1·r̃2·(α1+α2))
d1+d2

.

Note that in any case r̃1 · r̃2 6= 0. Also note that in the evaluation of every level of the
circuit U the maximal degree of the encodings at most doubles and therefore it never
exceeds d = 2h.

Theorem 3.4. O is a perfect circuit-hiding obfuscator for C, assuming the encoding
satisfies the perfectly-hiding multilinear encoding assumption.

Proof. By Theorem 2.1, it suffices to prove that O is an average-case oracle indistin-
guishability obfuscator for C. Namely, it suffices to prove that for every PPT adversary
A that outputs a single bit,{

(Ck,A(O(Ck)))
∣∣ k ← Z`p

}
≈c
{

(Ck,A(O(Ck′)))
∣∣ k, k′ ← Z`p

}
.

Suppose for the sake of contradiction there exists a PPT adversary A (that outputs a
single bit), a distinguisher D, and a non-negligible function ε, such that∣∣∣∣∣ Pr

k←Z`
p

[D(k,A(O(Ck))) = 1]− Pr
k,k′←Z`

p

[D(k,A(O(Ck′))) = 1]

∣∣∣∣∣ ≥ ε(n) ,

Recall that the obfuscated circuit O(Ck) consists of the public parameters pp and
from the encodings:

{Enc(pp, ri),Enc(pp, ri · ki)}i∈[`] ,

where r1, . . . , r` ← Z∗p. Since sampling encoding corresponding to random input wires
is efficient, the equation above, together with a standard hybrid argument, implies that
there exists i ∈ [`], a PPT adversary A′ (that outputs a single bit), a distinguisher D′,
and a non-negligible function ε′, such that∣∣∣∣Prki←Zp [D′(pp, ki,A′(Enc(pp, ri),Enc(pp, ri · ki))) = 1]−

Prki,k′i←Zp
[D′(pp, ki,A′(Enc(pp, ri),Enc(pp, ri · k′i))) = 1]

∣∣∣∣ ≥ ε′(n) ,

contradicting the perfectly-hiding multilinear encoding assumption. ut

Remark 3.1 (On unifying the constructions). Under a stronger variant of the perfectly-
hiding multilinear encoding assumption we can directly prove that the input hiding ob-
fuscation construction presented in Section 3.2 is also perfect circuit-hiding. Intuitively,
the stronger variant assumes that the the function Enc given a random input k already
hides every predicate of k (without adding any additional randomization).

Assumption 3.5 (strong perfectly-hiding multilinear encoding). For every PPT ad-
versary A that outputs one bit, the following ensembles are computationally indistin-
guishable:

–
{
pp, k,A(Enc(pp, k)) : k,← R, pp← Gen(1n, 1d)

}
,

–
{
pp, k,A(Enc(pp, k′)) : k, k′,← R, pp← Gen(1n, 1d)

}
.

Note that this strong perfectly-hiding multilinear encoding assumption cannot hold for a
deterministic encoding function (unlike with the perfectly-hiding multilinear encoding
assumption). Using the stronger assumption above, we can get perfect circuit-hiding
obfuscation for a larger class of functions. Specifically, U(k, x) can be any arithmetic
circuit computing a polynomial of degree poly(n), removing the logarithmic depth
restriction.

4 Evasive Function and Virtual Grey Box Obfuscation

We show that average-case VGB obfuscation for all evasive functions implies a slightly
weaker form of average-case VGB obfuscation for all function.

We start by giving a slightly more general definition for VGB obfuscation that con-
siders also computationally unbounded obfuscators and allows for the query complexity
of the simulator to be super-polynomial. Note that when the obfuscator is unbounded,
we need to explicitly require that it has a polynomial slowdown, that is, the that the
obfuscated circuit is not too large.

Definition 4.1 (Weak Average-Case VGB Obfuscation). Let C = {Cn}n∈N be a col-
lection of circuits such that every C ∈ Cn is a circuit of size poly(n) that takes n bits
as input. A (possibly inefficient) algorithm O is a weak average-case VGB obfuscator
for C if it satisfies the following requirements:

– Functionality: for all C ∈ C,O(C) outputs a description of a circuit that computes
the same function as C.

– Polynomial Slowdown: There exist a polynomial p such that for every C ∈ C,
|O(C)| < p(|C|).

– Security: For every super-polynomial function q = q(n) and for every PPT ad-
versary A there exist a (possibly inefficient) simulator Sim and a negligible func-
tion µ such that for every predicate P , every n ∈ N and every auxiliary input
z ∈ {0, 1}poly(n) to A:∣∣∣∣ Pr

C←Cn
[A(z,O(C)) = P(C)]− Pr

C←Cn
[SimC[q(n)](z, 1n) = P(C)]

∣∣∣∣ ≤ µ(n) .

WhereC[q(n)] denotes an oracle to the circuitC which allows at most q(n) queries.

Remark 4.1 (On obfuscation with inefficient obfuscator). The notion of obfuscation
with computationally unbounded obfuscators was first considered in [3]. To demon-
strate the meaningfulness of this notion we note that assuming the existence of indis-
tinguishability obfuscation for a collection C with an effficent obfuscator, the existence
of a (weak) average-case VGB Obfuscation for C with a computationally unbounded
obfuscator already implies the existence of a (weak) average-case VGB Obfuscation
for C with an effficent obfuscator.

Theorem 4.1. If there exists an average-case VGB obfuscator for every collection of
evasive circuits, then there exists a weak average-case VGB obfuscator for every col-
lection of circuits.

Proof overview of Theorem 4.1. Let C be a (non-evasive) collection of circuit that we
want to VGB obfuscate. We start by showing a computationally unbounded leaning
algorithm L that given oracle access to a circuit C ∈ C tries to learn the circuit C.
Clearly, If L can make unbounded number of queries it can learn C exactly. However,
if the number of queries L makes to C is bounded by some super-polynomial function
q(n), we show that L can still learn a circuit C ′ ∈ C that is “close” to C. That is, C and
C ′ only disagree on some negligible fraction of the inputs.

The learning algorithm L will repeatedly query C on the input that gives maximal
information about the circuit C, taking into account the information gathered from all
the previous oracle answers. L stops when it learns C or when there is no query that
will give “enough” information about C. In this case, we denote by K(C) the set of all
circuits in Cn that are consistent with all the previous oracle answers. We show that all
the circuits inK(C) are close toC, and Lwill just output a random circuitC ′ ∈ K(C).

The high-level idea behind the construction of the weak average-case VGB obfusca-
torO for C is that given black box access to a random circuit C a weak VGB simulator,
that is, an unbounded adversary that can make at most q(n) oracle queries to C, is able
to run the learning algorithm L and learn the set K(C). Therefore, a secure obfuscation
O(C) of C does not need to hide the set K(C). In particular, O(C) may contain a
random circuit C ′ ← K(C) in the clear. To satisfy the functionality requirement, the
obfuscation cannot contain only C ′. Additionally, O(C) will contain the circuit Cdiff ,
whereCdiff = C⊕C ′ is a circuit that outputs 1 on every input on whichC andC ′ differ.
Now, to evaluate C on an input x an evaluator can compute C(x) = C ′(x)⊕ Cdiff(x).
Clearly,O(C) cannot containCdiff in the clear, sinceCdiff depends onC. instead,O(C)
will obfuscate Cdiff using the VGB obfuscator for evasive collections. Since C ′ is a ran-
dom function in K(C) it only differs from C on a negligible fraction of the inputs, and
therefore Cdiff outputs 1 only on a negligible fraction of the inputs.

Unfortunately, this high-level idea does not quite work. The problem is that since
O(C) contains the circuit C ′ in the clear, we cannot argue that Cdiff is taken at random
from an evasive collection. In particular, given C it may be easy to find an input where
Cdiff outputs 1. For example, if C outputs 1 only on a single input x, and C ′ outputs 1
only on a single input x′, then Cdiff will output 1 on both inputs x and x′. Now, given
the circuit C ′ it is easy find the input x′ such that Cdiff(x′) = 1 and therefore we do not
know how to securely obfuscate Cdiff .

To fix this problem we do not choose C ′ to be a random circuit in the set K(C), but
instead C ′ will be a circuit computing the majority function on many random circuits
taken from the set K(C). Now we can show that even given the circuit C ′ it is hard to
find an input where C and C ′ differ, and therefore the obfuscation of Cdiff is secure.

Proof (Theorem 4.1). Let O be an average-case VGB secure obfuscator for every col-
lection of evasive circuits. Let C = {Cn}n∈N be a (not necessarily evasive) collection
of circuits such that every C ∈ Cn is a circuit of size p(n), for some polynomial p, that
takes n bits as input. Let q(n) be any super-polynomial function. We construct a weak

average-case VGB obfuscatorO′ for C where the simulator makes at most q(n) queries
to its oracle. O′ will make use of the following learning algorithm L as a subroutine.
The algorithm L is an inefficient algorithm that has oracle access to C, it queries its
oracle at most q′(n) times for q′(n) , q(n)

(n+1) , and outputs a circuit that is “close” to C.
Loosely speaking, algorithm L starts by setting K to be the set of all circuits in

Cn. Then, in each iteration L reduces the size of K so that, at the end, it contains only
circuits that are “close” to C. The number of iterations is at most q′(n) and in each
iteration L makes a single oracle call. However, the computation done by L in each
iteration is inefficient.

Formally, the algorithm L is defined as follows:

1. Set K ← Cn.
2. For every b ∈ {0, 1} and every x ∈ {0, 1}n, compute:

pbx = Pr
C′←K

[C ′(x) = b], px = min(p0
x, p

1
x) .

3. Set x∗ = arg maxx px.
4. If px∗ <

p(n)
q′(n) , then return a random C ′ ← K.

5. Else, query the oracle on x∗ and set:

K ← K ∩ {C ′|C(x∗) = C ′(x∗)} .

6. If K contains a single element C, return C.
7. Else, goto Step 2.

We later argue that the output of LC is a circuit that is close to C, that is, the circuits
only disagree on a negligible fraction of the inputs. Next, we describe a weak average-
case VGB obfuscator O′ for C. In the description of O′, we use the following notation:
we denote by C1 ⊕ C2 the circuit that is composed from the circuits C1 and C2 where
the output wires of these circuits are connected by a XOR gate. Similarly, we we denote
by Majorityi∈[n] Ci the circuit that is composed from the circuits C1, . . . , Cn where the
output wires of these circuits are connected by a Majority gate.

Note about notation. For any two circuits C and C ′, we use C ≡ C ′ to denote that C
and C ′ are functionally equivalent. That is, the circuits compute the same function, but
may be very different as “formal” circuits. We use the notation C = C ′ when C and C ′

are not only functionally equivalent, but are also equal as “formal” circuits.

The obfuscator. The obfuscator O′ on input C ∈ C operates as follows:

1. For i ∈ [n], set Ci ← LC where all executions of L use independent randomness.
2. Construct the circuit Cmaj = Majorityi∈[n] Ci.
3. Construct the circuit Cdiff = Cmaj ⊕ C.
4. Construct and output the circuit Cout = Cmaj ⊕O(Cdiff).

The correctness and polynomial slowdown properties ofO′ follow from those ofO,
and from the fact that the circuits in Cn are of (approximately) the same size.

To show that O′ is a weak average-case VGB secure, we demonstrate an ineffi-
cient simulator Sim. For every PPT adversary A, and for every auxiliary input z ∈
{0, 1}poly(n) to A, Sim is given z, and oracle access to C[q(n)]. Sim acts as follows:

1. For i ∈ [n], set Ci ← LC[q′(n)], where independent randomness is used in different
executions of L.

2. Construct the circuit C ′maj = Majorityi∈[n] Ci.

3. Sample C ′ ← LC[q′(n)] and construct the circuit C ′diff = C ′maj ⊕ C ′.
4. Construct the circuit Csim = C ′maj ⊕O(C ′diff).
5. Execute A(z, Csim) and output the result.

Sim invokes the learning algorithm, L, n+1 times, and each invocation may include
q′(n) = q(n)

(n+1) queries to the oracle. Thus, in total Sim makes at most q(n) oracle calls.

Another note about notation. In the rest of the proof, C denotes a random circuit in Cn
(unless specified otherwise we assume C is distributed uniformly among all circuits in
Cn). The random variables Cmaj, Cdiff and Cout represent the value of the corresponding
local variable in a random execution of the obfuscator O′ on input C (this random
variable is both over the random choice of C and of the coins used by O′). Similarly,
the random variables C ′maj, C

′
diff and Csim represent the value of the corresponding local

variable in a random execution of SimC[q(n)] (the value of these random variables does
not depend on the auxiliary input z passed to Sim). For simplicity of notation, in the
rest of the proof, we omit the auxiliary input z from the parameter list of A and of Sim.

The simulator Sim is valid if for every predicate P:∣∣∣∣ Pr
C←Cn

[A(O′(C)) = P(C)]− Pr
C←Cn

[SimC[q(n)](1n) = P(C)]

∣∣∣∣ ≤ negl(n) .

That is, if: ∣∣∣∣PrC←Cn [A((Cmaj,O(Cdiff))) = P(C)]
−PrC←Cn [A((C ′maj,O(C ′diff))) = P(C)]

∣∣∣∣ ≤ negl(n) . (2)

Before proving Equation (2), we introduce the following notation. For every circuit
C ∈ Cn, let K(C) be the value of the set K when LC terminates. Note that once C is
fixed K(C) is fully determined; indeed, up to step Step 4, where L outputs a random
circuit from K(C), L is deterministic. Define GOOD(C,Cmaj) to be the event that:

Cmaj ≡ Majority
C′∈K(C)

C ′

The following three lemmas imply Equation (2), and thus conclude the proof.

Lemma 4.1. For every circuit C ∈ Cn, the variables Cmaj and C ′maj are identically
distributed.

Lemma 4.2.

Pr
C←Cn

[GOOD(C,Cmaj)] ≥ 1− negl(n) .

Lemma 4.3. For every C∗maj in the support of Cmaj, i.e., such that:

Pr
C←Cn

[Cmaj = C∗maj] > 0 ,

it holds that:∣∣∣∣∣∣∣∣
PrC←Cn

[
A((Cmaj,O(Cdiff))) = P(C)

Cmaj = C∗maj

GOOD(C,C∗maj)

]
−PrC←Cn

[
A((C ′maj,O(C ′diff))) = P(C)

C ′maj = C∗maj

GOOD(C,C∗maj)

]
∣∣∣∣∣∣∣∣ ≤ negl(n) .

Proof (Lemma 4.1). C ′maj is computed by Sim in the same way that Cmaj is computed
by O′ except that that Sim limits the learning algorithm L to make at most q′(n) oracle
queries. It is therefore sufficient to show that L makes at most q′(n) queries. By the
choice of x∗, in every execution of L, at Step 5, the size of the setK reduces by a factor
of at least (1− p∗x) ≥ 1− p(n)

q′(n) . Since |Cn| ≤ 2p(n), after q′(n) queries K must contain
a single element and will thus L terminate. ut

Proof (Lemma 4.2). Fix C, and denote by C̃maj the circuit:

C̃maj ≡ Majority
C′∈K(C)

C ′ .

IfK(C) contains a single element (corresponding to Step 6 of L), then GOOD must
occur. Else, the stopping condition in Step 4 of L guarantees that for every x ∈ {0, 1}n,
and letting pbx = PrC′′←K(C)[C

′′(x) = b], it holds that min(p0
x, p

1
x) < p(n)

q′(n) . That is,

almost all circuits in K(C) agree with the majority value C̃maj(x). Formally, for every
x ∈ {0, 1}n,

Pr
C′′←K(C)

[C ′′(x) 6= C̃maj(x)] <
p(n)

q′(n)
.

The event GOOD does not occur if and only if there exist x ∈ {0, 1}n such that at
least n/2 of the circuits C1, . . . , Cn disagree with C̃maj on x. Since every Ci is sampled
independently from K(C) and since q′ is super-polynomial we have that:

Pr
C←Cn

[¬GOOD] ≤ 2n ·
(
n
n
2

)
·
(
p(n)

q′(n)

)n
2

<

(
16p(n)

q′(n)

)n
2

= negl(n) .

ut

Proof (Lemma 4.3). Fix C∗maj such that:

Pr
C←Cn

[Cmaj = C∗maj] > 0 .

If Cmaj = C∗maj, the circuits have the exact same structure and therefore, C∗maj is of the
form C∗maj = Majorityi∈[n] C

∗
i for some circuits C∗1 , . . . C

∗
n ∈ Cn. The next claim will

be useful for proving the lemma.

Claim 4.2.

1. For every C∗ ∈ Cn and every C,C ′ ∈ K(C∗), the random variable Cmaj in the
execution of O(C) and the random variable Cmaj in the execution of O(C ′) are
identically distributed.

2. For every C∗1 , . . . , C
∗
n ∈ Cn, for C∗maj = Majorityi∈[n] C

∗
i , and for every C /∈

K(C∗1), C∗maj is outside the support of Cmaj (defined by the execution of O′(C)).

To prove Claim 4.2, we will use yet another simpler claim:

Claim 4.3. For every C∗ ∈ Cn and every C ∈ K(C∗) it holds that K(C) = K(C∗).

Proof. Fix any C∗ ∈ Cn and any C ∈ K(C∗). Consider the set of oracle queries
made by LC and by LC∗ and their answers. If the two query-answer sets are equal
then K(C) = K(C∗). Else, both LC and LC∗ make some query x∗ such that C(x∗) 6=
C∗(x∗). However, this contradicts the fact thatC ∈ K(C∗), which means thatC agrees
with C∗ on all the queries performed by LC∗ in the formation of K(C∗).

ut

Proof (Claim 4.2). For Part 1, fix any C∗ ∈ Cn and any C,C ′ ∈ K(C∗). Claim 4.3
implies that K(C) = K(C ′) = K(C∗). Since the output of LC is just a random
element in K(C) if follows that the output of LC and the output of LC′ are identically
distributed, and therefore the random variable Cmaj in the execution of O′(C) and the
random variable Cmaj in the execution of O′(C ′) are also identically distributed.

For Part 2, fixC∗1 , . . . , C
∗
n ∈ Cn, andC /∈ K(C∗1), and letC∗maj = Majorityi∈[n] C

∗
i .

If Cmaj = C∗maj (that is, the circuits are formally identical) then it must be that C∗1 ∈
K(C). Indeed, because the circuits Cmaj, C

∗
maj are formally equal, C∗1 equals a circuit

C1 ∈ K(C) where Cmaj = Majorityi∈[n] Ci. This, together with Claim 4.3, implies
that K(C) = K(C∗1). Since it is always true that C ∈ K(C), this also implies that
C ∈ K(C∗1), contradicting our assumption.

ut

We are now ready to prove Lemma 4.3. Recall that C∗maj = Majorityi∈[n] C
∗
i . De-

note the set K(C∗1) by K∗. By Claim 4.2 (Part 2), the lemma’s statement is equivalent
to the following, where we sample C from K∗ instead of from Cn:∣∣∣∣∣∣∣∣

PrC←K∗

[
A((Cmaj,O(Cdiff))) = P(C)

Cmaj = C∗maj

GOOD(C,C∗maj)

]
−PrC←K∗

[
A((C ′maj,O(C ′diff))) = P(C)

C ′maj = C∗maj

GOOD(C,C∗maj)

]
∣∣∣∣∣∣∣∣ ≤ negl(n) . (3)

Let the adversaryA′ beA with C∗maj hard-coded to it. That is,A′(O(Cdiff)) outputs
A((C∗maj,O(Cdiff))). Now we can rewrite Equation (3) as:∣∣∣∣∣∣∣∣

PrC←K∗

[
A′(O(Cdiff)) = P(C)

Cmaj = C∗maj

GOOD(C,C∗maj)

]
−PrC←K∗

[
A′(O(C ′diff)) = P(C)

C ′maj = C∗maj

GOOD(C,C∗maj)

]
∣∣∣∣∣∣∣∣ ≤ negl(n) . (4)

Let P ′ be a predicate that has C∗maj hardwired into it, and is defined as follows:
On inputs of the form Cdiff = C∗maj ⊕ C where GOOD(C,C∗maj) holds, the predicate
P ′(Cdiff) outputs P(C). On all other inputs the output of P ′ is arbitrarily defined to be
0. Now we can rewrite Equation (4) as:∣∣∣∣∣∣∣∣

PrC←K∗

[
A′(O(Cdiff)) = P ′(Cdiff)

Cmaj = C∗maj

GOOD(C,C∗maj)

]
−PrC←K∗

[
A′(O(C ′diff)) = P ′(Cdiff)

C ′maj = C∗maj

GOOD(C,C∗maj)

]
∣∣∣∣∣∣∣∣ ≤ negl(n) . (5)

Recall that O′ sets Cdiff = Cmaj ⊕ C. Let Cdiff be the collection:

Cdiff =

Cdiff = Cmaj ⊕ C

∣∣∣∣∣∣
C ← K∗

Cmaj = C∗maj

GOOD(C,C∗maj)

n∈N,C∗maj

.

Additionally, recall that Sim sets C ′diff = C ′maj ⊕ C ′ where C ′ ← LC . Let C′diff be
the collection:

C′diff =

C ′diff = C ′maj ⊕ C ′

∣∣∣∣∣∣∣∣
C ← K∗

C ′ ← LC
C ′maj = C∗maj

GOOD(C,C∗maj)

n∈N,C∗maj

.

Now we can rewrite Equation (5) as:∣∣∣∣PrCdiff←Cdiff
[A′(O(Cdiff)) = P ′(Cdiff)]

−PrC′diff←Cdiff ,Cdiff←C′diff
[A′(O(C ′diff)) = P ′(Cdiff)]

∣∣∣∣ ≤ negl(n) . (6)

By the proof of Claim 4.2, for any circuit C ∈ K∗, it holds that K(C) = K∗.
Noting that C,C ′ defined in the collections Cdiff and C′diff are random circuits in K∗,
and thus the two collections are identical. We can now rewrite Equation (6) as:∣∣∣∣PrCdiff←Cdiff

[A′(O(Cdiff)) = P ′(Cdiff)]
−PrC′diff ,Cdiff←Cdiff

[A′(O(C ′diff)) = P ′(Cdiff)]

∣∣∣∣ ≤ negl(n) . (7)

ut

To prove equation Equation 7 and conclude the proof of the lemma, we show that the
collection Cdiff is evasive. This, together with the fact thatO is average-case VGB secure
evasive collections and the proof of Theorem 2.1, imply that Equation 7 holds.

Claim 4.4. The collection Cdiff is evasive.

Proof. Let C be the random variable given in the definition of Cdiff . If K∗ contains
a single element (corresponding to Step 6 of L) then C ≡ Cmaj and the collection
Cdiff contains, in fact, only the all-zero function, and is therefore evasive. Assuming
|K∗| > 1, the stopping condition in Step 4 of L guarantees that for every x ∈ {0, 1}n,

letting pbx = PrC′′←K(C)[C
′′(x) = b], it holds that for min(p0

x, p
1
x) < p(n)

q′(n) . This
implies:

Pr
C′′←K(C)

[
C ′′(x) 6= Majority

C̄∈K(C)

C̄(x)

]
<

p(n)

q′(n)
.

By the proof of Claim 4.2, K(C) = K∗ for every C ∈ K∗, and therefore also

Pr
C′′←K∗

[C ′′(x) 6= Majority
C̄∈K∗

C̄(x)] <
p(n)

q′(n)
.

Plugging-in the definitions of Cdiff and of GOOD(C,C∗maj), we get that for every x ∈
{0, 1}n,

Pr
C←K∗

[Cdiff(x) = 1] = Pr
C←K∗

[C(x) 6= C∗maj(x)] <
p(n)

q′(n)
=

p(n)

nω(1)
= negl(n),

which implies that Cdiff is evasive. ut
ut

5 Impossibility Results

Definitions 2.5 and 2.4 only consider circuit obfuscation with average-case security. In
this section we give impossibility results for obfuscating evasive Turing machines and
for obfuscating evasive circuits with worst-case security.

5.1 Impossibility of Turing Machine Obfuscation

Barak et. al. [3] show the impossibility general obfuscation of circuits and Turing ma-
chines. We show that the impossibility of Turing machines obfuscation can be extended
to the case of evasive functions. Similarly to the result of [3], our negative result applies
for VBB obfuscation as well as for weaker notions such as average-case obfuscation
(see [3] for more details). In particular, we get an impossibility for the Turing machine
versions of Definitions 2.5 and 2.4.

LetM = {Mn}n∈N be a collection of Turing machines such that every M ∈ Mn

has description of size poly(n) and outputs a bit. We say that M is evasive if given
oracle access to a random machine in the collection it is hard to find an input that
evaluates to 1.

Definition 5.1 (Evasive Turing Machine Collection). A collection of Turing machines
M is evasive if there exists a negligible function µ such that for every n ∈ N and every
x ∈ {0, 1}∗

Pr
M←Mn

[M(x) = 1] ≤ µ(n) .

We start by recalling the syntax, functionality, and polynomial slowdown require-
ments for Turing machine obfuscation as defined in [3]. Then we give security defini-
tions that are the Turing machine versions of Definitions 2.5 and 2.4.

Definition 5.2 (Turing Machine Obfuscation). An obfuscator O forM is a PPT al-
gorithm that satisfies the following requirements:

– Functionality: For every n ∈ N and every M ∈Mn , O(M) outputs a description
of a Turing machine that computes the same function as M .

– Polynomial Slowdown: There exists a polynomial p such that for every M ∈ M
and for every x ∈ {0, 1}∗ if the running time of M(x) is t, then the running time of
(O(M))(x) is at most p(t).

Definition 5.3 (Perfect Turing-Machine-Hiding). An obfuscatorO for a collection of
Turing machinesM is perfect circuit-hiding if for every PPT adversary A there exist
a PPT simulator Sim and a negligible function µ such that for every n ∈ N and every
efficiently computable predicate P:∣∣∣∣ Pr

M←Mn

[A(O(M)) = P(M)]− Pr
M←Mn

[Sim(1n) = P(M)]

∣∣∣∣ ≤ µ(n) .

Definition 5.4 (Input Hiding). A obfuscatorO for a collection of Turing machinesM
is input hiding if there exists a negligible function µ such that for every n ∈ N and for
every PPT adversary A

Pr
M←Mn

[M(A(O(M))) = 1] ≤ µ(n) .

The impossibility. The impossibility of [3] demonstrates a pair of functions Cα,β , Dα,β

such that given oracle access to these functions, it is impossible to learn the key (α, β).
However, given any efficient implementation of Cα,β and Dα,β as a pair of Turing
machines, it is possible to learn (α, β). The two functions are then combined into a
single function that cannot be obfuscated. The idea is to “embed” the functions Cα,β
and Dα,β of [3] inside an evasive Turing machine.

For a key α, β ∈ {0, 1}n define the machine Cα,β as follows:

Cα,β(x; i) =

{
βi if x = α

0 otherwise

The machineDα,β takes as input a description of a machineC that is suppose to run
in time p(n) and checks whether C computes the same function as Cα,β on the inputs
{(α, i)}i∈[n]. Namely,

Dα,β(C) =

{
β1 if ∀i ∈ [n], C(α, i) outputs βi within p(n) steps
0 otherwise

.

The polynomial p is defined to be greater than the running time of O(Cα,β). Next
we define a single machine Mα,β combining the machines Cα,β and Dα,β , as follows:

Mα,β(b, z) =

{
Cα,β(z) if b = 0

Dα,β(z) if b = 1
.

It is straightforward to verify that Cα,β and Dα,β are evasive, and therefore Mα,β

is also evasive. By construction, an adversary that is given O(Mα,β) can compute a
description of machines MC and MD, computing Cα,β and Dα,β respectively, where
the running time of MC is at most p. The adversary can therefore execute MD(MC)
and obtain β1 with probability 1. Note that a simulator (with no access to Mα,β) can
guess β1 with probability at most 1/2 and therefore O is not perfect circuit-hiding
(Definition 5.3).

To show that O is not input hiding (Definition 5.4) we consider an adversary that
produces the input (1,MC) to Mα,β . Since fα,β(1,MC) = β1 and β is random, the
adversary outputs a preimage of 1 with probability 1/2.

5.2 Impossibility of Worst-Case Obfuscation

The impossibility of [3] for circuit obfuscation demonstrates a collection of circuits
Cn = {Cs}s∈{0,1}n such that given oracle access to Cs for a random seed s it is im-
possible to learn s. However, given any circuit computing the same function as Cs, an
adversary can learn s. In general we do not know how to “embed” C inside an evasive
collection without loosing the above learnability property. However, such embedding
is possible when the adversary has some partial knowledge about the seed of the cir-
cuit taken from the evasive collection. This type of attack can be used to rule out a
worst-case security definition.

We recall the definition of worst-case VBB from [3]. We present an equivalent ver-
sion of the definition that uses a predicate and resembles Definition 2.6 for average-case
VBB. Note that a worst-case version of the input-hiding security definition (Defini-
tion 2.4) cannot hold against non-uniform adversaries.

Definition 5.5 (Worst-Case Virtual Black-Box (VBB) from [3]). An obfuscator O
for a collection of circuits C is perfect circuit-hiding in the worst-case if for every PPT
adversary A there exists a PPT simulator Sim and a negligible function µ such that for
every n ∈ N, every C ∈ Cn and every predicate P:∣∣∣Pr[A(O(C)) = P(C)]− Pr[SimC(1n) = P(C)]

∣∣∣ ≤ µ(n) .

Let Cn = {Cs}s∈{0,1}n be the collection defined by [3]. For α, s ∈ {0, 1}n we
define C ′α,s as follows:

C ′α,s(x1, x2, i) =

{
[Cs(x1)]i if x2 = α

0 otherwise
.

First note that the collection C is evasive, since for every input (x1, x2, i) the prob-
ability over a random key (α, s) that x2 = α is negligible. However, this circuit cannot
be VBB obfuscated. There is an adversary that given an obfuscation of C ′α,s for α = 0n

and for a random s, can transform this obfuscation into a circuit computing the same
function as Cs and thereby learn s. Conversely, every simulator that is given oracle ac-
cess to C ′α,s for α = 0n and for a random s, cannot learn more than what can be learned
with oracle access to Cs, and in particular cannot learn s.

6 Acknowledgement

We thank Vijay Ganesh for suggesting to us the “software patch” problem.

References

[1] Barak, B., Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O., Sahai, A.: Obfuscation for eva-
sive functions. Cryptology ePrint Archive, Report 2013/668 (2013), http://eprint.
iacr.org/

[2] Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation against al-
gebraic attacks. Cryptology ePrint Archive, Report 2013/631 (2013), http://eprint.
iacr.org/

[3] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.:
On the (im)possibility of obfuscating programs. In: CRYPTO. pp. 1–18 (2001)

[4] Bitansky, N., Canetti, R.: On strong simulation and composable point obfuscation. In:
CRYPTO. pp. 520–537 (2010)

[5] Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R., Paneth, O.: Succinct non-interactive ar-
guments via linear interactive proofs. In: TCC. pp. 315–333 (2013)

[6] Brakerski, Z., Rothblum, G.N.: Obfuscating conjunctions. In: CRYPTO. pp. 416–434
(2013)

[7] Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. Cryptology ePrint Archive, Report 2013/563 (2013), http:
//eprint.iacr.org/

[8] Canetti, R.: Towards realizing random oracles: Hash functions that hide all partial informa-
tion. In: CRYPTO. pp. 455–469 (1997)

[9] Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. J. ACM
51(4), 557–594 (2004)

[10] Canetti, R., Rothblum, G.N., Varia, M.: Obfuscation of hyperplane membership. In: TCC.
pp. 72–89 (2010)

[11] Canetti, R., Vaikuntanathan, V.: Obfuscating branching programs using black-box pseudo-
free groups. Cryptology ePrint Archive, Report 2013/500 (2013), http://eprint.
iacr.org/

[12] Coron, J.S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers. In:
CRYPTO (1). pp. 476–493 (2013)

[13] Ganesh, V., Carbin, M., Rinard, M.C.: Cryptographic path hardening: Hiding vulnerabili-
ties in software through cryptography. CoRR abs/1202.0359 (2012)

[14] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: EURO-
CRYPT. pp. 1–17 (2013)

[15] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistin-
guishability obfuscation and functional encryption for all circuits. In: FOCS (2013)

[16] Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: TCC. pp. 194–213
(2007)

[17] Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: Full domain hash from
indistinguishability obfuscation. IACR Cryptology ePrint Archive 2013, 509 (2013)

[18] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: Deniable encryption,
and more. IACR Cryptology ePrint Archive 2013, 454 (2013)

[19] Valiant, L.G., Skyum, S., Berkowitz, S., Rackoff, C.: Fast parallel computation of polyno-
mials using few processors. SIAM J. Comput. 12(4), 641–644 (1983)

[20] Wee, H.: On obfuscating point functions. IACR Cryptology ePrint Archive 2005, 1 (2005)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

	Obfuscation for Evasive Functions

