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Abstract. Complex cryptographic protocols are often constructed in a modular way from
primitives such as signatures, commitments, and encryption schemes, verifiable random
functions, etc. together with zero-knowledge proofs ensuring that these primitives are
properly orchestrated by the protocol participants. Over the past decades a whole frame-
work of discrete logarithm based primitives has evolved. This framework, together with
so-called generalized Schnorr proofs, gave rise to the construction of many efficient cryp-
tographic protocols.
Unfortunately, the non-interactive versions of Schnorr proofs are secure only in the ran-

dom oracle model, often resulting in protocols with unsatisfactory security guarantees.
Groth and Sahai have provided an alternative non-interactive proof system (GS-proofs)
that is secure in the standard model and allows for the “straight line” extraction of wit-
nesses. Both these properties are very attractive, in particular if one wants to achieve com-
posable security. However, GS-proofs require bilinear maps and, more severely, they are
proofs of knowledge only for witnesses that are group elements. Thus, researchers have
set out to construct efficient cryptographic primitives that are compatible with GS-proofs,
in particular, primitives that are structure-preserving, meaning that their inputs, outputs,
and public keys consist only of source group elements. Indeed, structure-preserving sig-
natures, commitments, and encryption schemes have been proposed. Although determin-
istic primitives such as (verifiable) pseudo-random functions or verifiable unpredictable
functions play an important role in the construction of many cryptographic protocols, no
structure-preserving realizations of them are known so far.

As it turns out, this is no coincidence: in this paper we show that it is impossible to
construct algebraic structure-preserving deterministic primitives that provide provabil-
ity, uniqueness, and unpredictability. This includes verifiable random functions, unique
signatures, and verifiable unpredictable functions as special cases. The restriction of
structure-preserving primitives to be algebraic is natural, in particular as otherwise it
is not possible to prove with GS-proofs that an algorithm has been run correctly. We
further extend our negative result to pseudorandom functions and deterministic public
key encryption as well as non-strictly structure-preserving primitives, where target group
elements are also allowed in their ranges and public keys.

Keywords. Verifiable random functions, unique signatures, structure-preserving primi-
tives, Groth-Sahai proofs.

1 Introduction

Most practical cryptographic protocols are built from cryptographic primitives such as sig-
nature, encryption, and commitments schemes, pseudorandom functions, and zero-knowledge
(ZK) proofs. Thereby the ZK proofs often “glue” different building blocks together by prov-
ing relations among their inputs and outputs. The literature provides a fair number of different
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cryptographic primitives (e.g., CL-signatures [20, 21], Pedersen Commitments [49], ElGamal
and Cramer-Shoup encryption [30, 27], verifiable encryption of discrete logarithms [23], ver-
ifiable pseudo-random functions [29]) that are based on the discrete logarithm problem and
that together with so-called generalized Schnorr protocols [50, 18] provide a whole framework
for the construction of practical protocols. Examples of such constructions include anonymous
credential systems [19, 6], oblivious transfer with access control [15], group signatures [10,
43], or e-cash [17]. The non-interactive versions of generalized Schnorr protocols are secure
only in the random oracle model as they are obtained via the Fiat-Shamir heuristic [31] and
it is well known the random oracles cannot be securely instantiated [25]. Consequently, many
protocols constructed from this framework unfortunately are secure only in the random oracle
model.

A seminal step towards a framework allowing for security proofs in the standard model
was therefore the introduction of the so-called GS-proofs by Groth and Sahai [36]. These
are efficient non-interactive proofs of knowledge or language membership and are secure in
the standard model. They make use of bilinear maps to verify statements and therefore are
limited to languages of certain types of equations, including systems of pairing product and
multi exponentiation equations. In particular, GS-proofs are proofs of knowledge only for wit-
nesses that are group elements but not for exponents. Thus, it is unfortunately not possible
to use GS-proofs as a replacement for generalized Schnorr proofs in the “discrete logarithm
based framework of cryptographic primitives” described earlier. To alleviate this, the research
community has engaged on a quest for alternative cryptographic primitives that are structure-
preserving, i.e., for which the public keys, inputs, and output consist of (source) group elements
and the verification predicate is a conjunction of pairing product equations, thus making the
primitives “GS-proof compatible” and enabling a similar, GS-proof-based, framework for the
construction of complex cryptographic protocols. Such a framework is especially attractive be-
cause GS-proofs are “on-line” extractable, a property that is essential for the construction of
UC-secure [24] protocols.

Structure-preserving realizations exist for primitives such as signature schemes [3, 4, 38,
13, 2], commitment schemes [3, 5], and encryption schemes [16]. However, so far no structure-
preserving constructions are known for important primitives including pseudorandom func-
tions (PRF) [34, 28], verifiable unpredictable functions (VUF) [46], verifiable random func-
tions (VRF) [46, 40], simulatable verifiable random functions (VRF) [26], unique signatures
(USig) [35, 46, 45], and deterministic encryption (DE) [9, 12] despite the fact that these prim-
itives are widely employed in the literature. Examples include efficient search on encrypted
data [12] from deterministic encryption; micropayments [48] from unique signatures; reset-
table zero-knowledge proofs [47], updatable zero-knowledge databases [44], and verifiable
transaction escrow schemes [42] from verifiable random functions. PRFs together with a proof
of correct evaluation have been used to construct compact e-cash [17], keyword search [32], set
intersection protocols [37], and adaptive oblivious transfer protocols [22, 14, 41]. We further
refer to Abdalla et al. [1] and Hohenberger and Waters [40] for a good overview of applications
of VRFs .

Our Results. In this paper we show that it is no coincidence that no structure-preserving
constructions of PRF, VRF, VUF, USig, and DE are known: it is in fact impossible to con-
struct them with algebraic algorithms. To this end, we provide a generic definition of a secure
Structure-Preserving Deterministic Primitive (SPDP) and show that such a primitive cannot be
built using algebraic operations only. The latter is a very reasonable restriction, indeed all con-
structions of structure-preserving primitives known to date are algebraic. We then show that
PRF, VRF, VUF, and USig are special cases of a SPDP. We further extend our results to de-



On the Impossibility of Structure-Preserving Deterministic Primitives 3

terministic encryption and to “non-strictly” structure-preserving primitives which are allowed
to have target group elements in their public keys and ranges. Regarding the latter, we show
that such primitives cannot be constructed for asymmetric bilinear maps and that the possible
constructions for symmetric maps are severely restricted in the operations they can use.

Let us point out that of course our results do not rule out the possibility of constructing
efficient protocols from GS-proofs and non-structure-preserving primitives. Indeed a couple
of such protocols are known where although some of the inputs include exponents (e.g., x) it
turned out to be sufficient if only knowledge of a group elements (e.g., gx) is proved. Examples
here include the construction of a compact e-cash scheme [7] from the Dodis-Yampolskiy
VRF [29] and of a so-called F -unforgeable signature scheme [6] and its use in the construction
of anonymous credentials.

Related Work. Some impossibility results and lower bounds for structure-preserving primitives
are known already. Abe et al. [4] show that a signature from a structure-preserving signature
scheme must consist of at least three group elements when the signature algorithm is alge-
braic. They also give constructions meeting this bound. Lower bounds for structure-preserving
commitment schemes are presented by Abe, Haralambiev and Ohkubo [5]. They show that a
commitment cannot be shorter than the message and that verifying the opening of a commit-
ment in a symmetric bilinear group setting requires evaluating at least two independent pairing
product equations. They also provide optimal constructions that match these lower bounds.

To the best of our knowledge, there are no results about the (im)possibility of structure-
preserving deterministic primitives.

Paper Organization. In Section 2 we specify our notation, define the syntax and security prop-
erties of an algebraic structure-preserving deterministic primitive, and show that such prim-
itives are impossible to construct. In Section 3 we present some generalizations to the non-
strictly structure-preserving case. Then, in Section 4, we show how our result can be applied to
structure-preserving PRF, VRF, VUF, and unique signatures. Section 5 is devoted to the impos-
sibility results for structure-preserving deterministic encryption. Finally, Section 6 concludes
the paper and points to open problems and possible future research directions.

2 Definitions and Impossibility Results for Algebraic Structure-
Preserving Deterministic Primitives

2.1 Preliminaries

Notation. We say that a function is negligible in the security parameter λ if it is asymptotically
smaller than the inverse of any fixed polynomial in λ. Otherwise, the function is said to be
non-negligible in λ. We say that an event happens with overwhelming probability if it happens
with probability p(λ) ≥ 1− negl(λ), where negl(λ) is a negligible function of λ.

We denote by Y
$← F(X ) a probabilistic algorithm that on input X outputs Y . A similar

notation Y ← F(X ) is used for a deterministic algorithm with input X and output Y . We
abbreviate polynomial time as PT.

We use an upper-case, multiplicative notation for group elements. By G1 and G2 we
denote source groups and by GT a target group. Let G be a bilinear group generator that
takes as input a security parameter 1λ and outputs the description of a bilinear group Λ =
(p,G1,G2,GT , e,G1, G2) where G1, G2, and GT are groups of prime order p, e is an effi-
cient, non-degenerated bilinear map e : G1 × G2 → GT , and G1 and G2 are generators of
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the groups G1 and G2, respectively. We denote by Λ∗ = (p,G1,G2,GT , e) the description Λ
without the group generators. By Λsym we denote the symmetric setting where G1 = G2 and
G1 = G2. In the symmetric setting we simply write G for both G1 and G2, and G for G1 and
G2.

We also denote the set of all possible vectors of group elements from both G1 and G2 as
{G1,G2}∗, and from G1, G2 and GT as {G1,G2,GT }∗. For example, if H1 ∈ G1, H2 ∈ G2

then (H2, H1) ∈ {G1,G2}∗ and (Ha
1 , H

b
2 , H

c
2 , H

d
1 ) ∈ {G1,G2}∗ for a, b, c, d ∈ Zp.

Algebraic Algorithms. For a bilinear group Λ generated by G, an algorithm Alg that takes
group elements (X1, . . . , Xn) as input and outputs a group element Y is called algebraic if
Alg always “knows” a representation of Y with respect to (X1, . . . , Xn), i.e., if there is a
corresponding extractor algorithm Ext that outputs (c1, . . . , cn) such that Y =

∏
Xci
i holds

for all inputs and outputs of Alg. We consider this property with respect to the source groups
only. A formal definition for the minimal case where Alg takes group elements from only one
group G and outputs one element of this group is provided below.

Definition 1 (Algebraic Algorithm). Let Alg be a probabilistic PT algorithm that takes as an
input a bilinear group descriptionΛ generated by G, a tuple of group elements (X1, . . . , Xn) ∈
Gn for some n ∈ N, and some auxiliary string aux ∈ {0, 1}∗ and outputs a group element
Y and a string ext. The algorithm Alg is algebraic with respect to G if there is a probabilistic
PT extractor algorithm Ext that takes the same input as Alg (including the random coins) and
generates output (c1, . . . , cn, ext) such that for all Λ $← G(1λ), all polynomial sizes n, all
(X1, . . . , Xn) ∈ Gn and all auxiliary strings aux the following inequality holds:

Pr

[
(Y, ext)← Alg(Λ∗, X1, . . . , Xn, aux; r) ;
(c1, . . . , cn, ext)← Ext(Λ∗, X1, . . . , Xn, aux; r)

∣∣∣∣Y 6=∏Xci
i

]
≤ negl(λ),

where the probability is taken over the choice of the coins r.

It is straightforward to extend this definition to algorithms that output multiple elements of the
groups G1 and G2 ofΛ. We note that all known constructions of structure-preserving primitives
are algebraic in the sense defined here. Indeed if the considered algorithms were non-algebraic
one could no longer prove their correct execution with GS-proofs.

One may see a similarity between the above definition and the knowledge of exponent
assumption (KEA) [11] as both involve an extractor. We, however, emphasize that the algebraic
algorithm definition characterizes honest algorithms, whereas the KEA is an assumption on
adversaries.

2.2 Definitions of Structure-Preserving Deterministic Primitives

We define the syntax of a structure-preserving deterministic primitive (SPDP). An SPDP con-
sists of the tuple of the following algorithms: (Setup,KeyGen,Comp,Prove,Verify). Besides
the parameters generation (Setup), key generation (KeyGen), and main computation function
(Comp), it includes proving (Prove) and verification (Verify) algorithms that guarantee that the
output value was computed correctly using Comp. We call it provability property. It captures
the verifiability notion of some deterministic primitives such as verifiable random functions,
unique signatures, and verifiable unpredictable functions. Furthermore, for the deterministic
primitives that do not have an inherent verification property such as pseudorandom functions
and deterministic encryption, it covers their widely used combination with non-interactive
proof systems. Indeed, one of the main advantages of the structure-preserving primitives and
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one of the reasons to construct those is their compatibility with the existing non-interactive
zero-knowledge proof systems.

Definition 2 (Provable Structure-Preserving Deterministic Primitive). Let G be a bilinear
group generator that takes as an input a security parameter 1λ and outputs a description of a
bilinear group Λ = (p,G1,G2,GT , e,G1, G2). Let SK,PK,X ,Y,P be a secret key space, a
public key space, a domain, a range, and a proof space, respectively. Let F : SK ×X → Y be
a family of deterministic PT computable functions. A primitive P = (Setup,KeyGen,Comp,
Prove,Verify) that realizes F is called a Structure-Preserving Deterministic Primitive with
respect to Λ,SK,PK,X ,Y, and P if:

– PK,X ,Y,P ⊂ {G1,G2}∗. Namely, the public key space, the domain, range and the proof
space consist only of the source group elements.

– CP
$← Setup(Λ) is a probabilistic algorithm that takes as input the group description Λ

and outputs the common parameters CP . Without loss of generality we assume Λ ∈ CP .
– (PK,SK)

$← KeyGen(CP ) is a probabilistic key generation algorithm that takes as
input the common parameters and outputs a public key PK ∈ PK and a secret key SK ∈
SK. It is assumed without loss of generality that PK includes CP , and SK includes PK.

– Y ← Comp(X,SK) is a deterministic algorithm that takes X ∈ X and a secret key SK
as input and outputs Y ∈ Y .

– Π
$← Prove(X,SK) is a probabilistic algorithm that takes X,SK as input and outputs

a proof Π ∈ P for relation Y = Comp(X,SK).
– 0/1 ← Verify(X,Y,Π, PK) is a deterministic verification algorithm that takes (X ∈
X , Y ∈ Y, Π ∈ P, PK ∈ PK) as input and accepts or rejects the proof that Y was
computed correctly. The verification operations are restricted to the group operations and
evaluation of pairing product equations (PPE), which for a bilinear group Λ and for group
elements A1, A2, . . . ∈ G1, B1, B2, . . . ∈ G2 contained in X,Y,Π, PK and constants
c11, c12, . . . ∈ Zp are equations of the form:∏

i

∏
j

e(Ai, Bj)
cij = 1.

The following properties are required from a provable structure-preserving deterministic
primitive:

1. Uniqueness: For all λ,Λ,CP $← Setup(Λ) there are no values (PK,X, Y, Y ′, Π,Π ′)
such that Y 6= Y ′ and Verify(X,Y,Π, PK) = Verify(X,Y ′, Π ′, PK) = 1.

2. Provability: For all λ,Λ,CP $← Setup(Λ) ; (PK,SK)
$← KeyGen(CP ) ; X ∈ X ; Y ←

Comp(X,SK) ; Π
$← Prove(X,SK) it holds that Verify(X,Y,Π, PK) = 1.

Now, we define two security properties. The unpredictability property states that no PT
adversary can predict the output value Y for a fresh input X after having called the Comp and
Prove oracles with inputs that are different from X . The pseudorandomness property states
that no PT adversary can distinguish the output value Y from a random value.

Definition 3 (Unpredictability). A Structure-Preserving Deterministic Primitive P is unpre-
dictable if for all probabilistic PT algorithms A

Pr

 CP
$← Setup(Λ) ;

(PK,SK)
$← KeyGen(CP ) ;

(X,Y )← AComp(·,SK),Prove(·,SK)(PK)

∣∣∣∣∣∣∣ Y = Comp(X,SK) ∧
X /∈ S

 ≤ negl(λ)

where S is the set of inputs queried to the oracles Comp and Prove.
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Definition 4 (Pseudorandomness). A Structure-Preserving Deterministic Primitive P is
pseudorandom if for all probabilistic PT distinguishers D = (D1,D2)

Pr


CP

$← Setup(Λ) ; (PK,SK)
$← KeyGen(CP ) ;

(X, st)← D1
Comp(·,SK),Prove(·,SK)(PK) ;

Y(0) ← FSK(X) ; Y(1)
$← Y ; b

$← {0, 1} ;
b′

$← D2
Comp(·,SK),Prove(·,SK)(Y(b), st)

∣∣∣∣∣∣∣∣∣
b = b′ ∧
X /∈ S

 ≤ 1

2
+ negl(λ),

where S is the set of queries to the oracles Comp and Prove.

One can see that a provable SPDP having the unpredictability property is a structure-
preserving verifiable unpredictable function (VUF), and a provable SPDP with the pseudo-
randomness property is a structure-preserving verifiable random function (VRF).

2.3 Inexistence of Structure-Preserving Verifiable Unpredictable Functions

Now, we prove that a structure-preserving VUF as defined in the previous section cannot exist.
Namely, we show that a provable SPDP cannot unpredictable according to Definition 3 because
of its uniqueness property.

Theorem 1. Let G be a bilinear group generator that takes as an input a security param-
eter 1λ and outputs a description of bilinear groups Λ = (p,G1,G2,GT , e,G1, G2). Let
P = (Setup,KeyGen,Comp,Prove,Verify) be a Provable Structure-Preserving Determin-
istic Primitive as in Definition 2. Suppose that the discrete logarithm problem is hard in the
groups G1,G2 of Λ and let KeyGen, Comp, and Prove be restricted to the class of algebraic
algorithms over Λ. Then P is not unpredictable according to Definition 3.

Proof. For simplicity, we first consider a symmetric bilinear setting (Λ = Λsym), where PK,
X ,Y,P ⊂ {G}∗. Furthermore, we consider the input X to consist only of a single group el-
ement. We then show that the same result holds for the input being a tuple of group elements
from G and also in the asymmetric setting, for both Type 2 pairings (where an efficiently
computable homomorphism from G2 to G1 exists and there is no efficiently computable ho-
momorphism from G1 to G2), and Type 3 pairings (where there are no efficiently computable
homomorphisms between G1 and G2) [33].

The outline of the proof is as follows. First, in Lemma 1 we show that because of the
provability and uniqueness properties of P as specified in Definition 2, the output of Comp
must have a particular format, namely Comp(X,SK) = (Ga1Xb1 , . . . , Ga`Xb`) for (secret)
constants a1, . . . , a`, b1, . . . , b` ∈ Zp. Then, in Lemma 2, we prove that if the output of Comp
has this format then the unpredictability property from Definition 3 does not hold for P. This
means that a structure-preserving VUF cannot exist.

Lemma 1. Let P = (Setup,KeyGen,Comp,Prove,Verify) be a Structure-Preserving Deter-
ministic Primitive such that KeyGen,Comp, and Prove are algebraic algorithms over Λ. If
the discrete-logarithm problem is hard in the base group of Λ and P meets the provabil-
ity and uniqueness property as defined in Definition 2, then with an overwhelming proba-
bility it holds that Comp(X,SK) = (Y1, . . . , Y`) = (Ga1Xb1 , . . . , Ga`Xb`) for constants
a1, . . . , a`, b1, . . . , b` ∈ Zp.

Proof. Fix (PK,SK)
$← KeyGen(CP ), where PK ⊂ {G}∗. Let x $← Zp, X = Gx.



On the Impossibility of Structure-Preserving Deterministic Primitives 7

First, notice that because Comp, Prove and KeyGen are algebraic algorithms, their outputs
can be expressed as

Comp(X,SK) = Y = (Y1, . . . , Y`) with Yi = GaiXbi ,

Prove(X,SK) = Π = (Π1, . . . ,Πn) with Πj = GujXvj , and

PK = (S1, . . . , Sm) with Sf = Gsf ,

where ai = H1,i(X,SK), bi = H2,i(X,SK), vj = H3,j(X,SK; r), uj = H4,j(X,SK;
r),and H`,m are arbitrary functions, and r is the randomness used by the Prove algorithm. We
note that ai, bi, uj , and vj can depend onX in an arbitrary manner, but, as Comp and Prove are
algebraic, one can extract ai, bi, uj , and vj as values from Zp using the extractors of algorithms
Comp and Prove.

Second, we recall that according to Definition 2 the verification algorithm consists of pair-
ing product equations (PPE). Let the k-th PPE used in the verification algorithm be

m∏
f=1

e
(
Sf , X

ck,1,f

m∏
t=1

S
ck,2,f,t

t

∏̀
i=1

Y
ck,3,f,i

i

q∏
j=1

Π
ck,4,f,j

j

) n∏
q=1

e
(
Πq,

n∏
j=1

Π
ck,5,q,j

j

)
·

· e
(
X,Xck,6

∏̀
i=1

Y
ck,7,i

i

q∏
j=1

Π
ck,8,j

j

) ∏̀
w=1

e
(
Yw,

∏̀
i=1

Y
ck,9,w,i

i

n∏
j=1

Π
ck,10,w,j

j

)
= 1.

The intuition behind the proof is the following. We note that Comp should perform the
computation without necessarily knowing the discrete logarithm of the input – otherwise one
can use Comp to solve the discrete logarithm for the input X . Now, one can see that the
relation in the exponents of the k-th PPE for the tuple (X,Y,Π, PK) induce a polynomial
Qk(x) in the discrete logarithm x = logGX . Basically, we can re-write the k-th PPE as
e(G,G)Qk(x) = 1. So, first, we prove that Qk(x) is a trivial function, otherwise it is possible
to solve the discrete logarithm problem for the given X by solving Qk. Second, we show
that if Qk is trivial then, by the uniqueness property, ai and bi are constants. Let ai, bi, uj ,
and vj be the values computed for one specific X : Yi = GaiXbi , Πj = GujXvj , and
Verify(PK,X, Y,Π) = 1. Proposition 2 shows that these values can be reused to compute
a correct Ỹ for any other X̃ ∈ X . So, if Ỹi is computed as GaiX̃bi and Π̃j as Guj X̃vj ,
instead of using the normal computation procedures, then X̃, Ỹ , Π̃, PK is also accepted by
the verification algorithm due to the triviality of Qk. Then, from the uniqueness property, it
follows that these ai, bi are the only valid values, i.e., constants.

Now we provide the proof in detail. First, we prove that all polynomials Qk induced by the
verification PPEs, as described above, are constants with overwhelming probability.

Proposition 1. If the discrete logarithm problem in the base group of Λ is hard, then Qk is a
trivial function.
Proof. The proof is done by constructing a reduction algorithm R that takes as an input a group
description Λsym = (p,G,GT , e,G) generated by a group generator G(1λ) and a random
element X ∈ G and outputs x ∈ Zp that satisfies X = Gx with a high probability.

The reduction algorithm R works as follows. It first takesΛ as an input and sets the common
parameters CP = Λ. R then runs KeyGen(CP ), Comp(X,SK), and Prove(X,SK) for the
givenX . It also runs the corresponding extractors for KeyGen, Comp, and Prove. The extractor
for KeyGen outputs representations sf that satisfy Sf = Gsf with overwhelming probability.
Similarly, the extractor for Comp outputs representations ai and bi such that Yi = GaiXbi ,
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and the extractor for Prove outputs uj and vj such that Πj = GujXvj as concrete values in
Zp.

This set of extracted exponents sf , ai, bi, uj , and vj induce a quadratic equation Qk in the
exponents of the k-th pairing product verification equation (PPE). Let us call the variable of
this exponent equation x̃, then we can write the k-th PPE as e(G,G)Qk(x̃) = 1. Given the
representations, R can compute Qk(x̃) : d2x̃

2 + d1x̃ + d0 = 0 in Zp. The condition that
Qk(x̃) is non-trivial guarantees that d2 6= 0 or d1 6= 0. But then R can solve Qk(x̃) for x̃
with standard algebra. Due to the provability property, x is one of the possible solutions to x̃.
So if the equation is non-trivial, then we can solve this equation for x̃ and obtain the discrete
logarithm of X : x̃ = x. Therefore, if the discrete logarithm problem is hard in the base group
of Λ, Qk must be trivial.

�

Now we show that if Qk is trivial then by the provability and uniqueness properties ai and
bi are constants.

Proposition 2. Fix (PK,SK,X) and let ai ← H1,i(X,SK), bi ← H2,i(X,SK), uj ←
H3,j(X,SK, r) and vj ← H4,j(X,SK, r). If all the relations in the exponents of the PPEs
are trivial, then, for any X̃ ∈ G, Ỹ = (Ỹ1, . . . , Ỹ`) with Ỹi = GaiX̃bi and Π̃ = (Π̃1, . . . , Π̃n)
with Π̃j = Guj X̃vj , it holds that (X̃, Ỹ , Π̃, PK) will be accepted by the verification algo-
rithm.

Proof. Consider fixed (PK,SK,X), any X̃ ∈ G, and Ỹ and Π̃ computed from X̃ as specified
in the proposition. Note that the verification algorithm only evaluates PPEs and performs group
memberships tests. First, all group memberships tests are clearly successful for the above tuple
(X̃, Ỹ , Π̃, PK). Since all polynomials Qk are trivial and due to the way in which Ỹ and
tildeΠ are defined, it holds that the result of evaluating the k-th PPE will be the same for
any tuple (X̃, Ỹ , Π̃, PK). Therefore, Verify(X̃, Ỹ , Π̃, PK) should output the same value for
every X̃ ∈ G. Now, considering the case where X̃ = X we have that Ỹ = (Ỹ1, . . . , Ỹ`) with
Ỹi = GaiXbi and Π̃ = (Π̃1, . . . , Π̃n) with Π̃j = GujXvj . But due to the correctness of the
extractors of Comp and Prove, these Ỹ and Π̃ are exactly the outputs of Comp(X,SK) and
Prove(X,SK). Therefore, by the provability property, it holds that Verify(X, Ỹ , Π̃, PK) = 1
for X̃ = X; and thus, for any X̃ ∈ G, Verify(X̃, Ỹ , Π̃, PK) = 1 also.

�

Now, for an arbitrary X̃ ∈ G, consider the tuple (PK,SK, X̃, Ỹ , Π̃, a1, . . . , a`, b1, . . . ,
b`) of values as defined above. Π̃ is valid proof for (X̃, Ỹ ) and thus the uniqueness property
guarantees that there is no other Ŷ 6= Ỹ for which there is a valid proof that Ŷ is the output
corresponding to X̃ . But the provability property guarantees that for (X̃,Comp(X̃, SK)) there
is a valid proof of correctness. Hence, for any X̃ ∈ G, it holds that

Comp(X̃, SK) = Ỹ = (Ỹ1, . . . , Ỹ`) = (Ga1X̃b1 , . . . , Ga`X̃b`).

�

Lemma 2. Suppose that P = (Setup,KeyGen,Comp,Prove,Verify) is a provable Structure-
Preserving Deterministic Primitive such that Comp(X,SK) = (Y1, . . . , Y`) = (Ga1Xb1 , . . . ,
Ga`Xb`) for some constants a1, . . . , a`, b1, . . . , b` ∈ Zp. Then P does not satisfy the unpre-
dictability requirement from Definition 3.
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Proof. Pick X̂, X̃ and define X , such that X = X̂2/X̃ /∈ {X̂, X̃}. Then an adversary that
learns

Comp(X̂, SK) = (Ŷ1, . . . , Ŷ`) = (Ga1X̂b1 , . . . , Ga`X̂b`) and

Comp(X̃, SK) = (Ỹ1, . . . , Ỹ`) = (Ga1X̃b1 , . . . , Ga`X̃b`)

can compute the value of Comp(X,SK) as:

(
Ŷ 2
1

Ỹ1
, . . . ,

Ŷ 2
`

Ỹ`

)
=

(
G2a1X̂2b1

Ga1X̃b1
, . . . ,

G2a`X̂2b`

Ga`X̃b`

)
=

Ga1 (X̂2

X̃

)b1
, . . . , Ga`

(
X̂2

X̃

)b` =
(
Ga1X

b1
, . . . , Ga`X

b`
)
= Comp(X,SK),

and therefore P is not unpredictable.

�

Now, we show that the same result holds for the input being a tuple of group elements from G.

X is a tuple of group elements. Both Lemmas 1 and 2 can be easily modified to the case where
X consists of more than one (say t) group element as follows. The reduction algorithm, after
receiving the discrete logarithm challenge X1, will choose t− 1 random exponents x2, . . . , xt
and fix Xi as Gxi for i = 2, . . . , t. Then the lemmas use the first group element X1 in the
place of the original X . Note that in the computation of the Yj and Πj the exponents corre-
sponding to X2, . . . , Xt can essentially be incorporated into H1,j(X,SK) and H3,j(X,SK)
since the prover knows x2, . . . , xt. If the quadratic equations Qk(x̃1) in the exponents of the
PPEs are not trivial, then the first element of the input X can be used to solve the discrete
logarithm problem; otherwise, supposing that the uniqueness and provability properties hold,
the elements of the output will be of the form Ỹi = GaiX̃1

bi (for the fixed values x2, . . . , xt)
and this can be used to break the unpredictability by asking two queries in which only the first
elements of the inputs are different (i.e., X̂1 and X̃1) and then learning the output correspond-
ing to a third input which has X1 = X̂2

1/X̃1 and the remaining elements equal to the ones of
the oracle queries.

Asymmetric bilinear groups setting. Lemmas 1 and 2 can be generalized to the asymmetric
setting as well. We consider both Type 2 and Type 3 pairings. The case where there are ef-
ficiently computable homomorphisms in both directions can be reinterpreted as a symmetric
setting [33]. If X consists of t group elements, we choose t− 1 random exponents x2, . . . , xt
and fix Xi as Gxi

1 if the i-th input element is in group G1, or Gxi
2 if the i-th input element

is in group G2. Then either some quadratic equation Qk(x̃1) in the exponents of the PPEs is
not trivial in x1 and this can be used to solve the discrete logarithm problem in the base group
in which X1 is contained, or one of the three security properties (provability, uniqueness and
unpredictability) does not hold.

In the case of Type 3 pairings, where there are no efficiently computable homomorphisms
between the groups, each Yj (let Gc denote the group in which it is and Gc its generator) is of
the form

Yj = GH1,j(X,SK)
c X

H2,j(X,SK)
1
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(where H2,j(X,SK) = 0 if X1 and Yj are not in the same group) and each Πj (that is in
the group Gc) is of the form Πj = G

H3,j(X,SK)
c X

H4,j(X,SK)
1 (where H4,j(X,SK) = 0 if

X1 and Πj are not in the same group), in both cases with the exponents corresponding to
X2, . . . , Xt incorporated into H1,j(X,SK) and H3,j(X,SK). Then the argument continues
as in the previous cases.

In the case of Type 2 pairings, there is an efficiently computable homomorphism φ : G2 →
G1. Then an element Yj of the output (or an element Πj of the proof) that is in the group G1

can depend on both group generators and on X1 or its mapping φ(X1) into G1.
I.e., if X1 ∈ G1, Yj and Πj have the form:

Yj = G
H1,j(X,SK)
1 X

H2,j(X,SK)
1 φ(G2)

H5,j(X,SK);

Πj = G
H3,j(X,SK)
1 X

H4,j(X,SK)
1 · φ(G2)

H6,j(X,SK);

or if X1 ∈ G2, Yj and Πj have the form:

Yj = G
H1,j(X,SK)
1 φ(X1)

H2,j(X,SK)φ(G2)
H5,j(X,SK);

Πj = G
H3,j(X,SK)
1 φ(X1)

H4,j(X,SK)φ(G2)
H6,j(X,SK).

Then we should have H1,j(X,SK) = aj , H2,j(X,SK) = bj and H5,j(X,SK) = zj
for constants aj , bj , and zj if the provability and uniqueness hold. But in this case the unpre-
dictability does not hold for the same reasons as before.

Putting Lemmas 1 and 2 together completes the proof of Theorem 1.

�

3 Impossibility Results for “Non-strictly” Structure-Preserving
Primitives

One can see that the definition above only captures so-called “strictly” structure-preserving
primitives, i.e., PK and Y can contain only source group elements. Let us discuss the case of
structure-preserving primitives that also have target group elements in their public key space
and/or their range. A target group element can be represented by 2 source group elements
using pairing randomization techniques [3] or even deterministically, by fixing the “random-
ization” exponents. By this the provability property can be preserved. Now, the question is: if
the uniqueness property holds is the output unpredictable according to the definition above?
In this section, we show that our impossibility result can be extended to some cases of “non-
strictly” structure-preserving primitives, formally defined below:

Definition 5 (“Non-strictly” Structure-Preserving Deterministic Primitive). Let G be a
bilinear group generator that takes as an input a security parameter 1λ and outputs a de-
scription of bilinear groups Λ = (p,G1,G2,GT , e,G1, G2). Let SK,PK,X ,Y,P be the
secret key space, public key space, domain, range, and the proof space, respectively. Let P =
(Setup,KeyGen,Comp,Prove,Verify) be a Structure-Preserving Deterministic Primitive as
defined in Definition 2, except that the range of Comp and KeyGen can contain also target
group elements (Y,PK ⊂ {G1,G2,GT }∗). Then the primitive P is called a “non-strictly”
structure-preserving deterministic primitive.

First, we extend the notion of the algebraic algorithms from Definition 1 to operate in all
groups of Λ. We provide a formal definition as follows.
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Definition 6 (Algebraic Algorithms over Λ). Let Alg be a probabilistic PT algorithm that
takes as an input a bilinear group description Λ generated by G, two tuples of group elements
(X1,1, . . . , X1,n) ∈ {G1}n and (X2,1, . . . , X2,m) ∈ {G2}m for some n,m ∈ N, and some
auxiliary string aux ∈ {0, 1}∗ and outputs group elements Y ∈ G1,W ∈ G2, and Z ∈ GT
and a string ext. The algorithm Alg is algebraic with respect to G if there is a probabilistic PT
extractor algorithm Ext that takes the same input as Alg (including the random coins) and gen-
erates output (c = (c1, . . . , cn), d = (d1, . . . , dm), f = (f1, . . . , fnm), ext) such that for all
Λ

$← G(1λ), all polynomial sized n,m, all (X1,1, . . . , X1,n) ∈ {G1}n, (X2,1, . . . , X2,m) ∈
{G2}m and all auxiliary strings aux the following inequality holds over the choice of the coins
r and for X = (X1,1, . . . , X1,n, X2,1, . . . , X2,m):

Pr

 (Y,W,Z, ext)← Alg(Λ∗, X, aux; r) ;
(c, d, f, ext)← Ext(Λ∗, X, aux; r)

∣∣∣∣∣∣∣∣
Y 6=

∏n
i=1X

ci
1,i∨

W 6=
∏m
j=1X

dj
2,j∨

Z 6=
∏n
i=1

∏m
j=1

e(X1,i, X2,j)
f(j−1)n+i

 ≤ negl(λ),

where the probability is taken over the choice of the coins r.

Similarly to Definition 1, this definition can be extended to algorithms that output multiple
elements of the groups of Λ. Then one can use the extractors of KeyGen and Comp to also
extract representations for target group elements output by them.

Now, as we discussed in Section 2, pairing randomization techniques allow us to preserve
the provability property. Here we show that if the uniqueness property (according to Defini-
tion 2) holds, then the unpredictability property does not hold in the asymmetric setting and
also in some cases for the symmetric setting.

Theorem 2. Let P = (Setup,KeyGen,Comp,Prove,Verify) be a “non-strictly” structure-
preserving deterministic primitive as defined in Definition 5. Suppose that the discrete log-
arithm problem is hard in the source groups of the asymmetric bilinear groups Λ and let
KeyGen, Comp, and Prove be restricted to the class of algebraic algorithms over Λ. Then
P is not unpredictable according to Definition 3.

Proof. The outline of the proof is the same as the one for Theorem 1. First, in Lemma 3
we show that for any P that is provable and has the uniqueness property as specified in
Definition 2, the output of Comp must have a particular format, namely Comp(X,SK) =

(Y1, . . . , Y`,W1, . . . ,Wn, Z1, . . . , Zm) with Yi = G
a1,i
1 X

b1,i
1 ,Wi = G

a2,i
2 X

b2,i
2 , and Zi =

e(G1, G2)
a′ie(X1, G2)

b′ie(G1, X2)
c′ie(X1, X2)

d′i for X1, G1 ∈ G1, and X2, G2 ∈ G2 and for
constants aj,i, bj,i, a′i, b

′
i, c
′
i, d
′
i ∈ Zp. Then in Lemma 4 we prove that if the output of Comp

has this format then the unpredictability property from Definition 3 does not hold for P, and
thus the latter cannot exist.

We note that Lemma 3 holds for both symmetric and asymmetric settings. Lemma 4, how-
ever, holds only for the asymmetric setting, thus the result of this theorem holds only for the
asymmetric setting.

Lemma 3. If the discrete-logarithm problem is hard in the source groups of Λ and P has the
provability and the uniqueness properties (Definition 2), then with overwhelming probability
it holds that Comp(X,SK) = (Y1, . . . , Y`,W1, . . . ,Wn, Z1, . . . , Zm) with Yi = G

a1,i
1 X

b1,i
1 ,

Wi = G
a2,i
2 X

b2,i
2 , and Zi = e(G1, G2)

a′ie(X1, G2)
b′ie(G1, X2)

c′i · e(X1, X2)
d′i for X1, G1 ∈

G1;X2, G2 ∈ G2; and for constants aj,i, bj,i, a′i, b
′
i, c
′
i, d
′
i ∈ Zp.



12 Masayuki Abe, Jan Camenisch, Rafael Dowsley, and Maria Dubovitskaya

Proof. Similarly to Lemma 1, we start with the symmetric setting (G1 = G2 = G) and a single
group element as an input for simplicity. Fix (PK,SK)

$← KeyGen(CP ), where a public key
consists of both source and target group elements: PK ⊂ {G,GT }∗. Let x $← Zp, X = Gx.

First, since Comp is deterministic and KeyGen, Comp and Prove are all algebraic algo-
rithms over Λ, without loss of generality, their outputs can be expressed as

Comp(X,SK) = Y = (Y1, . . . , Y`, Z1, . . . , Z`′) with Yi = Ga1,iXb1,i ,

Zi = e(GaiXbi , GciXdi) = e(G,G)a
′
ie(X,G)b

′
ie(G,X)c

′
ie(X,X)d

′
i ;

Prove(X,SK) = Π = (Π1, . . . ,Πn) with Πj = GujXvj ,

PK = (S1, . . . Sm, T1, . . . Tm′) with Sf = Gsf , Tf ′ = Gtf′ ;

where ai = Ha,i(X,SK), bi = Hb,i(X,SK), a′i = Ha′,i(X,SK), b′i = Hb′,i(X,
SK), c′i = Hc′,i(X,SK), d′i = Hd′,i(X,SK), vj = Hv,j(X,SK, r), uj = Hu,j(X,SK, r),
and H∗,∗ are arbitrary functions. We note that ai, bi, a′i, b

′
i, c
′
i, d
′
i, uj , vj can depend on X in an

arbitrary manner, but since Comp and Prove are algebraic, one can extract ai, bi, a′i, b
′
i, c
′
i, d
′
i,

uj , and vj as values from Zp using the extractors of algorithms KeyGen, Comp and Prove.
Second, we recall that, according to Definition 2, the verification algorithm consists of

pairing product equations (PPE). Let the k-th PPE from the verification algorithm be

e
(
X,Xck,6

∏̀
i=1

Y
ck,7,i

i

q∏
j=1

Π
ck,8,j

j

) ∏̀
w=1

e
(
Yw,

∏̀
i=1

Y
ck,9,w,i

i

n∏
j=1

Π
ck,10,w,j

j

) `′∏
i=1

Z
ck,i

i ·

·
m∏
f=1

e
(
Sf , X

ck,1,f

m∏
t=1

S
ck,2,f,t

t

∏̀
i=1

Y
ck,3,f,i

i

q∏
j=1

Π
ck,4,f,j

j

) n∏
q=1

e
(
Πq,

n∏
j=1

Π
ck,5,q,j

j

)
= Tk.

The proof works very similarly to the one of Lemma 1. One can see that the relation in the
exponents of the k-th PPE for the tuple (X,Y,Π, PK) induce a polynomial Qk(x) in the dis-
crete logarithm x = logGX . Basically, we can re-write the k-th PPE as e(G,G)Qk(x) = 1. So,
first, we prove that Qk(x) is a trivial function, otherwise it is possible to solve the discrete log-
arithm problem for the given X by solving Qk. Second, if Qk is trivial, then by the uniqueness
property ai, bi, a′i, b

′
i, c
′
i, and d′i are constants. Let ai, bi, a′i, b

′
i, c
′
i, d
′
i, uj , and vj be the correct

values computed for one specific X . Then we have that Yi = Ga1,iXb1,i , Zi = e(G,G)a
′
i ·

e(X,G)b
′
ie(G,X)c

′
ie(X,X)d

′
i , Πj = GujXvj , and Verify(PK,X, Y,Π) = 1. Proposition 2

shows that these values can be reused to compute a correct Ỹ for any other X̃ ∈ X . So if
Ỹi, Z̃i, and Π̃i are computed as Ỹi = Ga1,iX̃b1,i , Z̃i = e(G,G)a

′
ie(X̃,G)b

′
ie(G, X̃)c

′
ie(X̃,

X̃)d
′
i , and Π̃j = Guj X̃vj , respectively, instead of using the normal computation procedures,

then (X̃, Ỹ , Π̃) are also accepted by the verification algorithm due to the triviality of Qk.
Then, from the uniqueness property, it follows that these ai, bi, a′i, b

′
i, c
′
i, and d′i are the only

valid values, i.e., constants.
Similarly to the proof of Lemma 1 the proof above can be extended to the asymmetric

setting and to the case when the input consists of a tuple of group elements.

�

Lemma 4. Let Λ be a description of asymmetric bilinear groups. Let P = (Setup,KeyGen,
Comp,Prove,Verify) be a “non-strictly” structure-preserving deterministic primitive as de-
fined in Definition 5. If P is provable and unique according to Definition 2 then P does not
satisfy the unpredictability requirement of Definition 3.
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Proof. We consider an inputX = (X1, X2) consisting of a single element from the first source
group X1 ∈ G1 and a single element from the second source group X2 ∈ G2. Applying
Lemma 3, the output of Comp looks as follows, without loss of generality:

Comp(X,SK) = (Y1, . . . , Y`,W1, . . . ,W`′′ , Z1, . . . , Z`′) with Yi = G
a1,i
1 X

b1,i
1 ,

Wi = G
a2,i
2 X

b2,i
2 , and Zi = e(Gai1 X

bi
1 , G

ci
2 X

di
2 ) =

e(G1, G2)
a′ie(X1, G2)

b′ie(G1, X2)
c′ie(X1, X2)

d′i .

Pick X̂1, X̃1 ∈ G1 and X2 ∈ G2, set X̂ = (X̂1, X2) and X̃ = (X̃1, X2) and define
X , such that X1 = X̂2

1/X̃1 /∈ {X̂1, X̃1}, and X2 = X2. As we proved in Lemma 2, the
unpredictability does not hold for source group elements. Now we show that with this choice of
the input the adversary can also compute the target group elements of the output. For simplicity,
let us now assume the output to consist only of the target group elements.

An adversary that learns Comp(X̂, SK) = (Ẑ1, . . . , Ẑ`′) with Ẑi = e(Gai1 X̂
bi
1 , G

ci
2 X̂

di
2 )

= e(G1, G2)
a′ie(X̂1, G2)

b′ie(G1, X̂2)
c′ie(X̂1, X̂2)

d′i and Comp(X̃, SK) = (Z̃1, . . . , Z̃`′)

with Z̃i = e(Gai1 X̃
bi
1 , G

ci
2 X̃

di
2 ) = e(G1, G2)

a′ie(X̃1, G2)
b′ie(G1, X̃2)

c′ie(X̃1, X̃2)
d′i can al-

ready compute the value of Comp(X,SK) = (Z1, . . . , Z`′) as
(
Ẑ2

1

Z̃1
, . . . ,

Ẑ2
`′

Z̃`′

)
, because we

have that

Ẑ2
i

Z̃i
=
e(G1, G2)

2a′ie(X̂1, G2)
2b′ie(G1, X̂2)

2c′ie(X̂1, X̂2)
2d′i

e(G1, G2)a
′
ie(X̃1, G2)b

′
ie(G1, X̃2)c

′
ie(X̃1, X̃2)d

′
i

=

e(G1, G2)
a′i · e

(
X̂2

1

X̃
,G2

)b′1
· e
(
G1, X2

)c′1 · e(X̂2
1

X̃1

, X2

)d′1
= Zi.

Therefore, P is not unpredictable for the target group elements either.

�

�

One can see that for the symmetric setting the result above holds only if there is no element
e(X1, X2)

d′i in the output. I.e., since X1 = X2 = X , when X appears on both sides of the
pairing, the relation will not be linear –X2 will induce the power of 4 in the output: e(X,X)4.

Corollary 1. Let P = (Setup,KeyGen,Comp,Prove,Verify) be “non-strictly” struc-ture-
preserving deterministic primitive as defined in Definition 5. Suppose that the discrete log-
arithm problem is hard in the source groups of the symmetric bilinear groups Λsym and let
KeyGen, Comp, and Prove be restricted to the class of algebraic algorithms over Λ. If the
output of Comp algorithm is not of the form e(X,X)d

′
i , then P is not unpredictable according

to Definition 3.

Finally, allowing just a public key to contain target group elements would also induce the
impossibility result in both symmetric and asymmetric settings (see the following corollary).

Corollary 2. Let G be a bilinear group generator that takes as an input a security param-
eter 1λ and outputs a description of bilinear groups Λ = (p,G1,G2,GT , e,G1, G2). Let
SK,PK,X ,Y, and P be a secret key space, public key space, domain, range and a proof
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space, respectively. Let P = (Setup,KeyGen,Comp,Prove,Verify) be a Structure-Preserving
Deterministic Primitive as defined in Definition 2, except that the public key can contain also
target group elements (PK ∈ {G1,G2,GT }∗). Then P is not unpredictable according to Def-
inition 3.

One can see that if Comp does not contain target group elements, but the public key does,
then the result follows from Lemmas 1 and 2 with a slight modification of Lemma 1. Namely,
in this case KeyGen is algebraic according to Definition 6 and one can use its extractor to
compute the exponents for both source and target group elements of the public key.

4 Impossibility Results for Structure-Preserving PRF, VRF and Unique
Signatures

In this section, we show how the definition of an abstract provable structure-preserving deter-
ministic primitive (SPDP) given in Section 2 relates to the definitions of structure-preserving
verifiable random function (VRF), and unique signatures (USig). We show that the security
properties of an SPDP are necessary conditions for any VRF or USig to be secure.5 We also
discuss how the SPDP definition relates to structure-preserving PRF.

We recall the standard definitions of PRF and USig with a slight adaptation to our notation
in Appendix A. Here we only explain how the requirements for structure-preserving variants
of these primitives are captured by our SPDP definition.

4.1 Impossibility of Structure-Preserving Unique Signatures.

A unique signature scheme consists of the setup Setup, key generation KeyGen, signing Sign
and verification Verify algorithms as formally defined below:

Definition 7 (Unique Signatures [45]). A function family σ : SK × X→Y is an unique
signature scheme (USig) if there exists probabilistic PT algorithms Setup and KeyGen, and
deterministic PT algorithms Sign and Verify (in case Verify is probabilistic, the adjustment to
the definition is straightforward) such that:

– CP
$← Setup(Λ) is a common parameter generation algorithm that takes as input a group

description Λ and outputs the common parameters CP .
– (PK,SK)

$← KeyGen(CP ) is a key generation algorithm that takes as input the common
parameters CP and outputs a public key PK and the corresponding secret key SK.

– Y ← Sign(X,SK) is a deterministic algorithm that takes as input X ∈ X ,SK ∈ SK
and outputs the signature Y = σSK(X) ∈ Y .

– 0/1← Verify(X,Y, PK) is a verification algorithm that takes as input a public key PK,
X ∈ X , Y ∈ Y and verifies whether Y = σSK(X).

The following properties are required from an unique signature scheme:

1. Uniqueness of the signature: There are no values (PK,X, Y, Y ′) such that Y 6= Y ′ and
Verify(X,Y, PK) = Verify(X,Y ′, PK) = 1.

5 Note that the requirements are necessary conditions, but maybe not sufficient conditions, e.g., in the
case of VRF pseudorandomness is a stronger requirement than unpredictability.
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2. Security: For all probabilistic PT adversaries A:

Pr

 CP
$← Setup(Λ) ;

(PK,SK)
$← KeyGen(CP ) ;

(X,Y )
$← ASign(·,SK)(PK)

∣∣∣∣∣∣∣Verify(X,Y, PK) = 1 ∧X /∈ S

 ≤ negl(λ),

where S is the set of queries to the oracle Sign.

Goldwasser and Ostrovsky [35] proposed a relaxed definition for USig. Namely, they re-
quire a proof that the signature is correct as an additional input to the verification algorithm.
This proof is also an output of the signing algorithm together with the signature, but it might
not be unique. This definition is sufficient to construct a VRF from USig [46].

Applying the definition of an SPDP to the context of unique signatures, one can see that
Comp is the signing algorithm, and that the Prove algorithm does not exist, which is equivalent
to a Prove algorithm that always returns an empty string. From the security point of view, the
uniqueness of the unique signatures according to Definition 7 is the same as in Definition 2.
Now we see the match for the unpredictability property.

One can see that in the security game from Definition 7 an adversary can output a forgery
Y that passes the verification equation, but it can be computed in an arbitrary manner. How-
ever, in the unpredictability game from Definition 3 a forgery must be computed using the
Comp algorithm. But because of the provability and uniqueness properties the former condi-
tion (Verify(X,Y, PK) = 1) actually implies the latter one (Y = Comp(X,SK)). Therefore,
the unpredictability property from Definition 3 is equivalent to the Security property of USig
described above. Thus, the following corollary holds:

Corollary 3. Assuming the hardness of the discrete logarithm problem in the base groups of
Λ, there is no unique signature that is algebraic and secure.

4.2 Impossibility of Structure-Preserving Verifiable Random Functions.

The syntax of a verifiable random function (VRF) follows our generic definition of an SPDP:
VRF consists of Setup,KeyGen,Comp,Prove, and Verify algorithms. Structure-preserving
VRF has the same restriction on the public key space, domain, range and proof space as an
SPDP, namely, they consist only of source group elements. VRF is also provable and unique,
but instead of unpredictability, VRF has a pseudorandomness property (see Definition 4).

Lemma 5. If a verifiable random function is pseudorandom according to Definition 4 then its
translation to a generic deterministic primitive satisfies unpredictability as defined in Defini-
tion 3.

Proof. The distinguisher D = (D1,D2) of the pseudorandomness from Definition 4 can use
the adversary A that breaks the unpredictability according to Definition 3. D1 executes a copy
ofA internally and forwards the oracle queries/answers appropriately. IfA produces an output
pair (X,Y ) where Y is an output value for a fresh input X that was not queried to the oracle
before, then D1 uses X as his output and forwards Y to D2 who uses Y to distinguish if the
returned challenge Y(b) is a random value or the output of the real function. If no such pair
(X,Y ) is produced by A, then D makes a random guess.

�
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Given the above, the impossibility of an SPDP that provides unpredictability implies the
impossibility of a VRF that provides pseudorandomness:

Corollary 4. Assuming the hardness of the discrete logarithm problem in the base groups of
Λ, there is no verifiable random function that is algebraic and secure.

One can see that this result also rules out the construction of a structure-preserving sim-
ulatable VRF (sVRF) [26], which is a special case of a VRF with the public parameters (see
Definition 1 from [26]) and is a key building block in some e-cash schemes [7].

4.3 Impossibility of Structure-Preserving Pseudorandom Functions.

The standard definition of a PRF (Definition 11 in Appendix A) does not feature Prove and
Verify algorithms. However, the reason one wants a PRF to be structure-preserving is that one
can use GS-proofs so that one party can prove to another party that the Comp algorithm was
followed as prescribed. As we mentioned before, one of the examples of using PRF coupled
with non-interactive zero-knowledge (NIZK) proofs is in e-cash systems [17, 7].

This approach essentially adds Prove and Verify algorithms to the definition of a PRF. We
formalize it later in this section. First, note that adding a proof that a PRF was computed cor-
rectly does not result in a VRF as in the latter case there is a public key and one wants to verify
that the VRF was really computed with a specific public key. Whereas here one is interested
in proving that the PRF was correctly computed w.r.t. any secret key, which is a weaker re-
quirement. We are thus interested in the question of whether it is possible to construct a PRF
for which one can prove the correctness of computation with GS-proofs. Or, more generally,
with NIZK proofs that use only PPE for verification. With this in mind, we define a variant of
Definition 2 and Definition 4, which are extensions of PRF definitions with Prove and Verify
algorithms and further have Setup generate parameters for NIZK proofs. Note that one can of
course always trivially prove that a PRF was computed correctly without using NIZK proofs
by just revealing the secret key (as is for instance done in the Hohenberger-Waters signature
scheme [39]). Formally, this proof method follows the definition we give, nevertheless, it is
easy to see that a straightforward adaptation of our impossibility proof rules out the existence
of PRFs (or even functions which instead of being pseudorandom are only unpredictable) that
are algebraic and secure according to the suitable modification of Definition 2 and Definition 4
to allow the verification algorithm to use SK.

Non-Interactive Zero-Knowledge Proof System. First, we define a Non-Interactive Zero-Know-
ledge Proof System. Let R be an efficiently computable binary relation. For pairs (W,S) ∈ R
we call S the statement and W the witness. Let L be the language consisting of statements in
R.

Definition 8 (Non-Interactive Zero-Knowledge Proof System (NIZK)). Let G be a bilinear
group generator that takes as an input a security parameter 1λ and outputs a description of
a bilinear group Λ = (p,G1,G2,GT , e,G1, G2). The non-interactive zero-knowledge proof
system for a language L consists of the following algorithms and protocols:

– CP
$← Setupnizk(Λ): On input Λ, it outputs the common parameters (CP ) for the proof

system.
– Π

$← Provenizk(CP,W, S): On input the common parameters CP , a statement S, and a
witness W , it generates a zero-knowledge proof that the witness W satisfies the statement
S.
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– 0/1 ← Verifynizk(CP,Π, S): On input a statement S and a proof Π , it outputs 1 if Π is
valid, and 0 otherwise.

In this work we refer to Groth-Sahai proofs [36] as the instantiation of the NIZK proof
system.

Theorem 3. [36] The Groth-Sahai ZK proof system is a non-interactive zero-knowledge
(NIZK) proof system with perfect correctness, perfect soundness and composable zero-know-
ledge for satisfiability of a set of equations over a bilinear group where the K-linear assumption
holds.

We refer to [36] for detailed security definitions and proofs. We also note that the results from
this section and Section 5 hold for non-interactive witness-indistinguishable proofs as well that
can be also instantiated with NIWI proofs by Groth and Sahai ([36]).

Combining Structure-Preserving PRF with a NIZK Proof System. Below we provide a formal
definition for the construction of a PRF coupled with NIZK proofs, where verification opera-
tions are restricted to checking group membership and evaluating pairing product equations.
Note that Provenizk and Verifynizk algorithms take NIZK parameters and a proof statement as
an input as well. Since in our case the statement is always a correctness of Comp algorithm,
for consistency of notation with Definition 2 we omit the statement input.

In order to distinguish functions and variables with the same name among different prim-
itives, we may give subscripts that represents the primitive in obvious manner. For instance
Compprf denote Comp of the PRF in mind.

Definition 9 (Structure-Preserving Pseudorandom Function with a Proof of Computa-
tion Correctness). Let G be a bilinear group generator that takes as an input a security pa-
rameter 1λ and outputs a description of a bilinear group Λ = (p,G1,G2,GT , e,G1, G2).
A structure-preserving pseudorandom function with a proof of computation correctness with
respect to Λ is a set of the following algorithms:

– CP
$← Setup(Λ): Run CP prf

$← Setupprf(Λ) and CP nizk
$← Setupnizk(Λ), and return

CP = (CP prf, CP nizk).

– (PK,SK)
$← KeyGen(CP ): Run SK $← KeyGenprf(CP prf). Set an empty string to PK.

Return (PK,SK).
– Y ← Comp(X,SK): Run Y ← Compprf(X,SK). Return Y .

– Π
$← Prove(X,SK) : Run Y ← Compprf(X,SK) and Π $← Provenizk(CP nizk, SK,

(X,Y )). (We consider Provenizk for the relation R = {(SK, (X,Y )) : Y = FSK(X)},
where (X,Y ) is the proof statement and SK is the witness.) Return Π .

– 0/1← Verify(X,Y,Π) : Run b← Verifynizk(CP nizk, Π, (X,Y )) and return b.

We now show that the above primitive provides provability, uniqueness and pseudoran-
domness based on the security of underlying PRF and NIZK.

Lemma 6. The above pseudorandom function with a proof of computation correctness is a
provable structure-preserving deterministic primitive defined in Definition 2 and provides un-
predictability according to Definition 3 if the underlying PRF is pseudorandom and NIZK is
correct and sound.
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Proof. Syntactical consistency can be verified by inspection. We focus on the security proper-
ties. First of all, provability holds from correctness of NIZK as Verify is identical to Verifynizk.
Uniqueness holds due to the soundness of NIZK and the fact that a PRF is deterministic.
Namely, if (SK,X, Y ) satisfies the relation defined by the PRF, (SK,X, Y ′) for Y 6= Y ′

does not satisfy the relation since a PRF is deterministic. Thus, by the soundness of NIZK,
there is no Π ′ that is accepted by the verification algorithm for (SK,X, Y ′). The pseudoran-
domness holds due to the definition of a PRF (see Definition 11). The unpredictability follows
from it due to the same reason as stated in Lemma 5.

�

We observe, that similarly to a pair VRF-VUF, where the pseudorandomness implies unpre-
dictability, one can follow Lemma 6 and show that any unpredictable function can be coupled
with NIZK to get SPDP with required properties.

Corollary 5. Assuming the hardness of the discrete logarithm problem in the base groups of
Λ, there is no triple of pseudorandom function (or even functions that are only unpredictable),
and prove and verification algorithms that is algebraic and satisfies Definition 9.

The Corollary follows by a trivial adaptation of the proof in the context of Definition 9. As
discussed in Section 4.2, if the adversary can break the unpredictability property and compute
the output value himself, then he can obviously break the pseudorandomness property.

5 Impossibility Results for Structure-Preserving Deterministic
Encryption

Since deterministic encryption (DE) does not fit into Definition 2 both from the syntax and
security perspective, we discuss it separately here. DE consists of the following algorithms:
Setup,KeyGen,Enc,Dec (see Definition 12 from Appendix A). A structure-preserving en-
cryption scheme has public keys, messages, and ciphertexts that consist entirely of source
group elements. Moreover, the encryption and decryption algorithms perform only group and
bilinear map operations.

Following Definition 2, one can view Comp as the encryption algorithm Enc from Defini-
tion 12. If we add Prove and Verify algorithms, then Prove will output a proof of the correct
computation of the encryption algorithm. Below we provide a formal definition for the DE
with this in mind, similarly as we did for the PRF in Section 4.3. We note that even though
we assume the instantiation of Prove and Verify with GS-proofs our result holds in general for
proofs that require only PPE for verification.

Definition 10 (Structure-Preserving Deterministic Encryption with a Proof of Encryp-
tion Correctness). Let G be a bilinear group generator that takes as an input a security pa-
rameter 1λ and outputs a description of a bilinear group Λ = (p,G1,G2,GT , e,G1, G2).
Structure-Preserving Deterministic Encryption with a NIZK proof of encryption correctness
with respect to Λ is a tuple of the following PT algorithms:

– CP
$← Setup(Λ): Run CP de

$← Setupde(Λ) and CP nizk
$← Setupnizk(Λ), and return

CP = (CP de, CP nizk).
– (PK,SK)

$← KeyGen(CP ): Run (SK,PK)
$← KeyGende(CP de). Return (PK,SK).

– Y ← Comp(X,SK): Compute PK from SK. Run Yde ← Enc(X,PK).
Return Y = (Yde, PK).
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– Π
$← Prove(X,SK) : Compute PK from SK, run Yde ← Enc(X,PK) and

Π
$← Provenizk(CP nizk, X, (Y, PK)).

(We consider Provenizk for the relation R = {(X, (Yde, PK)) : Yde = Enc(X,PK)},
where (Yde, PK) is the proof statement and X is the witness.) Return Π .

– 0/1← Verify(X,Y,Π) : Run b← Verifynizk(CP nizk, Π, (Y, PK)) and return b.

Note that X is not really referred in Verify but it is anyway consistent to the syntax of an
SPDP.

We would like to point out that since Comp, as an encryption algorithm, takes a public key
as an input, no unpredictability-style property can hold in this case. Thus, we cannot require
both uniqueness and unpredictability properties (see Definitions 2 and 3) to hold for the primi-
tive from the Definition 10 to be secure. Nevertheless, we show that the latter primitive, which
is provable and unique, cannot exist.

First, we show that two security properties, provability and uniqueness, of an SPDP hold
for the above DE coupled with (GS) NIZK-proofs. Formally:

Lemma 7. The above deterministic encryption scheme with a proof of encryption correctness
has the provability and uniqueness properties defined in Definition 2, if NIZK is correct and
sound.

The proof of the above lemma is the same as that for Lemma 6 with obvious modification
and thus omitted.

Theorem 4. Assuming the hardness of the discrete logarithm problem in the base groups of
Λ, there is no algebraic structure-preserving deterministic encryption scheme, which is secure
and where encryption can be verified by an algorithm, which takes X,Y,Π, PK as input and
only performs group operations and PPE evaluations.

Proof. As we mentioned before, by the definition of DE and the correctness of decryption,
the uniqueness property holds if we consider Enc to be the Comp algorithm. According to
Lemma 1 the ciphertext that encrypts a group element X looks as follows: Comp(X,PK) =
Y = (Ga1Xb1 , . . . , Ga`Xb`), where a1, . . . , a`, b1, . . . , b` are constants in Zp, and G is a
group generator. To encrypt X , it is obvious that Gai and bi, i = 1, . . . , ` should be efficiently
derivable from the public key. This means that the ciphertext can be decrypted using the public
key.

�

6 Conclusion

In this paper we proved that it is impossible to construct algebraic structure-preserving VRF,
VUF and USig. It is also shown that PRF and DE coupled with non-interactive proof system
cannot be structure-preserving, either. We further extend our results to “non-strictly” structure
preserving primitives, which are allowed to have target group elements in their public keys and
ranges. Regarding the latter, we show that such primitives cannot be constructed for asymmet-
ric bilinear maps and that the possible constructions for symmetric maps are severely restricted
on the operation they can use.

Although our results are restricted to the class of algebraic algorithms, all known construc-
tions of structure-preserving primitives consist of algebraic algorithms. Finding constructions
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of secure structure-preserving algorithms that allow non-algebraic operations but whose cor-
rectness of computation still can be verified using a system of PPE is an interesting problem.
We also would like to point out that it might be possible to extend our impossibility result to
the quasi-deterministic case where the uniqueness condition can be relaxed to have at most
poly(λ) output values corresponding to each input value.

Finally, we note that the deterministic primitives might exist in a restricted form, where
only one query to the oracle is allowed. Namely, one-time deterministic primitives might still
be possible in the world of structure-preserving cryptography.
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A Definitions of PRF and DE

In this section we recall the definitions of the cryptographic primitives that we are concerned
with, i.e., pseudorandom functions and deterministic encryption. To make the notation consis-
tent throughout the paper we slightly adjust the original definitions of the primitives described
in this section. Also, for all primitives we assume that a group description is a public parameter
and is given as input to a setup algorithm.

For all definitions we consider the following. Let G be a bilinear group generator that takes
as input a security parameter 1λ and outputs a description of bilinear groups Λ = (p,G1,G2,
GT , e,G1, G2). Let SK,X ,Y,P be the secret key space, public key space, domain, range and
a proof space, respectively.

A.1 Pseudorandom Functions

Pseudorandom functions (PRF) were introduced in [34]. Below we give an adaptation of the
original definition to the notation used in this paper.

Definition 11 (Pseudorandom Function). A function family F : SK × X→Y is called a
pseudorandom function (PRF) if there are probabilistic PT algorithms Setup and KeyGen and
a deterministic PT algorithm Comp such that:

– CP
$← Setup(Λ) is an algorithm that takes as input a group description Λ and outputs

the common parameters CP .
– SK

$← KeyGen(CP ) is an algorithm that takes as input the common parameters CP and
outputs a (secret) key SK ∈ SK .

– Y ← Comp(X,SK) is a deterministic algorithm that takes as input X ∈ X and SK ∈
SK and outputs the function value Y = FSK(X) ∈ Y .

The following property is required from a PRF:
Pseudorandomness: For all probabilistic PT distinguishers D = (D1,D2) we have

Pr


CP

$← Setup(Λ) ; SK
$← KeyGen(CP ) ;

(X, st)← D1
Comp(·,SK)(CP ) ;

Y(0) ← FSK(X) ; Y(1)
$← Y ; b

$← {0, 1} ;
b′

$← D2
Comp(·,SK)(Y(b), st)

∣∣∣∣∣∣∣∣∣ b = b′ ∧ X /∈ S

 ≤ 1

2
+ negl(λ),

where S is the set of queries to the oracle Comp.
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A.2 Deterministic Encryption

Deterministic encryption was introduced by was introduced by Bellare, Boldyreva, and ONeill
in [8]. Here we provide a slightly adapted definition of DE.

Definition 12 (Deterministic Encryption). A function family F : PK × X→Y is called a
structure-preserving deterministic encryption (SPDE) if there are probabilistic PT algorithms
Setup and KeyGen, and a deterministic PT algorithms Enc amd Dec such that:

– CP
$← Setup(Λ) is a probabilistic algorithm that takes as input the security parame-

ter and outputs the common parameters CP that consists of the group description Λ =
(p,G1,G2,GT , e,G1, G2) generated by G(1λ) and possibly also constants in Zp.

– (PK,SK)
$← KeyGen(CP ) is a probabilistic key generation algorithm that takes as

input the common parameters and outputs a public key PK and a secret key SK. It is
assumed without loss of generality that SK includes PK.

– Y ← Enc(X,PK) is a deterministic algorithm that takes as input X ∈ X and a public
key PK and outputs a ciphertext Y ∈ Y .

– X ← Dec(Y, SK) is a deterministic algorithm that takes as input a ciphertext Y ∈ Y and
a secret key SK and outputs a plaintext X ∈ X .

Intuitively, the security notion for deterministic encryption, called a PRIV game, that was
introduced in [8], states that it should be hard to guess any public key independent information
of a list of messages given their encryptions, as long as the list has component-wise high min-
entropy. Or, in other words, the adversary should not be able to distinguish ciphertexts that
correspond to messages that come from two message distributions with high min-entropy. We
refer the reader to [8] for the formal definition of the game.


