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Abstract. We study the complexity of secure computation in the tamper-
proof hardware token model. Our main focus is on non-interactive uncon-
ditional two-party computation using bit-OT tokens, but we also study
computational security with stateless tokens that have more complex
functionality. Our results can be summarized as follows:

— There exists a class of functions such that the number of bit-OT
tokens required to securely implement them is at least the size of
the sender’s input. The same applies for receiver’s input size (with
a different class of functionalities).

— Non-adaptive protocols in the hardware token model imply efficient
(decomposable) randomized encodings. This can be interpreted as
evidence to the impossibility of non-adaptive protocols for a large
class of functions.

— There exists a functionality for which there is no protocol in the
stateless hardware token model accessing the tokens at most a con-
stant number of times, even when the adversary is computationally
bounded.

En route to proving our results, we make interesting connections between
the hardware token model and well studied notions such as OT hybrid
model, randomized encodings and obfuscation.

1 Introduction

A protocol for secure two-party computation allows two mutually distrustful
parties to jointly compute a function f of their respective inputs, = and y, in
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a way that does not reveal anything beyond the value f(z,y) being computed.
Soon after the introduction of this powerful notion [41,18], it was realized that
most functions f(x,y) do not admit an unconditionally-secure protocol that
satisfies it, in the sense that any such protocol implicitly implies the existence
(and in some case requires extensive use [2]) of a protocol for Oblivious Transfer
(OT) [7,3,29,23,35]. Moreover, even if one was willing to settle for computational
security, secure two-party computation has been shown to suffer from severe
limitations in the context of protocol composition [15,5,32,33].

The above realizations have motivated the search for alternative models of
computation and communication, with the hope that such models would enable
bypassing the above limitations, and as a byproduct perhaps also give rise to
more efficient protocols. One notable example is the so called hardware token
model, introduced by Katz [28]. In this model, it is assumed that one party can
generate hardware tokens that implement some efficient functionality in a way
that allows the other party only black-box access to the functionality.

The literature on hardware tokens (sometimes referred to as tamper proof
tokens®) discusses a variety of models, ranging from the use of stateful tokens
(that are destroyed after being queried for some fixed number of times) to state-
less ones (that can be queried for an arbitrary number of times), with either
non-adaptive access (in which the queries to the tokens are fixed in advance) or
adaptive access (in which queries can depend on answers to previous queries).
Tokens with varying levels of complexity have also been considered, starting with
simple functions such as bit-OT, and ranging all the way to extremely complex
functionalities (ones that enable the construction of UC-secure protocols given
only a single call to the token).

The use of hardware tokens opened up the possibility of realizing information-
theoretically and/or composable secure two-party protocols even in cases where
this was shown to be impossible in “plain” models of communication. Two early
examples of such constructions are protocols for UC-secure computation [28], and
one-time programs [20]. More recently, a line of research initiated by Goyal et
al. [22] has focused on obtaining unconditionally-secure two-party computation
using stateful tokens that implement the bit-OT functionality. In [21], Goyal
et al. went on to show how to achieve UC-secure two party computation using
stateless tokens under the condition that tokens can be encapsulated: namely,
the receiver of a token A can construct a token B that can invoke A internally.
Finally, Dottling et al. [12] have shown that it is possible to obtain information-
theoretically secure UC two-party protocols using a single token, assuming it
can compute some complex functionality.

Generally speaking, the bit-OT token model has many advantages over a
model that allows more complex tokens. First of all, the OT functionality is
simple thus facilitating hardware design and implementation. Secondly, in many
cases [22], the bit-OT tokens do not depend on the functionality that is being
computed. Hence, a large number of bit-OT tokens can be produced “offline”

5 There are papers which deal with the leakage of tokens’ contents. We do not consider
such a setting in this work.



and subsequently used for any functionality. The main apparent shortcoming of
bit-OT tokens in comparison to their complex counterparts is that in all previous
works the number of tokens used is proportional to the size of the circuit being
evaluated, rendering the resulting protocols impractical. This state of affairs
calls for the investigation of the minimal number of bit-OT token invocations in
a secure two-party computation protocol.

In this work we aim to study the complexity of constructing secure proto-
cols with respect to different measures in the hardware token model. Our main
focus is on non-interactive information-theoretic two-party computation using
bit-OT tokens, but we also study computational security with stateless tokens
that compute more complex functionalities. En route to proving our results, we
make interesting connections between protocols in the hardware token model
and well studied notions such as randomized encodings, obfuscation and the OT
hybrid model. Such connections have been explored before mainly in the context
of obtaining feasibility results [22,13].

The first question we address is concerned with the number of bit-OT tokens
required to securely achieve information-theoretic secure two-party computation.
The work on one-time programs makes use of bit-OT tokens in order to achieve
secure two party computation in the computational setting, and the number of
tokens required in that construction is proportional to the receiver’s input size.
On the other hand, the only known construction in the information-theoretic
setting [22] uses a number of tokens that is proportional to the size of the circuit.
This leads us to the following question: is it possible to construct information
theoretic two party computation protocols in the token model, where the number
of tokens is proportional to the size of the functionality’s input? Problems of
similar nature have been also studied in the (closely related) OT-hybrid model
[11,2,40,36,37,39].

The second question we address is concerned with the number of levels of
adaptivity required to achieve unconditional two party computation. The known
constructions [22] using bit-OT tokens are highly adaptive in nature: the num-
ber of adaptive calls required is proportional to the depth of the circuit being
computed. The only existing protocols which are non-adaptive are either for spe-
cific complexity classes ([26] for NC1) or in the computational setting [20]. An
interesting question, therefore, is whether there exist information-theoretic non
adaptive protocols for all efficient functionalities.

The works of [21,34] give negative results on the feasibility of using stateless
tokens in the information-theoretic setting. Goyal et al. [22] have shown that
it is feasible to construct protocols using stateless tokens under computational
assumptions. So, a natural question would be to determine the minimum number
of calls to the (stateless) token required in a computational setting.

1.1 Owur Results

We exploit the relation between protocols in the hardware token model and
cryptographic notions such as randomized encodings and obfuscation to obtain



lower bounds in the hardware token model. We focus on non-interactive two-
party protocols, where only one party (the sender) sends messages and tokens
to the other party (the receiver). Our results are summarized below.

Number of bit-OT tokens in the information-theoretic setting. Our first set of
results establishes lower bounds on the number of bit-OT tokens as a function
of the parties’ input sizes. Specifically:

— We show that there exists a class of functionalities such that the number of
tokens required to securely implement them is at least the size of the sender’s
input. To obtain this result, we translate a similar result in the correlated
distributed randomness model by Winkler et al. [39] to this setting.

— We provide another set of functionalities such that the number of tokens
required to securely implement them is at least the size of the receiver’s
input.

While this still leaves a huge gap between the positive result (which uses
number of tokens proportional to the size of the circuit) and our lower bound,
we note that before this result, even such lower bounds were not known to exist.
Even in the case of OT-hybrid model, which is very much related to the hardware
token model (and more deeply studied), only lower bounds known are in terms
of the sender’s input size.

Non-adaptive protocols and randomized encodings. In our second main result we
show that non-adaptive protocols in the hardware token model imply efficient
randomized encodings. Even though currently known protocols [22] are highly
adaptive, it was still not clear that non adaptive protocols for all functionalities
were not possible. In fact, all functions in NC1 admit non adaptive protocols in
the hardware token model [26]. To study this question, we relate the existence of
non-adaptive protocols to the existence of a “weaker” notion of randomized en-
codings, called decomposable randomized encodings. Specifically, we show that if
a function has a non adaptive protocol then correspondingly, the function has an
efficient decomposable randomized encoding. The existence of efficient decom-
posable randomized encodings has far-reaching implications in MPC, providing
strong evidence to the impossibility of non-adaptive protocols for a large class
of functions.

Constant number of calls to stateless tokens. In our last result we show that there
exists a functionality for which there does not exist any protocol in the stateless
hardware token model making at most a constant number of calls. To this end,
we introduce the notion of an obfuscation complete oracle scheme, a variant of
obfuscation tailored to the setting of hardware tokens. Goyal et al. [22] have
shown such a scheme can be realized under computational assumptions (refer
to Section 6.2.2 in the full version). We derive a lower bound stating that a
constant number of calls to the obfuscation oracle does not suffice. This result
can then be translated to a corresponding result in the hardware token model.



This result holds even if the hardware is a complex stateless token (and hence still
relevant even in light of our previous results) and (more importantly) against
computational adversaries. Previous known lower bounds on complex tokens
were either for the case of stateful hardware [19,20,14] or in the information
theoretic setting [21,34].

Our hope is that the above results will inspire future work on lower bounds
in more general settings in the hardware token model and to further explore the
connection with randomized encodings, obfuscation and the OT-hybrid model.

2 Preliminaries
2.1 Model of computation

Hardware tokens: Hardware tokens can be divided into two broad categories
— stateful and stateless. As the name implies, stateful tokens can maintain some
form of state, which might restrict the extent to which they can be used. On the
other hand, stateless tokens cannot maintain any state, and could potentially be
used an unbounded number of times. The first formal study of hardware tokens
modeled them as stateful entities [28], so that they can engage in a two-round
protocol with the receiver. Later on, starting with the work of Chandran et al.
[6], stateless tokens were also widely studied.

The token functionality models the following sequence of events: (1) a player
(the creator) ‘seals’ a piece of software inside a tamper-proof token; (2) it then
sends the token to another player (the receiver), who can run the software in a
black-box manner. Once the token has been sent, the creator cannot communi-
cate with it, unlike the setting considered in [9,10]. We also do not allow token
encapsulation [21], a setting in which tokens can be placed inside other tokens.

Stateless tokens: The f;ﬁ?jgless functionality models the behavior of a state-
less token. It is parameterized by a polynomial p(.) and an implicit security

parameter k. Its behavior is described as follows:

— Create: Upon receiving (create, sid, P;, P;, mid, M) from P;, where M is a
Turing machine, do the following: (a) Send (create, sid, P;, P;, mid) to P;, and
(b) Store (P;, P;, mid, M).

— Execute: Upon receiving (run,sid, P;, mid, msg) from P;, find the unique
stored tuple (P;, P;, mid, M). If no such tuple exist, do nothing. Run M (msg)
for at most p(k) steps, and let out be the response (out = L if M does not
halt in p(k) steps). Send (sid, P;, mid, out) to P;.

Here sid and mid denote the session and machine identifier respectively.

Stateful tokens: In the class of stateful tokens, our primary interest is the
One Time Memory (OTM) token, studied first in [20]. This token implements a
single Oblivious Transfer (OT) call, and hence is also referred to as OT token.
Oblivious transfer, as we know, is one of the most widely studied primitives in



secure multi-party computation. In the (?)—OTk variant, sender has n strings of
k bits each, out of which a receiver can pick any t. The sender does not learn
anything in this process, and the receiver does not know what the remaining
n — t strings were. The behavior of an OTM token is similar to @)—OTk.

The primary difference between the OT functionality and an OTM token is
that while the functionality forwards an acknowledgment to the sender when the
receiver obtains the strings of its choice, there is no such feedback provided by
the token. Hence, one has to put extra checks in a protocol (in the token model)
to ensure that the receiver opens the tokens when it is supposed to (see, for
example, Section 3.1 in [22]). Formal definitions of 79T and FOT™ are given
below. We would be dealing with OTMs where both inputs are single bits. We
will refer to them as bit-OT tokens.

Oblivious Transfer (OT): The functionality F°7 is parameterized by three
positive integers n, t and k, and behaves as follows.

— On input (P, P;,sid,id, (s1, s2,...,5,)) from party P;, send (P;, P}, sid,id)
to P; and store the tuple (P;, Pj, sid,id, (s1,52,...,5,)). Here each s; is a
k-bit string.

— On receiving (P;,sid, id, l1,ls,...,l;) from party P;, if a tuple (P;, P}, sid, id,
(s1,82,...,8n)) exists, return (P;,sid,id, s;,, s,,...,s;,) to Pj, send an ac-
knowledgment (P}, sid,id) to P;, and delete the tuple (P;, P;,sid, id, (s1, s2,

., Sn)). Else, do nothing. Here each [, is an integer between 1 and n.

One Time Memory (OTM): The functionality FOT™ which captures the
behavior an OTM is described as follows:

— On input (P;, P;,sid, id, (sg, s1)) from party P;, send (P;, P;, sid, id) to P; and
store the tuple (P;, P;, sid, id, (sq, s1)).

— On receiving (P;,sid,id, ¢) from party P;, if a tuple (P;, P;,sid,id, (so,51))
exists, return (P, sid, id, s;) to P; and delete the tuple (P;, P}, sid, id, (so, $1)).
Else, do nothing.

Non-interactivity: In this paper, we are interested in non-interactive two-party
protocols (i.e., where only one party sends messages and tokens to the other).
Some of our results, however, hold for an interactive setting as well (whenever
this is the case, we point it out). The usual setting is as follows: Alice and Bob
have inputs x € X, and y € Y, respectively, and they wish to securely compute a
function f : Xy X Vi — Zi, such that only Bob receives the output f(z,y) € Zx
of the computation (here, k is the security parameter). Only Alice is allowed to
send messages and tokens to Bob.

Circuit families. In this work, we assume that parties are represented by cir-
cuit families instead of Turing machines. A circuit is an acyclic directed graph,
with the gates of the circuit representing the nodes of the graph, and the wires
representing the edges in the graph. We assume that a circuit can be broken
down into layers of gates such that the first layer of gates takes the input of the



circuit and outputs to the second layer of the gates which in turn outputs to the
third layer and so on. The output of the last layer is the output of the circuit.

A circuit is typically characterized by its size and its depth. The size of
the circuit is the sum of the number of gates and the number of wires in the
circuit. We define the depth of a circuit C, denoted by Depth(C) to be the
number of layers in the circuit. There are several complexity classes defined in
terms of depth and size of circuits. One important complexity class that we will
refer in this work is the NC1 complexity class. This comprises of circuits which
have depth O(log(n)) and size poly(n), where n is the input size of the circuit.
Languages in P can be represented by a circuit family whose size is polynomial
in the size of the input.

2.2 Security

Definition 1 (Indistinguishability). A function f : N — R is negligible in
n if for every polynomial p(.) and all sufficiently large n’s, it holds that f(n) <
ﬁ. Consider two probability ensembles X := {X,}neny and Y := {Y, }nen.
These ensembles are computationally indistinguishable if for every PPT algo-
rithm A, |PrlA(X,,1") = 1] — PrlA(Y,,1™) = 1]| is negligible in n. On the
other hand, these ensembles are statistically indistinguishable if A(X,,Y,) =
3> wes IPr[Xn = o] = Pr]Y, = o] is negligible in n, where S is the support
of the ensembles. The quantity A(X,,,Y,) is known as the statistical difference
between X,, and Y,,.

Statistical security: A protocol 7 for computing a two-input function f :
X X Vi — Zj in the hardware-token model involves Alice and Bob exchang-
ing messages and tokens. In the (static) semi-honest model, an adversary could
corrupt one of the parties at the beginning of an execution of 7. Though the
corrupted party does not deviate from the protocol, the adversary could use the
information it obtains through this party to learn more about the input of the
other party. At an intuitive level, a protocol is secure if any information the ad-
versary could learn from the execution can also be obtained just from the input
and output (if any) of the corrupted party. Defining security formally though
requires that we introduce some notation, which we do below.

Let the random variables view’ (z,y) = (x, Ra, M,U) and view;(z,y) =
(y, Rp, M,V) denote the views of Alice and Bob respectively in the protocol m,
when Alice has input « € X and Bob has input y € Vi. Here R4 (resp. Rp)
denotes the coin tosses of Alice (resp. Bob), M denotes the messages exchanged
between Alice and Bob, and U (resp. V') denotes the messages exchanged between
Alice (resp. Bob) and the token functionality. Also, let out%(z,y) denote the
output produced by Bob. We can now formally define security as follows.

Definition 2 (e-secure protocol [39]). A two-party protocol m computes a
function [ : X x Vi — Zp with € — security in the semi-honest model if there
exists two randomized functions Sp and Sp such that for all sufficiently large
values of k, the following two properties hold for all x € Xj and y € Yy



— A((Sa(®), f(z,y)), (view}; (z,y), out(z,y))) < e(k),
- A(‘SB(yaf(x’y))>VieW%<x’y)) < e(k)

If m computes f with e-security for a negligible function e(k), then we simply say
that m securely computes f. Further if e(k) = 0, 7 is a prefectly secure protocol

for f.

Information Theory: We define some information-theoretic notions which will
be useful in proving unconditional lower bounds. Entropy is a measure of the
uncertainty in a random variable. The entropy of X given Y is defined as:

HX|Y)==> Y PrX=aAY =y|logPrX =z |Y =y].
zEX yeY

For the sake of convenience, we sometimes use h(p) = —plogp— (1 —p)log(l—p)
to denote the entropy of a binary random variable which takes value 1 with
probability p (0 < p < 1).

Mutual information is a measure of the amount of information one random
variable contains about another. The mutual information between X and Y
given Z is defined as follows:

I(X;Y|Z) = H(X|Z) — HX|Y Z).

See [8] for a detailed discussion of the notions above.

3 Lower Bounds in Input Size for Unconditional Security

In this section, we show that the number of simple tokens required to be ex-
changed in a two-party unconditionally secure function evaluation protocol could
depend on the input size of the parties. We obtain two bounds discussed in detail
in the sections below. Our first bound relates the number of hardware tokens
required to compute a function with the input size of the sender. (This bound
holds even when the protocol is interactive.) In particular, we show that the
number of bit-OT tokens required for oblivious transfer is at least the sender’s
input size (minus one). Our second result provides a class of functions where the
number of bit-OT tokens required is at least the input size of the receiver.

3.1 Lower bound in Sender’s input size

In this subsection we consider k to be fixed, and thus omit & from X%, Yy, and e(k)
for clarity. In [39], Winkler and Wullschleger study unconditionally secure two-
party computation in the semi-honest model. They consider two parties Alice
and Bob, with inputs x € X and y € Y respectively, who wish to compute a
function f : X x Y — Z such that only Bob obtains the output f(z,y) € Z
(but Alice and Bob can exchange messages back and forth). The parties have
access to a functionality G which does not take any input, but outputs a sample



(u,v) from a distribution pyy. Winkler and Wullschleger obtain several lower
bounds on the information-theoretic quantities relating U and V for a secure
implementation of the function f.

Here, we would like to obtain the minimum number of bit-OT tokens required
for a secure realization of a function. The functionality which models the token
behavior FOTM is an interactive functionality: not only does FOTM give output
to the parties, but also take inputs from them. Therefore, as such the results
of [39] are not applicable to our setting. However, if we let U denote all the
messages exchanged between Alice and G, and similarly let V' denote the entire
message transcript between Bob and G, we claim that the following lower bound
(obtained for a non-interactive G in [39]) holds even when the functionality G is
interactive. This will allow us to apply this bound on protocols where hardware
tokens are exchanged.

Theorem 1. Let f: X x Y — Z be a function such that

Ve#a e Xy e: f(z,y) # f@,y).

If there exists a protocol that implements f from a functionality G with € security
in the semi-honest model, then

H(U|V) 2 maxyey H(X|f(X,y)) — (3]V] — 1)(clog | Z| + h(e)) — elog |X],
where H(U|V) is the entropy of U given V.

In order to prove that Theorem 1 holds with an interactive G, we observe that
the proof provided by Winkler and Wullschleger for a non-interactive G almost
goes through for an interactive one. An important fact they use in their proof is
that for any protocol 7, with access to a non-interactive G, the following mutual
information relation holds: I(X; VY |UM) = 0, where M denotes the messages
exchanged in the protocol. (In other words, X — UM — VY is a Markov chain.)
If one can show that the aforementioned relation holds even when G can take
inputs from the parties (and U and V are redefined as discussed above), the rest
of the proof goes through, as can be verified by inspection. Hence, all that is left
to do is to prove that I(X;VY|UM) = 0 is true in the more general setting,
where U and V stand for the transcripts of interactions with G. This follows
from a simple inductive argument; for the sake of completeness, we provide a
proof in full version.

Theorem 1 lets us bound the number of tokens required to securely evaluate
a function, as follows. Suppose Alice and Bob exchange ¢ bit-OT tokens during a
protocol. If Bob is the recipient of a token, there is at most one bit of information
that is hidden from Bob after he has queried the token. On the other hand, if
Bob sends a token, he does not know what Alice queried for. Therefore given V|
entropy of U can be at most £ (or H(U|V) < ¢). We can use this observation
along with Corollary 3 in [39] (full version) to obtain the following result.

Theorem 2. If a protocol e-securely realizes m independent instances of (?)—
OTF, then the number of bit-OT tokens £ exchanged between Alice and Bob must



satisfy the following lower bound:
£> ((1—e)n—t)km — (3[n/t] — 1)(emtk + h(e)).

We conclude this section with a particular case of the above theorem which
gives a better sense of the bound. Let us say that Alice has a string of n bits, and
Bob wants to pick one of them. In other words, Alice and Bob wish to realize
an instance of (?)—OTl. Also, assume that they want to do this with perfect
security, i.e., € = 0. In this case, the input size of Alice is n, but Bob’s input size
is only [logn]. Now, we have the following corollary.

Corollary 1. In order to realize the functionality (Tf) -OT! with perfect security,
Alice and Bob must exchange at least n — 1 tokens.

Suppose Alice is the only party who can send tokens. Then, we can under-
stand the above result intuitively in the following way. Alice has n bits, but she
wants Bob to learn exactly one of them. However, since she does not know which
bit Bob needs, she must send her entire input (encoded in some manner) to Bob.
Suppose Alice sends ¢ bit-OT tokens to Bob. Since Bob accesses every token, the
¢ bits it obtains from the tokens should give only one bit of information about
Alice’s input. The remaining ¢ positions in the tokens, which remain hidden from
Bob, must contain information about the remaining n — 1 bits of Alice’s input.
Hence, £ must be at least n — 1.

Omne can use Protocol 1.2 in [4] to show that the bound in Corollary 1 is
tight.

3.2 Lower bound in Receiver’s input size

In this section, we show that the number of bit-OT tokens required could depend
on the receiver’s input size. We begin by defining a non-replayable function
family, for which we shall show that the number of tokens required is at least
the input size of the receiver.

Definition 3. Consider a function family f : Xi x Vi — 2k, k € IT. We say
that f is replayable if for every distribution Dy, over Xy, there exists a randomized
algorithm Sg and a negligible function v, such that on input (k,y, f(x,y)) where
(z,y) < Dg x Vi, Sp outputs L with probability at most 3/4, and otherwise
outputs (y',z) such that (conditioned on not outputting 1) with probability at
least 1 —v(k), v #y and z = f(z,y').

Theorem 3. Let f : X XYV, — Zi be a function that is not replayable. Then, in
any non-interactive protocol m that securely realizes f in the semi-honest model
using bit-OT tokens, Alice must send at least n(k) = |log|Vx|| tokens to Bob.

Proof. For simplicity, we omit the parameter k in the following. Suppose Alice
sends only n — 1 bit-OT tokens to Bob in the protocol w. We shall show that f
is in fact replayable, by constructing an algorithm Sp as in Definition 3, from a
semi-honest adversary A that corrupts Bob in an execution of 7.



Let the input of Alice and Bob be denoted by x and y respectively, where x
is chosen from X according to the distribution D, and y is chosen uniformly at
random over ). On input x, Alice sends tokens (23,---,7,,—1) and a message
m to Bob. Bob runs his part of the protocol with inputs y,m, a random tape
r, and (one-time) oracle access to the tokens. Without loss of generality, we
assume that Bob queries all the n — 1 tokens. Bob’s view consists of y, m, r, and
the bits b = (b1,...,b,—1) received from the n — 1 tokens (17,...,7,—1). Let
qd=(q1,--,qn-1) denote the query bits that Bob uses for the n — 1 tokens. For
convenience, we shall denote the view of Bob as (y,m,r,¢q,b) (even though ¢ is
fully determined by the rest of the view).

We define Sg as follows: on input (y1, 1), it samples a view (y,r,m, ¢, b) for
Bob in an execution of 7 conditioned on y = y; and Bob’s output being z;. Next,
it samples a second view (y',r",m’, ¢, b’) conditioned on (m’,q’',v’) = (m,q,b).
If v = y, it outputs L. Else, it computes Bob’s output z’ in this execution and
outputs (y, 2’).

To argue that Sp meets the requirements in Definition 3, it is enough to prove
that when z € X is sampled from any distribution D, y < ) is chosen uniformly,
and z = f(x,y): (1) (¥',7',m’/, ¢, b") sampled by Sp(y, z) is distributed close (up
to a negligible distance) to Bob’s view in an actual execution with inputs (x,y’),
and (2) with probability at least 1, 4’ # y. Then, by the correctness of 7, with
overwhelming probability, whenever Sg outputs (y’, z’), it will be the case that
2" = f(x,y'), and this will happen with probability at least 1/4.

The first claim follows by the security guarantee and the nature of a token-
based protocol. Consider the experiment of sampling (x,y) and then sampling
Bob’s view (y,r,m,q,b) conditioned on input being y and output being z =
f(z,y). Firstly, this is only negligibly different from sampling Bob’s view from
an actual execution of 7 with inputs x and y, since by the correctness guarantee,
the output of Bob will indeed be f(z,y) with high probability. Now, sampling
(z,y,r,m,q,b) in the actual execution can be reinterpreted as follows: first sam-
ple (m,q,b), and then conditioned on (m, ¢, b), sample x and (y,r) independent
of each other. This is because, by the nature of the protocol, conditioned on
(m,q,b), Bob’s view in this experiment is independent of z. Now, (y',7’) is also
sampled conditioned on (m,¢,b) in the same manner (without resampling z),
and hence (x,y’,r’,m,q,b) is distributed as in an execution of 7 with inputs
(@,9).

To show that S outputs | with probability at most %7 we rely on the fact
that the number of distinct inputs y for Bob is 2™, but the number of distinct
queries the Bob can make to the tokens g is at most 2"~ . Below, we fix an (m, b)
pair sampled by Sg, and argue that Prly = ¢'] < % (where the probabilities are
all conditioned on (m,b)).

For each value of ¢ € {0,1}"~! that has a non-zero probability of being
sampled by Sg, we associate a value Y'(¢) € {0,1}" as Y'(¢) = argmax, Pr[yq],
where the probability is over the choice of y < ) and the random tape r for
Bob. If more than one value of y attains the maximum, Y'(¢) is taken as the



lexicographically smallest one. Let Y* = {y|3¢ s.t. y = Y(¢)}. Then, |V*|
|V|/2, or equivalently (since the distribution over Y is uniform), Pr[y & Y*] >

Let Q* = {q|Pr[Y(q)|g] > 3}. Further, let 3 = min{Pr[Y(q)|¢]lg € Q*
Note that 5 > % We claim that « := Pr[g € Q*] < % This is because

<
1

5
}.

% <Prly ¢ V] = Z Prly,q] + Z Prly, q]

YyEY*,qeQ* yEY* ,q¢ Q>
<Y (1-B)Prlgl+ Y BPrlgl=a(l —B) +B(1—a)
qeQ* 4%

Since 8 > %, if o > % then a(l — ) + (1 —a) < %, which is a contradiction.

Hence o < 3. Now,

Prly =y ] <aPrly=1y'lge Q]+ (1 —a)Prly=1'|q & Q"]
1 3
§a+(1—a)§§1.

a

We give a concrete example of a function family that is not replayable. Let
X = {1,2,...,k} be the set of first k positive integers. Let Vi = {S C A%
|S| =k/2A1€ S} Define f: X x YV — {0,1} as follows: for all k, x € X}, and
y € Vi, f(z,5)=1if x € S, and 0 otherwise.

Fix a value of k. Suppose a simulator Sg is given S and f(X,S) as inputs,
where X, S denote random variables uniformly distributed over X} and Yy re-
spectively. From this input, Sp knows that X could take one of k/2 possible
values. Any S’ # S intersects S’ or its complement in at most k/2 — 1 positions.
Hence, Sp can guess the value of f(X,S’) with probability at most 1 —2/k. This
implies that if Sp outputs (S, Z) with probability 1/4, with a non-negligible
probability Z # f(X,5").

Note that the number of bits required to represent an element of X} is only
[log k1, but that required to represent an element of Yy is n(k) = [log % (kl;zﬂ’
which is at least a polynomial in k. Since f is not replayable, it follows from
Theorem 3 that in any protocol that realizes f, Alice must send at least n(k)
tokens to Bob.

4 Negative Result for Non-Adaptive Protocols

4.1 Setting

In this section, we explore the connection between the randomized encodings
of functions and the protocols for the corresponding functionalities ¢ in the
bit-OT (oblivious transfer) token model. We deal with only protocols which
are non-adaptive, non-interactive and are perfectly secure. The notions of non-
interactivity (Section 2.1) and perfect security (Definition 2 in Section 2.2) have

5 Here, we abuse the notation and interchangeably use functions and functionalities.



already been dealt with in the preliminaries. We will only explain the notion of
non-adaptivity. A protocol in the bit-OT token model is said to be non-adaptive
if the queries to the tokens are fixed in advance. This is in contrast with the
adaptive case where the answers from one token can used to generate the query
to the next token.

Such (non-adaptive and non-interactive) protocols have been considered in
the literature and one-time programs [20,22] is one such example, although one-
time programs deal with malicious receivers. Henceforth, when the context is
clear we will refer to “perfectly secure non-adaptive non-interactive protocols”
as just “non-adaptive protocols”.

We show that the existence of non-adaptive protocols for a function in the bit-OT
token model implies an efficient (polynomial sized) decomposable randomized
encoding for that function. This is done by establishing an equivalence relation
between decomposable randomized encodings and a specific type of non-adaptive
protocols in the bit-OT token model. Then, we show that a functionality having
any non-adaptive protocol also has this specific type of protocol thereby showing
the existence of a DRE for this functionality. Since decomposable randomized
encodings are believed to not exist for all functions in P [17,38,16,27], this gives
a strong evidence to the fact that there cannot exist non-adaptive protocols in
the bit-OT token model for all functions in P.

4.2 Randomized Encodings

We begin this section by describing the necessary background required to un-
derstand randomized encodings [25]. A randomized encoding for a function f
consists of two procedures - encode and decode. The encode procedure takes an
input circuit for f, x which is to be input to f along with randomness r and
outputs f(x, r). The decode procedure takes as input f(ac, r) and outputs f(z).
There are two properties that the encode and decode procedures need to satisfy
for them to qualify to be a valid randomized encoding. The first property is
(perfect) correctness which says that the decode algorithm always outputs f(z)
when input f(z;r). The second property, namely (perfect) privacy, says that
there exists a simulator such that the output distribution of the encode algo-
rithm on input x is identical to the output distribution of the simulator on input
f(@).

We deal with a specific type of randomized encodings termed as decompos-
able randomized encodings [30,17,24,26,31] which are defined as follows.

Definition 4. An (efficient) Decomposable Randomized Encoding, denoted by
DRE, consists of a tuple of PPT algorithms (RE.Encode, RE.ChooselnpWires,
RE.Decode):

1. RE.Encode: takes as input a circuit C' and outputs (C’, state) ,where state =
((s9,81),...,(s%,5L)) and m is the input size of the circuit.

m’“m

2. RE.ChooselnpWires: takes as input (state,z) and outputs &, where x is of
length m and & = (s{*,...,s%m) and z; is the it" bit of x.

r m



3. RE.Decode: takes as input (C,%) and outputs out.

A decomposable randomized encoding needs to satisfy the following properties.

(Correctness):- Let RE.Encode on input C output (C,state). Let
RE.ChooselnpWires on input (state, z) output Z. Then, RE.Decode(C, &) always
outputs C(x).

(Perfect privacy):- There exists a PPT simulator Sim such that the following
two distributions are identical.

— {(C’,i)}, where (C’, state) is the output of RE.Encode on input C' and % is
the output of ChooselnpWires on input (state, x).

— {(C’g;m, iS;m)}, where (Csim, Zsim) is the output of the simulator Sim on input
C(z).

In the above definition, e-privacy can also be considered instead of perfect pri-
vacy where the distributions are e far from each other for some negligible e.
In this section, we only deal with DRE with perfect privacy. It can be veri-
fied that a decomposable randomized encoding is also a randomized encoding.
There are efficient decomposable randomized encodings known for all functions
in NC' [30,26]. However, it is believed that there does not exist efficient decom-
posable randomized encodings for all functions in P. The existence of efficient
decomposable randomized encodings for all efficiently computable functions has
interesting implications, namely, multiparty computation protocols in the PSM
(Private Simultaneous Message) model [17], constant-round two-party computa-
tion protocol in the OT-hybrid model [38,16] and multiparty computation with
correlated randomness [27].

We now proceed to relate the existence of non-adaptive protocols for a func-
tionality to the existence of randomized encodings, and more specifically DRE,
for the corresponding function. But first, we give an overview of our approach
and then we describe the technical details.

4.3 Overview

We first make a simple observation which is the starting point to establish the
connection between randomized encodings and non-adaptive protocols in the
bit-OT token model. Consider the answer obtained by the receiver of the non-
adaptive protocol after querying the tokens. This answer can be viewed as a de-
composable randomized encoding. The message contained in the bit-OT tokens
along with the software sent by the sender corresponds to the output of the en-
code procedure. The choose-input-wires procedure corresponds to the algorithm
the receiver executes before querying the bit-OT tokens. The decode procedure
corresponds to the decoding of the answer from the tokens done by the receiver
to obtain the output of the functionality. Further, these procedures satisfy the
correctness and the privacy properties. The correctness of the decoding of the
output follows directly from the correctness of the protocol. The privacy of the



decomposable randomized encoding follows from the fact that the answer ob-
tained from the tokens can be simulated which in turn follows from the privacy
of the protocol. At this point it may seem that this observation directly gives us
a decomposable randomized encoding from a non-adaptive protocol. However,
there are two main issues. Firstly, the output of the encode procedure given by
the protocol can depend on the input of the function while in the case of DRE,
the encode procedure is independent of the input of the function. Secondly, the
choose-inputs-procedure given by the protocol might involve a complex prepro-
cessing on the receiver’s input before it queries the tokens. This is in contrast
to the choose-inputs-procedure of a DRE where no preprocessing is done on the
input of the function.

We overcome these issues in a series of steps to obtain a DRE for a function
from a non-adaptive protocol for that function. In the first step, we split the
sender’s algorithm into two parts - the first part does computation solely on the
randomness and independent of the input while the second part does prepro-
cessing on both its input as well as the randomness. We call protocols which
have the sender defined this way to be SplitState protocols. We observe that
every function that has a non-adaptive protocol also has a SplitState protocol.
In the next step, we try to reduce the complexity of the preprocessing done on
both the sender’s as well as the receiver’s inputs. The preprocessing refers to the
computation done on the inputs before the hardware tokens are evaluated. We
call protocols which have no preprocessing on its inputs to be simplified proto-
cols. Our goal is then to show that if a protocol has a SplitState protocol then
it also has a simplified protcol. At the heart of this result lies the observation
that all NC! protocols have simplified protocols. We use the simplified protocols
for NC' to recursively reduce the complexity of the preprocessing algorithm in
a SplitState protocol to finally obtain a simplified protocol. Finally, by using an
equivalence relation established between simplified protocols and efficient DRE,
we establish the result that a function having a non-adaptive protocol also has
an efficient DRE. We now proceed to the technical details.

4.4 Equivalence of RE and simplified protocols

We now show the equivalence of randomized encodings and simplified protocols
in the bit-OT token model.

SplitState protocols. Consider the protocol IT in the bit-OT token model. We
say that IT is a SplitState protocol if the sender and the receiver algorithms in
SplitState protocol are defined as follows. The sender in II consists of the tuple
of algorithms (I1.InpFreePP, II.Preproc,,,, IT.EvalHTep). It takes as input 2 with
randomness Rs., and executes the following steps.

- Tt first executes IT.InpFreePP on input Ree, to obtain the tokens (htokensgen,
htokens,ec) and Software.
- It then executes II.Preprocg,, on input (z, Rsen) to obtain z’.



- Tt then executes IT.EvalHT, on input (z’, htokensg, ). The procedure
IT.EvalHT.., evaluates the i*" token in htokenss, with the i*" bit of z’ to
obtain Z;. The value Z is basically the concatenation of all Z;.

- The sender then outputs (htokens,ec, Software, ).

Notice that the third step in the above sender’s procedure involves the sender
evaluating the tokens htokensg.,. This seems to be an unnecessary step since the
sender himself generates the tokens. Later we will see that modeling the sender
this way simplifies our presentation of the proof significantly.

The receiver, on the other hand, consists of the algorithms (II.Preproc,,
IT.EvalHT e, I1.Output). It takes as input y, randomness Ry along with
(htokens,ec, Software, Z) which it receives from the sender and does the following.

- It executes II.Preproc,. on input (y, Rrec, Software, Z) to obtain (g, state).

- It then executes I1.EvalHT .. by querying the tokens htokens,e. on input ¢ to
obtain . The i*" token in htokens,ec is queried by the i*" bit of ¢ to obtain
the i*" bit of §.

- Finally, IT.Output is run on input (state,§) to obtain z which is output by
the receiver.

This completes the description of IT. The following lemma shows that there exists
a SplitState protocol for a functionality if the functionality has a non-adaptive
protocol. The proof of the below lemma is provided in the full version.

Lemma 1. Suppose a functionality f has a non-interactive and a non-adaptive
protocol in the bit-OT token model. Then, there exists a SplitState protocol for
the functionality f.

Whenever we say that a functionality has a protocol in the bit-OT token model
we assume that it is a SplitState protocol. In the class of SplitState protocols, we
further consider a special class of protocols which we term as simplified protocols.

Simplified protocols. These are SplitState protocols which have a trivial pre-
processing algorithm on the sender’s as well as receiver’s inputs. In more detail,
a protocol is said to be a simplified protocol if it is a SplitState protocol, and
the sender’s preprocessing algorithm Preproc,,, as well as the receiver’s prepro-
cessing algorithm Preproc,.. can be implemented by depth-0 circuits. Recall that
depth-0 circuits which solely consists of wires and no gates. We now explore the
relation between the simplified protocols and decomposable randomized encod-
ings. We show, for every functionality, the equivalence of DRE and simplified
protocols in the bit-OT token model. The proof can be found in full version.

Theorem 4. There exists an efficient decomposable randomized encoding for a
functionality f iff there exists a simplified protocol for f in the bit-OT token
model.

Ishai et al. [26] show that there exists decomposable randomized encodings for
all functions in NC'. From this result and Theorem 4, the following corollary is
immediate.

Corollary 2. There exists a simplified protocol for all functions in NC'.



4.5 Main Theorem

We now state the following theorem that shows that every function that has a
non-adaptive protocol in the bit-OT token model also has a simplified protocol.
Essentially this theorem says the following. Let there be a non-adaptive protocol
in the bit-OT token model for a function. Then, no matter how complex the
preprocessing algorithm is in this protocol, we can transform this into another
protocol which has a trivial preprocessing on its inputs. Since a function having
a non-adaptive protocol also has a SplitState protocol from Lemma 1, we will
instead consider SplitState protocols in the below theorem.

Theorem 5. Suppose there exists a SplitState protocol for f in the bit-OT token
model having p(k) number of tokens, for some polynomial p. Then, there exists
a simplified protocol for f in the bit-OT token model having O(p(k)) number of
tokens.

Proof. Consider the set S of all SplitState protocols for f each having O(p(k))
number of tokens. In this set S, consider the protocol I}, having the least
depth complexity of Preproc,,,. That is, protocol II., is such that the following
quantity is satisfied.

sen* sen

Depth(II.,,.Preproc,,) = erm {Depth(H Preprocsen)}

We claim that the IT/,,.Preproc,, is a depth-0 circuit. If it is not a depth-0 cir-
cuit, then we arrive at a contradiction. We transform Il into 1, and show
that Depth(I1.,,. Preprocsen) < Depth(IIZ,.Preproc,,,). This would contradict the
fact that the depth of IT.,,.Preproc,, is the least among all the protocols in S.

To acheive the transformation, we first break II/,,.Preproc,,, into two circuits

sen .Preproc;® and I1.,,. Preproc's‘;‘g such that 11, .Preproc,,, will first execute
I, .Preprocor and 1ts output is fed into IT.,,.Preprocst whose output deter-

mines the output of I1.,,.Preproc,,. Further, IT. .Preproci® consists of a single

layer of the circuit and hence has depth 1 (If I1..,.Preproc,,,, was just one layer
to begin with then IT’,, .Preproc® would be a depth 0 circuit.). Then we define a
functionality which executes the algorithms I1.,,.Preproc.s and Hs’en EvalHT gen.
We observe that this functionality can be realized by an NC' circuit. Then,

we proceed to replace the procedures IT.,,.EvalHTg, and I1.,,.Preproc.h by the

sen* sen
sender algorithm of a simplified protocol defined for this functionality, the exis-

tence of which follows from Corollary 2. The Preproc,,,, of the resulting protocol

just consists of IT/,.Preproc®” and this would contradict the choice of II’,,. We

now proceed to the technical details.

The sender algorithm of I1.,,, can be written as (II,,.InpFreePP, IT,

sen-* sen Preprocsena
! ! /
11!, .EvalHT,) and the receiver of IIl,, can be written as (IIL,,.Preproc,.,

.., .EvalHT e, II.,,.Output). The description of these algorithms are given in

sen*
Section 4. Consider the following functionality, denoted by f3Zh.



Ja& (s, temp,; L):- On input (s,temp,) from the sender, it first executes

II.,,.Preproct? (temp,) to obtain 2. It then parses s as ((5(1)/, 51),...,(s%,,sL)),
where the size of 2’ is m. It then computes & = (s]*,...,sm"), where z/ is the

i*" bit of 2’. Finally, output #. This functionality does not take any input from
the receiver.

Observe that fIT is a NC! circuit and has a simplified protocol from Corol-
lary 2. Let us call this protocol IIFT, . Since, the receiver’s input is L, the sender
algorithm in this protocol does not output any tokens *. We use ITZ,, and IT NC
to obtain ITZ,. The protocol II, is described as follows.

Before we describe the sender algorithm of 11, we modify the sender of IT,
such that, the algorithm IT.,,.InpFreePP instead of outputting htokensie just
outputs s, which is nothing but the string contained in htokensg,. The sender
algorithm of IT, on input (x, Rsen), does the following.

sen

— Tt first executes I1,,.InpFreePP(Rsen) to obtain (Software, s, htokens,ec), where
s, as described before is the string obtained by concatenating all the bits in
htokensgen.

— Tt then executes IT.,,.Preproc®” on input (z, Reen) to obtain temp,.

— It then executes the sender algorithm of II37, with input (s, temp,). Let the
output of this algorithm be SoftwareNC .

— Send (Software, SoftwareNC' , htokens,ec) across to the receiver (recall that the

sender of II3E, does not output any tokens.).

The receiver on input (y, Rec) along with (Software, SoftwareNCl7 htokensec)
which it receives from the sender, does the following.

— It executes the receiver algorithm of I, on input SoftwareN®  as well as
its internal randomness to obtain . Note that the receiver of IIFT, does not
have its own input.

— It then executes the receiver algorithm of Il on input (y, Rye, Software,
Z, htokensec). Let the output of this algorithm be out.
— Output out.

We first claim that the protocol II  satisfies the correctness property. This

sen
follows directly from the correctness of the protocols I, and II3, . The security

en
of the above protocol is proved in the following lemma.

Lemma 2. Assuming that the protocol I1.

I is secure.

en and 13T is secure, the protocol

" From the Corollary 2 and Ishai et al. [26], the simplified protocols defined for NC*
functionalities are such that the sender does not send any tokens to the receiver if
the receiver does not have any input.



Proof Sketch. To prove this, we need to construct a simulator Simy , such that
the output of the simulator is indistinguishable from the output of the sender of
11, To do this we use the simulators of the protocols I1f, and II3 which are
denoted by Simy; and Sim ==, respectively.

The simulator Simz, on input out, which is the output of the functionality
f, along with ¢’ which is the query made by the receiver to the OT tokens does

the following. It first executes Simp (out,y’) to obtain (Software, Z,%). Then,

1
Sim =0, 0N input Z is executed to obtain Software™® . The output of Sim s

(Software,SoftwareNCl,g}). By standard hybrid arguments, it can be shown that
the output of the simulator Simy is indistinguishable from the output of the
sender of I/ .

The above lemma proves that I1, is a secure protocol for f. We claim that the
number of tokens in 117, is O(p(k)). This follows directly from the fact that the
number of tokens output by the sender of II.,, is the same as the number of
tokens output by IT,. And hence, the number of tokens output by the sender
of IT, is O(p(k)). Further, the the depth of Preproc,,, of II., is strictly smaller
than the depth of IT.,,.Preproc,,. This contradicts the choice of I, and so, the
Preproc,,, algorithm of I1.,, is a depth-0 circuit.

Now, consider a set of protocols, S’ C S such that the Preproc,,, algorithms
of all the protocols in S’ are implementable by depth-0 circuits. From the above
arguments, we know that there is at least one such protocol in this set. We
claim that there exists one protocol in S’ such that its Preproc,. algorithm
is implementable by a depth-0 circuit. Now, the Preproc,,, algorithm of this
protocol is also implementable by a depth-0 circuit since this protocol is in the
set S. From this, it follows that there exists a simplified protocol for f having
O(p(k)) tokens. The argument for this is similar to the previous case and due to

lack of space, we present this part in the full version. a

We now show that the existence of a non-adaptive protocol for a function implies
the existence of a decomposable randomized encoding for that function. Suppose
there exists a non-interactive and a non-adaptive protocol for f in the bit-OT
token model. Then, from Theorem 5 it follows that there exists a simplified
protocol for f. Further, from Theorem 4, it follows that there exists a DRE,
and hence an efficient randomized encoding for f. Summarising, we have the
following.

Theorem 6. If there exists a non-interactive and a non-adaptive protocol in the
bit-OT token model for a function f then there exists an efficient decomposable
randomized encoding for f.

5 Lower Bound for Obfuscation Complete Oracle
Schemes

In this section, we study the notion of an obfuscation complete oracle scheme.
Roughly speaking, an obfuscation complete oracle scheme consists of an oracle



generation algorithm whose execution results in: (a) a secret obfuscation com-
plete circuit (whose size is only dependent on the security parameter), and, (b)
a public obfuscation function. We call an oracle implementing the functionality
of the secret obfuscation complete circuit an obfuscation complete (OC) oracle.
The public obfuscation function can be applied on any desired (polynomial size)
circuit to produce an obfuscated oracle circuit. This oracle circuit would make
calls to the OC oracle during its execution. The OC oracle implements a fixed
functionality and cannot keep any state specific to the execution of any obfus-
cated program. Informally, our security requirement is that for every polynomial
size circuit C, whatever can be computed given access to the obfuscated ora-
cle circuit for C' and the OC oracle, can also be computed just given access to
an oracle implementing the functionality of C. An obfuscation complete oracle
scheme is formally defined as follows.

Definition 5. A secure obfuscation complete oracle scheme consists of a ran-
domized algorithm OracleGen called the oracle generation algorithm such that
an execution OracleGen(1") (where k denotes the security parameter) results in
a tuple (T,O7T). The string T is the description of the circuit called the secret
obfuscation complete circuit while O7 is a function (or the description of a Tur-
ing machine) called the public obfuscation function.® The tuple (T, OT) has the
following properties:

1. Preserve Functionality. The application of the function O7 (-) to a circuit
C results in an obfuscated oracle circuit O7 (C) (which during ezecution
might make calls to the oracle T implementing the functionality T ). We
require the obfuscated oracle circuit OT (C) to have the same functionality
as the circuit C. In other words, YVC,Vx, we must have:

o7(C) = C(z)

2. Polynomial Slowdown. There exist polynomials p(-,-) and q(-) such that
for sufficiently large k and |C|, we have:

0T(O) < p(IC], k), and, |T| < q(k)

Observe that the size of the circuit T is dependent only on the security pa-
rameter.

3. Virtual Black Box. For every PPT adversary A, there exists a PPT sim-
ulator Sim and a negligible function negl(-) such that for every PPT distin-
guisher D, for every circuit C' and for every polynomial size auziliary input
z:

Pr{D(AT(O7(C), 2),z) = 1] — Pr{D(Sim€ (1€, T, 2), 2) = 1] < negi(x)

8 The modeling of T as a circuit rather than a Turing machine is to reflect the fact
that given the security parameter, the size and the running time of T is fixed and it
handles inputs of fixed size (so that T can, for example, be implemented in a small
tamper proof hardware token).



In other words, we require the output distribution of the adversary A and
that of the simulator Sim to be computationally indistinguishable.

By replacing the above virtual black box definition by the “predicate” virtual
black box definition used by Barak et al. (see [1] for more details), we obtain a
relaxed security notion for obfuscation complete oracles schemes. This relaxed
version will be used for our lower bounds.

5.1 Lower Bounds

In Section 6.2.2 [22] (full version), Goyal et al. construct an obfuscation complete
oracle scheme in the F3iecless-hybrid model”. In their scheme, if the size of
original circuit is |C|, then the obfuscated oracle circuit makes O(|C| - log(|C|))
calls to the OC oracle, which is embedded inside a stateless token. Thus, a
natural question is: “Do there exist obfuscation complete oracles schemes for
which the above query complexity is lower?” Towards that end, we show a lower
bound which rules out obfuscation complete oracles schemes where this query

complexity is a constant.

Turing machines We start by proving the lower bound result for the case
of Turing machines. While this case is significantly simpler, it would already
illustrate the fundamental limitations of OC Oracle schemes with low query
complexity. For an OC scheme, denote by Q(|M|) the number of queries the
obfuscated Oracle Turing machine O7 (M) makes to the Oracle 7. We now have
the following theorem.

Theorem 7. For every constant q, there does mot exist any obfuscation com-
plete oracle scheme such that for every Turing machine M, query complezity

Q(IM]) < g

Proof. We prove the above theorem by contradiction. Assume that there exists
such an OC Oracle scheme would query complexity Q(|M]) < g¢. Let the size
of response to a query to the Oracle 7 be bounded by p(k). Hence, observe
that the information “flowing” from the Oracle T to the obfuscated Oracle TM
O7 (M) is bounded by ¢ - p(k). We will show that this communication between
the Oracle and the obfuscated TM is not sufficient for successful simulation.
Let f1 : {0,1}=polv(®) 5 £0,1}0PR)+k and f, : {0,1}=Polv() {0, 1}poly(k)
denote functions drawn from a pseudorandom function ensemble. Now define a
functionality Fy, f, s(.,.) as follows. For b € {1, 2}, we have Fy, 7, (b, z) = fy(z).
For b = 3 (referred to as mode 3), we interpret the input z as the description of an
Oracle TM M and a sequence of ¢ strings ay, ..., aq. The function outputs L if
there exists an i s.t. |a;| > p(k). Otherwise, run the machine M (1, fo(M)). When

9 They actually construct a secure protocol for stateless oblivious reactive function-
alities. However, it is easy to see that the same protocol gives us an obfuscation
complete oracle scheme.



the machine makes the ith Oracle query, supply a; as the response (irrespective
of what the query is). Now, if M(1, fo(M)) = f1(f2(M)), output s, else output
L. To summarize, check if the Oracle TM behaves like the PRF f; on a random
point (determined by applying PRF f; on the description of the machine) and
if so, output the secret s. (The function FYy, ¢, (.,.) is actually uncomputable.
However, similar to [1], we can truncate the execution after poly(k) steps and
output 0 if M does not halt.) Denote the obfuscated Oracle TM for this function
as OT(Ffl,fmS)'

Consider the real world when the adversary is given access to description
of the Oracle TM M’ = O7 (F}, 4, s) and is allowed to query the Oracle 7. In
this case, the adversary can recover s as follows. First recover d = M’'(2, M")
(by simply running the obfuscated Oracle TM M’ on its own description string
with the help of the Oracle T'). Now the adversary executes M’(1,d) and stores
responses of 7 to all the queries made by M'(1,d). Call the responses az, ..., aq.
Finally, prepare a string x containing the description of M’ along with the strings
ai,...,aq and execute M'(3,z). M’ will in turn execute M’(1,d) using ay, ..., aq
and, by construction, will get f1(f2(M’)). Thus, the adversary will receive s as
output. Hence, we have constructed a real word adversary A such that:

Pr[AT (O (Fp, 1,0) = 1] = Pr[AT(O7 (Fp, ,0)) = 1] = 1 (1)

Now consider the ideal world where the adversary S only has Oracle access
to the functionality FY, y, . For simplicity, we first consider the hybrid ideal
world where the functions f; and fy are truly random (that is, for each input,
there exists a truly random string which is given as the output). Without loss of
generality, we assume that S does not query F'y, ¢, ; multiple times with the same
input. Consider a query (2, M) to the functionality Fy, f, . Then it is easy to see
that, except with negligible probability, S has not issued the query (1, fo(M)) so
far (where the probability is taken over the choice of truly random function f5).
Now when M (1, fo(M)) is executed, depending upon how the Oracle queries are
answered, the total number of possible outputs is 297(%). Lets call this output
set S,. The probability (taken over the choice of f1) that fi(f2(M)) € S, can be
bounded by 5 (= % ) which is negligible. Thus, when S queries with
(3, M|la1]] ... ]laq), except with negligible probability, it will get L as the output
no matter what a1, ..., a4 are. By a straightforward union bound, it can be seen
that except with negligible probability, all the queries of S in mode 3 will result
in L as the output (as opposed to s). By relying on the pseudorandomness of f;
and fs, this will also be true not only in the hybrid ideal world but also in the
actual ideal world. Hence we have shown that for all ideal world adversaries S,

Pr[SFn.r20(1%) = 1] — Pr[§Fr-72.1(1%) = 1] < negl(k) (2)

Combining equations 1 and 2, we get a contradiction with the relaxed virtual
black box property (see the predicate based virtual black box property in [1]) of
the OC Oracle scheme. O



Circuits In extending the impossibility result to the case of circuits, the ba-
sic problem is that since the input length of the circuit is fixed, it may not be
possible to execute a circuit on its own description. To overcome this problem,
[1] suggested a functionality “implementing homomorphic encryption”. This al-
lowed the functionality to let the user (or adversary) evaluate a circuit “gate
by gate” (as opposed to feeding the entire circuit at once) and still test certain
properties of the user circuit. These techniques do not directly generalize to our
setting. This is because in our setting, the Oracle queries made by the adver-
sary’s circuit will have to be seen and answered by the adversary. This might
leak the input on which the circuit is being “tested” by the functionality. Thus,
once the adversary knows the input and hence the “right output”, he might, for
example, try to change the circuit or tamper with intermediate encrypted wire
values to convince the functionality that the circuit is giving the right output.
We use the techniques developed in Section 6.2.2 [22] to overcome these prob-
lems. Note that these problems do not arise in the setting of Barak et al [1]
since there the adversary never gets to see the input on which his circuit is being
tested (and hence cannot pass the test even if he can freely force the circuit to
give any output of his choice at any time). We now state our impossibility results
for circuits.

Theorem 8. For every constant q, there does not exist any obfuscation complete
oracle scheme such that for every circuit C, query complexity Q(|C|) < q.

A proof can be found in the full version.
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