
Continuous Non-malleable Codes

Sebastian Faust2, Pratyay Mukherjee1, Jesper Buus Nielsen1, and Daniele
Venturi3

1 Department of Computer Science, Aarhus University
2 EPFL Lausanne

3 Department of Computer Science, Sapienza University of Rome

Abstract. Non-malleable codes are a natural relaxation of error cor-
recting/detecting codes that have useful applications in the context of
tamper resilient cryptography. Informally, a code is non-malleable if an
adversary trying to tamper with an encoding of a given message can
only leave it unchanged or modify it to the encoding of a completely
unrelated value. This paper introduces an extension of the standard
non-malleability security notion � so-called continuous non-malleability
� where we allow the adversary to tamper continuously with an encoding.
This is in contrast to the standard notion of non-malleable codes where
the adversary only is allowed to tamper a single time with an encoding.
We show how to construct continuous non-malleable codes in the com-
mon split-state model where an encoding consist of two parts and the
tampering can be arbitrary but has to be independent with both parts.
Our main contributions are outlined below:
1. We propose a new uniqueness requirement of split-state codes which

states that it is computationally hard to �nd two codewords X =
(X0, X1) and X ′ = (X0, X

′
1) such that both codewords are valid,

but X0 is the same in both X and X ′. A simple attack shows that
uniqueness is necessary to achieve continuous non-malleability in the
split-state model. Moreover, we illustrate that none of the existing
constructions satis�es our uniqueness property and hence is not se-
cure in the continuous setting.

2. We construct a split-state code satisfying continuous non-
malleability. Our scheme is based on the inner product function,
collision-resistant hashing and non-interactive zero-knowledge proofs
of knowledge and requires an untamperable common reference string.

3. We apply continuous non-malleable codes to protect arbitrary cryp-
tographic primitives against tampering attacks. Previous applica-
tions of non-malleable codes in this setting required to perfectly erase
the entire memory after each execution and required the adversary
to be restricted in memory. We show that continuous non-malleable
codes avoid these restrictions.

Keywords: non-malleable codes, split-state, tamper resilience

1 Introduction

Physical attacks that target cryptographic implementations instead of breaking
the black-box security of the underlying algorithm are amongst the most severe

threats for cryptographic systems. A particular important attack on implemen-
tations is the so-called tampering attack. In a tampering attack the adversary
changes the secret key to some related value and observes the e�ect of such
changes at the output. Traditional black-box security notions do not incorpo-
rate adversaries that change the secret key to some related value; even worse,
as shown in the celebrated work of Boneh et al. [6] already minor changes to
the key su�ce for complete security breaches. Unfortunately, tampering attacks
are also rather easy to carry out: a virus corrupting a machine can gain par-
tial control over the state, or an adversary that penetrates the cryptographic
implementation with physical equipment may induce faults into keys stored in
memory.

In recent years, a growing body of work (see [21,22,17,24,1,2,19] and many
more) develop new cryptographic techniques that protect against tampering at-
tacks. Non-malleable codes introduced by Dziembowski, Pietrzak and Wichs [17]
are an important approach to achieve this goal. Intuitively a code is non-
malleable w.r.t. a set of tampering functions T if the message contained in a
codeword modi�ed via a function in T is either the original message, or a com-
pletely unrelated value. Non-malleable codes can be used to protect any crypto-
graphic functionality against tampering with the memory. Instead of storing the
key in memory, we store its encoding and decode it each time the functionality
wants to accesses the key. As long as the adversary can only apply tamper-
ing functions from the set T , the non-malleability property guarantees that the
(possibly tampered) decoded value is not related to the original key.

The standard notion of non-malleability considers a one-shot game: the ad-
versary is allowed to tamper a single time with the codeword and obtains the
decoded output. In this work we introduce so-called continuous non-malleable
codes, where non-malleability is guaranteed even if the adversary continuously
applies functions from the set T to the codeword. We show that our new se-
curity notion is not only a natural extension of the standard one-shot notion,
but moreover allows to protect against tampering attacks in important settings
where earlier constructions fall short to achieve security.

Continuous non-malleable codes. A non-malleable code consists of two al-
gorithms Code = (Encode,Decode) that satisfy the correctness property
Decode(Encode(x)) = x, for all x ∈ X . To de�ne non-malleability for a func-
tion class T , consider the random variable TamperT,x de�ned for every function
T ∈ T and any message x ∈ X in the game below:

1. Compute an encoding X ← Encode(x) using the encoding procedure.

2. Apply the tampering function T ∈ T to obtain the tampered codeword
X ′ = T(X).

3. If X ′ = X then return the special symbol same?; otherwise, return
Decode(X ′). Notice that Decode(X ′) may return the special symbol ⊥ in
case the tampered codeword X ′ was invalid.

A coding scheme Code is said to be (one-shot) non-malleable with respect to
functions in T and message space X , if for every T ∈ T and any two messages
x, y ∈ X the distributions TamperT,x and TamperT,y are indistinguishable.

To de�ne continuous non-malleable codes, we do not �x a single tampering
function T a-priori.1 Instead, we let the adversary repeat step 2 and step 3 from
the above game a polynomial number of times, where in each iteration the adver-
sary can adaptively choose a tampering function Ti ∈ T . We emphasize that this
change of the tampering game allows the adversary to tamper continuously with
the initial encoding X. As shown by Gennaro et al. [21] such a strong security
notion is impossible to achieve without further assumptions. To this end, we rely
on a self-destruct mechanism as used in earlier works on non-malleable codes.
More precisely, when in step 3 the game detects an invalid codeword and returns
⊥ for the �rst time, then it self-destructs. This is a rather mild assumption as
it can, for instance, be implemented using a single public untamperable bit.

From non-malleable codes to tamper resilience. As discussed above one main
application of non-malleable codes is to protect cryptographic schemes against
tampering with the secret key [17,24]. Consider a reactive functionality G with
secret state st that can be executed on input m, e.g., G may be the AES with
key st encrypting messages m. Using a non-malleable code earlier work showed
how to transform the functionality (G, st) into a functionality (GCode, X) that
is secure against tampering with X. The transformation compiling (G, st) into
(GCode, X) works as follows. Initially, X is set to X ← Encode(st). Each time
GCode is executed on input m, the transformed functionality reads the encoding
X from memory, decodes it to obtain st = Decode(X) and runs the original
functionality G(st ,m). Finally, it erases the memory and stores the new state
X ← Encode(st). Additionally to executing evaluation queries the adversary
can issue tampering queries Ti ∈ T . A tampering query replaces the current
secret state X with a tampered state X ′ = Ti(X), and the functionality GCode
continues its computation using X ′ as the secret state. Notice that in case of
Decode(X ′) = ⊥ the functionality GCode sets the memory to a dummy value�
resulting essentially in a self-destruct.

The above transformation guarantees continuous tamper resilience even if the
underlying non-malleable code is secure only against one-shot tampering. This
security �boost� is achieved by re-encoding the secret state/key after each exe-
cution of the primitive GCode. As one-shot non-malleability su�ces in the above
cryptographic application, one may ask why we need continuous non-malleable
codes. Besides being a natural extension of the standard non-malleability notion,
our new notion has several important applications that we discuss in the next
two paragraphs.

Tamper resilience without erasures. The transformation described above nec-
essarily requires that after each execution the entire content of the memory is
erased. While such perfect erasures may be feasible in some settings, they are

1 Our actual de�nition is slightly stronger than what is presented next (cf. Section 3).

rather problematic in the presence of tampering. To illustrate this issue consider
a setting where besides the encoding of a key, the memory also contains other
non-encoded data. In the tampering setting, we cannot restrict the erasure to
just the part that stores the encoding of the key as a tampering adversary may
copy the encoding to some di�erent part of the memory. A simple solution to
this problem is to erase the entire memory, but such an approach is not possible
in most cases: for instance, think of the memory as being the hard-disk of your
computer that besides the encoding of a key stores other important �les that
you don't want to be erased. Notice that this situation is quite di�erent from
the leakage setting, where we also require perfect erasures to achieve continuous
leakage resilience. In the leakage setting, however, the adversary cannot mess
around with the state of the memory by, e.g., copying an encoding of a secret
key to some free space, which makes erasures signi�cantly easier to implement.

One option to prevent the adversary from keeping permanent copies is to
encode the entire state of the memory. Such an approach has, however, the
following drawbacks.

1. It is unnatural: In many cases secret data, e.g., a cryptographic key, is stored
together with non-con�dential data. Each time we want to read some small
part of the memory, e.g., the key, we need to decode and re-encode the entire
state�including also the non-con�dential data.

2. It is ine�cient: Decoding and re-encoding the entire state of the memory
for each access introduces additional overhead and would result in highly
ine�cient solutions. This gets even worse as most current constructions of
non-malleable codes are rather ine�cient.

3. It does not work in general: Consider a setting where we want to compute
with non-malleable codes in a tamper resilient way (similar in spirit to tam-
per resilient circuits). Clearly, in this setting the memory will store many
independent encodings of di�erent secrets that cannot be erased. Continu-
ous non-malleable codes are hence a �rst natural step towards non-malleable
computation.

Using our new notion of continuous non-malleable codes we can avoid the above
issues and achieve continuous tamper resilience without using erasures and with-
out relying on ine�cient solutions that encode the entire state.

Stateless tamper resilient transformations. To achieve tamper resilience from
one-shot non-malleability we necessarily need to re-encode the state using fresh
randomness. This not only reduces the e�ciency of the proposed construction,
but moreover makes the transformation stateful. Using continuous non-malleable
codes we get continuous tamper resilience for free, eliminating the need to refresh
the encoding after each usage. This is in particular useful when the underlying
primitive that we want to protect is stateless itself. Think, for instance, of any
standard block-cipher construction that typically keeps the same key. Using con-
tinuous non-malleable codes the tamper resilient implementation of such state-
less primitives does not need to keep any secret state. We discuss the protection
of stateless primitives in further detail in Section 5.

1.1 Our Contribution

In this work, we propose the �rst construction of continuous non-malleable codes
in the split-state model �rst introduced in the leakage setting [16,13]. Various re-
cent works study the split-state model for non-malleable codes [24,15,1] (see more
details on related work in Section 1.2). In the split-state tampering model, the
codeword consists of two halves X0 and X1 that are stored on two di�erent parts
of the memory. The adversary is assumed to tamper with both parts indepen-
dently, but otherwise can apply any e�ciently computable tampering function.
That is, the adversary picks two polynomial-time computable functions T0 and
T1 and replaces the state (X0, X1) with the tampered state (T0(X0),T1(X1)).
Similar to the earlier work of Liu and Lysyanskaya [24] our construction assumes
a public untamperable CRS. Notice that this is a rather mild assumption as the
CRS can be hard-wired into the functionality and is independent of any secret
data.

Continuous non-malleability of existing constructions. The �rst construction of
(one-shot) split-state non-malleable codes in the standard model was given by
Liu and Lysyanskaya [24]. At a high-level the construction encrypts the input
x with a leakage resilient encryption scheme and generates a non-interactive
zero-knowledge proof of knowledge showing that (a) the public/secret key of the
PKE are valid, and (b) the ciphertext is an encryption of x under the public
key. Then, X0 is set to the secret key while X1 holds the corresponding public
key, the ciphertext and the above described NIZK proof.

Unfortunately, it is rather easy to break the non-malleable code of Liu and
Lysyanskaya in the continuous setting. Recall that our security notion of con-
tinuous non-malleable codes allows the adversary to interact in the following
game. First, we sample a codeword (X0, X1)← Encode(x) and then repeat the
following process a polynomial number of times:

1. The adversary submits two polynomial-time computable functions (T0,T1)
resulting in a tampered state (X ′0, X

′
1) = (T0(X0),T1(X1)).

2. We consider three di�erent cases: (1) if (X ′0, X
′
1) = (X0, X1) then return

same?; (2) otherwise compute x′ = Decode(X ′0, X
′
1) and return x′ if x′ 6= ⊥;

(3) if x′ = ⊥ self-destruct and terminate the experiment.

The main observation that enables the attack against the scheme of [24] is as
follows. For a �xed (but adversarially chosen) part X ′0 it is easy to come-up
with two corresponding parts X ′1 and X

′′
1 such that both (X ′0, X

′
1) and (X ′0, X

′′
1)

form a valid codeword that does not lead to a self-destruct. Suppose further
that Decode(X ′0, X

′
1) 6= Decode(X ′0, X

′′
1), then under continuous tampering the

adversary may permanently replace the original encoding X0 with X ′0, while
depending on whether the i-th bit of X1 is 0 or 1 either replace X1 by X ′1 or
X ′′1 . This allows to recover the entire X1 by just |X1| tampering attacks. Once
X1 is known to the adversary it is easy to tamper with (X0, X1) in a way that
depends on Decode(X0, X1).

Somewhat surprisingly, our attack can be generalized to break any non-
malleable code that is secure in the information theoretic setting. Hence, also
the recent breakthrough results on information theoretic non-malleability [15,1]
fail to provide security under continuous attacks. Moreover, we emphasize that
our attack does not only work for the code itself, but (in most cases) can be also
applied to the tamper-protection application of cryptographic functionalities.

Uniqueness. The attack above exploits that for a �xed known part X ′0 it is easy
to come-up with two valid parts X ′1, X

′′
1 . For the encoding of [24] this is indeed

easy to achieve. If the secret key X ′0 is known it is easy to come-up with two
valid parts X ′1, X

′′
1 : just encrypt two arbitrary messages x0 6= x1 and generate

the corresponding proofs. The above weakness motivates a new property that
non-malleable codes shall satisfy in order to achieve security against continuous
non-malleability. We call this property uniqueness, which informally guarantees
that for any (adversarially chosen) valid encoding (X ′0, X

′
1) it is computationally

hard to come up with X ′′b 6= X ′b such that (X ′b, X
′′
1−b) forms a valid encoding.

Clearly the uniqueness property prevents the above described attack, and hence
is a crucial requirement for continuous non-malleability.

A new construction. In light of the above discussion, we need to build a non-
malleable code that achieves our uniqueness property. Our construction uses as
building blocks a leakage resilient storage (LRS) scheme [13,14] for the split-state
model (one may view this as a generalization of the leakage resilient PKE used
in [24]), a collision-resistant hash function and (similar to [24]) an extractable
NIZK. At a high-level we use the LRS to encode the secret message, hash the
resulting shares using the hash function and generate a NIZK proof of knowledge
that indeed the resulting hash values are correctly computed from the shares.
While it is easy to show that collision resistance of the hash function guarantees
the uniqueness property, a careful analysis is required to prove continuous non-
malleability. We refer the reader to Section 4 for the details of our construction
and to Section 4.1 for an outline of the proof.

Tamper resilience for stateless and stateful primitives. We can use our new con-
struction of continuous non-malleable codes to protect arbitrary computation
against continuous tampering attacks. In contrast to earlier works our construc-
tion does not need to re-encode the secret state after each usage, which besides
being more e�cient avoids the use of erasures. As discussed above, erasures are
problematic in the tampering setting as one would essentially need to encode
the entire state (possibly including large non-con�dential data).

Additionally, our transformation does not need to keep any secret state.
Hence, if our transformation is used for stateless primitives, then the resulting
scheme remains stateless. This solves an open problem of Dziembowski, Pietrzak
and Wichs [17]. Notice that while we do not need to keep any secret state, the
transformed functionality requires one single bit to switch to self-destruction
mode. This bit can be public but must be untamperable, and can for instance
be implemented through one-time writable memory. As shown in the work of

Gennaro et al. [21] continuous tamper resilience is impossible to achieve without
such a mechanism for self-destruction.

Of course, our construction can also be used for stateful primitives, in which
case our functionality will re-encode the new state during execution. Note that
in this setting, as data is never erased, an adversary can always reset the func-
tionality to a previous valid state. To avoid this, our transformation uses an
untamperable public counter2 that helps us to detect whenever the functional-
ity is reset to a previous state, leading to a self-destruct. We notice that such
an untamperable counter is necessary, as otherwise there is no way to protect
against the above resetting attack.

Adding leakage. As a last contribution, we show that our code is also secure
against bounded leakage attacks. This is similar to the works of [24,15] who also
consider bounded leakage resilience of their encoding scheme. We then show that
bounded leakage resilience is also inherited by functionalities that are protected
by our transformation. Notice that without perfect erasures bounded leakage
resilience is the best we can achieve, as there is no hope for security if an encoding
that is produced at some point in time is gradually revealed to the adversary.

1.2 Related Work

Constructions of non-malleable codes. Besides showing feasibility by a proba-
bilistic argument, [17] also built non-malleable codes for bit-wise tampering and
gave a construction in the split-state model using a random oracle. This result
was followed by [9] which proposed non-malleable codes that are secure against
block-wise tampering. The �rst construction of non-malleable codes in the split-
state model was given by Liu and Lysyanskaya [24] assuming an untamperable
CRS. Very recently two beautiful works showed how to build non-malleable codes
in the split-state model without relying on a CRS [15,1] even when the adversary
has unlimited computing power. Dziembowski et al. [15] show how to encode a
single bit using the inner product function. Agrawal et al. [1] developed a con-
struction that goes beyond single-bit encoding but induces a huge overhead.

See also [8,7,19] for other recent advances on the construction of non-
malleable codes. We also notice that the work of Genarro et al. [21] proposed a
generic method that allows to protect arbitrary computation against continuous
tampering attacks, without requiring erasures. We refer the reader to [17] for a
more detailed comparison between non-malleable codes and the solution of [21].

Other works on tamper resilience. A large body of work shows how to protect
speci�c cryptographic schemes against tampering attacks (see [4,3,23,5,25,12]
and many more). While these works consider a strong tampering model (e.g.,
they do not require the split-state assumption), they only o�er security for spe-
ci�c schemes. In contrast non-malleable codes are generally applicable and can
provide tamper resilience of any cryptographic scheme.

2 Note that a counter uses very small (logarithmic in the security parameter) number
of bits.

In all the above works, including ours, it is assumed that the circuitry that
computes the cryptographic algorithm using the potentially tampered key runs
correctly, and is not subject to tampering attacks. An important line of works
analyze to what extent we can guarantee security when even the circuitry is prone
to tampering attacks [22,20,11]. These works typically consider a restricted class
of tampering attacks (e.g., individual bit tampering) and assume that large parts
of the circuit (and memory) remain untampered.

2 Preliminaries

2.1 Notation

We let N be the set of naturals. For n ∈ N, we write [n] := {1, . . . , n}. Given a
set S, we write s← S to denote that element s is sampled uniformly from S. If
S is an algorithm, y ← S(x) denotes an execution of S with input x and output
y; if S is randomized, then y is a random variable.

Throughout the paper we denote the security parameter by k ∈ N. A function
δ(k) is called negligible in k (or simply negligible) if it vanishes faster than
the inverse of any polynomial in k, i.e., δ(k) = k−ω(1). A machine S is called
probabilistic polynomial time (PPT) if for any input x ∈ {0, 1}∗ the computation
of S(x) terminates in at most poly(|x|) steps and S is probabilistic (i.e., it uses
randomness as part of its logic).

Oracle O`(s) is parametrized by a value s and takes as input functions L and
outputs L(s), returning a total of at most ` bits.

2.2 Robust Non-Interactive Zero Knowledge

Given an NP-relation, let L = {x : ∃w such that R(x,w) = 1} be the corre-
sponding language. A robust non-interactive zero knowledge (NIZK) proof sys-
tem for L, is a tuple of algorithms (GNIZK,Prove,Verify,Sim = (Sim1,Sim2),Xtr)
such that the following properties hold [26].

Completeness. For all x ∈ L of length k and all w such that R(x,w) = 1, for
all Ω ← GNIZK(1

k) we have that Verify(Ω, x,Prove(Ω,w, x)) = accept

Multi-theorem zero knowledge. For all PPT adversaries A, we have Real(k) ≈
Simu(k), where Real(k) and Simu(k) are distributions de�ned via the follow-
ing experiment:

Real(k) =
{
Ω ← GNIZK(1

k); out ← AProve(Ω,·,·)(Ω);Output: out .
}

Simu(k) =
{
(Ω, tk)← Sim1(1

k); out ← ASim2(Ω,·,tk)(Ω);Output: out .
}
.

Extractability. There exists a PPT algorithm Xtr such that, for all PPT adver-
saries A, we have

P

 (Ω, tk, ek)← Sim1(1
k); (x, π)← ASim2(Ω,·,tk)(Ω);

w ← Xtr(Ω, (x, π), ek);
R(x,w) 6= 1 ∧ (x, π) 6∈ Q ∧Verify(Ω, x, π) = accept

 ≤ negl(k),

where the list Q contains the successful pairs (xi, πi) that A has queried to
Sim2.

Similarly to [24], we assume that di�erent statements have di�erent proofs, i.e.,
if Verify(Ω, x, π) = accept we have that Verify(Ω, x′, π) = reject for all x′ 6= x.
This property can be achieved by appending the statement to its proof.

We also require that the proof system supports labels, so that the Prove,
Verify, Sim and Xtr algorithms now also take a public label λ as input, and the
completeness, zero knowledge and extractability properties are updated accord-
ingly. (This can be easily achieved by appending the label λ to the statement x.)
More precisely, we write Proveλ(Ω,w, x) and Verifyλ(Ω, x, π) for the prover and
the veri�er, and Simλ

2 (Ω, x, tk) and Xtrλ(Ω, (x, π), ek) for the simulator and the
extractor.

2.3 Leakage Resilient Storage

We recall the de�nition of leakage resilient storage from [13,14]. A leakage re-
silient storage scheme (LRS,LRS−1) is a pair of algorithms de�ned as follows.
(1) Algorithm LRS takes as input a secret x and outputs an encoding (s0, s1)
of x. (2) Algorithm LRS−1 takes as input shares (s0, s1) and outputs a message
x′. Since the LRS that we use in this paper is secure against computationally
unbounded adversaries, we state the de�nition below in the information theo-
retic setting. It is easy to extend it to also consider computationally bounded
adversaries.

De�nition 1 (LRS). We call (LRS,LRS−1) an `-leakage resilient storage
scheme (`-LRS) if for all θ ∈ {0, 1}, all secrets x, y and all adversaries A it
holds that {

LeakageA,x,θ(k)
}
k∈N ≈s

{
LeakageA,y,θ(k)

}
k∈N ,

where

LeakageA,x,θ(k) =

{
(s0, s1)← LRS(x); outA ← AO

`(s0,·),O`(s1,·);
Output: (sθ, outA).

}
.

We remark that De�nition 1 is stronger than the standard de�nition of LRS,
in that the adversary is allowed to see one of the two shares after he is done with
leakage queries. A careful analysis of the proof, however, shows that the LRS
scheme of [14, Lemma 22] satis�es the above generalized notion since the inner
product function is a strong randomness extractor [10].

3 Continuous Non-Malleability

We start by formally de�ning an encoding scheme in the common reference string
(CRS) model.

De�nition 2 (Split-state Encoding Scheme in the CRS Model). A split-
state encoding scheme in the common reference string (CRS) model is a tuple of
algorithms Code = (Init,Encode,Decode) speci�ed below.

� Init takes as input the security parameter and outputs a CRS Ω ← Init(1k).
� Encode takes as input some message x ∈ {0, 1}k and the CRS Ω and outputs
a codeword consisting of two parts (X0, X1) such that X0, X1 ∈ {0, 1}n.

� Decode takes as input a codeword (X0, X1) ∈ {0, 1}2n and the CRS and
outputs either a message x′ ∈ {0, 1}k or a special symbol ⊥.

Consider the following oracle Ocnm((X0, X1)), which is parametrized by an
encoding (X0, X1) and takes as input functions T0,T1 : {0, 1}n → {0, 1}n.

Ocnm((X0, X1), (T0,T1)):

(X ′0, X
′
1) = (T0(X0),T1(X1))

If (X ′0, X
′
1) = (X0, X1) return same?

If Decode(Ω, (X ′0, X
′
1)) = ⊥, return ⊥ and �self-destruct�

Else return (X ′0, X
′
1).

By �self-destruct� we mean that once Decode(Ω, (X ′0, X
′
1)) outputs ⊥, the oracle

will answer ⊥ to any further query.

De�nition 3 (Continuous Non-Malleability). Let Code = (Init,Encode,
Decode) be a split-state encoding scheme in the CRS model. We say that Code
is q-continuously non-malleable `-leakage resilient ((`, q)-CNMLR for short), if
for all messages x, y ∈ {0, 1}k and all PPT adversaries A it holds that{

Tampercnmlr
A,x (k)

}
k∈N
≈c
{
Tampercnmlr

A,y (k)
}
k∈N

where

Tampercnmlr
A,x (k) =

{
Ω ← Init(1k); (X0, X1)← Encode(Ω, x);

outA ← AO
`(X0),O`(X1),Ocnm((X0,X1));Output: outA

}
and A asks a total of q queries to Ocnm.

Without loss of generality we assume that the variable outA consists of all the
bits leaked from X0 and X1 (in a vector Λ) and all the outcomes from oracle
Ocnm(X0, X1) (in a vector Θ); we write this as outA = (Λ,Θ) where |Λ| ≤ 2`
and Θ has exactly q elements.

Intuitively, the above de�nition captures a setting where a fully adaptive
adversary A tries to break non-malleability by tampering several times with
a target encoding, obtaining each time some leakage from the decoding pro-
cess. The only restriction is that whenever a tampering attempt decodes to ⊥,
the system �self-destructs�.3 Note that whenever the adversary mauls (X0, X1)
to a valid encoding (X ′0, X

′
1), oracle Ocnm returns (X ′0, X

′
1). This is di�erent

from [17,24], where the experiment returns the output of the decoded message,
i.e. Decode(Ω, (X ′0, X

′
1)). The recent work of Faust et al. [19] consider a similar

extension where also the codeword is returned instead of the decoded message

3 As described in [21] it is easy to see that without such a restriction non-malleability
can indeed be broken, since A can simply recover the entire (X0, X1) after polyno-
mially many queries.

and call it super strong non-malleability. Also, we remark that De�nition 3 im-
plies strong non-malleability (as de�ned in [17,24]) if we restrict A to ask a single
query (i.e., q = 1) to oracle Ocnm.

4 We choose the formulation above because it
is stronger and at the same time achieved by our code!

3.1 Uniqueness

As we argue below, constructions that satisfy our new De�nition 3 have to
meet the following uniqueness requirement. Informally this means that for any
(possibly adversarially chosen) side of an encoding X ′b it is computationally hard
to �nd two corresponding sides X ′1−b and X

′′
1−b such that both (X ′b, X

′
1−b) and

(X ′b, X
′′
1−b) form a valid encoding.

De�nition 4 (Uniqueness). Let Code = (Init,Encode,Decode) be a split-state
encoding in the CRS model. We say that Code satis�es uniqueness if for all PPT
adversaries A and for all b ∈ {0, 1} we have:

P
[
Ω ← Init(1k); (X ′b, X

′
1−b, X

′′
1−b)← A(1k, Ω);X ′1−b 6= X ′′1−b;

Decode(Ω, (X ′b, X
′
1−b)) 6= ⊥; Decode(Ω, (X ′b, X

′′
1−b)) 6= ⊥

]
≤ negl(k).

The following attack shows that the uniqueness property is necessary to
achieve De�nition 3.

Lemma 1. Let Code be (0, poly(k))-CNMLR. Then Code must satisfy unique-
ness.

Proof. For the sake of contradiction, assume that we can e�ciently �nd a triple
(X ′0, X

′
1, X

′′
1) such that (X ′0, X

′
1) and (X ′0, X

′′
1) are both valid and X ′1 6= X ′′1 . For

a target encoding (Y0, Y1), we describe an e�cient algorithm recovering Y1 with
overwhelming probability, by asking n = poly(k) queries to Ocnm((Y0, Y1), ·).

For all i ∈ [n] repeat the following:
Prepare the i-th tampering function as follows:

- T
(i)
0 (Y0): Replace Y0 by X ′0;

- T
(i)
1 (Y1): If Y1[i] = 0 replace Y1 by X ′1; otherwise replace it by X

′′
1 .

Submit (T
(i)
0 ,T

(i)
1) to Ocnm((Y0, Y1), ·) and obtain (Y ′0 , Y

′
1).

If (Y ′0 , Y
′
1) = (X ′0, X

′
1), set Z[i]← 0.

Otherwise, if (Y ′0 , Y
′
1) = (X ′0, X

′′
1), set Z[i]← 1.

Output Z as the guess for Y1.

The above algorithm clearly succeeds with overwhelming probability, whenever
X ′1 6= Y1 6= X ′′1 .

5

4 It is easy to see that encoding from [24] satis�es the stronger variant of strong non-
malleability.

5 In case (X ′0, X
′
1) = (Y0, Y1) or (X ′0, X

′′
1) = (Y0, Y1), then the entire encoding can

be recovered even with more ease. In this case, whenever the oracle returns same?

we know Y0 = X ′0 and Y1 ∈ {X ′1, X ′′1 }. In the next step we replace the encoding
with (X ′0, X

′
1); if the oracle returns same? again, then we conclude that Y1 = X ′1,

otherwise we conclude Y1 = X ′′1 .

Once Y1 is known, we ask one additional query (T
(n+1)
0 ,T

(n+1)
1) to

Ocnm((Y0, Y1), ·), as follows:

� T
(n+1)
0 (Y0) hard-wires Y1 and computes y ← Decode(Ω, (Y0, Y1)); if the �rst

bit of y is 0 then T0 behaves like the identity function, otherwise it overwrites
Y0 with 0n.

� T
(n+1)
1 (Y0) is the identity function.

The above clearly allows to learn one bit of the message in the target encoding
and hence contradicts the fact that Code is (0, poly(k))-CNMLR.

Attacking existing schemes. The above procedure can be applied to show that
the encoding of [24] does not satisfy our notion. Recall that in [24] a message x
is encoded as X0 = (pk, c := Enc(pk, x), π) and X1 = sk. Here, (pk, sk) is a valid
key pair and π is a proof of knowledge of a pair (x, sk) such that c decrypts to
x under sk and (pk, sk) forms a valid key-pair. Clearly, for some X ′1 = sk′ it is
easy to �nd two valid corresponding parts X ′0 6= X ′′0 which violates uniqueness.

We mention two important extensions of the attack from Lemma 1, leading
to even stronger security breaches:

1. In case the valid pair of encodings (X ′0, X
′
1), (X ′0, X

′′
1) which vio-

lates the uniqueness property are such that Decode(Ω, (X ′0, X
′
1)) 6=

Decode(Ω, (X ′0, X
′′
1)), one can show that Lemma 1 still holds in the weaker

version of the De�nition 3 in which the experiment does not output tam-
pered encodings but only the corresponding decoded message. Note that this
applies in particular to the encoding of [24].

2. In case it is possible to �nd both (X ′0, X
′
1, X

′′
1) and (X ′0, X

′′
0 , X

′
1) violating

uniqueness, a simple variant of the attack allows us to recover both halves
of the target encoding which is a total breach of security! However, it is
not clear for the scheme of [24] how to �nd two valid corresponding parts
X ′1, X

′′
1 , because given pk

′ it shall of course be computationally hard to �nd
two corresponding valid secret keys sk′, sk′′.

The above attack can be easily extended to the information theoretic setting
to break the constructions of the non-malleable codes (in split-state) recently
introduced in [15] and in [1]. In fact, in the following lemma we show that there
does not exist any information theoretic secure CNMLR code.

Lemma 2. It is impossible to construct information theoretically secure
(0, poly(k))-CNMLR codes.

Proof. We prove the lemma by contradiction. Assume that there exists an infor-
mation theoretically secure (0, poly(k))-CNMLR code with 2n bits codewords.
By Lemma 1, the code must satisfy the uniqueness property. In the information
theoretic setting this means that, for all codewords (X0, X1) ∈ {0, 1}2n such that
Decode(Ω, (X0, X1)) 6= ⊥, the following holds: (i) for all X ′1 ∈ {0, 1}n such that
X ′1 6= X1, we have Decode(Ω, (X0, X

′
1)) = ⊥; (ii) for all X ′0 ∈ {0, 1}n, such that

X ′0 6= X0, we have Decode(Ω, (X ′0, X1)) = ⊥.

Given a target encoding (X0, X1) of some secret x, an unbounded A can
de�ne the following tampering function Tb (for b ∈ {0, 1}): Given Xb as input,
try all possible X1−b ∈ {0, 1}n until Decode(Ω, (X0, X1)) 6= ⊥. By property
(i)-(ii) above, we conclude that for all X ′1−b 6= X1−b, the decoding algorithm
Decode(Ω, (Xb, X

′
1−b)) outputs ⊥ with overwhelming probability. Thus, Tb can

recover x = Decode(Ω, (Xb, X1−b)) and if the �rst bit of the decoded value is
0 leave the target encoding unchanged, otherwise (T0,T1) modi�es the encod-
ing with an invalid codeword. The above clearly allows to learn one bit of the
message in the target encoding, and hence contradicts the fact that the code is
(0, poly(k))-CNMLR.

Note that the attack of Lemma 2 requires the tampering function to be un-
bounded. In case when the tampering functions are computationally bounded
and only the adversary is computationally unbounded we do not know how to
make the above attack work.

4 The Code

Consider the following split-state encoding scheme in the CRS model
(Init,Encode,Decode), based on an LRS scheme (LRS,LRS−1), on a family of
collision resistant hash functions H = {Ht : {0, 1}poly(k) → {0, 1}k}t∈{0,1}k and
on a robust non-interactive zero knowledge proof system (GNIZK,Prove,Verify)
which supports labels, for language LH,t = {h : ∃s such that h = Ht(s)}.

Init(1k). Sample t← {0, 1}k and run Ω ← GNIZK(1
k).

Encode(Ω, x). Let (s0, s1) ← LRS(x). Compute h0 = Ht(s0), h1 = Ht(s1)
and π0 ← Proveλ1(Ω, s0, h0), π1 ← Proveλ0(Ω, s1, h1), where the labels
are de�ned as λ0 = h0, λ1 = h1. (Note that the pre-image of hb is sb
and the proof πb is computed for statement hb using label h1−b.) Output
(X0, X1) = ((s0, h1, π1, π0), (s1, h0, π0, π1)).

Decode(Ω, (X0, X1)). The decoding parses Xb as (sb, h1−b, π1−b, πb), computes
λb = Ht(sb) and then proceeds as follows:

(a) Local check. If Verifyλ1(Ω, h0, π0) or Verifyλ0(Ω, h1, π1) output reject
in any of the two sides X0, X1, return x

′ = ⊥.
(b) Cross check. If (i) h0 6= Ht(s0) or h1 6= Ht(s1), or (ii) the proofs (π0, π1)

in X0 are di�erent from the ones in X1, then return x′ = ⊥.
(c) Decoding. Otherwise, return x′ = LRS−1(s0, s1).

We start by showing that the above code satis�es the uniqueness property (cf.
De�nition 4).

Lemma 3. Let Code = (Init,Encode,Decode) be as above. Then, if H is a
family of collision resistant hash functions Code satis�es uniqueness.

Proof. We show that De�nition 4 is satis�ed for b = 0. The proof for b = 1 is
identical and is therefore omitted.

Assume that there exists a PPT adversary A that, given as input Ω ←
Init(1k), is able to produce (X ′0, X

′
1, X

′′
1) such that both (X ′0, X

′
1) and (X ′0, X

′′
1)

are valid, but X ′1 6= X ′′1 . Let X
′
0 = (s′0, h

′
1, π
′
1, π
′
0), X

′
1 = (s′1, h

′
0, π
′
0, π
′
1) and

X ′′1 = (s′′1 , h
′′
0 , π
′′
0 , π

′′
1).

Since s′0 is the same in both encodings, we must have h′0 = h′′0 as the hash
function is deterministic. Furthermore, since both (X ′0, X

′
1) and (X ′0, X

′′
1) are

valid, the proofs must verify successfully and therefore we must have π′0 = π′′0
and π′1 = π′′1 . It follows that X

′′
1 = (s′′1 , h

′
0, π
′
0, π
′
1), such that s′′1 6= s′1. Clearly

(s′1, s
′′
1) is a collision for h′1, a contradiction.

While the uniqueness property is a necessary requirement to achieve continuous
non-malleability, showing that that the above code is a continuous non-malleable
and leakage resilient code requires to overcome several technical challenges. We
next state our main theorem and give a proof outline in the following section.
The full proof of Theorem 1 is deferred to the full version of this paper.

Theorem 1. Let Code = (Init,Encode,Decode) be as above. Assume that
(LRS,LRS−1) is an `′-LRS, H = {Ht : {0, 1}poly(k) → {0, 1}k}t∈{0,1}k is a
family of collision resistant hash functions and (GNIZK,Prove,Verify) is a ro-
bust NIZK proof system for language LH,t. Then Code is (`, q)-CNMLR, for any
q = poly(k) and `′ ≥ max{2`+ (k + 1)dlog(q)e, 2k + 1}.

4.1 Outline of the Proof

In order to build some intuition, let us �rst explain why a few natural attacks do
not work. Clearly, the uniqueness property (cf. Lemma 3) rules out the attack
of Lemma 1. As a �rst attempt, the adversary could try to modify the proof
π0 to a di�erent proof π′0, by using the fact that X0 contains the corresponding
witness s0 and the correct label h1. However, to ensure the validity of (X ′0, X

′
1),

this would require to place π′0 in X ′1, which should be hard without knowing a
witness (by the robustness of the proof system). Alternatively, one could try to
maul the two halves (s0, s1) of the LRS scheme, into a pair (s′0, s

′
1) encoding a

related message.6 This requires, for instance, to change the proof π0 into π
′
0 and

place π′0 in X ′1, which again should be hard without knowing a witness and the
correct label.

Let us now try to give a high-level overview of the proof. Given a polyno-
mial time distinguisher D that violates continuous non-malleability of Code, we
build another polynomial time distinguisher D′ which breaks leakage resilience
of (LRS,LRS−1). Distinguisher D′, which can access oracles O`′(s0) and O`

′
(s1),

has to distinguish whether (s0, s1) is the encoding of message x or message y
and will do so with the help of D's advantage in distinguishing Tampercnmlr

x from
Tampercnmlr

y . The main di�culty in the reduction is how D′ can simulate the
answers from the tampering oracle Ocnm (cf. De�nition 3), without knowing the
target encoding (X0, X1). This is the main point where our techniques diverge

6 When the LRS is implemented using the inner product extractor this is indeed
possible, as argued in [15].

signi�cantly from [24] (as in [24] the reduction �knows� a complete half of the
encoding). In our case, in fact, D′ can only access the two halves X0 and X1

�inside� the oracles O`′(s0) and O`
′
(s1).

7 However, it is not clear how this helps
answering tampering queries, as the latter requires access to both X0 and X1 for
decoding the tampered message, whereas the reduction can only access X0 and
X1 separately.

For ease of description, in what follows we simply assume that D′ can access
directly O`′(X0) and O`

′
(X1). Furthermore, let us assume that D can only issue

tampering queries (we discuss how to additionally handle leakage brie�y at the
end of the outline). Like any standard reduction, D′ samples some randomness
r and �xes the random tape of D to r. Our novel strategy is to construct a
polynomial time algorithm F(r) that, given access to O`′(X0), O`

′
(X1), outputs

the smallest index j∗ which indicates the round where D(r) provokes a self-
destruct in Tampercnmlr

∗ . Before explaining how the actual algorithm works, let
us explain how D′ can complete the reduction using such a self-destruct �nder
F. At the beginning, it runs F(r) in order to leak the index j∗. At this point
D′ is done with leakage queries and asks to get X0 (i.e., it chooses θ = 0 in
De�nition 1).8 Given X0, distinguisher D′ runs D(r) (with the same random
coins r used for F). Hence, for all 1 ≤ j < j∗, upon input the j-th tampering

query (T
(j)
0 ,T

(j)
1), distinguisher D′ lets X ′0 = T

(j)
0 (X0) = (s′0, h

′
1, π
′
1, π
′
0) and

answers as follows:

1. In case X ′0 = X0 (so called type A queries), output same?.
2. In case X ′0 6= X0 and either of the proofs in X ′0 does not verify correctly (so

called type B queries), output ⊥.
3. In case X ′0 6= X0 and both the proofs in X ′0 verify correctly (so called type C

queries), check if π′1 = π1; if `yes' (in which case there is no hope to extract
from π′1) then output ⊥.

4. Otherwise (so called type D queries), attempt to extract s′1 from π′1, de�ne
X ′1 = (s′1, h

′
0, π
′
0, π
′
1) and output (X ′0, X

′
1).

Note that from round j∗ on, all queries can be answered with ⊥, and this is
a correct simulation as D(r) provokes a self-destruct at round j∗ in the real
experiment.

In the proof of Theorem 1, we show that the above strategy is sound. with
overwhelming probability over the choice of r the output produced by the above
simulation is equal to the output that D(r) would have seen in the real experi-
ment until a self-destruct occurs.9

Let us give some intuition why the above simulation is indeed sound. For type
A queries, note that when X ′0 = X0 we must have X ′1 = X1 with overwhelming

7 Looking ahead, this can be achieved by �rst leaking the hash values h0, h1 of s0,
s1, simulating the proofs π0, π1, and then hard-wiring these values into all leakage
queries.

8 Recall that this is a simpli�cation, as by choosing θ = 0 the distinguisher will obtain
s0. See also footnote 7.

9 It is crucial that both the real and simulated experiments are run with the same r.

probability, as otherwise (X0, X1, X
′
1) would violate uniqueness. In case of type B

queries, the decoding process in the real experiment would output ⊥, so D′ does
a perfect simulation. The case of type C queries is a bit more delicate. In this case
we use the facts that (i) in the NIZK proof system we use, di�erent statements
must have di�erent proofs and (ii) the hash function is collision resistant, to show
that X ′0 must be of the form X ′0 = (s0, h1, π1, π

′
0) and π

′
0 6= π1. A careful analysis

shows that the latter contradicts leakage resilience of the underlying LRS scheme.
Finally, for type D queries, note that whenever D′ extracts a witness from a valid
proof π′1 6= π1, the witness must be valid with overwhelming probability (as the
NIZK is simulation extractable).

Next, let us explain how to construct the algorithm F. Roughly, F(r) runs
D(r) �inside� the oracles O`′(X0), O`

′
(X1) as part of the leakage functions, and

simulates the answers for D(r)'s tampering queries using only one side of the
target encoding, in the exact same way as outlined in (1)-(4) above. Let Θb,
for b ∈ {0, 1}, denote the output simulated by F inside O`′(Xb). To locate the
self-destruct index j∗, we rely on the following property: the vectors Θ0 and
Θ1 contain identical values until coordinate j∗ − 1, but Θ0[j

∗] 6= Θ1[j
∗] with

overwhelming probability (over the choice of r).

This implies that j∗ can be computed as the �rst coordinate where Θ0 and
Θ1 are di�erent. Hence, F can obtain the self-destruct index by using its adaptive
access to oracles O`′(X0), O`

′
(X1) and apply a standard binary search algorithm

to Θ0, Θ1. Note that the latter requires at most a logarithmic number of bits
of adaptive leakage.

One technical problem is that F, in order to run D(r) inside of, say O`′(X0),
and compute Θ0, has also to answer leakage queries from D(r). Clearly, all
leakages from X0 can be easily computed, however it is not clear how to simulate
leakages from X1 (as we cannot access O`

′
(X1) inside O`

′
(X0)). Fortunately, the

latter issue can be avoided by letting F query O`′(X0) and O`
′
(X1) alternately,

and aborting the execution of D(r) whenever it is not possible to answer a leakage
query. It is not hard to show that after at most ` steps all leakages will be known,
and F can run D(r) inside O`′(X0) without having access to O`′(X1). (All this
comes at the price of some loss in the leakage bound, but, as we show in the
proof, not too much.)

5 Application to Tamper Resilient Security

In this section we apply our notion of CNMLR codes to protect arbitrary func-
tionalities against split-state tampering and leakage attacks.

5.1 Stateless Functionalities

We start by looking at the case of stateless functionalities G(st , ·), which take as
input a secret state st ∈ {0, 1}k and a value x ∈ {0, 1}u to produce some output
y ∈ {0, 1}v. The function G is public and can be randomized.

The main idea is to transform the original functionality G(st , ·) into some
�hardened� functionality GCode via a CNMLR code Code. Previous transforma-
tions aiming to protect stateless functionalities [17,24] required to freshly re-
encode the state st each time the functionality is invoked. Our approach avoids
the re-encoding of the state at each invocation, leading to a stateless transfor-
mation. This solves an open question from [17]. Moreover we consider a setting
where the encoded state is stored in a memory (M0,M1) which is much larger
than the size needed to store the encoding itself (say |M0| = |M1| = s where
s is polynomial in the length of the encoding). When (perfect) erasures are not
possible, this feature allows the adversary to make copies of the initial encoding
and tamper continuously with it, and was not considered in previous models.

Let us formally de�ne what it means to harden a stateless functionality.

De�nition 5 (Stateless hardened functionality). Let Code = (Init,
Encode,Decode) be a split-state encoding scheme in the CRS model, with k
bits messages and 2n bits codewords. Let G : {0, 1}k × {0, 1}u → {0, 1}v be
a stateless functionality with secret state st ∈ {0, 1}k, and let ϕ ∈ {0, 1} be
a public value initially set to zero. We de�ne a stateless hardened function-
ality GCode : {0, 1}2s × {0, 1}u → {0, 1}v with a modi�ed state st ′ ∈ {0, 1}2s
and s = poly(n). The hardened functionality GCode is a triple of algorithms
(Init,Setup,Execute) described as follows:

� Ω ← Init(1k): Run the initialization procedure of the coding scheme to sample
Ω ← Init(1k).

� (M0,M1) ← Setup(Ω, st): Let (X0, X1) ← Encode(Ω, st). For b ∈ {0, 1},
store Xb in the �rst n bits of Mb, i.e. Mb[1 . . . n] ← Xb. (The remaining
bits ofMb are set to 0s−n.) De�ne st ′ := (M0,M1).

� y ← Execute(x): Read the public value ϕ. In case ϕ = 1 output ⊥. Otherwise,
let Xb =Mb[1 . . . n] for b ∈ {0, 1}. Run st ← Decode(Ω, (X0, X1)); if st =
⊥, then output ⊥ and set ϕ = 1. Otherwise output y ← G(st , x).

Remark 1 (On ϕ). The public value ϕ is just a way how to implement the
�self-destruct� feature. An alternative approach would be to let the hardened
functionality simply output a dummy value and overwrite (M0,M1) with the
all-zero string. As we insist on the hardened functionality being stateless, we use
the �rst approach here.

Note that we assume that ϕ is untamperable. It is easy to see that this is
necessary, as an adversary tampering with ϕ could always switch-o� the self-
destruct feature and apply a variant of the attack from [21] to recover the secret
state.

Similarly to [17,24], security of GCode is de�ned via the comparison of a real
and an ideal experiment. The real experiment features an adversary A interacting
with GCode; the adversary is allowed to honestly run the functionality on any
chosen input, but also to modify the secret state and retrieve a bounded amount
of information from it. The ideal experiment features a simulator S; the simulator
is given black-box access to the original functionality G and to the adversary A,

but is not allowed any tampering or leakage query. The two experiments are
formally described below.

Experiment REAL
GCode(st′,·)
A (k). First Ω ← Init(1k) and (M0,M1) ←

Setup(Ω, st) are run and Ω is given to A. Then A can issue the following com-
mands polynomially many times (in any order):

� 〈Leak, (L(j)0 , L
(j)
1)〉: In response to the j-th leakage query, compute Λ

(j)
0 ←

L
(j)
0 (M0) and Λ

(j)
1 ← L

(j)
1 (M1) and output (Λ

(j)
0 , Λ

(j)
1).

� 〈Tamper, (T(j)
0 ,T

(j)
1)〉: In response to the j-th tampering query, compute

M′0 ← T
(j)
0 (M0) and M′1 ← T

(j)
1 (M1) and replace (M0,M1) with

(M′0,M′1).
� 〈Eval, xj〉: In response to the j-th evaluation query, run yj ← Execute(xj).

In case yj = ⊥ output ⊥ and self-destruct; otherwise output yj .

The output of the experiment is de�ned as

REAL
GCode(st′,·)
A (k) = (Ω; ((x1, y1), (x2, y2), . . .); ((Λ

(1)
0 , Λ

(1)
1), (Λ

(2)
0 , Λ

(2)
1), · · ·)).

Experiment IDEAL
G(st,·)
S (k). The simulator sets up the CRS Ω and is given

black-box access to the functionality G(st , ·) and the adversary A. The output
of the experiment is de�ned as

IDEAL
G(st,·)
S (k) = (Ω; ((x1, y1), (x2, y2), . . .); ((Λ

(1)
0 , Λ

(1)
1), (Λ

(2)
0 , Λ

(2)
1), · · ·)),

where ((xj , yj), ((Λ
(j)
0 , Λ

(j)
1))) are the input/output/leakage tuples simulated by

S.

De�nition 6 (Polyspace leak/tamper simulatability). Let Code be a split-
state encoding scheme in the CRS model and consider a stateless functionality G
with corresponding hardened functionality GCode. We say that Code is polyspace
(`, q)-leak/tamper simulatable for G, if the following conditions are satis�ed:

1. Each memory partMb (for b ∈ {0, 1}) has size s = poly(n).
2. The adversary asks at most q tampering queries and leaks a total of at most

` bits from each memory part.
3. For all PPT adversaries A there exists a PPT simulator S such that for any

initial state st ,{
REAL

GCode(st′,·)
A (k)

}
k∈N
≈c
{
IDEAL

G(st,·)
S (k)

}
k∈N

.

We show the following result.

Theorem 2. Let G be a stateless functionality and Code = (Init,Encode,
Decode) be any (`, q)-CNMLR split-state encoding scheme in the CRS model.
Then Code is polyspace (`, q)-leak/tamper simulatable for G.

Proof. We discuss the overall proof approach �rst. We start with describing a

simulator S running in experiment IDEAL
G(st,·)
S (k) which attempts to simulate

the view of adversary A running in the experiment REAL
GCode(st′,·)
A (k); the sim-

ulator is given black-box access to A (which can issue Tamper, Leak, and Eval

queries) and to the functionality G(st , ·) for some state st . To argue that our
simulator is �good� we show that if there exists a PPT distinguisher D and a
PPT adversary A such that for some state st , D distinguishes the experiments

IDEAL
G(st,·)
S (k) and REAL

GCode(st′,·)
A (k) with non-negligible probability, then we

can build another distinguisher D′ and an adversary A′ such that D′ can dis-
tinguish Tampercnmlr

A′,0k and Tampercnmlr
A′,st with non-negligible probability. In the

last step essentially we reduce the CNMLR property of Code to the polyspace
leak/tamper simulatability of the code itself.

The simulator starts by sampling the common reference string Ω ← Init(1k)
and the public value ϕ = 0. Then it samples a random encoding of 0k, namely
(Z0, Z1)← Encode(Ω, 0k) and setsMb[1 . . . , n]← Zb for b ∈ {0, 1}. The remain-
ing bits of (M0,M1) are set to 0s−n. Hence, S alternates between the following
two modes (starting with the normal mode in the �rst round):

� Normal Mode. Given state (M0,M1), while A continues issuing queries,
answer as follows:
• 〈Eval, xj〉: Upon input the j-th evaluation query invoke G(st , ·) to get
yj ← G(st , xj) and reply with yj .

• 〈Tamper, (T(j)
0 ,T

(j)
1)〉: Upon input the j-th tampering query, compute

M′b ← T
(j)
b (Mb) for b ∈ {0, 1}. In case (M′0[1 . . . n],M′1[1 . . . n]) =

(Z0, Z1) then continue in the current mode. Otherwise go to the over-
written mode de�ned below with state (M′0,M′1).

• 〈Leak, (L(j)0 , L
(j)
1)〉: Upon input the j-th leakage query, compute Λ

(j)
b =

L
(j)
b (Zb) for b ∈ {0, 1} and reply with (Λ

(j)
0 , Λ

(j)
1).

� Overwritten Mode. Given state (M′0,M′1), while A continues issuing queries,
answer as follows:
• Let τ = (M′0,M′1). Simulate the hardened functionality GCode(τ, ·) and
answer all Eval and Leak queries as the real experiment REAL

GCode(τ,·)
A (k)

would do.
• Upon input the j-th tampering query (T

(j)
0 ,T

(j)
1), compute M′′b ←

T
(j)
b (M′b) for b ∈ {0, 1}. In case (M′′0 [1 . . . n],M′′1 [1 . . . n]) = (Z0, Z1)

then go to the normal mode with state (M0,M1) := (M′′0 ,M′′1). Oth-
erwise continue in the current mode.

� When A halts and outputs viewA = (Ω; ((x1, y1), (x2, y2), . . .);

((Λ
(1)
0 , Λ

(1)
1), (Λ

(2)
0 , Λ

(2)
1), · · ·)), set viewS = viewA and output viewS as output

of IDEAL
G(st,·)
S (k).

Intuitively, since the coding scheme is non-malleable, the adversary can either
keep the encoding unchanged or overwrite it with the encoding of some unrelated
message. These two cases are captured in the above modes: The simulator starts

in the normal mode and then, whenever the adversary mauls the initial encoding,
it switches to the overwritten mode. However, the adversary can use the extra
space to keep a copy of the original encoding and place it back at some later
point in time. When this happens, the simulator switches back to the normal
mode; this switching is important to maintain simulation.

To �nish the proof, we have to argue that the output of experiment

IDEAL
G(st,·)
S (k) is computationally indistinguishable from the output of experi-

ment REAL
GCode(st′,·)
A (k). This is done in the lemma below.

Lemma 4. Let S be de�ned as above. Then for all PPT adversaries A and all
st ∈ {0, 1}k, the following holds:{

REAL
GCode(st′,·)
A (k)

}
k∈N
≈c
{
IDEAL

G(st,·)
S (k)

}
k∈N

.

Proof. By contradiction, assume that there exists a PPT distinguisher D, a PPT
adversary A and some state st ∈ {0, 1}k such that:∣∣∣P [D(IDEALG(st,·)S (k)) = 1

]
− P

[
D(REAL

GCode(st′,·)
A (k)) = 1

]∣∣∣ ≥ ε, (1)

where ε(k) is some non-negligible function of the security parameter k.
We build a PPT distinguisher D′ and a PPT adversary A′ telling apart the

experiments Tampercnmlr
A′,0k (k) and Tampercnmlr

A′,st (k); this contradicts our assumption

that Code is CNMLR. The distinguisher D′ is given the CRS Ω ← Init(1k) and
can access Ocnm((X0, X1), ·) (for at most q times) and O`(X0), O`(X1); here
(X0, X1) is either an encoding of 0k or an encoding of st . The distinguisher D′

keeps a �ag Same (initially set to True) and a �ag Stop (initially set to False).
After simulating the public values, D′ mimics the enviroment for D as follows:

� 〈Tamper, (T(j)
0 ,T

(j)
1)〉: Upon input tampering functions (T

(j)
0 ,T

(j)
1), the dis-

tinguisher D′ uses the oracle Ocnm((X0, X1), ·) to answer them.10 However,
it can not simply forward the queries because of the following two reasons:

• The tampering functions (T
(j)
0 ,T

(j)
1) maps from s bits to s bits, whereas

the oracle Ocnm((X0, X1), ·) expects tampering functions mapping from
n bits to n bits.

• In both the real and the ideal experiments the tampering functions are
applied to the current state (which may be di�erent from the initial
state), whereas in experiment Tampercnmlr

A′,∗ the oracle Ocnm((X0, X1), ·)
always applies (T

(j)
0 ,T

(j)
1) to the target encoding (X0, X1).

To take into account the above di�erences, D′ modi�es (T
(j)
0 ,T

(j)
1) as follows.

De�ne the functions Tin : {0, 1}n → {0, 1}s and Tout : {0, 1}s → {0, 1}n
as Tin(x) = (x||0s−n) and Tout(x||x′) = x, for any x ∈ {0, 1}n and x′ ∈
{0, 1}s−n. The distinguisher D′ queries Ocnm((X0, X1), ·) with the function

10 Formally D′ has to access Ocnm(·) via A′. For simplicity we assume that D′ can
access the oracle directly. In fact, A′ just acts as an interface between the experiment
Tampercnmlr

A′,∗ and D′.

pair (T̃
(j)
0 , T̃

(j)
1) where each T̃

(j)
b is de�ned as T̃

(j)
b := Tout ◦ T(j)

b ◦ T
(j−1)
b ◦

. . . ◦ T(1)
b ◦ Tin for b ∈ {0, 1}.

In case the oracle returns ⊥, then D′ sets Stop to True. In case the oracle
returns same?, then D′ sets Same to True. Otherwise, in case the oracle
returns an encoding (X ′0, X

′
1), then D′ sets Same to False.

� 〈Leak, (L(j)0 , L
(j)
1)〉: Upon input leakage functions (L

(j)
0 , L

(j)
1), the distin-

guisher D′ de�nes (L̃
(j)
0 , L̃

(j)
1) (in a similar way as above), forwards those

functions to O`(X0), O`(X1) and sends the answer from the oracles back to
D.

� 〈Eval, xj〉: Upon input an evaluation query for value xj , the distinguisher D
′

checks �rst that Stop equals False. If this is not the case, then D′ returns
⊥ to D. Otherwise, D′ checks that Same equals True. If this is the case,
it runs yj ← G(st , xj) and gives yj to D. Else (if Same equals False), it
computes yj ← G(st ′, xj), where st ′ is the output of Decode(Ω, (X ′0, X

′
1)),

and gives yj to D.

Finally, D′ outputs whatever D outputs.
For the analysis, �rst note that D′ runs in polynomial time. Furthermore, D′

asks exactly q queries to Ocnm and leaks at most ` bits from the target encoding
(X0, X1). It is also easy to see that in case (X0, X1) is an encoding of st ∈
{0, 1}k, then D′ perfectly simulates the view of adversary D in the experiment

REAL
GCode(st′,·)
A (k). On the other hand, in case (X0, X1) is an encoding of 0k, we

claim that D′ perfectly simulates the view of D in the experiment IDEAL
G(st,·)
S (k).

This is because: (i) Whenever Same equals True, then D′ answers evaluation
queries by running G on state st and tampering/leakage queries using a pre-
sampled encoding of 0k (this corresponds to the normal mode of S); (ii) Whenever
Same equals False, then D′ answers evaluation queries by running G on the
current tampered state st ′ which results from applying the tampering functions
to a pre-sampled encoding of 0k (this corresponds to the overwritten mode of
S).

Combining the above argument with Eq. (1) we obtain∣∣∣P [D(Tampercnmlr
A′,0k (k)) = 1

]
− P

[
D(Tampercnmlr

A′,st (k)) = 1
]∣∣∣ ≥ ε,

which is a contradiction to the fact that Code is (`, q)-CNMLR.

5.2 Stateful Functionalities

Finally, we consider the case of primitives that update their state at each exe-
cution, i.e. functionalities of the type (stnew, y) ← G(st , x) (a.k.a. stateful func-
tionalities). Note that in this case the hardened functionality re-encodes the new
state at each execution.

Note that, since we do not assume erasure in our model, an adversary can
always `reset' the functionality to a previous valid state as follows: It could just
copy the previous state to some part of the large memory and replace the current

encoding by that. To avoid this, our transformation uses an untamperable public
counter (along with the untamperable self-destruct bit) that helps us to detect
whether the functionality is reset to a previous state, leading to a self-destruct.
However such a counter can be implemented, for instance using log(k) bits.
We notice that such a counter is necessary to protect against the above resetting
attack. However, we stress that if we do not assume such a counter this �resetting�
is the only harm the adversary can make in our model.

Below, we de�ne what it means to harden a stateful functionality.

De�nition 7 (Stateful hardened functionality). Let Code =
(Init,Encode,Decode) be a split-state encoding scheme in the CRS model,
with 2k bits messages and 2n bits codewords. Let G : {0, 1}k × {0, 1}u →
{0, 1}k × {0, 1}v be a stateful functionality with secret state st ∈ {0, 1}k,
ϕ ∈ {0, 1} be a public value and let 〈γ〉 be a public log(k)-bit counter
both initially set to zero. We de�ne a stateful hardened functionality
GCode : {0, 1}2s × {0, 1}u → {0, 1}2s × {0, 1}v with a modi�ed state st ′ ∈ {0, 1}2s
and s = poly(n). The hardened functionality GCode is a triple of algorithms
(Init,Setup,Execute) described as follows:

� Ω ← Init(1k): Run the initialization procedure of the coding scheme to sample
Ω ← Init(1k).

� (M0,M1) ← Setup(Ω, st): Let (X0, X1) ← Encode(Ω, st ||〈1〉) and incre-
ment 〈γ〉 ← 〈γ〉 + 1. For b ∈ {0, 1}, store Xb in the �rst n bits of Mb, i.e.
Mb[1 . . . n] ← Xb.

11 (The remaining bits of Mb are set to 0s−n.) De�ne
st ′ := (M0,M1).

� y ← Execute(x): Read the public bit ϕ. In case ϕ = 1 output ⊥. Oth-
erwise recover Xb = Mb[1 . . . n] for b ∈ {0, 1} and run (st ′′||〈γ′〉) ←
Decode(Ω, (X0, X1)). Read the public counter 〈γ〉. If 〈γ〉 6= 〈γ′〉 or st ′′ =
⊥, set ϕ = 1. Else run (stnew, y) ← G(st ′′, x) and output y. Finally,
write Encode(Ω, stnew||〈γ + 1〉) in (M0[1, . . . , n],M1[1, . . . , n]) and incre-
ment 〈γ〉 ← 〈γ〉+ 1.

Remark 2 (On 〈γ〉). Note that the counter is incremented after each evaluation
query, and the current value is encoded together with the new state. We require
〈γ〉 to be untamperable. This assumption is necessary, as otherwise an adversary
could always use the extra space to keep a copy of a previous valid state and place
it back at some later point in time. The above attack allows essentially to reset
the functionality to a previous state, and cannot be simulated with black-box
access to the original functionality.

In the case of stateful primitives, the hardened functionality has to re-encode
the new state at each execution. Still, as the memory is large, the adversary can
use the extra space to tamper continuously with a target encoding of some valid
state. Security of a stateful hardened functionality is de�ned analogously to the
stateless case (cf. De�nition 6). We show the following result (for space reasons
we defer the proof to the full version [18]):

11 Without erasure this can be easily implemented by a stack.

Theorem 3. Let G be a stateful functionality and Code = (Init,Encode,
Decode) be any (`, q)-CNMLR encoding scheme in the split-state CRS model.
Then Code is polyspace (`, q)-leak/tamper simulatable for G.

Acknowledgments

Pratyay acknowledges support from a European Research Commission Starting
Grant (no. 279447) and the CTIC and CFEM research center. Part of this work
was done while this author was at the University of Warsaw and was supported
by the WELCOME/2010-4/2 grant founded within the framework of the EU
Innovative Economy Operational Programme.

Most of the work was done while Daniele was at Aarhus University, supported
by the Danish Council for Independent Research via DFF Starting Grant 10-
081612.

References

1. Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable codes
from additive combinatorics. Electronic Colloquium on Computational Complexity
(ECCC), 20:81, 2013.

2. Per Austrin, Kai-Min Chung, Mohammad Mahmoody, Rafael Pass, and Karn Seth.
On the (im)possibility of tamper-resilient cryptography: Using fourier analysis in
computer viruses. IACR Cryptology ePrint Archive, 2013:194, 2013.

3. Mihir Bellare, David Cash, and Rachel Miller. Cryptography secure against related-
key attacks and tampering. In ASIACRYPT, pages 486�503, 2011.

4. Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key attacks:
RKA-PRPs, RKA-PRFs, and applications. In EUROCRYPT, pages 491�506, 2003.

5. Mihir Bellare, Kenneth G. Paterson, and Susan Thomson. RKA security beyond
the linear barrier: IBE, encryption and signatures. In ASIACRYPT, pages 331�348,
2012.

6. Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of
eliminating errors in cryptographic computations. J. Cryptology, 14(2):101�119,
2001.

7. Mahdi Cheraghchi and Venkatesan Guruswami. Capacity of non-malleable codes.
Electronic Colloquium on Computational Complexity (ECCC), 20:118, 2013.

8. Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding against bit-
wise and split-state tampering. IACR Cryptology ePrint Archive, 2013:565, 2013.

9. Seung Geol Choi, Aggelos Kiayias, and Tal Malkin. BiTR: Built-in tamper re-
silience. In ASIACRYPT, pages 740�758, 2011.

10. Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness
and probabilistic communication complexity. SIAM J. Comput., 17(2):230�261,
1988.

11. Dana Dachman-Soled and Yael Tauman Kalai. Securing circuits against constant-
rate tampering. In CRYPTO, pages 533�551, 2012.

12. Ivan Damgård, Sebastian Faust, Pratyay Mukherjee, and Daniele Venturi. Bounded
tamper resilience: How to go beyond the algebraic barrier. In ASIACRYPT (2),
pages 140�160, 2013.

13. Francesco Davì, Stefan Dziembowski, and Daniele Venturi. Leakage-resilient stor-
age. In SCN, pages 121�137, 2010.

14. Stefan Dziembowski and Sebastian Faust. Leakage-resilient cryptography from the
inner-product extractor. In ASIACRYPT, pages 702�721, 2011.

15. Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-malleable codes
from two-source extractors. In CRYPTO (2), pages 239�257, 2013.

16. Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. In
FOCS, pages 293�302, 2008.

17. Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes.
In ICS, pages 434�452, 2010.

18. Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi.
Continuous non-malleable codes, 2013. The full version will be available at the
IACR Cryptology ePrint Archive.

19. Sebastian Faust, Pratyay Mukherjee, Daniele Venturi, and Daniel Wichs. E�cient
non-malleable codes and key-derivation for poly-size tampering circuits. IACR
Cryptology ePrint Archive, 2013:702, 2013.

20. Sebastian Faust, Krzysztof Pietrzak, and Daniele Venturi. Tamper-proof circuits:
How to trade leakage for tamper-resilience. In ICALP (1), pages 391�402, 2011.

21. Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Silvio Micali, and Tal Rabin.
Algorithmic tamper-proof (ATP) security: Theoretical foundations for security
against hardware tampering. In TCC, pages 258�277, 2004.

22. Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David Wagner. Private circuits
II: Keeping secrets in tamperable circuits. In EUROCRYPT, pages 308�327, 2006.

23. Yael Tauman Kalai, Bhavana Kanukurthi, and Amit Sahai. Cryptography with
tamperable and leaky memory. In CRYPTO, pages 373�390, 2011.

24. Feng-Hao Liu and Anna Lysyanskaya. Tamper and leakage resilience in the split-
state model. In CRYPTO, pages 517�532, 2012.

25. Krzysztof Pietrzak. Subspace lwe. In TCC, pages 548�563, 2012.
26. Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano,

and Amit Sahai. Robust non-interactive zero knowledge. In CRYPTO, pages
566�598, 2001.

