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Abstract. In this work we present an efficient compiler that converts any cir-
cuit C into one that is resilient to tampering with 1/ poly(k) fraction of the wires,
where k is a security parameter independent of the size of the original circuit |C|.
Our tampering model is similar to the one proposed by Ishai et al. (Eurocrypt,
2006) where a tampering adversary may tamper with any wire in the circuit (as
long as the overall number of tampered wires is bounded), by setting it to 0 or 1,
or by toggling with it. Our result improves upon that of Ishai et al. which only
allowed the adversary to tamper with 1/|C| fraction of the wires.
Our result is built on a recent result of Dachman-Soled and Kalai (Crypto, 2012),
who constructed tamper resilient circuits in this model, tolerating a constant tam-
pering rate. However, their tampering adversary may learn logarithmically many
bits of sensitive information. In this work, we avoid this leakage of sensitive in-
formation, while still allowing leakage rate that is independent of the circuit size.
We mention that the result of Dachman-Soled and Kalai (Crypto, 2012) is only
for Boolean circuits (that output a single bit), and for circuits that output k bits,
their tampering-rate becomes 1/O(k). Thus for cryptographic circuits (that out-
put k bits), our result strictly improves over (Dachman-Soled and Kalai, Crypto,
2012).
In this work, we also show how to generalize this result to the setting of two-
party protocols, by constructing a general 2-party computation protocol (for any
functionality) that is secure against a tampering adversary, who in addition to
corrupting a party may tamper with 1/ poly(k)-fraction of the wires of the com-
putation of the honest party and the bits communicated during the protocol.
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1 Introduction

Constructing cryptographic schemes that are secure against physical attacks is a fun-
damental problem which has recently gained much attention in the cryptographic com-
munity. Indeed, physical attacks exploiting the implementation (rather than the func-
tionality) of cryptographic schemes such as RSA have been known in theory for several
years [41, 8] and recent works have shown that these attacks can be carried out in prac-
tice [9, 49]. There are many different types of physical attacks in the literature. For
instance, Kocher et al. [42] demonstrated how one can possibly learn the secret key of
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an encryption scheme by measuring the power consumed during an encryption opera-
tion, or by measuring the time it takes for the operation to complete [41]. Other types
of physical attacks include: inducing faults to the computation [7, 8, 42], using electro-
magnetic radiation [28, 54, 53], and several others [53, 39, 43, 31].

Although these physical attacks have proven to be a significant threat to the practi-
cal security of cryptographic devices, until recently cryptographic models did not take
such attacks into account. In fact, traditional cryptographic models idealize the par-
ties interaction and implicitly assume that an adversary may only observe an honest
partys input-output behavior. Over the past few years, a large and growing body of
research has sought to introduce more realistic models and to secure cryptographic sys-
tems against such physical attacks. The vast majority of these works focus on securing
cryptographic schemes against various leakage attacks (e.g. [10, 34, 47, 29, 33, 18, 50,
1, 48, 38, 15, 14, 22, 35, 30]). In these attacks an adversary plays a passive role, learning
information about the honest party through side-channels but not attempting to interfere
with the honest partys computation. However, as mentioned above, physical attacks are
not limited to leakage, and include active tampering attacks, where an adversary may
actively modify the honest partys memory or circuit. In this work, we focus on con-
structing schemes that are secure even in the presence of tampering.

1.1 Our Results

We present a compiler that converts any circuit into one that is resilient to (a certain
form of) tampering. Then, we generalize this result, and show how to construct a general
two-party computation protocol that is secure against such tampering. We consider the
tampering model of Ishai et al. [33]. Specifically, we consider a tampering adversary
that may tamper with any (bounded) set of wires of the computation.

We note that our compiler that converts any circuit into a “tamper resilient” one,
cannot guarantee correctness of the computation in the presence of tampering. This
is the case, since the adversary may always tamper with the final output wire of the
circuit. Therefore, as in [33], we do not guarantee correctness, but instead ensure pri-
vacy. In particular, we consider circuits that are associated with a secret state. We model
such circuits as standard circuits (with AND, OR, and NOT gates), with additional se-
cret, persistent memory that contains the secret state. The circuit itself is public and its
topology is fully known to the adversary, whereas the memory content is secret. Fol-
lowing the terminology of [33], we refer to such circuits as private circuits. Our notion
of security guarantees that the secret state of the circuit is protected even when an ad-
versary may run the circuit on arbitrary inputs while continuously tampering with the
wires of the circuit.

There are several fundamental impossibility results for tampering, which any posi-
tive result must circumvent. In the following, we discuss some of these limitations.

Class of Tampering Functions. It is not hard to see that it is impossible to construct
private circuits resilient to arbitrary tampering attacks, since an adversary may mod-
ify the circuit so that it simply outputs the entire secret state in memory. Thus, we
must specify a class of allowed tampering functions. As in [33], in this we consider
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tampering adversaries who can tamper with individual wires [33, 23, 12] and indi-
vidual memory gates [11, 29, 19]. More specifically, in each run of the circuit we
allow the adversary to specify a set of tampering instructions, where each instruc-
tion is of the form: Set a wire (or a memory gate) to 0 or 1, or toggle with the value
on a wire (or a memory gate). However, in contrast to [37], where the tampering
rate achieved is 1/|C|, where |C| is the size of the original circuit, we allow the
adversary to tamper with any 1/poly(k)-fraction of wires and memory gates in
the circuit, where k is security parameter and poly(k) is independent of the size of
the original circuit. We note that the recent work of [12] gave a construction that
is resilient to constant tampering rate. However, in their construction a tampering
adversary may learn logarithmically many bit on the secret state of the circuit, and
their guarantee was that such an adversary learns only logarithmically many bits
about the secret state. We give the guarantee that a tampering adversary does not
learn anything beyond the input/output behavior.

Necessity of Feedback. As noted by [29], it is impossible to construct private circuits
resilient against tampering on wires without allowing feedback into memory, i.e.
without allowing the circuit to overwrite its own memory. Otherwise, an adversary
may simply set to 0 or 1 one memory gate at a time and observe whether the final
output is modified or not.
Even if we allow feedback, and place limitations on the type of tampering we allow,
it is not a priori clear how to build tamper-resilient circuits. As pointed out in [33,
12], the fundamental problem is that the part of the circuit which is supposed to
detect tampering and overwrite the memory, may itself be tampered with. Indeed,
this self-destruct mechanism itself needs to be resilient to tampering.

As in [33, 12], we prove security using a simulation based definition, where we
require that for any adversary who continually tampers with the circuit (as described
above), there exists a simulator who simulates the adversarys view. Like in [33], we
give the simulator only black-box access to the original private circuit with no additional
leakage on the secret state. This is in contrast to the work of [12], who achieve a constant
tampering rate, but where the simulator requires O(log k) bits of leakage on the secret
state, where k is security parameter, in order to simulate. Thus, our result is meaningful
in settings where [12] is not.

For example,3 consider a setting where the same cryptographic key is placed on
several devices, which are all obtained by an adversary. In this case, [12] does not
guarantee any privacy for the cryptographic key, since O(log(k)) bits leaked from each
of several devices may give enough information to reconstruct the entire cryptographic
key. Another example is a setting where secrecy of an algorithm is desired in order to
protect intellectual property. In this case, the secret state of the device is the algorithm
and the circuit is the universal circuit. Here, the same algorithm is placed on a large
number of devices and is marketed. Thus, ifO(log(k)) bits are leaked from each device,
then it may be possible to recover the entire algorithm.

Finally, we show how one can use our tamper-resilient compiler to achieve tamper-
resilient secure two-party computation. We elaborate on this result in Section 1.4, but

3 The following example, which was the motivating force behind this research, was brought to
our attention by Shamir [55].
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mention here that the results of [12] do not apply to this regime. Loosely speaking, the
reason is that in this setting, the secret state of the circuit consists of the private input
and randomness of each party, and (even logarithmic) leakage on the input and random-
ness of each party may completely compromise security of the two-party computation
protocol.

Our Results More Formally. We present a general compiler T that converts a circuitC
with a secret state s (denoted byCs) into a circuit T (Cs). We considerPPT adversaries
A who receive access to T (Cs) and behave in the following way: A runs the circuit
many times with arbitrary and adaptively chosen inputs. In addition, during each run of
the circuit the adversary A may specify tampering instructions of the form “set wire w
to 1”,“set wire w to 0”, “flip value of wire w”, as well as “set memory gate g to 1”, “set
memory gate g to 0”, “flip value of memory gate g”, for any wire w or memory gate g.
We restrict the number of tampering instructions A may specify per run to be at most
λ · σ, where λ = 1

poly(k) and σ is the size of the circuit T (Cs). Thus, in each run, A
may tamper with a 1/poly(k)-fraction of wires and memory gates.

Theorem 1 (Main Theorem, Informal). There exists an efficient transformation T
which takes as input any circuit Cs with private state s, and outputs a circuit T (Cs)
such that the following two conditions hold:

Correctness: For every input x, T (Cs)(x) = Cs(x).
Tamper-Resilience: For everyPPT adversaryA, which may tamper with λ = 1/poly(k)-

fraction of wires and memory gates in T (Cs) per run, there exists an expected poly-
nomial time simulator Sim, which can simulate the view of A given only black-box
access to Cs.

Intuitively, the theorem asserts that adversaries who may observe the input-output be-
havior of the circuit while tampering with at most a λ-fraction of wires and memory
gates in each run, do not get extra knowledge over what they could learn from just
input-output access to the circuit.

1.2 Comparison with Ishai et al. [33] and Dachman-Soled et al. [12]

Our work follows the line of work of [33, 12]. As in our work, both these works consider
circuits with memory gates, and consider the same type of faults as we do. Similarly
to us, they construct a general compiler that converts any private circuit into a tamper
resilient one. In the following, we discuss some similarities and differences among these
works.

– In our construction, as in the construction of [33], we require the use of “random-
ness gates”, which output a fresh random bit in each run of the circuit.4 In contrast,
the construction of [12] is deterministic.

4 Alternatively, [33] can get rid of these randomness gates at the cost of relying on a computa-
tional assumption.
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– The constructions of [33, 12] provide information-theoretic security, while our con-
struction requires computational assumptions.

– As mentioned previously, [33] constructs tamper resilient circuits that are resilient
only to local tampering: To achieve resilience to tampering with t wires per run, the
circuit size blows up by a factor of at least t. In contrast, our tamper-resilient circuits
are resilient to a 1/poly(k)-fraction of tampering, where k is security parameter.
Thus, our tampering rate is independent of the original circuit size.

– The construction of [12] achieves a constant tampering rate, but requires O(log k)
leakage on the secret state in order to simulate. As discussed above, in some set-
tings the guarantees provided by [12] are too weak, while our construction still
guarantees meaningful security.
Moreover, [12] achieves constant tampering rate only for Boolean circuits that out-
put a single bit. For circuits with k bit output, the resulting tampering-resilient
circuit is only resilient to 1/k-fraction of tampering.

– The tampering model of [33] allows for “persistent faults”, e.g, if a value of some
wire is fixed during one run, it remains set to that value in subsequent runs. We
note that in our case, we allow “persistent faults” only on memory gates (and not
on wires), so if a memory value is modified during one run, it remains modified for
all subsequent runs.

1.3 Overview of our Construction

Intuitively, our compiler works by first applying to the circuit Cs the leakage-resilient
compiler TLR of Juma and Vahlis [35]. The Juma-Vahlis compiler, TLR, converts the
circuit Cs into two subcomputations (or modules), Mod(1) and Mod(2), and provides
the guarantee that (continual) leakage on the sub-computations Mod(1) and Mod(2) leak
no information on the secret seed s. We refer the reader to [35] for the precise security
guarantee. We emphasize that TLR(Cs) has no security guarantees against a tampering
adversary (rather only against a leaking adversary).

Our next idea is to use the tamper-resilient compiler TTR of [12]. This compiler
provides security against a (continual) tampering adversary, guaranteeing that the ad-
versary learns at most log n bits about the secret s. In this work our goal is to remove this
leakage from the security guarantee. To this end, we apply the tamper-resilient compiler
TTR to each sub-computation separately, each of which is now resilient to leakage.

We note however, that the Juma-Vahlis compiler relies on a secure hardware com-
ponent. We do not want to rely on any such tamper-proof component. Therefore, we
replace the tamper-proof component with a secure implementation. We describe our
compiler in stages:

– First, we present a compiler (as above) that takes as input a circuit Cs and outputs
a compiled circuit T (1)(Cs) that consists of 4 components. We prove that T (1)(Cs)
is secure against adversaries that tamper with at most a 1/poly(k) fraction of wires
overall, but do not tamper with any of the wires in the first component, where the
first component corresponds to the hardware component in the [35] construction
(See Section 3.1).

– Then, we show how to get rid of the tamper-proof component and allow 1/poly(k)-
fraction tampering overall (See Sections 3.2 and 5).
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1.4 Extension to Tamper-Resilient Secure Two-Party Computation.

We consider the two-party computation setting, where in addition to corrupting parties,
an adversary may tamper with the circuits of the honest parties and the messages sent
by the honest parties. In this setting, we show how to use our construction of tamper-
resilient circuits to obtain a general tamper-resilient secure two-party computation pro-
tocol, where an adversary may actively corrupt parties and additionally tamper with
1/poly(k)-fraction of wires, memory gates, and message bits overall.

To achieve our result, we start with any two-party computation (2-PC) protocol that
is secure against malicious corruptions, and where the total number of bits exchanged
depends only on security parameter k, and not on the size of the circuit computing
the functionality. Such a 2-PC protocol can be constructed from fully homomorphic
encryption and (interactive) CS-proofs. In addition we assume that each message sent
in the protocol is accompanied with a signature. Then, for each party and each round
of the protocol, we consider the private circuit computing the next message function,
where the secret state is the party’s private input and randomness and the public input
is the transcript. We then run (a slight modification of) our tampering compiler on each
such next message circuit to obtain a circuit that is resilient to 1/ poly(k)-fraction of
tampering. Since the total number of such circuits is poly(k), we achieve resilience to
a 1/poly(k)-fraction of tampering overall. We refer the reader to Section 6 for details.

1.5 Related Work

The problem of constructing error resilient circuits dates back to the work of Von Neu-
mann from 1956 [56]. Von Neumann studied a model of random errors, where each
gate has an (arbitrary) error independently with small fixed probability, and his goal
was to obtain correctness (as opposed to privacy). There have been numerous follow up
papers to this seminal work, including [13, 52, 51, 25, 20, 32, 26, 21], who considered
the same noise model, ultimately showing that any circuit of size σ can be encoded into
a circuit of size O(σ log σ) that tolerates a fixed constant noise rate, and that any such
encoding must have size Ω(σ log σ).

There has been little work on constructing circuits resilient to adversarial faults,
while guaranteeing correctness. The main works in this arena are those of Kalai et al. [37],
Kleitnam et al. [40], and Gál and Szegedy [27]. The works of [40] and [37] consider a
different model where the only type of faults allowed are short-circuiting gates. [27]
consider a model that allows arbitrary faults on gates, and show how to construct
tamper-resilient circuits for symmetric Boolean functions. We note that [27] allow a
constant fraction δ of adversarial faults per level of the circuit. Moreover, if there are
less than 1/δ gates on some level, they allow no tampering at all on that level. [27] also
give a more general construction for any circuit which relies on PCP’s. However, in
order for their construction to work, they require an entire PCP proof π of correctness
of the output to be precomputed and handed along with the input to the tamper-resilient
circuit. Thus, they assume that the input to the circuit is already encoded via an encod-
ing which depends on the output value of that very circuit. We (similarly to [12]) also
use the PCP methodology in our result, but do not require any precomputations or that
the input be encoded in some special format.
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Recently, the problem of physical attacks has come to the forefront in the cryptog-
raphy community. From the viewpoint of cryptography, the main focus is no longer to
ensure correctness, but to ensure privacy. Namely, we would like to protect the hon-
est party’s secret information from being compromised through the physical attacks
of an adversary. There has been much work on protecting circuits against leakage at-
tacks [34, 47, 18, 50, 16, 24, 35, 30]. However, there has not been much previous work
on constructing circuits resilient to tampering attacks. In this arena, there have been two
categories of works. The works of [29, 19, 11, 44, 36, 45, 17] allow the adversary to only
tamper with and/or leak on the memory of the circuit in between runs of the circuit, but
do not allow the adversary to tamper with the circuit itself. We note that this model of
allowing tampering only with memory is very similar to the problem of “related key
attacks” (see [4, 2] and references therein). In contrast, in our work, as well as in the
works of [33, 23, 12], the focus is on constructing circuits resilient to tampering with
both the memory as well as the wires of the circuit.

Faust et al. [23] consider a model that is reminiscent to the model of [33, 12] and
to the model we consider here. They consider adversarial faults where the adversary
may actually tamper with all wires of the circuit but each tampering attack fails in-
dependently with some probability δ. As in [12], they allow the adversary to learn a
logarithmic number of bits of information on the secret key. In addition, their result
requires the use of small tamper-proof hardware components.

2 The Tampering Model
2.1 Circuits with Memory Gates

Similarly to [33], we consider a circuit model that includes memory gates. Namely, a
circuit consists of (the usual) AND, OR, and NOT gates, connected to each other via
wires, as well as input wires and output wires. In addition, a circuit may have memory
gates. Each memory gate has one (or more) input wires and one (or more) output wires.
Each memory gate is initialized with a bit value 0 or 1. This value can be updated during
each run of the circuit.

Each time the circuit is run with some input x, all the wires obtain a 0/1 value. The
values of the input wires to the memory gates define the way the memory is updated.
We allow only two types of updates: delete or unchange. Specifically, if an input wire
to a memory gate has the value 0, then the memory gate is overwritten with the value 0.
If an input wire to a memory gate has the value 1, then the value of the memory gate
remains unchanged. We denote a circuit C initialized with memory s by Cs.

2.2 Tampering Attacks

We consider adversaries, that can carry out the following attack: The adversary has
black-box access to the circuit, and thus can repeatedly run the circuit on inputs of his
choice. Each time the adversary runs the circuit with some input x, he can tamper with
the wires and the memory gates. We consider the following type of faults: Setting a wire
(or a memory gate) to 0 or 1, or toggling with the value on a wire (or a memory gate).
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More specifically, the adversary can adaptively choose an input xi and a set of
tampering instructions (as above), and he receives the output of the tampered circuit on
input xi. He can do this adaptively as many times as he wishes. We emphasize that once
the memory has been updated, say from s to s′, the adversary no longer has access to
the original circuit Cs, and now only has access to Cs′ . Namely, the memory errors are
persistent, while the wire errors are not persistent.

We denote by TAMPA(T (Cs)) the output distribution of an adversary A that car-
ries out the above (continual) tampering attack on a compiled circuit T (Cs). We note
that our tampering compiler T is randomized and so the distribution is over the coins
of T . We say that an adversary A is a λ-tampering adversary if during each run of the
circuit he tampers with at most a λ-fraction of the circuit. Namely, A can make at most
λ · |T (Cs)| tampering instructions for each run, where each instruction corresponds ei-
ther to a wire tampering or to a memory gate tampering.

Remark. In this work, we define the size of a circuit C, denoted by |C|, as the number
of wires in C plus the number of memory gates in C. Note that this is not the common
definition (where usually the size includes also the gates); however, it is equivalent to
the common definition up to constant factors.

To define security of a circuit against tampering attacks we use a simulation-based
definition, where we compare the real world, where an adversary A (repeatedly) tam-
pers with a circuit T (Cs) as above, to a simulated world, where a simulator Sim tries to
simulate the output ofA, while given only black-box access to the circuit Cs, and with-
out tampering with the circuit at all. We denote the output distribution of the simulator
by SimCs .

Definition 1. We say that a compiler T secures a circuit Cs against PPT λ-tampering
adversaries, if for every PPT λ-tampering adversary A there exists a simulator Sim,
that runs in expected polynomial time (in the runtime of A), such that for sufficiently
large k,

{TAMPA(T (Cs))}k∈N
c
≈ {SimCs}k∈N.

In this work we construct such a compiler that takes any circuit and converts it into
one that remains secure against adversaries that tamper with λ = 1/ poly(k)-fraction
of the wires in the circuit, where k is the security parameter. Our compiler is uses both
the Juma-Vahlis leakage compiler [35] and the recent tampering compiler of [12].

3 The Compiler

3.1 Overview of the First Construction

We start by presenting our first tampering compiler T (1) that takes as input a circuit Cs,
and generates a tamper-resilient version of Cs which requires a tamper-proof compo-
nent. In the case of no tampering, we show the correctness property: T (1)(Cs)(x) =
Cs(x). Moreover, we prove that the circuit T (1)(Cs) is resilient to tampering with rate
1/poly(k), where k is the security parameter.

High-level. On a very high-level, T (1)(Cs) works as follows.
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1. Apply the Juma-Vahlis compiler TLR to the circuit Cs to obtain a hardware com-
ponent and two modules (Mod(1),Mod(2)). First, Mod(1) = Mod

(1)
PK,EncPK(s)

is
the sub-computation that takes as input a string x and outputs the homomorphic
evaluation of Cs on input x. We refer to this sub-computation as Component 2
of T (1)(Cs) and denote the output of this component by ψcomp. Then a leakage
and tamper-resilient hardware is used generate a “fresh” encryption of 0, denoted
by ψrand, which is used to “refresh” the ciphertext ψcomp. We refer to the leakage
resilient-hardware outputting encryptions of 0 as Component 1. Component 3 of
T (1)(Cs) then takes as input ψcomp and ψrand and outputs the re-randomized cipher-
text ψ∗ = ψcomp + ψrand. Finally, the second sub-computation of the Juma-Vahlis
compiler, Mod(2) = Mod

(2)
SK , takes as input the refreshed ciphertext ψ∗ and de-

crypts it to obtain b = Cs(x). This sub-computation is referred to as Component 4
of T (1)(Cs).

2. The next idea is to apply the tampering compiler of [12], TTR, to each of the com-
ponents separately. We note that this tampering compiler allows a tampering adver-
sary learn logartihmically many bits about the secret state of the circuit. However,
since we apply the compiler to Components 2, 3, 4, which inherit the leakage re-
silient properties of the Juma-Vahlis compiler and are thus resilient to leakage of
logarithmic size, this is not a concern to us.
Unfortunately, this does not quite work. The reason is that the security definition
of the tamper-resilient compiler TTR allows the adversary to tamper with the in-
put. Hence, if we simply take the components described above, then a tampering
adversary may tamper with the inputs to each of the components, and may com-
pletely ruin the security guarantees of the Juma-Vahlis compiler. In particular, the
refreshed ciphertext ψ∗, may no longer be distributed correctly. Instead we do the
following:

3. Compute the second component, i.e. the tamper-resilient circuit TTR(Mod(1)). How-
ever, instead of outputting a single ciphertext ψcomp, the circuit TTR(Mod(1)) will
output M copies of ψcomp, where M is a (large enough) parameter that will be
specified below. We will argue that for any tampering adversary, either self-destruct
occurs or a majority of the copies of ψcomp are exactly correct.

4. Next apply a version of TTR to the third and fourth components, with the guar-
antee that now an adversary cannot tamper with the input (without causing a self
destruct), since the input is replicated M times, and an adversary can only tamper
with a small fraction of these wires, and the compiled circuit will check for replicas.
This version of TTR turns out to be much simper than TTR since the is size of the
third and fourth components depends only on the security parameter, independent
of the size of Cs, which turns out to simplify matters significantly.

We defer the details of the construction of T (1)(Cs) to the full version.
We are now ready to state the main theorem of this section:

Theorem 2. T (1)(Cs) is secure against all PPT λ = 1/poly(k)-tampering adver-
saries (as defined in Definition 1) who do not tamper with Component 1, assuming
semantic security of the underlying encryption scheme EFH .

We defer the proof of Theorem 2 to the full version.
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3.2 Overview of Construction of Component 1

We now show how to construct Component 1, instead of relying on tamer-resilient hard-
ware. Recall that our goal is to compute an encryption of 0 in a robust way so that even
after tampering the output is statistically close to a fresh encryptions of 0 (assuming
the output wires were not tampered with). Unfortunately, we don’t quite manage to do
this. Instead, we achieve a slightly weaker goal. We construct a circuit component that
computes an encryption of 0, so that even after tampering, if self destruct did not occur,
then the output of the computation is of the form ψfresh + ψrest, where ψfresh is a
fresh encryption of 0, and ψrest is a simulatable (not necessarily fresh) encryption of 0
with “good” randomness and which is independent of ψfresh. Moreover, one can effi-
ciently determine when self destruct occurred. It turns out that such a component has the
security guarantees needed in order to replace the hardware component in Sections 3.1.

Clearly, this component will be randomized, since ciphertexts are randomized. We
note that this is the first (and only) time randomization is used by the compiled circuit.
Note that the time it takes to compute a ciphertext is completely independent of the size
of the underlying circuit Cs, and depends only on the security parameter k. Moreover,
recall that we allow the adversary to tamper with at most 1/poly(k) wires.

The basic idea is the following: repeat the following sub-computation M times:
Compute a fresh ciphertext of 0, along with a non-interactive zero-knowledge proof
that it is indeed an encryption of 0 with “good” randomness. We denote the output of
the i’th sub-computation by (ψi, πi), where ψi ← Enc(0) and πi is the corresponding
NIZK. The basic observation is that at least one of these sub-computations will not be
tampered with at all (due to the limit on the tampering budget), and hence one of these
(untampered) sub-computations can be thought of as a secure hardware component.

Next the idea would be to add all these ciphertext together, to compute the final
ciphertext ψ =

∑M
i=1 ψi. Note that if we knew that this addition computation was not

tampered with, then we would be done. But clearly we do not have such a guarantee.
Instead we will add a proof that this sum was computed correctly. However, in order
to add a proof we need to identify the underlying language (or what exactly are we
proving). Note that it is insufficient to prove that there exist ciphertexts ψ′

1, . . . , ψ
′
M , and

corresponding proofs π′
1, . . . , π

′
M , such that ψ =

∑M
i=1 ψ

′
i. This is insufficient since we

will need the guarantee that at least one of these ciphetexts ψ′
i was computed without

any tampering, and thus can be thought of as a fresh encryption of 0. To enforce this, we
need to prove that these ciphertexts ψ′

1, . . . , ψ
′
M are exactly those computed previously.

To this end, we use a signature scheme, and prove that we know a bunch of signed ci-
phertexts and corresponding proofs {ψ′

i, σ
′
i, π

′
i}Mi=1 such that all the signatures are valid,

all the proofs are valid, and
∑M

i=1 ψ
′
i = ψ, where ψ is the claimed sum. More specifi-

cally, we fix an underlying signature scheme, and store in the memory of this component
a pair of keys (sksig, vksig) for this signature scheme. The M sub-computations now
each compute a triplet (ψi, σi, πi), where ψi ← Enc(0), σi is a signature of ψi, and πi
is a NIZK proof that indeed ψi is an encryption of 0 with “good” randomness. As before
the size of each computation of (ψi, σi, πi) depends only on the security parameter and
hence we can assume that at least one of these computations is not tampered with.

Once all these triplets (ψi, σi, πi) were computed, we compute ψ =
∑M

i=1 ψi to-
gether with a succinct proof-of-knowledge that we know M triplets (ψi, σi, πi) such
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that ψ =
∑M

i=1 ψi, each signature σi is a valid signature of ψi, and each proof πi is a
valid proof that ψi is an encryption of 0 with “good” randomness. We note that this part
of the computation takes as input only the outputs of the previous M subcomputations,
the verification key vksig, and the CRS. Intuitively, security seems to follow from the
security of the signature scheme: Since the adversary is not given the secret key sksig
during this computation, he cannot forge a signature on a new message, and hence must
use the M ciphertexts output by the M sub-computations.

Unfortunately, this intuition is misleading, and there is a problem with this approach
that complicates our construction. The problem is that some of the subcomputations
that supposedly output a triplet (ψi, σi, πi) can be completely corrupted, and instead
of outputting a signature σi may output the secret key sksig (or an arbitrary function
of sksig). In such a case, during the proof that ψ =

∑
ψ′
i, a tampering adversary, may

choose the ciphertext ψ′
i arbitrarily (and in particular, depending on the untampered

ciphertext) and forge a signature. We get around such an attack by using a very specific
(one-time) information-theoretically secure signature scheme.

The signature scheme we use is an information-theoretical one-time (symmetric)
version Lamport’s signature scheme, where there is no verification key (only a secret
key which is used both for verifying and computing signatures). Recall that the secret
key in Lamport’s scheme consists of 2k random strings: sksig = (x1,0, x1,1, . . . , xk,0, xk,1).
A valid encryption of a message m = (m1, . . . ,mk) is the tuple (x1,m1 , . . . , xk,mk

).
The reason we use this specific signature scheme is that it has an important feature,
described below.

In ourM subcomputations we useM independent secret keys. Namely, we storeM
independently generated keys (sksigi)Mi=1 in memory, where each sksigi = (xi1,0, x

i
1,1,

. . . , xik,0, x
i
k,1). During the i’th subcomputation, where supposedly the triplet (ψi, σi, πi)

is computed, we use only sksigi.

Our signature scheme has the following desired property: Consider a tampering
adversary, who may completely tamper with the wires of subcomputation i, and thus
can set σi to be an arbitrary function of the secret key sksigi. Our signature scheme
has the guarantee that this arbitrary string σi can (information-theoretically) be used
to sign at most one message, and this message is determined by σi. Thus, we have
the guarantee that the witness {(ψ′

i, σ
′
i, π

′
i)}Mi=1 extracted from the proof-of-knowledge

has the property that if the signatures and proofs are valid and ψ =
∑
ψ′
i, then (with

overwhelming probability) the signed ciphertexts {ψ′
i} were generated independently

of the untampered ciphertext, and are all “good” encryptions of 0.

The proof system we use must be a succinct proof-of-knowledge. The reason is that
we will run the verification circuit M times, and argue that most of the verification
circuits cannot be tampered with. However, to argue this we use the fact that the size of
each verification circuit is of size poly(k), independent of the original circuit size. To
ensure that each verification circuit is indeed of size poly(k) (independent of M ) we
need to use succinctness, since the verification circuit depends on the proof length.

The actual succinct proof-of-knowledge we use is universal arguments [3], which is
an interactive version of CS-proofs. Universal arguments consist of 4 messages, which
we denote by (α, β, γ, δ). The verifier’s messages α and γ (which are random) are
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stored in the memory, and the prover’s messages (β and δ) are computed during the
computation of the circuit.

There are still some technical difficulties that remain. First, everything in mem-
ory must be stored in a tamper-resilient way, with the guarantee that if something in
memory is corrupted then self-destruct occurs. To this end, we store M copies of the
CRS and M copies of the public key of the encryption scheme. As done in previous
components, we check that all the copies are the same, and if not the component self-
destructs (i.e., the memory is overwritten with zeros). We also need to store the secret
keys sksig1, . . . , sksigM in a robust manner, but note that since there are M such keys,
simply storingM copies of each secret key is not good enough, since we allow poly(k)
fraction of the memory gates to be tampered with, and in particular all of the repetitions
of a single secret key sksigi can be tampered with. Instead, we compute the hash value
h(sksig) = h(sksig1, . . . , sksigM ), where h is a collision resistant hash function, and
we store M copies of h(sksig).

In the proof-of-knowledge, the statement is the tuple (ψ,CRS, PK, h(sksig)), and
we prove that we know a witness {ψi, σi, πi, sksig

i}i∈[M ] such that ψ =
∑M

i=1 ψi,
all the proofs πi are accepted (with respect to CRS), all the signatures σi are valid
(with respect to sksigi), and h(sksig1, . . . , sksigM ) = h(sksig). Unfortuantely, using a
symmetric (information theoretical) signature scheme, introduces a new problem: This
computation now does use the secret key, and hence a new signature may be forged
during this computation.

We solve this problem by adding another proof-of-knowledge before this proof-of-
knowledge, which ties the hands of the adversary, and causes him to “commit” to these
signatures (without knowing the secret keys). More specifically, after the initial M sub-
computations, we compute h(σ) , h(σ1, . . . , σM ) and add a universal argument that
we know (σ1, . . . , σM ) such that h(σ1, . . . , σM ) = h(σ). Note that this computation
does not use the secret keys (sksig1, . . . , sksigM ). We think of h(σ) as a commitment
to the signatures.

Then in the next proof-of-knowledge, the instance is (ψ,CRS, PK, h(sksig), h(σ)),
and we prove that we know a witness (ψi, σi, πi, sksig

i) such that ψ =
∑M

i=1 ψi, all
the proofs πi are accepted (with respect to CRS), all the signatures σi are valid (with
respect to sksigi), h(sksig1, . . . , sksigM ) = h(sksig), and h(σ1, . . . , σM ) = h(σ). We
use the fact that h is collision resistant to argue that even if the adversary uses the secret
key here to forge signatures of new messages, these new signatures cannot hash to h(σ)
assuming the adversary cannot find collisions in h.

We now present the details of the construction and security proof for Component 1.

4 Component 1:

4.1 Universal Arguments

In what follows we give the properties of the universal argument that will be useful
for us. We note that the definition below slightly differs from its original form in [3].
First, we define universal arguments for any language in NTIME(T ) (i.e., any language
computable by a non-deterministic Turing machine running in time T ), for any T :
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N → N, whereas Barak and Goldreich (following Micali [46]) define it for a universal
non-deterministic language. Second, our proof-of-knowledge property slightly differs
from the one presented in [3], but easily follows from their original formulation.

Definition 2. Let T : N → N, and let L be any language in NTIME(T ). A universal
argument for L is a 4-round argument system (P, V ) with the following properties:

1. Efficiency. There exists a polynomial p,5 such that for any instance x ∈ {0, 1}k the
time complexity of V (x) is p(k), independent of T . In particular the communication
complexity is at most p(k) as well. Moreover, if x ∈ L then for any valid witness w,
the runtime6 of P (x,w) is at most T (k) · polylog(T(k)).

2. Completeness. For every x ∈ L and for any corresponding witness w,

Pr[(P (x,w), V (x)) = 1] = 1.

3. Computational Soundness. For every polynomial size circuit family {P ∗
k } and for

every x ∈ {0, 1}k \ L,

Pr[(P ∗
k (x), V (x)) = 1] = neg(k).

4. Proof-of-Knowledge Property. There exists a a polynomial q and a probabilistic
algorithm E (an extractor) such that for every poly-size circuit family {P ∗

k } and
for every x ∈ {0, 1}k, if Pr[(P ∗

k (x), V (x)) = 1] ≥ ϵ then

Pr[EP∗
n (x) outputs a valid witness after running in time q(1/ϵ, T (k))] = 1−neg(n).

In particular, if P ∗ succeeds in proving that x ∈ {0, 1}k ∩ L with non-negligible
probability, then E can extract a corresponding witness in expected polynomial
time in T (k).

4.2 A Formal Description of Component 1

We first describe the cryptographic ingredients used by Component 1.

– A one-time symmetric signature scheme ΠSign = (SigGen, Sign,Verify), defined
as follows:

SigGen(1k): SigGen outputs a random string sksig which consists of k pairs of
random strings

(x1,0, x1,1), . . . , (xk,0, xk,1),

where each xℓ,b ∈R {0, 1}2k is of length 2k.

Sign(sksig,m), where |m| = k: Letm = m[1], . . . ,m[k] be the bit representation
of m. Sign outputs σ = (x1,m[1],m[1]), . . . , (xk,m[k],m[k]).

5 This polynomial is a universal polynomial that does not depend on the language L.
6 We note that this is not the complexity guarantee given in the work of [3]. However, this

complexity can be achieved by instantiating the universal argument using the recent efficient
PCP construction of [5].
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VerifySign(sksig, σ,m): VerifySign parses σ = (y1, b[1]), . . . , (yk, b[k]) and checks
that for every j ∈ [k] it holds that b[j] = m[j] and yj = xj,m[j]. If yes, it
outputs 1, and otherwise it outputs 0.

– A family of collision resistant hash functions H = {hkey}, where hkey : {0, 1}∗ →
{0, 1}k.

– A non-interactive zero-knowledge (NIZK) proof system ΠNIZK .

– Universal arguments, which is an interactive variant of the CS proof system. Uni-
versal arguments consist of 4 messages, which we denote by (α, β, γ, δ). The mes-
sages α and γ are sent by the verifier and are uniformly random strings.

We now describe Component 1. In what follows M is a parameter chosen as in Sec-
tion 3.

Remark. For the sake of simplicity (and in an effort to focus on the new and interesting
aspects of our component), in our formal description below, we do not formally define
the notion of a ciphertext with “good” randomness. Intuitively, by “good” randomness
we mean randomness r for which the error term in the ciphertext EncPK(0; r) is not
too big, so that one can perform homomorphic operations on it (that can later be de-
crypted using the secret key). We use the fact that a random string r is “good” with
overwhelming probability.

In what follows, we use this notion of “good” randomness in a hand-wavy manner
and assume that the sum of M ciphertext with “good” randomness is a ciphertext with
“good” randomness (an assumption which of course does not hold inductively).

Memory: Encoding the Memory. Generate M secret keys sksig1, . . . , sksigM ←
SigGen(1k) for the signature scheme, and place in memory. Recall that for each i,
the key sksigi consists of k pairs of random values which we denote by (xi1,0, x

i
1,1),

. . . , (xik,0, x
i
k,1). Let sksig = sksig1|| · · · ||sksigM .

In what follows, for any random variable x, we let x̃ = xM denoteM concatenated
copies of x.
Compute the following encodings and place in memory:
1. Place P̃K in memory, where PK is the public-key of the underlying (homomor-

phic) encryption scheme.
2. Choose a random function hkey from the collision resistant familyH, and place

k̃ey in memory.
3. Compute h(sksig) = hkey(sksig) and place ˜h(sksig) in memory.
4. Choose a common reference string CRS for the NIZK proof system ΠNIZK

and place C̃RS in memory.
5. Choose random strings (α1, γ1) to be the random coins of the verifier in the

first universal argument, and (α2, γ2) to be the random coins of the verifier in
the second universal argument. Place α̃1, γ̃1, α̃2, γ̃2 in memory.

In what follows, when the circuit computation accesses one of the stored values
x ∈ {PK, key,CRS, h(sksig), α1, γ1, α2, γ2}, we always assume that it is accessing
the first column of x̃.
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Segment 1.

1. The first part of the computation takes randomness of length M · poly(k) as
input and performs M parallel subcomputations. We refer to each subcompu-
tation as a block and denote the M blocks by B1, . . . ,BM . For 1 ≤ i ≤ M ,
a random string ri = r1i ||r2i ∈ {0, 1}poly(k) is generated by hardware ran-
domness gates. Each block Bi receives the corresponding r1i ||r2i as input and
performs the following computation:

– On input r1i , computeψi = EncPKFHE
(0; r1i ). Each bit of the outputψi[1], . . . , ψi[k]

is split into 4 wires which are used later on, as specified.
– On input ψi, sksigi, compute σi = Sign(sksigi, ψi). Each bit of the output
σi[1], . . . , σi[k] is split into 4 wires which are used later on, as specified.

– On input r1i , r
2
i ,CRS, compute a NIZK proof πi, using proof systemΠNIZK

with CRS and randomness r2i , that there exists “good” randomness r1i such
that EncPKFHE

(0; r1i ) = ψi. Each bit of the output πi[1], . . . , π[poly(k)] is
split into 2 wires which are used later on, as specified.

2. The next part of the computation takes as inputψ1, . . . , ψM and outputsψrand =∑M
i=1 ψi. Each of the k output wires corresponding to the bits of ψrand =

ψrand[1], . . . , ψrand[k] will be split into M +2 wires, which are used later on,
as specified.

3. This part of the computation takes as input σ1, . . . , σM and key, and computes
h(σ) = hkey(σ1, . . . , σM ). Each of the k output wires corresponding to the bits
of h(σ) = h(σ)[1], . . . , h(σ)[k] is split into 2M + 4 wires which are used later
on, as specified.

4. This part of the circuit computes a universal argument that proves knowledge
of signatures σ1, . . . , σM that hash to h(σ). More specifically, this part of the
computation takes as input a witness σ1, . . . , σM and the tuple (key, h(σ), α1, γ1),
and does the following:

– Take α1 to be the verifier’s first message. Compute the second message β1
of the universal argument for the following language:

L1 = {(h(σ), key) | ∃σ′
1, . . . , σ

′
M : hkey(σ

′
1, . . . , σ

′
M ) = h(σ)}.

Each bit of the output β1 = β1[1], . . . , β1[k] is split into M wires which
are used later on, as specified. This part of the computation also outputs a
state STATE1 which is passed to the next part of the computation, below.

– The next part of the computation takes as input STATE1 and γ1, where γ1
is the third message of the verifier. Compute the fourth message δ1 for
the language L1 and statement (h(σ), key). Each bit of the output δ1 =
δ1[1], . . . , δ1[poly(k)] is split into M wires which are used later on, as
specified.

5. This part of the circuit computes a universal argument thatψrand was computed
“correctly”. More specifically, this part of the computation takes as input a
witness

((ψ1, σ1, π1, sksig1), . . . , (ψM , σM , πM , sksigM ))

and the tuple (ψrand, key, h(σ), h(sksig),CRS, α2, γ2) and does the following:
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– Take α2 to be the verifier’s first message and compute the second message
β2 of the universal argument for the following language:

L2 = {ψrand, h(σ), key,CRS | ∃(ψ′
1, σ

′
1, sksig

′
1, π

′
1), . . . , (ψ

′
M , σ

′
M , sksig

′
M , π

′
M ) :

M∑
i=1

ψ′
i = ψrand;

∧ hkey(σ′
1, . . . , σ

′
M ) = h(σ);

∧ for 1 ≤ i ≤M,VerifySign(sksig
′
i, ψ

′
i, σ

′
i) = 1

∧ for 1 ≤ i ≤M,VerifyΠ(CRS, ψ′
i, π

′
i) = 1

∧ hkey(sksig′1, . . . , sksig
′
M ) = h(sksig)}

Each bit of the output β2 = β2[1], . . . , β2[k] is split into M wires which
are used later on, as specified. This part of the computation also outputs a
state STATE2 which is passed to the next part of the computation, below.

– The next part of the computation takes γ2 to be the third message of the
verifier, and uses STATE2 to compute the fourth message δ2 for the lan-
guage L2 and statement (ψrand, h(σ), key,CRS). Each bit of the output
δ2 = δ2[1], . . . , δ2[poly(k)] is split into M wires which are used later on,
as specified.

Segment 2: Universal Argument Verification. This part consists of two sub-computations:

Verification of the computation of h(σ). This part consists of M copies of the
verifier circuit for the universal argument for language L1 which takes as input
the statement (h(σ), key), first message α1, second message β1 third message
γ1, and fourth message δ1. We denote the i-th verifier circuit for 1 ≤ i ≤ M
by Verify1i and its output by λ1i .

Verification of the computation of ψrand. This part consists of M copies of the
verifier circuit for the universal argument for language L2 which takes as input
the statement (ψrand, h(σ), key,CRS), first message α2, second message β2
third message γ2, and fourth message δ2. We denote the i-th verifier circuit for
1 ≤ i ≤M by Verify2i and its output by λ2i .

All these 2M output wires are inputs to the AND gate Gcas. This gate has 7k ·M
additional input wires that belong to Segment 3 below. The gateGcas hasK ′′+k·M
output wires, where K ′′ is the size of the entire memory of of the circuit (of all
components). We denote the values on these wires by {µi}i∈[K′′+k·M ]. The first
K ′′ output wires (with values {µi}i∈[K′′]) belong to Segment 3, and the other k ·M
output wires belong to Segment 4.

Segment 3: Error Cascade. This part is split into two subcomputations. The first
subcomputation checks that all of the encodings x̃ that were placed in memory are
uncorrupted. The second part propagates errors and overwrites memory.

– A circuit C k̃ey
codei,j

of constant size σcode for 1 ≤ i ≤M , 1 ≤ j ≤ k:

Input: k̃ey.
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Output:
ω1
i,j =q(k̃ey(1, j)⊕ k̃ey(i, j))

Similar subcircuits are constructed for the remaining encodings P̃K, ˜h(sksig),
C̃RS, α̃1, γ̃1, α̃2, γ̃2 with corresponding output wires [ω2

i,j ]i∈[M ],j∈[k], [ω3
i,j ]i∈[M ],j∈[k],

[ω4
i,j ]i∈[M ],j∈[k], [ω5

i,j ]i∈[M ],j∈[k], [ω6
i,j ]i∈[M ],j∈[k], [ω7

i,j ]i∈[M ],j∈[k], [ω8
i,j ]i∈[M ],j∈[k].

All these output wires are inputs to Gcas. Thus, in total, Gcas has 8kM + 2M
input wires (M from Segment 1, M from Segment 2 and 8k ·M from Seg-
ment 3), and outputs: ∧

i∈[M ]

λ1i

 ∧
 ∧

i∈[M ]

λ2i

 ∧
 ∧

i∈[M ],j∈[k],ℓ∈[7]

ψℓ
i,j


– The first K ′′ output wires of Gcas are fed to all the memory gates. If the output

of Gcas is 0, then the memory gates are set to 0. Otherwise, the memory gates
remain unchanged.

Segment 4: The Output of Component 1. This segment has k AND gatesGout,1, . . . ,
Gout,k, each with fan-in M +1. This segment contains all the k ·M +k input wires
to Gout,1, . . . , Gout,k: The first M input wires to each gate Gout,j come from the
output wires of Gcas (with values {µi}K

′′+j·M
i=K′′+(j−1)·M+1), and the other input wire

of Gout,j is the j-th output wire of the Circuit Computation in Segment 1, which
computes the encryption ψrand. Each AND gate Gout,j has fan-out M , where the
M output wires of Gout,j are set to:

ψ∗
rand[j] = ψrand[j] ∧

 ∧
K′+(j−1)·M+1≤i≤K′+j·M

µi

 .

The final output of Component 1 is denoted by ψ∗
rand.

Remark. We note that the size of Component 1 is of order M · poly(k) · polylog(M ·
poly(k)), which can be written asM ·poly(k) (sinceM is poly-sized and so polylog(M)
is smaller than k), due to the fact that we use the recent efficient PCP construction of
Ben-Sasson et al. [5] to construct our universal arguments. We note that this implies that
a 1/ poly(k)-tampering adversary cannot tamper with each of the M subcomputations
at the beginning of Component 1. An important assumption throughout the analysis will
be that at least one of the M subcomputations is untampered.

Notation. In the following theorem, for any λ-tampering adversary A (as defined in
Definition 1), we denote by t the maximum number of times A runs the tampered cir-
cuit. For each run i ∈ [t], we denote by ψrand,i the ciphertext in the statement of the sec-
ond universal argument. For each run i ∈ [t], we denote by ψfresh,i the ciphertext out-
putted by the untampered subcomputation, and denote by ψrest,i = ψrand,i−ψfresh,i.

We denote by

(i∗, (ψfresh,1, ψrest,1), . . . , (ψfresh,i∗−1, ψrest,i∗−1), ψfresh,i∗)← REALA,
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where i∗ is the first round where self destruct occurs in the executions with the tam-
pering instructions of A. If self destruct does not occur (i.e. i∗ = t + 1) then set
ψfresh,i∗ = ⊥.

Theorem 3. Assume the soundness of the underlying universal argument, the security
(existential security against adaptive chosen message attacks) of the underlying signa-
ture scheme ΠSign , the semantic security of the underlying encryption scheme EFH ,
the security of the underlying collision resistant hash family H, and the soundness and
security of the underlying NIZK proof system ΠNIZK . Let λ = 1/poly(k).

Then for any PPT λ-tampering adversaryA there exists a simulator S = (S1, S2)
running in expected polynomial time, such that

(i′, ψ′
rest,1, . . . , ψ

′
rest,i′−1, ψ

′
fresh, STATE)← S1(1

M , PK),

and for (ψfresh,1, . . . , ψfresh,t)← EncPK(0) fresh encryptions of 0,

j′ ← S2(1
M , PK, STATE, ψfresh,1, . . . , ψfresh,t),

such that

1. ψ′
rest,1, . . . , ψ

′
rest,i′−1 are (simulatable) encryptions of 0 with “good” randomness.

2. j′ ≤ i′.
3. REALA ≡ (j′, (ψfresh,1, ψ

′
rest,1), . . . , (ψfresh,i′′−1, ψ

′
rest,j′−1), ψ̃fresh),

where ψ̃fresh = ψfresh,j′ for j′ < i′, and ψ̃fresh = ψ′
fresh for j′ = i′ ≤ t, and

ψ̃fresh = ⊥ for j′ = i′ = t+ 1.

We defer the proof of Theorem 3 to the full version.

5 The Final Construction

Let T (2)(Cs) be our original compiled circuit T (1)(Cs), described in Sections 3.1,
where Component 1 of T (1)(Cs), which was implemented by tamper-resilient hard-
ware, is replaced with the Component 1 described in Sections 3.2 and 4.

We are now ready to state our main theorem.

Theorem 4. Assume the soundness of the underlying universal argument, the security
(existential security against adaptive chosen message attacks) of the underlying signa-
ture scheme ΠSign , the semantic security of the underlying encryption scheme EFH ,
the security of the underlying collision resistant hash family H, and the soundness and
security of the underlying NIZK proof system ΠNIZK . Let λ = 1/poly(k).

Then T (2)(Cs) is secure against ppt λ-tampering adversaries (as defined in Defi-
nition 1). Note that the adversary may tamper with all components, including Compo-
nent 1.
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Overview of Proof of Theorem 4. First, we consider a Component 1 which provides
weaker guarantees than the idealized hardware component described in Section 3.1. We
call this hardware component WeakComp1. Next, we show that with small modifica-
tions, we can reprove Theorem 2 when the idealized hardware component is replaced
with the hardware component WeakComp1. Finally, we use Theorem 3 to show that
the construction of Component 1 given in Sections 3.2 and 4 is an implementation of
WeakComp1, which is secure against λ-tampering adversaries.

The WeakComp1 Hardware Component. We assume the existence of a hardware
component WeakComp1, which computes ciphertextsψfresh, ψrest and outputsM copies
of ψrand = ψrest ⊕ ψfresh, where ψrest is an arbitrary “good” encryption of 0 and ψfresh

is a randomly generated encryption of 0 independent of ψrest.

Plugging in WeakComp1. We state the following lemma, which uses the component
WeakComp1 defined above in order to obtain a fully tamper-resilient circuit. We defer
the proof to the full version.

Lemma 1. Replace Component 1 of T (1)(Cs) with WeakComp1 described above, yield-
ing T̃ (1)(Cs). Then T̃ (1)(Cs) is secure against ppt λ = 1/poly(k)-tampering adver-
saries (as defined in Definition 1), that do not tamper with WeakComp1, assuming
semantic security of the underlying encryption scheme EFH .

Putting it all Together. We now argue that our construction remains secure when we
replace WeakComp1 in T̃ (1)(Cs) with Component 1 described in Section 4 to yield
T (2)(Cs).

Fix any ppt λ-tampering adversary A. Now, consider the adversaries A1, which is
the adversaryA, restricted to tampering with and running only the first component (note
that we simulate the final output of the circuit—assuming self-destruct does not occur—
forA1 in order to obtain the correct tampering function in each run). By Theorem 3, we
have that there exists a simulator S = (S1, S2) for A1 running in expected polynomial
time, such that on input (1M , PK), S1 outputs (i′, ψ′

rest,1, . . . , ψ
′
rest,i′−1, ψ

′
fresh, STATE)

and on input (1M , PK, STATE, ψfresh,1, . . . , ψfresh,t), whereψfresh,1, . . . , ψfresh,t are
fresh encryptions of 0, S2 outputs j′, where j′ is the index of the first run of Compo-
nent 1, where some wire to G1

cas is set to 0. Note that by combining the inputs and
outputs of S1, S2 we obtain ψrand,1 = ψfresh,1 + ψrest,1, . . . , ψrand,j′−1 = ψfresh,j′−1 +
ψrest,j′−1. Let this sequence of ciphertexts define the input-output behavior of the hard-
ware component WeakComp1.

Now, note that by the security properties of Component 1 (See Theorem 3 in Sec-
tion 4), we are guaranteed that the following two distributions are statistically close:
REALA ≡ (j′, (ψfresh,1, ψ

′
rest,1), . . . , (ψfresh,j′−1, ψ

′
rest,j′−1), ψ̃fresh) (where, loosely

speaking, a draw from REALA corresponds to a setting of the above random variables
in a real execution).

To simulate the view of A, we distinguish between two cases: Simulating runs of
the circuit when i < j′ and simulating runs of the circuit when i ≥ j′. Consider
the adversaries A2,3,4, which is the adversary A, restricted to tampering with only the
second, third, and fourth component and interacts with T̃ (1)(Cs). As noted above, for
runs i < j′, the input-output behavior of T (2)(Cs) in the presence of A is identical to
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the input-output behavior of T̃ (1)(Cs) in the presence of A2,3,4, where WeakComp1 is
defined as above. Therefore, by the security of T̃ (1)(Cs) (see Lemma 1) we have that
there exists a simulator Sim for runs i < j′ that simulates the view of A.

Finally, for runs i ≥ j′, we have that “self-destruct” already occurred and so we can
perfectly simulate the view of A as follows: Return 0 unless A tampers with the output
wire, in which case the circuit returns b if the tamper is “set to b”, and returns 1 if the
tamper is “toggle”. This concludes the proof of Theorem 4.

6 Extension to Tamper-Resilient Two Party Computation

In this section, we consider a two-party computation setting, where in addition to cor-
rupting parties, an adversary may tamper with the circuits of the honest parties and the
messages sent by the honest parties. As usual, we restrict the adversary to tampering
with a λ = 1/poly(k)-fraction of wires, memory gates, and message bits overall.

Our security definition follows the standard ideal/real paradigm, which requires that
the view of the (real world) adversary, who may tamper with λ-fraction of wires, mem-
ory gates and message bits, can be simulated by a simulator in the ideal world without
tampering. We emphasize that the ideal world we consider is the “standard” ideal world,
whereas in the real world we allow the adversary tampering power.

We note that we allow both parties a tamper-free input-dependent preprocessing
phase, which does not require interaction and can be done individually, offline by each
party. This phase allows the parties to prepare their tamper-resilient circuits and place
their private inputs in memory, while no tampering occurs.

Our approach is quite simple. We begin with any two-party computation (2-PC)
protocol secure against malicious corruptions, where the communication complexity
depends only on security parameter, k, and not on the size of the circuit computing the
functionality. Such a 2-PC protocol can be constructed from any fully homomorphic
encryption scheme and succinct argument system (such as universal arguments [46, 3]).

For each party Pb, b ∈ {0, 1} and each round i of the protocol, we consider the cir-
cuit Nextixb,rb

, which has the (secret) values xb and rb hardwired into it (corresponding
to the input and the random coins of Party Pb). It takes as input the current transcript
TRANS and it outputs the next message for party Pb. We run (a slight modification
of) our tampering compiler T (2)(Nextixb,rb

) on each such circuit to obtain a circuit
which outputs the poly(k)-bit next message for party Pb at round i. By the security
guarantees of T (2) (see Theorem 4), the compiled circuit T (2)(Nextixb,rb

) is resilient to
1/poly(k)-fraction of tampering. Since the total number of such circuits is poly(k),
we are ultimately resilient to a λ = 1/poly(k)-fraction of tampering.

This idea does not quite work, since the adversary may tamper with the messages
sent between the two parties, which may render the resulting protocol insecure. To
get around this, we add signatures to our protocol. Namely, we assume each player is
associated with a verification key. This key can be transmitted via an error-correcting
code in the beginning of the protocol, and we require that the length of this key be a
large enough poly(k) so that an adversary cannot cause this message to decode to a
different key (using his tampering budget). Each time a player sends a message, he will
sign his message together with the entire transcript so far. Intuitively, each party must
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sign the entire transcript to protect against a tampering adversary who gets signatures
σ1, . . . , σz on z protocol messages m1, . . . ,mz , and then forwards a transcript to an
honest party which is a permutation of the z messages m1, . . . ,mz .

6.1 Overview of The Model: Tamper-Resilient 2-PC

We consider the setting where two parties P0, with input x0, and P1, with input x1
interact to compute a functionality f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, where
f = (f0, f1). P0 wishes to obtain f0(x0, x1) and P1 wishes to obtain f1(x0, x1). In
what follows, for the sake of simplicity of notation we assume that f0 = f1 = f ,
though our results extend trivially to the case where f0 and f1 differ.

Our security definition follows the ideal/real paradigm. We emphasize that our ideal
model is identical to the standard ideal model, while our real model is stronger that the
standard ideal model since we consider adversaries A who may corrupt one or more
parties P0, P1 and may also behave as a λ-tampering adversary on the honest parties’
circuits (which the honest party may prepare via input-dependent pre-processing).

The random variable IDEALf,Sim(x0, x1) is defined as the output of both parties in
the ideal execution computing functionality f (where Sim controls the malicious party
and chooses its output). If both parties are honest, then IDEALf,Sim(x0, x1) is defined
as the output of both parties in the above ideal execution along with the output of Sim.

The random variable REALΠTAMP,A(x0, x1) is defined as the output of both parties
after running ΠTAMP with inputs (x0, x1), where the honest party outputs the output of
the protocol, and the malicious party controlled by A may output an arbitrary function
of its view. If both parties are honest then REALΠTAMP,A(x0, x1) is defined as the output
of both honest parties, together with the output ofA, which may be an arbitrary function
of its view (i.e., of the transcript).

Definition 3. (secure tamper-resilient two-party computation): Let f andΠTAMP be as
above. ProtocolΠTAMP is said to securely compute f (in the malicious model and in the
presence of a λ-tampering adversary) if for every probabilistic polynomial-time real-
world adversaryA, who may corrupt one of the parties (or both), and may also behave
as a λ-tampering adversary on the honest parties’ circuits, there exists an expected
polynomial-time simulator Sim in the ideal-world, such that

{IDEALf,Sim(x0, x1)}
c
≈ {REALΠTAMP,A(x0, x1)} .

6.2 Achieving Tamper-Resilient 2-PC

Fix any two-party functionality f . We assume the existence of a secure (against active
corruptions) two-party protocol ΠMPC(f) for computing f , where the total communi-
cation complexity is ℓ(k), where k is security parameter, and ℓ(·) is a fixed polyno-
mial, independent of the size of the circuit which computes the functionality f . It is
well-known that such a two-party protocol can be constructed from fully homomorphic
encryption and CS-proofs.

To simplify our exposition, we construct our protocol in the public key model.
Here, each party P0, P1 publishes a verification key vksig0, vksig1 for a digital sig-
nature scheme ΠSign = (SigGen, Sign,Verify), while storing the corresponding secret
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key sksig0, sksig1. We note that such a protocol in the public key model can easily be
converted to a protocol in the standard model. We defer the details to the full version.

Let r denote the number of rounds in the two-party protocolΠMPC described above.
For i ∈ [r] let Next0,iSTATE denote the circuit that has the secret state STATE = (x0, r0,
vksig0, vksig1, sksig0) hardwired into it, where x0 and r0 are the input and randomness
of party P0, (vksig0, sksig0) are the verification and signing keys of P0, and vksig1 and
the verification key of P1. The circuit Next0,iSTATE computes the next message function of
party P0 in the i’th round of the resulting tamper-resilient protocol.

The tamper-resilient protocol emulatesΠMPC. Each message of the tamper-resilient
protocol consists of all the messages sent so far in ΠMPC, along with signatures. More
formally, Next0,iSTATE takes as input a message TRANSi−1, which consists of all the i− 1
pairs of messages sent in ΠMPC during the first i − 1 rounds, where each message is
accompanied by a signature of the entire transcript thus far. The circuit Next0,iSTATE, on
input TRANSi−1, does the following (the circuits Next1,iSTATE are defined analogously):

1. Parse TRANSi−1, as 2(i − 1) message-signature pairs (mb,j , σb,j)b∈{0,1},j∈[i−1].
Check that σ1,i−1 is a valid signature of the message MSGi−1 = (m0,j ,m1,j)j∈[i−1]

w.r.t. vksig1, and check that σ0,i−1 is a valid signature for (MSGi−2,m0,i−1),
where MSGi−2 = (m0,j ,m1,j)j∈[i−2]. If either does not verify, output 0.

2. Otherwise, compute the next message m0,i of party P0 in protocol ΠMPC given
transcript MSGi−1, randomness r0 and input x0.

3. Compute a signature σ0,i corresponding to the message (MSGi−1,m0,i).
4. Output (TRANSi−1,m0,i, σ0,i)

The tamper-resilient protocol ΠTAMP is depicted in Figure 1.

Theorem 5. For every two-party functionality f , ΠTAMP securely computes f in the
malicious model and in the presence of a 1/poly(k)-tampering adversary, where k is
the security parameter, and poly is a fixed polynomial independent of the size of the
circuit computing the functionality f .

We defer the proof of Theorem 5 to the full version.
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where STATE = (xb, rb, vksig0, vksig1, sksigb). We emphasize that the compiler is
run independently r + 1 times, each time with fresh randomness.
For each i ∈ [r], the circuit Next0,iSTATE, is defined as follows (Next1,iSTATE is defined
analogously):

It takes as input a partial transcript TRANSi−1, and does the following:
1. Parse TRANSi−1 as 2(i − 1) signed messages. Consider the last two mes-

sages denoted by (m0,i−1, σ0,i−1) and (m1,i−1, σ1,i−1). Let MSGi−2 =
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