
Two-round Secure MPC from
Indistinguishability Obfuscation

Sanjam Garg1, Craig Gentry1, Shai Halevi1, and Mariana Raykova2

1 IBM T. J. Watson
2 SRI International

Abstract. One fundamental complexity measure of an MPC protocol is
its round complexity. Asharov et al. recently constructed the first three-
round protocol for general MPC in the CRS model. Here, we show how
to achieve this result with only two rounds. We obtain UC security with
abort against static malicious adversaries, and fairness if there is an
honest majority. Additionally the communication in our protocol is only
proportional to the input and output size of the function being evaluated
and independent of its circuit size. Our main tool is indistinguishability
obfuscation, for which a candidate construction was recently proposed
by Garg et al.

The technical tools that we develop in this work also imply virtual black
box obfuscation of a new primitive that we call a dynamic point function.
This primitive may be of independent interest.

1 Introduction

Secure multiparty computation (MPC) allows a group of mutually dis-
trusting parties to jointly compute a function of their inputs without
revealing their inputs to each other. This fundamental notion was intro-
duced in the seminal works of [Yao82,GMW87], who showed that any
function can be computed securely, even in the presence of malicious par-
ties, provided the fraction of malicious parties is not too high. Since these
fundamental feasibility results, much of the work related to MPC has been
devoted to improving efficiency. There are various ways of measuring the
efficiency of a MPC protocol, the most obvious being its computational
complexity. In this paper, we focus on minimizing the communication

The second and third authors were supported by the Intelligence Advanced Re-
search Projects Activity (IARPA) via Department of Interior National Business Cen-
ter (DoI/NBC) contract number D11PC20202. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes notwithstanding
any copyright annotation thereon. Disclaimer: The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed or implied, of IARPA,
DoI/NBC, or the U.S. Government.

complexity of MPC, primarily in terms of the number of rounds of inter-
action needed to complete the MPC protocol, but also in terms of the
number of bits transmitted between the parties.

1.1 Our Main Result: Two-Round MPC from
Indistinguishability Obfuscation

Our main result is a compiler that transforms any MPC protocol into a
2-round protocol in the CRS model. Our compiler is conceptually very
simple, and it uses as its main tool indistinguishability obfuscation (iO)
[BGI+12]. Roughly, in the first round the parties commit to their inputs
and randomness, and in the second round each party provides an obfus-
cation of their “next-message” function in the underlying MPC protocol.
The parties then separately evaluate the obfuscated next-message func-
tions to obtain the output.

A bit more precisely, our main result is as follows:

Informal Theorem. Assuming indistinguishability obfuscation, CCA-
secure public-key encryption, and statistically-sound noninteractive zero-
knowledge, any multiparty function can be computed securely in just two
rounds of broadcast.

We prove that our MPC protocol resists static malicious corruptions in
the UC setting [Can01]. Moreover, the same protocol also achieves fairness
if the set of corrupted players is a strict minority. Finally the communi-
cation in our protocol can be made to be only proportional to the input
and output size of the function being evaluated and independent of its
circuit size.

Minimizing round complexity is not just of theoretical interest. Low-
interaction secure computation protocols are also applicable in the setting
of computing on the web [HLP11], where a single server coordinates the
computation, and parties “log in” at different times without coordination.

1.2 Indistinguishability Obfuscation

Obfuscation was first rigorously defined and studied by Barak et al.
[BGI+12]. Most famously, they defined a notion of virtual black box (VBB)
obfuscation, and proved that this notion is impossible to realize in general
– i.e., some functions are VBB unobfuscatable.

Barak et al. also defined a weaker notion of indistinguishability ob-
fuscation (iO), which avoids their impossibility results. iO provides the

same functionality guarantees as VBB obfuscation, but a weaker secu-
rity guarantee. Namely, that for any two circuits C0, C1 of similar size
that compute the same function, it is hard to distinguish an obfuscation
of C0 from an obfuscation of C1. Barak et al. showed that iO is always
realizable, albeit inefficiently: the iO can simply canonicalize the input
circuit C by outputting the lexicographically first circuit that computes
the same function. More recently, Garg et al. [GGH+13b] proposed an
efficient construction of iO for all circuits, basing security in part on as-
sumptions related to multilinear maps [GGH13a].

It is clear that iO is a weaker primitive than VBB obfuscation. In
fact, it is not hard to see that we cannot even hope to prove that iO
implies one-way functions: Indeed, if P = NP then one-way functions do
not exist but iO does exist (since the canonicalizing iO from above can
be implemented efficiently). Therefore we do not expect to build many
“cryptographically interesting” tools just from iO, but usually need to
combine it with other assumptions. (One exception is witness encryption
[GGSW13], which can be constructed from iO alone.)

It is known that iO can be combined with one-way functions (OWFs)
to construct many powerful primitives such as public-key encryption,
identity-based encryption, attribute-based encryption (via witness en-
cryption), as well as NIZKs, CCA encryption, and deniable encryption
[SW13]. However, there are still basic tools that are trivially constructible
from VBB obfuscation that we do not know how to construct from iO and
OWFs: for example, collision-resistant hash functions, or compact homo-
morphic encryption. (Compact homomorphic encryption implies collision-
resistant hash functions [IKO05].) The main challenge in constructing
primitives from iO is that the indistinguishability guarantee holds only
in a limited setting: when the two circuits in question are perfectly func-
tionally equivalent.

1.3 Our Techniques

To gain intuition and avoid technical complications, let us begin by con-
sidering how we would construct a 2-round protocol if we could use “per-
fect” VBB obfuscation. For starters, even with VBB obfuscation we still
need at least two rounds of interaction, since a 1-round protocol would in-
herently allow the corrupted parties to repeatedly evaluate the “residual
function” associated to the inputs of the honest parties on many different
inputs of their choice (e.g., see [HLP11]).

It thus seems natural to split our 2-round protocol into a commitment
round in which all players “fix their inputs,” and then an evaluation round

where the output is computed. Moreover, it seems natural to use CCA-
secure encryption to commit to the inputs and randomness, as this would
enable a simulator to extract these values from the corrupted players.

As mentioned above, our idea for the second round is a simple com-
piler: take any (possibly highly interactive) underlying MPC protocol, and
have each party obfuscate their “next-message” function in that proto-
col, one obfuscation for each round, so that the parties can independently
evaluate the obfuscations to obtain the output. Party i’s next-message
function for round j in the underlying MPC protocol depends on its in-
put xi and randomness ri (which are hardcoded in the obfuscations), it
takes as input the transcript through round j − 1, and it produces as
output the next broadcast message.

However, there is a complication: unlike the initial interactive pro-
tocol, the obfuscations are susceptible to a “reset” attack – i.e., they
can be evaluated on multiple inputs. To prevent such attacks, we ensure
that the obfuscations can be used for evaluation only on a unique set of
values – namely, values consistent with the inputs and randomness that
the parties committed to in the first round, and the current transcript
of the underlying MPC protocol. To ensure such consistency, naturally
we use non-interactive zero-knowledge (NIZK) proofs. Since the NIZKs
apply not only to the committed values of the first round, but also to the
transcript as it develops in the second round, the obfuscations themselves
must output these NIZKs “on the fly”. In other words, the obfuscations
are now augmented to perform not only the next-message function, but
also to prove that their output is consistent. Also, obfuscations in round j
of the underlying MPC protocol verify NIZKs associated to obfuscations
in previous rounds before providing any output.

If we used VBB obfuscation, we could argue security intuitively as
follows. Imagine an augmented version of the underlying MPC protocol,
where we prepend a round of commitment to the inputs and random-
ness, after which the parties (interactively) follow the underlying MPC
protocol, except that they provide NIZK proofs that their messages are
consistent with their committed inputs and randomness and the develop-
ing transcript. It is fairly easy to see that the security of this augmented
protocol (with some minor modifications to how the randomness is han-
dled) reduces to the security of the underlying MPC protocol (and the
security of the CCA encryption and NIZK proof system). Now, remove
the interaction by providing VBB obfuscations of the parties in the sec-
ond round. These VBB obfuscations “virtually emulate” the parties of
the augmented protocol while providing no additional information – in

particular, the obfuscations output ⊥ unless the input conforms exactly
to the transcript of the underlying MPC protocol on the committed in-
puts and randomness; the obfuscations might accept many valid proofs,
but since the proofs are statistically sound this gives no more information
than one obtains in the augmented protocol.

Instead, we use indistinguishability obfuscation, and while the our
protocol is essentially as described above, the proof of security is more
subtle. Here, we again make use of the fact that the transcript in the
underlying MPC protocol is completely determined by the commitment
round, but in a different way. Specifically, there is a step in the proof
where we change the obfuscations, so that instead of actually comput-
ing the next-message function (with proofs), these values are extracted
and simply hardcoded in the obfuscations as the output on any accept-
ing input. We show that these two types of obfuscations are functionally
equivalent, and invoke iO to prove that they are indistinguishable. Once
these messages have been “hardcoded” and separated from the compu-
tation, we complete the security proof using standard tricks. The most
interesting remaining step in the proof is where we replace hardcoded real
values with hardcoded simulated values generated by the simulator of the
underlying MPC protocol.

1.4 Additional Results

Two-Round MPC with Low Communication. In our basic 2-round MPC
protocol, the communication complexity grows polynomially with the cir-
cuit size of the function being computed. In Section 3.2, we show how to
combine our basic 2-round protocol with multikey fully homomorphic en-
cryption [LATV12] to obtain an MPC that is still only two rounds, but
whose communication is basically independent of the circuit size. Roughly
speaking, this protocol has a first round where the players encrypt their
inputs and evaluate the function under a shared FHE key (and commit to
certain values as in our basic protocol), followed by a second round where
the players apply the second round of our basic protocol to decrypt the
final FHE ciphertext.

Dynamic Point Functions. As a side effect of our technical treatment, we
observe that iO can be used to extend the reach of (some) known VBB
obfuscators. For example, we can VBB obfuscate dynamic point functions.
In this setting, the obfuscation process is partitioned between two parties,
the “point owner” Penny and the “function owner” Frank. Penny has a
secret string (point) x ∈ {0, 1}∗, and she publishes a commitment to her

point cx = com(x). Frank has a function f : {0, 1}∗ → {0, 1}∗ and knows
cx but not x itself. Frank wants to allow anyone who happens to know x
to compute f(x). A dynamic point function obfuscator allows Frank to
publish an obfuscated version of the point function

Ff,x(z) =

{
f(x) if z = x
⊥ otherwise.

The security requirement here is that Ff,x is obfuscated in the strong
VBB sense (and that cx hides x computationally). We believe that this
notion of dynamic point functions is interesting on its own and that it
may find future applications.

1.5 Other Related Work

The round complexity of MPC has been studied extensively: both lower
and upper bounds, for both the two-party and multiparty cases, in both
the semi-honest and malicious settings, in plain, CRS and PKI models.
See [AJLA+12, Section 1.3] for a thorough overview of this work.

Here, we specifically highlight the recent work of Asharov et al. [AJLA+12],
which achieves 3-round MPC in the CRS model (and 2-round MPC in the
PKI model) against static malicious adversaries. They use fully homomor-
phic encryption (FHE) [RAD78,Gen09], but not as a black box. Rather,
they construct threshold versions of particular FHE schemes – namely,
schemes by Brakerski, Gentry and Vaikuntanathan [BV11,BGV12] based
on the learning with errors (LWE) assumption. (We note that Myers,
Sergi and shelat [MSS11] previously thresholdized a different FHE scheme
based on the approximate gcd assumption [vDGHV10], but their protocol
required more rounds.)

In more detail, Asharov et al. observe that these particular LWE-
based FHE schemes have a key homomorphic property. Thus, in the first
round of their protocol, each party can encrypt its message under its own
FHE key, and then the parties can use the key homomorphism to ob-
tain encryptions of the inputs under a shared FHE key. Also, in the last
round of their protocol, decryption is a simple one-round process, where
decryption of the final ciphertext under the individual keys reveals the de-
cryption under the shared key. In between, the parties use FHE evaluation
to compute the encrypted output under the shared key. Unfortunately,
they need a third (middle) round for technical reasons: LWE-based FHE
schemes typically also have an “evaluation key” – namely, an encryption
of a function of the secret key under the public key. They need the extra
round to obtain an evaluation key associated to their shared key.

Recently, Gentry, Sahai and Waters [GSW13] proposed an LWE-based
FHE scheme without such an evaluation key. Unfortunately, eliminating
the evaluation key in their scheme does not seem to give 2-round MPC
based on threshold FHE, since their scheme lacks the key homomorphism
property needed by Asharov et al.

We note that our basic two-round protocol does not rely on any par-
ticular constructions for iO (or CCA-secure PKE or NIZK proofs), but
rather uses these components as black boxes.

Our low-communication two-round protocol uses multikey FHE, but
only as a black box. This protocol can be seen as a realization of what
Asharov et al. were trying to achieve: a first round where the players
encrypt their inputs and evaluate the function under a shared FHE key,
followed by a second round where the players decrypt the final FHE ci-
phertext.

2 Preliminaries

In this section we will start by briefly recalling the definition of different
notions essential for our study. We refer the reader to the full version
of the paper [GGHR13] for additional background. The natural security
parameter is λ, and all other quantities are implicitly assumed to be
functions of λ. We use standard big-O notation to classify the growth of
functions. We let poly(λ) denote an unspecified function f(λ) = O(λc) for
some constant c. A negligible function, denoted generically by negl(λ), is
an f(λ) such that f(λ) = o(λ−c) for every fixed constant c. We say that
a function is overwhelming if it is 1− negl(λ).

2.1 Indistinguishability Obfuscators

We will start by recalling the notion of indistinguishability obfuscation
(iO) recently realized in [GGH+13b] using candidate multilinear maps[GGH13a].

Definition 1 (Indistinguishability Obfuscator (iO)). A uniform PPT
machine iO is called an indistinguishability obfuscator for a circuit class
{Cλ} if the following conditions are satisfied:

– For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we
have that

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

– For any (not necessarily uniform) PPT distinguisher D, there exists
a negligible function α such that the following holds: For all security
parameters λ ∈ N, for all pairs of circuits C0, C1 ∈ Cλ, we have that
if C0(x) = C1(x) for all inputs x, then

∣∣∣Pr
[
D(iO(λ,C0)) = 1

]
− Pr

[
D(iO(λ,C1)) = 1

]∣∣∣ ≤ α(λ)

Definition 2 (Indistinguishability Obfuscator for NC1).

A uniform PPT machine iO is called an indistinguishability obfus-
cator for NC1 if for all constants c ∈ N, the following holds: Let Cλ be
the class of circuits of depth at most c log λ and size at most λ. Then
iO(c, ·, ·) is an indistinguishability obfuscator for the class {Cλ}.

Definition 3 (Indistinguishability Obfuscator for P/poly). A uni-
form PPT machine iO is called an indistinguishability obfuscator for
P/poly if the following holds: Let Cλ be the class of circuits of size at
most λ. Then iO is an indistinguishability obfuscator for the class {Cλ}.

2.2 Semi-Honest MPC

We will also use a semi-honest n-party computation protocol π for any
functionality f in the stand-alone setting. The existence of such a protocol
follows from the existence of semi-honest 1-out-of-2 oblivious transfer
[Yao82,GMW87] protocols. Now we build some notation that we will use
in our construction.

Let P = {P1, P2, . . . Pn} be the set of parties participating in a t round
protocol π. Without loss of generality, in order to simplify notation, we
will assume that in each round of π, each party broadcasts a single mes-
sage that depends on its input and randomness and on the messages that
it received from all parties in all previous rounds. (We note that we can
assume this form without loss of generality, since in our setting we have
broadcast channels and CCA-secure encryption, and we only consider se-
curity against static corruptions.) We let mi,j denote the message sent
by the ith party in the jth round. We define the function πi such that
mi,j = πi(xi, ri,Mj−1) where mi,j is the jth message generated by party
Pi in protocol π with input xi, randomness ri and the series of previous

messages Mj−1

Mj−1 =

m1,1 m2,1 . . . mn,1

m1,2 m2,2 . . . mn,2

...
. . .

m1,j−1 m2,j−1 . . . mn,j−1

sent by all parties in π.

3 Our Protocol

In this section, we provide our construction of a two-round MPC protocol.

Protocol Π. We start by giving an intuitive description of the protocol.
A formal description appears in Figure 1. The basic idea of our protocol
is to start with an arbitrary round semi-honest protocol π and “squish”
it into a two round protocol using indistinguishability obfuscation. The
first round of our protocol helps set the stage for the “virtual” execution
of π via obfuscations that all the parties provide in the second round.

The common reference string in our construction consists of a CRS σ
for a NIZK Proof system and a public key pk corresponding to a CCA-
secure public key encryption scheme. Next, the protocol proceeds in two
rounds as follows:

Round 1: In the first round, the parties “commit” to their inputs and
randomness, where the commitments are generated using the CCA-
secure encryption scheme. The committed randomness will be used
for coin-flipping and thereby obtaining unbiased random coins for all
parties. Specifically, every party Pi, proceeds by encrypting its input
xi under the public key pk. Let ci be the ciphertext. Pi also encrypts
randomness ri,j for every j ∈ [n]. Let the ciphertext encrypting ri,j be
denoted by di,j . Looking ahead the random coins Pi uses in the exe-
cution of π will be si = ⊕jrj,i. Pi broadcasts {ci, {di,j}j} to everyone.

Round 2: In the second round parties will broadcast obfuscations cor-
responding to the next message function of π allowing for a “virtual
emulation” of the interactive protocol π. Every party Pi proceeds as
follows:
– Pi reveals the random values {ri,j}j 6=i∈[n] and generates proofs
{γi,j}j 6=i∈[n] that these are indeed the values that are encrypted in
the ciphertexts {di,j}j 6=i∈[n].

Protocol Π

Protocol Π uses an Indistinguishability Obfuscator iO, a NIZK proof system (K,P, V),
a CCA-secure PKE scheme (Gen,Enc,Dec) with perfect correctness and an n-party
semi-honest MPC protocol π.
Private Inputs: Party Pi for i ∈ [n], receives its input xi.
Common Reference String: Let σ ← K(1λ) and (pk, ·)← Gen(1λ) and then output
(σ, pk) as the common reference string.

Round 1: Each party Pi proceeds as:
– ci = Enc(i||xi) and,
– ∀j ∈ [n], sample randomness ri,j ∈ {0, 1}` and generate di,j = Enc(i||ri,j).

(Here ` is the length of the maximum number of random coins needed by any
party in π.)

It then sends Zi = {ci, {di,j}j∈[n]} to every other party.
Round 2: Pi generates:

– For every j ∈ [n], j 6= i generate γi,j as the NIZK proof under σ for the
NP-statement: {

∃ ρri,j
∣∣ di,j = Enc(i||ri,j ; ρri,j)

}
. (1)

– A sequence of obfuscations (iOi,1, . . . iOi,t) where iOi,j is the obfuscation of

the program Prog
0,xi,ρxi

,ri,i,ρri,i ,{Zi},0
`i,j

i,j . (Where `i,j is output length of the
program Progi,j .)

– It sends ({ri,j , γi,j}j∈[n],j 6=i, {iOi,j}j∈[t]) to every other party.
Evaluation (MPC in the Head): For each j ∈ [t] proceed as follows:

– For each i ∈ [n], evaluate the obfuscation iOi,j of program Progi,j on input
(R,Γ,Mj−1, Φj−1) where

R =

· r2,1 . . . rn,1
r1,2 · . . . rn,2

...
. . .

r1,n r2,n . . . ·

, Γ =

· γ2,1 . . . γn,1
γ1,2 · . . . γn,2

...
. . .

γ1,n γ2,n . . . ·

Mj−1 =

m1,1 m2,1 . . . mn,1

m1,2 m2,2 . . . mn,2

...
. . .

m1,j−1 m2,j−1 . . . mn,j−1

, Φ =

φ1,1 φ2,1 . . . φn,1
φ1,2 φ2,2 . . . φn,2

...
. . .

φ1,j−1 φ2,j−1 . . . φn,j−1

– And obtain, m1,j , . . . ,mn,j and φ1,j , . . . , φn,j .

Finally each party Pi outputs mi,t.

Fig. 1. Two Round MPC Protocol

Prog
flag,xi,ρxi

,ri,i,ρri,i ,{Zi},fixedOutput

i,j

Program Prog
flag,xi,ρxi

,ri,i,ρri,i ,{Zi},fixedOutput

i,j takes as input (R,Γ,Mj−1, Φ) as defined
above and outputs mi,j and φi,j . Specifically, it proceeds as follows:

- ∀p, q ∈ [n] such that p 6= q check that γp,q is an accepting proof under σ for the
NP-statement: {

∃ ρrp,q
∣∣ dp,q = Enc(p||rp,q; ρrp,q)

}
- ∀p ∈ [n], q ∈ [j − 1] check that φp,q is an accepting proof for the NP-statement

{
∃ (xp, rp,p, ρxp , ρrp,p)

∣∣(
cp = Enc(p||xp; ρxp)

∧
dp,p = Enc(p||rp,p, ρrp,p)

∧
mp,q = πp(xp,⊕k∈[n]rk,p,Mq−1)

)}
- If the checks above fail, output ⊥. Otherwise, if flag = 0 then output

(πi(xi,⊕j∈[n]rj,i,Mj−1), φi,j) where φi,j is the proof for the NP-statement: (under
some fixed randomness){
∃ (xi, ri,i, ρxi , ρri,i) |(
ci = Enc(i||xi; ρxi)

∧
di,i = Enc(i||ri,i, ρri,i)

∧
mi,j = πi(xi,⊕j∈[n]rj,i,Mj−1)

)}
Otherwise, output fixedOutput.

Fig. 2. Obfuscated Programs in the Protocol

– Recall that the underlying protocol π is a t round protocol where
each party broadcasts one message per round. Each player Pi gen-
erates t obfuscations of its next-round function, (iOi,1, . . . , iOi,t).
In more detail, each iOi,k is an obfuscation of a function Fi,k that
takes as input the ri,j values sent by all the parties along with the
proofs that they are well-formed, and also all the π-messages that
were broadcast upto round k − 1, along with the proof of correct
generation of these messages. (These proofs are all with respect
to the ciphertexts generated in first round and the revealed ri,j
values.) The output of the function Fi,j is the next message of Pi
in π, along with a NIZK proof that it was generated correctly.

Pi broadcasts all the values {ri,j}j 6=i∈[n], {γi,j}j 6=i∈[n], and {iOi,k}k∈[t].
Evaluation: After completion of the second round each party can inde-

pendently “virtually” evaluate the protocol π using the obfuscations
provided by each of the parties and obtain the output.

Theorem 1. Let f be any deterministic poly-time function with n inputs
and single output. Assume the existence of an Indistinguishability Obfus-
cator iO, a NIZK proof system (K,P, V), a CCA secure PKE scheme
(Gen,Enc,Dec) with perfect correctness and an n-party semi-honest MPC

protocol π. Then the protocol Π presented in Figure 1 UC-securely realizes
the ideal functionality Ff in the FCRS-hybrid model.

3.1 Correctness and Proof of Security

Correctness. The correctness of our protocol Π in Figure 1 follows from
the correctness of the underlying semi-honest MPC protocol and the other
primitives used. Next we will argue that all the messages sent in the proto-
col Π are of polynomial length and can be computed in polynomial time.
It is easy to see that all the messages of round 1 are polynomially long.
Again it is easy to see that the round 2 messages besides the obfuscations
themselves are of polynomial length.

We will now argue that each obfuscation sent in round 2 is also poly-
nomially long. Consider the obfuscation iOi,j , which obfuscates Progi,j ;
we need to argue that this program for every i, j is only polynomially
long. Observe that this program takes as input (R,Γ,Mi−1, Φj−1), where
Γ and Φj−1 consist of polynomially many NIZK proofs. This program
roughly proceeds by first checking that all the proofs in Γ and Φj−1 are
accepting. If the proofs are accepting then Prog outputs mi,j and φi,j .

Observe that Γ and Φj−1 are proofs of NP-statements each of which
is a fixed polynomial in the description of the next message function of
the protocol π. Also observe that the time taken to evaluate mi,j and φi,j
is bounded a fixed polynomial. This allows us to conclude that all the
computation done by Progi,j can be bounded by a fixed polynomial.

Security. Let A be a malicious, static adversary that interacts with par-
ties running the protocol Π from Figure 1 in the FCRS-hybrid model.
We construct an ideal world adversary S with access to the ideal func-
tionality Ff , which simulates a real execution of Π with A such that no
environment Z can distinguish the ideal world experiment with S and Ff
from a real execution of Π with A.

We now sketch the description of the simulator and the proof of se-
curity, restricting ourselves to the stand-alone setting. The fully detailed
description of our simulator and the proof of indistinguishability are pro-
vided in Appendix A. Those more formal proofs are given for the general
setting of UC-security.

Our simulator S roughly proceeds as follows:

– Common reference string: Recall that the common reference string
in our construction consists of a CRS σ for a NIZK Proof system and
a public key pk corresponding to a CCA secure public key encryption

scheme. Our simulator uses the simulator of the NIZK proof system
in order to generate the reference string σ. Note that the simulator
for NIZK proof system also generates some trapdoor information that
can be used to generate simulated NIZK proofs. Our simulator saves
that for later use. S also generates the public key pk along with its
secret key sk, which it will later use to decrypt ciphertexts generated
by the adversary.

– Round 1: Recall that in round 1, honest parties generate ciphertexts
corresponding to encryptions of their inputs and various random coins.
Our simulator just generates encryptions of the zero-string on behalf
of the honest parties. Also S uses the knowledge of the secret key
sk to extract the input and randomness that the adversarial parties
encrypt.

– Round 2: Recall that in the second round the honest parties are
required to “open” some of the randomness values committed to in
round 1 along with obfuscations necessary for execution of π.
S proceeds by preparing a simulated transcript of the execution of
π using the malicious party inputs previously extracted and the out-
put obtained from the ideal functionality, which it needs to force onto
the malicious parties. S opens the randomness on behalf of honest
parties such that the randomness of malicious parties becomes con-
sistent with the simulated transcript and generates simulated proofs
for the same. The simulator generates the obfuscations on behalf of
honest parties by hard-coding the messages as contained in the sim-
ulated transcript. The obfuscations also generate proofs proving that
the output was generated correctly. Our simulator hard-codes these
proofs in the obfuscations as well.

Very roughly, our proof proceeds by first changing all the obfuscations
S generates on behalf of honest parties to output fixed values. The sta-
tistical soundness of the NIZK proof system allows us to base security on
the weak notion of indistinguishability obfuscation. Once this change has
been made, in a sequence of hybrids we change from honest execution of
the underlying semi-honest MPC protocol to a the simulated execution.
We refer the reader to Appendix A for a complete proof.

3.2 Extensions

Low Communication. Our protocol Π (as described in Figure 1) can be
used to UC-securely realize any functionality Ff . However the communi-
cation complexity of this protocol grows polynomially in the size of the

circuit evaluating function f and the security parameter λ. We would like
to remove this restriction and construct a protocol Π ′ whose communi-
cation complexity is independent of the the function being evaluated.

Protocol Π ′

Let Π be the MPC Protocol from Figure 1.
Let (SetupMK ,EncryptMK ,EvalMK ,DecryptMK) be a multikey FHE scheme.
Private Inputs: Party Pi for i ∈ [n], receives its input xi.
Common Reference String: Generate the CRS corresponding to Π.

Round 1: Pi proceeds as follows:
– (pki, ski) ← SetupMK(1λ; ρi) and generates encryption ci :=

EncryptMK(pki, xi; %i).
– Generates the first round message Zi of Π playing as Pi with input (xi, ρi, %i).

(Recall that the first message of Π does not depend on the function Π is used
to evaluate.)

– Sends3 (pki, ci, Zi) to all parties.
Round 2: Every party Pi computes c∗ := EvalMK(C, (c1, pk1), . . . , (cn, pkn)). Pi gen-

erates Pi’s second round message of Π, where Π computes the following function:
– For every i ∈ [n], check if (pki, ski) ← SetupMK(1λ; ρi) and ci :=

EncryptMK(pki, xi; %i).
– If all the checks pass then output DecryptMK(sk1, . . . , skn, c

∗) and otherwise
output ⊥.

Evaluation: Pi outputs the output of Pi in Π.

Fig. 3. Two Round MPC Protocol with Low Communication Complexity

A key ingredient of our construction is multikey fully homomorphic
encryption [LATV12]. Intuitively, multikey FHE allows us to evaluate
any circuit on ciphertexts that might be encrypted under different public
keys. To guarantee semantic security, decryption requires all of the corre-
sponding secret keys. We refer the reader to the full version of the paper
[GGHR13] for more details.

Our protocol Π ′ works by invoking Π. Recall that Π proceeds in
two rounds. Roughly speaking, in the first stage parties commit to their
inputs, and in the second round the parties generate obfuscations that
allow for “virtual” execution of sub-protocol π on the inputs committed
in the first round. Our key observation here is that the function that the
sub-protocol π evaluates does not have to be specified until the second
round.

We will now give a sketch of our protocol Π ′. Every party Pi generates
a public key pki and a secret key ski using the setup algorithm of the
multikey FHE scheme. It then encrypts its input xi under the public key
pki and obtains ciphertext ci. It then sends (pki, ci) to everyone along with
the first message of Π with input the randomness used in generation of pki
and ci. This completes the first round. At this point, all parties can use the
values ((pk1, c1), . . . , (pkn, cn)) to obtain an encryption of f(x1, . . . xn),
where f is the function that we want to compute. The second round of
protocol Π can be used to decrypt this value. A formal description of the
protocol appears in Figure 3.

Theorem 2. Under the same assumptions as in Theorem 1 and assum-
ing the semantic security of the multikey FHE scheme, the protocol Π ′

presented in Figure 3 UC-securely realizes the ideal functionality Ff in the
FCRS-hybrid model. Furthermore the communication complexity of pro-
tocol Π ′ is polynomial in the input lengths of all parties and the security
parameter. (It is independent of the size of f .)

Proof. The correctness of the our protocol Π ′ follows from the correctness
of the protocol Π and the correctness of the multikey FHE scheme. Ob-
serve that the compactness of the multikey FHE implies that the cipher-
text c∗ evaluated in Round 2 on the description of Protocol Π (Figure 3)
is independent of the size of the function f being evaluated. Also note
that no other messages in the protocol depend on the function f . This
allows us to conclude that the communication complexity of protocol Π ′

is independent of the size of f .
We defer the formal description of our simulator and the proof of

indistinguishability to the full version of the paper [GGHR13].

General Functionality. Our basic MPC protocol as described in Fig-
ure 1 only considers deterministic functionalities (See [GGHR13]) where
all the parties receive the same output. We would like to generalize
it to handle randomized functionalities and individual outputs (just as
in [GGHR13,AJW11]). First, the standard transformation from a ran-
domized functionality to a deterministic one (See [Gol04, Section 7.3])
works for this case as well. In this transformation, instead of computing
some randomized function g(x1, . . . xn; r), the parties compute the de-

terministic function f((r1, x1), . . . , (rn, xn))
def
= g(x1, . . . , xn;⊕ni=1ri). We

note that this computation does not add any additional rounds.
Next, we move to individual outputs. Again, we use a standard trans-

formation (See [LP09], for example). Given a function g(x1, . . . , xn) →

(y1, . . . , yn), the parties can evaluate the following function which has a
single output:

f((k1, x1), . . . , (kn;xn)) = (g1(x1, . . . , xn)⊕ k1|| . . . ||gn(x1, . . . , xn)⊕ kn)

where a||b denotes a concatenation of a with b, gi indicates the ith output
of g, and ki is randomly chosen by the ith party. Then, the parties can
evaluate f , which is a single output functionality, instead of g. Subse-
quently every party Pi uses its secret input ki to recover its own output.
The only difference is that f has one additional exclusive-or gate for
every circuit-output wire. Again, this transformation does not add any
additional rounds of interaction.

Corollary 1. Let f be any (possibly randomized) poly-time function with
n inputs and n outputs. Assume the existence of an Indistinguishabil-
ity Obfuscator iO, a NIZK proof system (K,P, V), a CCA secure PKE
scheme (Gen,Enc,Dec) with perfect correctness and an n-party semi-honest
MPC protocol π. Then the protocol Π presented in Figure 1 UC-securely
realizes the ideal functionality Ff in the FCRS-hybrid model.

Common Random String vs Common Reference String. Our basic MPC
protocol as described in Figure 1 uses a common reference string. We
can adapt the construction to work in the setting of common random
string by assuming the existence of a CCA secure public-key encryption
scheme with perfect correctness and pseudorandom public keys and a
NIZK scheme [FLS90]. See [GGHR13] for details.

Fairness. We note that the same protocol Π can be used to securely and
fairly UC-realize the generalized functionality in the setting of honest
majority, by using a fair semi-honest MPC protocol for π.

4 Applications

In this section we will discuss additional applications of our results.

4.1 Secure Computation on the Web

In a recent work, Halevi, Lindell and Pinkas [HLP11] studied secure com-
putation in a client-server model where each client connects to the server
once and interacts with it, without any other client necessarily being con-
nected at the same time. They show that, in such a setting, only limited

security is achievable. However, among other results, they also point out
that if we can get each of the players to connect twice to the server (rather
than once), then their protocols can be used for achieving the standard
notion of privacy.

One key aspect of the two-pass protocols of Halevi et. al [HLP11]
is that there is a preset order in which the clients must connect to the
server. Our protocol Π from Section 3 directly improves on the results in
this setting by achieving the same two-pass protocol, but without such a
preset order. Also, we achieve this result in the common reference/random
string model, while the original protocols of Halevi et. al [HLP11] required
a public key setup.

4.2 Black-Box Obfuscation for More Functions

In this subsection, we generalize the class of circuits that can be obfus-
cated according to the strong (virtual black box (VBB) notion of ob-
fuscation. This application does not build directly on our protocol for
two-round MPC. Rather, the main ideas here are related to ideas (par-
ticularly within the security proof) that arose in our MPC construction.

Our Result. Let C be a class of circuits that we believe to be VBB obfus-
catable, e.g., point functions or conjunctions. Roughly speaking, assuming
indistinguishability obfuscation, we show that a circuit C can be VBB ob-
fuscated if there exists a circuit C ′ such that C ′ ∈ C and C(x) = C ′(x) for
every input x. The non-triviality of the result lies in the fact that it might
not be possible to efficiently recover C ′ from C. We refer the reader to
the full version of the paper [GGHR13] for a formal statement and proof.

Dynamic Point Function Obfuscation. We will now highlight the rele-
vance of the results presented above with an example related to point
functions. We know how to VBB obfuscate point functions. Now, con-
sider a setting of three players. Player 1 generates a (perfectly binding)
commitment to a value x. Player 2 would like to generate an obfuscation
of an arbitrary function f that allows an arbitrary Player 3, if he knows x,
to evaluate f on input x alone (and nothing other than x). Our construc-
tion above enables such obfuscation. We stress that the challenge here is
that Player 2 is not aware of the value x, which is in fact computationally
hidden from it.

References

[AJLA+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod
Vaikuntanathan, and Daniel Wichs. Multiparty computation with low
communication, computation and interaction via threshold FHE. In Ad-
vances in Cryptology - EUROCRYPT 2012, volume 7237 of Lecture Notes
in Computer Science, pages 483–501, 2012.

[AJW11] Gilad Asharov, Abhishek Jain, and Daniel Wichs. Multiparty computation
with low communication, computation and interaction via threshold fhe.
Cryptology ePrint Archive, Report 2011/613, 2011. http://eprint.iacr.
org/.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating
programs. J. ACM, 59(2):6, 2012.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully
homomorphic encryption without bootstrapping. In ITCS, 2012.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic
encryption from (standard) lwe. In FOCS, pages 97–106, 2011.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. In 42nd Annual Symposium on Foundations of Com-
puter Science, pages 136–145, Las Vegas, Nevada, USA, October 14–17,
2001. IEEE Computer Society Press.

[FLS90] U. Feige, D. Lapidot, and A. Shamir. Multiple non-interactive zero knowl-
edge proofs based on a single random string. In Proceedings of the 31st
Annual Symposium on Foundations of Computer Science, pages 308–317
vol.1, 1990.

[Gen09] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stan-
ford University, 2009. crypto.stanford.edu/craig.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps
from ideal lattices. In EUROCRYPT, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai,
and Brent Waters. Candidate indistinguishability obfuscation and func-
tional encryption for all circuits. In FOCS’13, to appear. IEEE, 2013.
Available from http://eprint.iacr.org/2013/451.

[GGHR13] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-
round secure mpc from indistinguishability obfuscation. Cryptology ePrint
Archive, Report 2013/601, 2013. http://eprint.iacr.org/.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness en-
cryption and its applications. In STOC, 2013.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any men-
tal game, or a completeness theorem for protocols with honest majority.
In Alfred Aho, editor, 19th Annual ACM Symposium on Theory of Com-
puting, pages 218–229, New York City,, New York, USA, May 25–27, 1987.
ACM Press.

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications, vol-
ume 2. Cambridge University Press, Cambridge, UK, 2004.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based. In CRYPTO, 2013.

[HLP11] Shai Halevi, Yehuda Lindell, and Benny Pinkas. Secure computation on the
web: Computing without simultaneous interaction. In Phillip Rogaway, ed-
itor, CRYPTO, volume 6841 of Lecture Notes in Computer Science, pages
132–150. Springer, 2011.

[IKO05] Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Sufficient conditions
for collision-resistant hashing. In Joe Kilian, editor, TCC, volume 3378 of
Lecture Notes in Computer Science, pages 445–456. Springer, 2005.

[LATV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-
fly multiparty computation on the cloud via multikey fully homomorphic
encryption. In STOC, pages 1219–1234, 2012.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol
for two-party computation. Journal of Cryptology, 22(2):161–188, April
2009.

[MSS11] Steven Myers, Mona Sergi, and Abhi Shelat. Threshold fully homomorphic
encryption and secure computation. IACR Cryptology ePrint Archive,
2011:454, 2011.

[RAD78] Ron Rivest, Leonard Adleman, and Michael L. Dertouzos. On data banks
and privacy homomorphisms. In Foundations of Secure Computation,
pages 169–180, 1978.

[SW13] Amit Sahai and Brent Waters. How to use indistinguishability obfusca-
tion: Deniable encryption, and more. IACR Cryptology ePrint Archive,
2013:454, 2013.

[vDGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan.
Fully homomorphic encryption over the integers. In EUROCRYPT, pages
24–43, 2010.

[Yao82] Andrew C. Yao. Protocols for secure computations. In 23rd Annual Sym-
posium on Foundations of Computer Science, pages 160–164, Chicago, Illi-
nois, November 3–5, 1982. IEEE Computer Society Press.

A Proof of Security of Theorem 1

Let A be a malicious, static adversary that interacts with parties running
the protocol Π from Figure 1 in the FCRS-hybrid model. We construct
an ideal world adversary S with access to the ideal functionality Ff ,
which simulates a real execution of Π with A such that no environment
Z can distinguish the ideal world experiment with S and Ff from a real
execution of Π with A.

Recall that S interacts with the ideal functionality Ff and with the
environment Z. The ideal adversary S starts by invoking a copy of A and
running a simulated interaction of A with the environment Z and the
parties running the protocol. Our simulator S proceeds as follows:

Simulated CRS: The common reference string is chosen by S in the fol-
lowing manner (recall that S chooses the CRS for the simulated A as we
are in the FCRS-hybrid model):

1. S generates (σ, τ) ← S1(1
λ), the simulated common reference string

for the NIZK proof system (K,P, V) with simulator S = (S1, S2).
2. S runs the setup algorithm Gen(1λ) of the CCA secure encryption

scheme and obtains a public key pk and a secret key sk.

S sets the common reference string to equal (σ, pk) and locally stores
(τ, sk). (The secret key sk will be later used to extract inputs of the
corrupted parties and the trapdoor τ for the simulated CRS σ will be
used to generate simulated proofs.)

Simulating the communication with Z: Every input value that S receives
from Z is written on A’s input tape. Similarly, every output value written
by A on its own output tape is directly copied to the output tape of S.

Simulating actual protocol messages in Π: Note that there might be mul-
tiple sessions executing concurrently. Let sid be the session identifier for
one specific session. We will specify the simulation strategy corresponding
to this specific session. The simulator strategy for all other sessions will
be the same. Let P = {P1, . . . , Pn} be the set of parties participating in
the execution of Π corresponding to the session identified by the session
identifier sid. Also let PA ⊆ P be the set of parties corrupted by the
adversary A. (Recall that we are in the setting with static corruption.)

In the subsequent exposition we will assume that at least one party
is honest. If no party is honest then the simulator does not need to do
anything else.

Round 1 Messages S → A: In the first round S must generate messages
on behalf of the honest parties, i.e. parties in the set P\PA. For each
party Pi ∈ P\PA our simulator proceeds as:

1. ci = Enc(i||0`in) and, (recall that `in is the length of inputs of all
parties)

2. ∀j ∈ [n], and generate di,j = Enc(i||0`). (Recall that ` is the length of
the maximum number of random coins needed by any party in π.)

It then sends Zi = {ci, {di,j}j∈[n]} to A on behalf of party Pi.

Round 1 Messages A → S: Also in the first round the adversary A
generates the messages on behalf of corrupted parties in PA. For each
party Pi ∈ PA our simulator proceeds as:

1. Let Zi = {ci, {di,j}j∈[n]} be the message that A sends on behalf of
Pi. Our simulator S decrypts the ciphertexts using the secret key sk.

In particular S sets x′i = Dec(sk, ci) and r′i,j = Dec(sk, di,j). Obtain

xi ∈ {0, 1}`in such that x′i = i||xi. If x′i is not of this form the set
xi = ⊥. Similarly obtain ri,j from r′i,j for every j setting the value to
⊥ in case it is not of the right format.

2. S sends (input, sid,P, Pi, xi) to Ff on behalf of the corrupted party
Pi. It saves the values {ri,j}j for later use.

Round 2 Messages S → A: In the second round S must generate messages
on behalf of the honest parties, i.e. parties in the set P\PA. S proceeds
as follows:
• S obtains the output (output, sid,P, y) from the ideal functionality Ff

and now it needs to force this output onto the adversary A.
• In order to force the output, the simulator S executes the simulator

Sπ and obtains a simulated transcript. The simulated transcript specifies
the random coins of all the parties in PA and the protocol messages. Let
si denote the random coins of party Pi ∈ PA and let mi,j for i ∈ [n] and
j ∈ [t] denote the protocol messages. (Semi-honest security of protocol π
implies the existence of such a simulator.)
• For each Pj ∈ PA sample ri,j randomly in {0, 1}` for each Pi ∈ P\PA

subject to the constraint that ⊕ni=1ri,j = sj .
• For each Pi ∈ P\PA, S proceeds as follows:

1. For every j ∈ [n], j 6= i generate γi,j as a simulated NIZK proof under
σ for the NP-statement:{

∃ ρri,j
∣∣ di,j = Enc(i||ri,j ; ρri,j)

}
.

2. A sequence of obfuscations (iOi,1, . . . iOi,t) where iOi,j is the obfusca-

tion of the program Prog
1,xi,ρxi ,ri,i,ρri,i ,{Zi},fixedOutput

i,j , where fixedOutput
is the value (mi,j , φi,j) such that φi,j is the simulated proof that mi,j

was generated correctly. (Recall that the flag has been set to 1 and this
program on accepting inputs always outputs the value fixedOutput.)

3. It sends ({ri,j , γi,j}j∈[n],j 6=i, {iOi,j}j∈[t]) to A on behalf of Pi.

Round 2 Messages A → S: Also in the second round the adversary A
generates the messages on behalf of corrupted parties PA. For each party
Pi ∈ P\PA that has obtained “correctly formed” second round messages
from all parties in PA, our simulator sends (generateOutput, sid,P, Pi) to
the ideal functionality.

This completes the description of the simulator.

Next we will prove via a sequence of hybrids that no environment Z
can distinguish the ideal world experiment with S and Ff (as defined
above) from a real execution of Π with A. We will start with the real
world execution in which the adversary A interacts directly with the
honest parties holding their inputs and step-by-step make changes till
we finally reach the simulator as described above. At each step will argue
that the environment cannot distinguish the change except with negligible
probability.

• H1: This hybrid corresponds to the Z interacting with the real world
adversary A and honest parties that hold their private inputs.

We can restate the above experiment with the simulator as follows.
We replace the real world adversary A with the ideal world adversary
S. The ideal adversary S starts by invoking a copy of A and running a
simulated interaction ofA with the environment Z and the honest parties.
S forwards the messages that A generates for it environment directly to
Z and vice versa (as explained in the description of the simulator S). In
this hybrid the simulator S holds the private inputs of the honest parties
and generates messages on their behalf using the honest party strategies
as specified by Π.

• H2: In this hybrid we change how the simulator generates the CRS. In
particular we will change how S generates the public key pk of the CCA
secure encryption scheme. We will not change the way CRS for the NIZK
is generated.

S runs the setup algorithm Gen(1λ) of the CCA secure encryption
scheme and obtains a public key pk and a secret key sk. S will use this
public key pk as part of the CRS and use the secret key sk to decrypt the
ciphertexts generated by A on behalf of PA. In particular for each party
Pi ∈ PA our simulator proceeds as:

– Let Zi = {ci, {di,j}j∈[n]} be the message that A sends on behalf of
Pi. Our simulator S decrypts the ciphertexts using the secret key sk.
In particular S sets x′i = Dec(sk, ci) and r′i,j = Dec(sk, di,j). Obtain

xi ∈ {0, 1}`in such that x′i = i||xi. If x′i is not of this form the set
xi = ⊥. Similarly obtain ri,j from r′i,j for every j setting the value to
⊥ in case it is not of the right format.

Note that in hybrid H2 the simulator S additionally uses the secret
key sk to extract the inputs of the adversarial parties. Furthermore if
at any point in the execution any of the messages of the adversary are
inconsistent with the input and randomness extracted but the adversary

succeeds in providing an accepting NIZK proof then the simulator aborts,
which event we call Extract Abort.

The distribution of the CRS, and hence the view of the environment
Z, in the two cases is identical. Also note that it follows from the perfect
correctness of the encryption scheme and the statistical soundness of the
NIZK proof system that the NIZK proofs adversary generates will have to
be consistent with the extracted values. In other words over the random
choices of the CRS we have that the probability of Extract Abort is
negligible.

• H3: In this hybrid we will change how the simulator generates the
obfuscations on behalf of honest parties. Roughly speaking we observe
that the obfuscations can only be evaluated to output one unique value
(consistent with inputs and randomness extracted using sk) and we can
just hardcode this value into the obfuscated circuit. More formally in the
second round S generates the messages on behalf of the honest parties,
i.e. parties in the set P\PA as follows:

1. For every Pj , S obtains sj = ⊕ni=1ri,j .
2. S virtually executes the protocol π with inputs x1, . . . , xn and random

coins s1, . . . , sn for the parties P1, . . . Pn respectively, and obtains the
messages mi,j for all i ∈ [n] and j ∈ [t].

3. For each Pi ∈ P\PA, S proceeds as follows:
(a) For every j ∈ [n], j 6= i generate γi,j as a NIZK proof under σ for

the NP-statement:{
∃ ρri,j

∣∣ di,j = Enc(i||ri,j ; ρri,j)
}
.

(b) A sequence of obfuscations (iOi,1, . . . iOi,t) where iOi,j is the ob-

fuscation of the program Prog
1,xi,ρxi ,ri,i,ρri,i ,{Zi},fixedOutput

i,j , where
fixedOutput is the value (mi,j , φi,j) such that φi,j is the proof that
mi,j was generated correctly. (Recall that the flag has been set
to 1 and this program on all accepting inputs always outputs the
value fixedOutput.)

(c) It sends ({ri,j , γi,j}j∈[n],j 6=i, {iOi,j}j∈[t]) to A on behalf of Pi.

We will now argue that hybrids H2 and H3 and computationally in-
distinguishable. More formally we will consider a sequence of t · |P\PA|
hybrids H3,0,0, . . . H3,|P\PA|,t. In hybrid H3,i,j all the obfusctaions by the

first i− 1 honest parties and the first j obfuscations generated by the ith

honest party are generated in the modified way as described above. It is
easy to see that hybrid H3,0,0 is same as hybrid H2 and hybrid H3,|P\PA|,t
is same as hybrid H3 itself.

We will now argue that the hybrids H3,i,j−1 and H3,i,j for j ∈ [t] are
computationally indistinguishable. This implies the above claim, but in
order to argue the above claim we first prove the following lemma.

Lemma 1.

Pr

∃ a, b :

Prog
0,xi,ρxi ,ri,i,ρri,i ,{Zi},0

`i,j

i,j (a) 6= Prog
0,xi,ρxi ,ri,i,ρri,i ,{Zi},0

`i,j

i,j (b)

∧ Prog
0,xi,ρxi ,ri,i,ρri,i ,{Zi},0

`i,j

i,j (a) 6= ⊥

∧ Prog
0,xi,ρxi ,ri,i,ρri,i ,{Zi},0

`i,j

i,j (b) 6= ⊥

 = negl(λ)

where the probability is taken over the random choices of the generation
of the CRS.

Proof. Recall that program Prog
0,xi,ρxi ,ri,i,ρri,i ,{Zi},0

`i,j

i,j represents the jth

message function of the ith party in protocol π. Recall that the input
to the program consists of two (R,Γ,Mj−1, Φj−1). We will refer to the
(R,Mj−1) as the main input part and the Γ,Φj−1 as the proof part.

Observe that since the proofs are always consistent with the extracted
inputs and randomness, we have that there is a unique main input part
for which adversary can provide valid (or accepting) proof parts. Further
note that if the proof part is not accepting then Progi,j just outputs ⊥.
In other words if the proof is accepting then the program outputs a fixed
value that depends just on the values that are fixed based on {Zi} values.
We stress that the output actually does include a NIZK proof as well,
however it is not difficult to see that this NIZK proof is also unique as a
fixed randomness is used in generation of the proof.

Armed with Lemma 1, we can conclude that the programs Prog
0,xi,ρxi ,ri,i,ρri,i ,{Zi},0

`i,j

i,j

and Prog
1,xi,ρxi ,ri,i,ρri,i ,{Zi},fixedOutput

i,j are functionally equivalent. Next based
on the indistinguisbaility obfuscation property, it is easy to see that the
hybrids H3,i,j−1 and H3,i,j are computationally indistinguishable.

• H4: In this hybrid we change how the simulator generates the NIZKs on
behalf of honest parties. Formally S generates the σ using the simulator
S1 of the NIZK proof system and generates all the proofs using the sim-
ulator S2. The argument can be made formal by considering a sequence
of hybrids and changing each of the NIZK proofs one at a time.

The indistinguishability between hybrids H3 and H4 can be based on
the zero-knowledge property of the NIZK proof system.

• H5: In this hybrid we change how the simulator S generates the first
round messages on behalf of honest parties. In particular S instead of
encrypting inputs and randomness of honest parties just encrypts zero
strings of appropriate length.

We could try to base the indistinguishabilty between hybrids H4 and
H5 on the semantic security of the PKE scheme. However observe that S
at the same time should continue to be able to decrypt the ciphertexts
that A generates on behalf of corrupted parties. Therefore we need to
rely on the CCA security of the PKE scheme.

• H6: In this hybrid instead of generating all the messages mi,j on behalf
of honest parties honestly S uses Sπ (the simulator for the underlying
MPC protocol) to generated simulated messages.

The indistinguishability between hybrids H5 and H6 directly follows
for the indistinguishability of honestly generated transcript in the execu-
tion of π from the transcript generated by Sπ.

• H7: Observe that in hybrid H6, S uses inputs of honest parties just in
obtaining the output of the computation. It can obtain the same value by
sending extracted inputs of the malicious parties to the ideal functionality
Ff .

Note that the hybrids H6 and H7 are identical. Observe that hybrid
H7 is identical to our simulator, which concludes the proof.

