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Abstract. We construct the first leakage resilient variants of fully ho-
momorphic encryption (FHE) schemes. Our leakage model is bounded
adaptive leakage resilience. We first construct a leakage-resilient leveled
FHE scheme, meaning the scheme is homomorphic for all circuits of
depth less than some pre-established maximum set at key generation.
We do so by applying ideas from recent works analyzing the leakage
resilience of public key encryption schemes based on the decision learn-
ing with errors (DLWE) assumption to the Gentry, Sahai and Waters
([?]) leveled FHE scheme. We then move beyond simply leveled FHE,
removing the need for an a priori maximum circuit depth, by presenting
a novel way to combine schemes. We show that by combining leakage
resilient leveled FHE with multi-key FHE;, it is possible to create a leak-
age resilient scheme capable of homomorphically evaluating circuits of
arbitrary depth, with a bounded number of distinct input ciphertexts.

1 Introduction and Related Work

Fully homomorphic encryption is a way of encrypting data that allows a user
to perform arbitrary computation on that data without decrypting it first. The
problem of creating a fully homomorphic encryption scheme was suggested by
Rivest, Adleman, and Dertouzos in 1978 [?]. It has received renewed attention in
recent years and has obvious applicability to cloud computing— If a user stores
her data on someone else’s servers, she may wish to store her data encrypted
under a public key encryption scheme, yet still take advantage of that untrusted
server’s computation power to work with her data.

The first candidate for fully homomorphic encryption was proposed by Gen-
try in 2009 [?]. Since then, candidate schemes have been based on a variety of
computational assumptions (see, for example: [?,7,?.?]) including the decision
learning with errors (DLWE) assumption [?,7,?,?]. The latest DLWE-based work
is due to Gentry, Sahai, and Waters (GSW) [?], and it is this work we focus most
closely on in our paper.

We note that public key encryption schemes based on the DLWE assumption
have typically been based on one of two schemes both described by Regev in
the latest version of [?]. Regev originally constructed so-called “primal Regev”
(referred to in this work as RPKE) and Gentry, Peikert, and Vaikuntanathan
constructed so-called “dual Regev” [?] in 2008. The instantiations in the papers



describing all the DLWE-based homomorphic schemes cited above use “primal
Regev” as a building block. The Regev schemes have also been used as building
blocks to achieve identity based encryption, attribute based encryption, and, as
described in Section ?7, leakage resilient encryption.

The term “leakage resilience” is meant to capture the security of a crypto-
graphic algorithm when an adversary uses non-standard methods to learn about
the secret key. Typically in security proofs, attackers are modeled as probabilistic
polynomial time machines with only input/output access to the given crypto-
graphic algorithm. Leakage resilience is a theoretical framework for addressing
security when an attacker learns information about the secret key not obtainable
through the standard interface, for example by obtaining physical access to a
device, or by identifying imperfect or correlated randomness used in secret key
generation.

Starting with the work of Ishai, Sahai and Wagner [?], and Micali and Reyzin
[?], the cryptographic community has worked towards building general theories
of security in the presence of information leakage. This has been an active topic
of research over the past 15 years (see [?,7,2,7,7,7,2,2,2,7,2,2,2,?] and the ref-
erences therein), resulting in many different leakage models, and cryptographic
primitives such as public key encryption schemes and signature schemes secure
in each model.

In our work, we, for the first time, apply the framework of leakage resilience
to fully homomorphic schemes.

1.1 Non-Adaptive Leakage on FHE

We start with the observation that the Decision Learning With Errors problem
is, with appropriate parameter settings, leakage resilient — Goldwasser, Kalai,
Peikert and Vaikuntanathan showed that the DLWE problem with a binary se-
cret, and a carefully chosen bound on the size of the error term, with a leakage
function applied to the secret, reduces from a DLWE problem with smaller di-
mension, modulus, and error bound, but no leakage [?]. Recently, Alwen, Krenn,
Pietrzak, and Wichs extended this result to apply to a wider range of secrets
and error bounds [?].

Since many FHE schemes (for example [?,7,7,?]) can be instantiated based
on the DLWE assumption, an obvious first attempt to create leakage resilient
FHE is to directly apply those results by instantiating an FHE scheme with
parameters that make the underlying DLWE problem leakage resilient. Indeed,
doing so leads immediately to non-adaptive leakage resilient FHE. We describe
these results in Appendix C in the full version of our paper.

We note as well that the leakage resilience of DLWE leads to leakage resilient
symmetric-key encryption [?], and closely related results lead to non-adaptive
leakage resilience of RPKE [?].

The differentiation between adaptive and non-adaptive leakage is crucial. In
the non-adaptive leakage model, an adversary can learn any arbitrary (poly-time
computable, bounded output-length) function of the secret key, with the caveat
that he cannot adaptively choose the function based on the scheme’s public key.



This leakage model is not entirely satisfactory, as typically one assumes that
if a value is public, everyone, including the adversary will be able to see it at
all times. In contrast, the adaptive leakage resilience model assumes that an
adversary has full access to all the scheme’s public parameters, and can choose
its leakage function accordingly.

1.2 Adaptive Leakage on Leveled FHE

Given the gap between the non-adaptive leakage resilience model and the ex-
pected real-life powers of an adversary, in this work we primarily consider the
adaptive bounded memory leakage model. The model is described in, for ex-
ample, the works [?,?]. Since an adversary can choose its leakage function after
seeing the public key(s), in effect we consider functions that leak on the public
and secret keys together. This framework has been previously considered for non-
homomorphic public key and identity based encryption schemes based on bilinear
groups, lattices, and quadratic residuosity [?,7,?]. Additionally, both RPKE and
“dual Regev”, schemes based on DLWE, can be made leakage resilient; Akavia,
Goldwasser, and Vaikunatanathan achieve adaptive leakage-resilient RPKE [?],
and Dodis, Goldwasser, Kalai, Peikert, and Vaikuntanathan construct leakage-
resilient “dual Regev” [?]. In fact, the latter scheme is secure against auxiliary
input attacks—essentially, they consider a larger class of leakage functions—ones
whose output length has no bound, but which no probabilistic polynomial time
adversary can invert with non-negligible probability.

Unfortunately, the non-adaptive leakage resilient scheme described in Ap-
pendix C does not lead in a straightforward way to an adaptively leakage re-
silient scheme. The crux of the problem is that the public key is a function of
the secret key, and when an adversary has leakage access to both the public and
secret keys, it can choose a function which simply asks if the two are related.
Existing proofs of security for DLWE-based FHE schemes all start by proving
the public key indistinguishable from random, and such leakage functions make
this impossible.

In fact, one might expect the same problem when analyzing the adaptive
leakage resilience of RPKE, as the original security proof for this scheme fol-
lowed the same outline [?]. Akavia, Goldwasser, and Vaikuntanathan (AGV)
succeeded in constructing a leakage-resilient variant of RPKE despite this hin-
drance by writing a new security proof. They directly show that the ciphertexts
are indistinguishable from random, without making any statements about the
public key [?].

Inspired by the success of AGV, one might try to use a variation on their tech-
nique to prove prove an FHE scheme secure. We note that typically the public
key of an FHE scheme consists of two parts: an “encryption key,” which is used
to generate new ciphertexts, and an “evaluation key,” which is used to homomor-
phically combine the ciphertexts. A strengthening of the AGV technique leads to
a secure scheme if the adversary sees the encryption key before choosing its leak-
age function, but unfortunately the proof fails if it also sees the evaluation key.
The evaluation key is not just a function of, but actually an encryption of the



secret key, and proving security when an adversary could potentially see actual
decryptions of some bits of the secret key is a more complicated proposition.

Since the presence of an evaluation key is what hampers the proof, our next
step is to apply this technique to a scheme without an evaluation key. The
first leveled FHE scheme without an evaluation key was recently constructed
by Gentry, Sahai, and Waters (GSW) [?]. We strengthen the results of Akavia,
Goldwasser, and Vaikuntanathan to apply to a much broader range of parame-
ters, and use this new result to construct LRGSW, a leakage-resilient variant of
GSW. We present these results in sections 7?7 and ?77.

1.3 Overcoming the “Leveled” Requirement

Note that so far, we have achieved leakage resilient leveled FHE, meaning we
have a scheme where if a maximum circuit depth is provided at the time of key
generation, the scheme supports homomorphic evaluation of all circuits up to
that depth. In contrast, in a true, non-leveled, fully homomorphic encryption
scheme, one should not need to specify a maximum circuit depth ahead of time.

The standard technique for creating a non-leveled FHE scheme, first pro-
posed by Gentry in his original construction, is to first create a “somewhat-
homomorphic” encryption scheme (all leveled schemes are automatically “some-
what homomorphic”), make it “bootstrappable” in some way, and then “boot-
strap” it to achieve full homomorphism [?]. Although LRGSW is somewhat ho-
momorphic, it needs a separate evaluation key to be bootstrappable. In fact,
every known bootstrappable scheme has an evaluation key containing encryp-
tions of the secret key, leaving us back with the same issue we sidestepped by
choosing to modify the GSW scheme.

Our key insight is that while we need encryptions of the secret key to perform
bootstrapping, these encryption do not need to be part of the public key. We
combine a leakage resilient leveled FHE scheme with a N-key multi-key FHE
scheme in a novel way, which allows us to store these encryptions as part of the
ciphertext, letting us achieve a non-leveled leakage resilient FHE scheme. We
provide an instantiation of this using LRGSW and the Lépez-Alt, Tromer, and
Vaikuntanathan multi-key FHE scheme [?]. We discuss these results in section
??. Our contribution is a step towards true fully homomorphic encryption, as
we remove the circuit depth bound. An artifact of our construction is that the
N from our N-key multi-key FHE scheme becomes a bound on the arity of our
circuit instead. The problem of creating leakage resilient, true FHE is still open,
and seems intimately related to the problem of creating true, non-leveled FHE
without bootstrapping.

2 Preliminaries

We let bold capital letters (e.g. A) denote matrices, and bold lower-case letters
(e.g. x) denote vectors. We denote the inner product of two vectors as either

x-y or (x,y).



For a real number z, we let || be the closest integer < z, and |x] be the
closest integer to x. For an integer y, we let [y], denote y mod g. For an integer
N, we let [N] denote the set {1,2,...,N}.

We use <~ D to denote that = was drawn from a distribution D. We
use 2 < S to denote that z was drawn uniformly from a set S. To denote
computational indistinguishability, we write X ~. ), and to denote statistical
indistinguishability, we write X ~, ). To denote the statistical distance between
two distributions, we write A(X,Y). Throughout this work, we use 1 to denote
our security parameter.

In this work, we refer to the e-smooth average min-entropy (first defined
in [?]) of X conditioned on Y as HS_ (X|Y'). We refer the reader to Appendix ??
where we fully define this, and other related concepts of min-entropy, and state
versions of the leftover hash lemma that hold true for these concepts.

2.1 Homomorphism

We use standard definitions for fully homomorphic encryption and leveled fully
homomorphic encryption, so we defer full statements of these definitions to Ap-
pendix 77. We do define a new, related type of fully homomorphic encryption
below:

Definition 2.1. An encryption scheme is bounded arity fully homomor-
phic if it takes T = poly(n) as an additional input in key generation, and is
T-homomorphic for T = {Ty}, cy, the set of all arithmetic circuits over {0,1}
with arity <T and depth poly(n).

2.2 Leakage Resilience

Definition 2.2. Let A be a non-negative integer. A scheme HE is adaptively
leakage resilient to \ bits of leakage, if for any PPT adversary A it holds that

ADV 41, g (b=0),ALR> (b=1) (A) = negl(N)
where the notation ADV x y(A) := | PrlA(X) = 1] — Pr[A(Y) = 1]|
and the experiment ALR” is defined as follows:

1. The challenger generates (pk,sk) «+ HE.KeyGen(1") and sends pk to the
adversary.

2. The adversary A selects a leakage function h : {0,1}* — {0,1}* and sends

it to the challenger.

The challenger replies with h(sk).

. The adversary A replies with (mq,mq)

Ll

5. The challenger chooses b & {0,1}, computes ¢ < HE.Enc(pk, m;) and sends
cto A.
6. A outputs b’ € {0,1}



In the above definition, adaptive refers to the fact that A can choose h after
having seen the scheme’s public parameters. In fact, an adversary could “hard-
code” the scheme’s public key into its leakage function, in effect seeing h(pk, sk).
In the remainder of this paper, we therefore consider leakage functions that leak
on both the public key and the secret key together. There is a corresponding
weaker notion of leakage resilience called non-adaptive where the adversary
must choose h independently of the scheme’s public key, and learns only h(sk).

2.3 Learning With Errors

The learning with errors problem (LWE), and the related decision learning with
errors problem (DLWE) were first introduced by Regev [?] in 2005. The problem

n

. 3 $
g @ matrix A <= Z;"*" and an error vector x < ¢ to

is, given a secret s € Z

distinguish As+x from & Zy'. This problem is standard in the literature and
we leave full definitions to Appendix ?77.

The following statement summarizes much of the recent work analyzing the
hardness of DLWE.

Statement 1. (Theorem 1 in [?], due to work of [%,2,2,2])

Let g = q(n) € N be either a prime power or a product of small (size poly(n))
distinct primes, and let § > w(logn)-n Then there exists an efficiently sampleable
B — bounded distribution x such that if there is an efficient algorithm that solves
the average-case LWE problem for parameters n,q, x, then:

— There is an efficient quantum algorithm that solves GapSVPé(nq/ﬁ) on any
n-dimensional lattice.

—Ifqg> 0(2“’/2), there is an efficient classical algorithm for GapSVPO(nq/m
on any n-dimensional lattice.

In both cases, if one also considers distinguishers with sub-polynomial advantage,

then we require 3 > O(n) and the resulting approximation factor is slightly larger
than O(n'?q/pB).

The GapSVP, problem is, given an arbitrary basis of an n dimensional lattice,
to determine whether the shortest vector of that lattice has length less than 1
or greater than ~.

Statement 2. (from [?])

The best known algorithms for GapSVP. [?,2] require at least 292(n/(log 7))
time.

These hardness results guide the setting of parameters for our scheme.

3 The LRGSW scheme

We now present LRGSW, an adaptively leakage resilient variant of the Gentry,
Sahai, and Waters (GSW) FHE scheme [?]. We the differences between our



scheme and GSW in our description below. The scheme encrypts messages under
the “approximate eigenvector” method: For a message p1 € Zg, ciphertexts are
matrices C = Enc(pk, p) and have the property that C-sk ~ p-sk, where sk is the
secret key vector. This means that to homomorphically multiply two ciphertexts
C; = Enc(pk, 1) and Cy = Enc(pk, p2), one simply computes C,p,;t = Cq - Ca.
Crucially, this intuitive method for homomorphic evaluation removes the need
for an “evaluation key” present in other fully homomorphic schemes. Note that
for the error-growth reasons Gentry, Sahai, and Waters gave in Section 3.3 of
their paper [?], our modification of their scheme is designed to homomorphically
evaluate only binary circuits constructed of NAND gates.

3.1 Our Leveled Scheme

1

(note: we define PowersOfTwo, Flatten, BitDecomp and BitDecomp™ in Section

?? below)

LRGSW.Setup(17, 1%): Recalling that 7 is security parameter of the scheme, and
L = poly(n) is the maximum circuit depth our scheme must evaluate, let 7 =

max{L,n2}. Choose a lattice dimension n = 72, modulus | g > 7 - 2271&" 7 |

and error distribution| xy = ¥, where 8 = 7 - 7'°67 bounded Choose‘ m=m(n, L) > 2nlogq + 3n.

Let params = (n,q,x,m). Let £ = |logg| + 1 and N = (n+1) - L.
LRGSW.SecretKeyGen(params): Choose t & Zy. Let sk =s=(1,~ty,...,—t,).
Let v = PowersOfTwo(s).
LRGSW.PublicKeyGen(s, params): Let A & Zg™". Let e & X™. Let b= At +
e. Let pk = K = [b||A].

LRGSW.Encrypt(K, 11): For message u € {0, 1}, choose R & {0,1}V>m_ Let Iy
be the N x N identity matrix.

C = Flatten(p - Iy + BitDecomp(R - K)) € ZéVXN

LRGSW.Decrypt(s, C): Let i be the index among the first ¢ elements of v such

):
that v; = 2° € (4, 4]. Let C; be the i"" row of C. Compute z; = (C;, v).
Output p' = U—Z—‘
LRGSW.NAND(Cy, C3): Output Flatten(In — C; - Cs)

3.2 Elementary Vector Operations in LRGSW

The above scheme description makes use of a number of vector operations that
we describe below. Let a, b be vectors of dimension k. Let ¢ = [logq| + 1. Note
that the operations we describe are also defined over matrices, operating row by
row on the matrix, and that all arithmetic is over Zj.

BitDecomp(a) = the k- ¢ dimensional vector (a1,0,...,01,6—1,--,0k,0,--- Gk e—1)
where a; ; is the 4t bit in the binary representation of a;, with bits ordered
from least significant to most significant.



BitDecomp~1(a’) For &’ = (a1,0,..,a1,0-1,--,0k,0,--- Ak o—1), L6t
BitDecomp~1(a’) = (Zj;é 2ay ..., Zj;(l) 27ay, j), but defined even when
a’ isn’t binary.

Flatten(a’) = BitDecomp(BitDecomp~1(a’))

PowersOfTwo(b) = (by,2b1,4by,..., 27 by, ... by, ... 207 by).

3.3 Correctness

Correctness of the scheme follows because: Cv = uv + RAs = uv + Re, so,
i = p-vi + (Ri,e). Since v; > %, if we let B = |[e|[w, since R; is an N-
dimensional binary vector, as long as NB < {, decryption will be correct.
Gentry et al. analyze the error growth of GSW and determine that if x is
B-bounded, and if C is the result of L levels of homomorphic evaluation, then
with overwhelming probability, B < 3(N +1)’. To maintain correctness of their
scheme, they set B = I, which gives us: % > 8(N + 1)E. This same analysis

applies to LRGSW, and we set our ratio of ¢ to 5 the same way.

4 Leakage Resilient Leveled FHE

Below we prove that LRGSW is leakage resilient, describe the efficiency tradeoffs
we make to achieve leakage resilience, and briefly describe and why our leveled
result but does not extend easily to full non-leveled homomorphism.

4.1 Adaptive Leakage Resilience of LRGSW

Theorem 4.1. The leveled LRGSW scheme is resilient to adaptive bounded leak-
age of X bits, where A < n — 2logq — 4n.

Proof. We consider a probabilistic polynomial time adversary’s advantage at
playing the ALR» game (described in Definition ??). Recall that in this game,
the adversary’s view is (K, Cy, h(K,s)) where Cy, is a correctly formed encryp-
tion of b € {0, 1}.

Let Cj, = BitDecomp~!(C;) = BitDecomp~—1(b-I)+R-K. Since BitDecomp~?
is a deterministic operation, it suffices to consider a probabilistic polynomial time
adversary who plays the ALR* game with Cj.

In fact, an adversary’s view after playing the AL R* game is (K, BitDecomp~!(b-
In) + R K,h(K,s)). Therefore, it is sufficient to show (K,RK,h(K,s)) ==,

(K, U & 2 (K, s)).

Recall that K = [b||A] where A & Zmm ¢ & 77 e & ™ b = At +e,
and s = (1, —t1,...,—t,). So define:

Harr = (b,A,Rb,RA, h(A,t,e)), Hranp = (b, A, v, U, h(A,t,e))

Our goal is to show that Harr ~. Hranp. We can think of the matrix R

as a collection of N independent binary vectors r; ﬁ {0,1}™. So, Harr =
(vaa {ri . b}zE[N] a{riA}iE[N] ,h(A,t,E))



Now, define a series of hybrid games H;, for 0 < i < N, where in game %, for
j <, rj - b is replaced by u
j > 1, those terms are generated as they were in game H;_1.

It follows by inspection that Hy = Harr and Hy = Hranp, so all that
remains to show is that H; ~. H;y1.

We use Lemma 7?7, stated below, together with a simple reduction to prove
this. Lemma ?? says that for a single r & {0,1}™, Hyear := (b, A,r-b,rA h(A,t,€)) =,
Hrand := (b, A u/;u, h(A, t,e)).

So, given an input H = (b, A,b’,a’ h(A,t,e)) that is equal to either H,cq

. . . $ $
or Hyand, if, for j < i choose u); < Zg, vy < Zg,

& Zg4, and rjA is replaced by u & Zq, and for

and for j > i 4+ 1, choose

r; & {0,1}™, we prepare the following distribution:

(b, A, {u;}jgi Vo{rs bl Awhgal {rAY L R(ALE, e))

Then if H = Hyear, this distribution is equal to H;, whereas if H = H,qnd,
the distribution is equal to H;+1. Since Lemma ?? (proven below) tells us that
Hrecal e Hrand, we conclude that no probabilistic polynomial time adversary
can distinguish H,; and H,;y; with non-negligible advantage.

Lemma 4.1. Given A & L™, e < x™, t & Ly, & {0,1}™, b= At +e,

andu & 77, and o' & Zq, and m,q,n defined as in the LRGSW scheme,

q}
Hyear := (b, A, -b,rA h(A,t,€)) ~. Hyana := (b, A,u/,u,h(At,e))

Proof. Our proof proceeds as follows: We define a series of intermediate hybrid
games, Hq, Hp, H¢, and show:
Hireal s Ha e Hp =5 He = Hrang- Our hybrids are:

— Ho:=(At+e, A jut +r-e,u,h(A, t,e)), where u & Zév.

— Hyp = (At +eAut+r- e,u,h(A,t,e)), where A < Lossy, as defined by
Lemma ?7. _ _

— H.:= (At +e, A v, u h(A,t,e)), where v & Zyq.

Lemma 77, stated below, immediately gives us H, =, Hp, and H. ~. Hrand,
because it tells us that A ~, A. Thus, no further work is needed for these two
steps.

We use Claim 7?7 to show that H,eq ~s Ha-

Finally, we use Claim ?? to prove H; ~s He.

Claim 1. H,ear =5 Ha

Proof. The only difference between games H,.,; and H, is that rA is replaced
by u where u & Zflv. Note that if we can show:

(At +e, A ;rAt,r-e,rA h(A t,e)) ~; (At +e,A,u-t,r-eu,h(A t,e))



this implies our claim.

To prove the above, we use the generalized form of the leftover hash lemma
(Lemma ?? in Appendix ?7? of this paper), which tells us that for any random
variable x, if Huo(r|z) is high enough, then (A,rA,z) ~, (A,u,z), which in
turn implies that for any t, (A, rA,rAt,z) =, (A,u,u-t,x). So, set x = (At +
e,r-e h(A,t,e)). Since r is an m-dimensional binary vector chosen uniformly
at random and r - e is £ = [logq| + 1 bits long, and r is independent of e, we
have:

Heo(r|At +e,r e, h(A, t,e))
>Hoo(rlr-e,e) > Ho(rle) — 6 =m — ¢

m—L—2n—0

For Lemma 7?7 to hold, we need n < Tog 7 ) Choosing m > 2nlog q+3n

suffices.
Claim 2. H, ~; H.

Proof. The difference between H; and H,. is that u-t 4+ r - e is replaced by

u & Z4. We employ a similar strategy to that from claim Claim ??, using the
leftover hash lemma to show

(At +e A, ut,r-e,u, h(A,t,e)) R, (At +eA,v,r-eu, h(A,t, e))

where v & Zq4. Note that this distribution contains both ut and r - e, whereas
the adversary only sees ut + r - e. Proving that ut can be replaced by v implies

that in the adversary’s actual view, ut + re can be replaced by v’ & ZLq.
Now, we bound the e-smooth min-entropy of t. There exists € = negl(n) such
that

He (t|At+e,A r-e h(A,t,e)))
>HS (t|At +e, A) — BitLength(r - €) — BitLength(h(A,t,e))
>HE (t|At +e,A) — € — )
and Lemma ?? (stated and proven below), tells us that H¢_(t|At + e, A) > n.
Applying the e-smooth variant of the leftover hash lemma (Corollary ?7?), we

see that we need n— ¢ — X to be high enough that logg < (n—£—X) —2n—0O(1).
So, if we set h to leak at most A < n — 2log g — 4n bits, the claim follows.

Since Hrear s Ha e Hy = He e Hrana, we know that Hyear = Hrand-

We now state Lemma ?7, used both to prove Claim ??, and to show H, ==,
Hb, and H, ~¢ Hrand-

Lemma 4.2. There exists a distribution Lossy such that A Lossy ~. U &

mxn ; $ n [Te A A —
Zg>" and given t < Zy, and e < x, HS (t|A, At +e) > n, where ¢ = negl(n).



In our proof, we define a distribution Lossy as follows:

— Choose C &z D & 77" and Z « ¥, "", where & = negl(n) and
n'logg <mn—2n+2.

— Let A=CD + Z

— output A.

This distribution was first defined in [?] and as our proof is closely related to
proofs in their paper, we defer it to Appendix ?7.

4.2 The Cost of Leakage Resilience: GSW versus LRGSW

In order to make the GSW scheme leakage resilient, we needed to make a number
of tradeoffs. First, there’s a penalty to efficiency, as a number of the scheme’s
parameters need to be set higher than they are in GSW in order to maintain
equivalent security in the presence of leakage. Second, our proof relies crucially
on the fact that the LRGSW scheme does not have an evaluation key. The leveled
version of the GSW scheme does not have an evaluation key, but the version that
allows for full (non-leveled) FHE does have one. For this reason, LRGSW cannot
be easily extended to a non-leveled scheme.

Parameter Setting The hardness constraints and the correctness constraints
of our scheme are in conflict. The hardness constraints tell us that the ratio
of the dimension to the error bound affects the relative hardness of the DLWE
problems, with a higher S leading to more security. However, the correctness
constraint shows us that £ must grow exponentially with the depth of the circuit,
which shows both that 3 should be set low, and since there is a limit to how
low 3 can be set, ¢ must grow exponentially with depth. However, the hardness
constraints also tell us that if the depth is O(n) or bigger, since L, the circuit
depth, is in the exponent of ¢, the underlying GapSVP problems become easy.
To protect against this, we must ensure that n is polynomial in L. We describe
these constraints in more detail and show how to set the parameters to meet all
of them in Appendix ?77.

Also in the appendix, we present Lemma ?7?, which can replace Lemma 7?7 in
our proofs above. This new lemma uses techniques from Alwen, Krenn, Pietrzak,
and Wichs [?] which, as summarized in Corollary ??, allow us to reduce the size
of ¢ and B (in particular, 8 is no longer super-polynomial in 7), at a cost of a
lower value for A.

In Table ?? we provide sample parameter settings that simultaneously meet
all correctness and security constraints. We compare these settings to those of
GSW. In the table, 7y = max{L,n*}, and 75 = max{L,n3}.

Evaluation Keys and the Problem with Bootstrapping Our current tech-
niques are sufficient for proving leakage resilience of a leveled fully homomorphic



Table 1. Sample settings of GSW v. LRGSW

Parameter GSW LRGSW with Lemma 7?7 LRGSW with Lemma ?7?
n O(n) I 73
q 2L logn 271 log2 T 272 logn
X O(n) -bounded Ug, B= glog” 11 B8 =3n7
m 2nlogq 2nlogq + 3n 2nlogq + 3n
A 0 n—2logq—4n n— (24 n)logqg —nlogm — 4n

encryption scheme, but do not extend to a non-leveled scheme. The bootstrap-
ping paradigm, first defined by Gentry in [?], is to take a scheme that is ca-
pable of homomorphically evaluating its own decryption circuit and transform
it into one that can evaluate functions f of arbitrary depth by performing the
homomorphic-decrypt operation after each gate in f. All existing fully homo-
morphic schemes, including the GSW scheme, achieve full, as opposed to leveled
fully homomorphic encryption through bootstrapping.

The bootstrapping paradigm tells us that given a somewhat homomorphic
scheme, publishing an encryption of the scheme’s secret key, together with any
other data necessary to allow the scheme to homomorphically evaluate its own
decryption procedure, makes the scheme fully homomorphic [?]. Thus, the scheme
must be secure when an adversary sees (pk, Enc,i(sk)) (circular security). How-
ever, a scheme that is secure when the adversary sees (pk, Enc,i(sk)) or when the
adversary sees (pk, h(pk, sk)), as is the case in the leakage resilience definition,
is not necessarily secure when it sees (pk, Encpr(sk), h(pk, sk, Encyi(sk))) all to-
gether. Formal definitions of bootstrapping and circular security are presented
in Appendix ?7.

If we tried to make the LRGSW scheme bootstrappable, we would need not
only circular security (which current FHE schemes assume rather than prove),
but circular security in the presence of leakage.

If we were to create an evk that contained an encryption of the secret key
under that same secret key, we would have something of the form A, At + e +
BitDecompose(t). One might try to follow the same technique outlined in the
proof of Lemma 7?7, and show that the average min-entropy of t, conditioned on
seeing A, At+e+BitDecompose(t), is still high. Unfortunately, for this technique
to work, t needs to be only in the secret term, not in the error term as well.

To get around this, we might consider trying to “chain” our DLWEF secrets,
so that we have two DLWE secrets: t and t’, but only consider our secret key to
be t’. In this case, our encryption key would be (A, At + e), and our evaluation
key would be (A’, A’t’ + e’ + BitDecomp(t)). In this case, we would still need
to show that H.(t|A’t’ + €’ + BitDecomp(t)) was sufficiently high, and since t
is in the error term instead of the secret term, our current techniques will not
suffice.



Notice, as well, that these limitations apply to any LWE-based FHE scheme
with an evaluation key. Since all other existing LWE based FHE schemes use
an evaluation key, our result for the GSW scheme cannot be easily extended to
these schemes either.

5 Going Beyond Leveled Homomorphism

In this section we present several new ideas for achieving full (as opposed to
leveled) FHE that is also leakage resilient.

5.1 Our First Approach

We observe that by definition, a leakage function h is a function of the scheme’s
public and secret keys. This means an adversary can see h(pk, sk, Enc,i(sk))
only if Encyy(sk) is part of the scheme’s public key. If instead, we can somehow
generate Encyy(sk) on-the-fly as it is needed, the adversary sees only h(pk, sk),
instead.

More precisely, let E = (KeyGen(), Enc(), Dec()) be any encryption scheme
(not necessarily homomorphic) that is also resilient to adaptive bounded leakage
of X\ bits, and let HE = (KeyGen(), Enc(), Dec(), Eval()) be any (leveled) fully
homomorphic encryption scheme. Then we consider the following hybrid scheme:

Schemel.KeyGen(17): Run (pk, sk) < E.KeyGen(1"). Set the public and secret
keys to be pk, sk.

Schemel.Enc,i(m): To encrypt a message m, first run (pk’, sk’) <— HE.KeyGen(17).
Then output
(pk’, HE.Encyys (m), E.Encyi(sk’)) as the ciphertext.

Schemel.Decgy(c): To decrypt a ciphertext ¢, first parse ¢ = (pk’,c1,c¢2), and
obtains sk’ = E.Decgy(c2). Then output HE.Decg/ (c1).

Schemel.Eval,i(f,c): To evaluate a function f over a ciphertext c, first parse
¢ = (pk',c1,c2) and then output (pk’, HE.Evalp (f,c1), ¢2).

It is not hard to obtain the following theorem:

Theorem 5.1. IfE is an encryption scheme that is resilient to adaptive bounded
leakage of A bits and HE is a (leveled) fully homomorphic encryption scheme,
then Schemel is a (leveled) fully homomorphic scheme that has the following
properties:

1. It is resilient to adaptive bounded leakage of \ bits.

2. It allows unary homomorphic evaluation over any single ciphertext.

3. If HE is fully homomorphic, then Schemel has succinct ciphertexts (whose
lengths do not depend on the size of circuits supported by the evaluation),
while if HE s L-leveled homomorphic, then the size of the ciphertexrts in
Schemel depends on L.



A word is in order about property 7?7 above. If HE is a bit-encryption scheme,
then we can think of the message space as bit-strings, so a message m € {0, 1},
and define encryption to be bit-by bit.

In this case, “unary” refers to functions over the bits of m. Another way to
think of this is that Schemel is (leveled) fully homomorphic for any group of
bits batch-encrypted at the same time.

The proof of this theorem is simple and quite similar to that of Theorem 77,
so we omit the proof here, and refer the reader to our proof of that theorem
below.

5.2 Owur Second Approach

Our next step is to extend our result so that we can homomorphically combine
ciphertexts regardless of when they were created. The reason we cannot do so
above is because two ciphertexts formed at different times will be encrypted
under different public keys of the underlying HE scheme. To solve this issue, we
consider instantiating HE with a multi-key FHE scheme, as recently defined and
constructed by Lépez-Alt, Tromer and Vaikuntanathan (LTV) [?].

A scheme HE™) is a N-Key Multikey (leveled) FHE scheme if it is a (leveled)
FHE scheme with the following two additional algorithms:

— mEval(f,pki,...,pkt,c1,...,¢) that takes as input an t-ary function f, ¢
evaluation keys and ciphertexts, and output a combined ciphertext c*.

— mDec(skq, ..., sk, c*) that takes ¢*, generated by mEval and ¢ secret keys
such that sk; corresponds to pk; for ¢ € [t], and outputs f(mq,ma,...my).

where the above holds for any ¢ < T, with ¢1,...¢; any ciphertexts under
pki,...pky, i.e. ¢; = Encyy, (m;) for all i € [t].
If we replace HE with HE(N)7 we get the following evaluation function:

Scheme2.Eval,i(f, c1,...,ct): To evaluate a function f over ciphertexts
1,. .. ¢, first parse ¢; = (pkj,¢;1,¢;2) for @ € [t]. Then, calculate ¢ =
HEN).Eval(pky,...,pk},c11,...,ci1). Finally, output (pk},...pkl,ci,c12, ..., cta).

The problem with this approach is that the resulting ciphertext needs to
include all the public keys and secret keys from HE™ in order to run multikey
decryption (HEM).mDec). This means that outputs of the Eval function will have
a different format than freshly generated ciphertexts, and no longer be compact.
Thus Scheme2 cannot possibly meet the definition of fully homomorphic.

5.3 The Final Scheme

We now observe that the LTV construction actually achieves multi-key FHE with
a more fine-grained definition than we provided above: one where not only cipher-
texts, but also keys can be combined. As described in Section 3.4 of their paper,
given ¢; = LTV.Enc(pky,m1), ca = LTV.Enc(pks, ms), one step of LTV.Eval is



to calculate pk* = pk; U pks. We can separate out this step and generalize it,
defining CombinePK(pk1, pka, ..., pk) = UEZI pk;. Similarly, in their scheme, the
secret keys are polynomials, and they show how to create a ”joint secret key” by
multiplying the polynomials together. We give this procedure a name, defining
CombineSK(sk1, ska, . .. skt) = [1'_, skx.

Definition 5.1. A scheme HE™) is an N-Key Multikey (leveled) FHE
scheme if it is a (leveled) FHE scheme with the following additional algo-
rithms: For any t < N, let c1,...c; be any ciphertexts under pky,...pks, i.e.
¢; = Ency, (my) for all i € [t].

— pk* = CombinePK(pky, pka, ..., pkt).

— A multi-key encryption algorithm mEval(f, pk1, ..., pks,c1,ca, ..., ct) that first
calls
pk* = CombinePK(pky, pko, ..., pk:), and then produces ¢*, and outputs c*
and pk*. Note that this c* and pk™ can be used as input for successive calls
to mEval.

— sk™ = CombineSK(skq, ska, ..., sk).

— A multikey decryption algorithm mDec(sk1, ..., sk, c¢*) that calls CombineSK
and then runs Dec(sk*,c*) to produce f(mq, ma,...my).

As long as the outputs of CombineSK and CombinePK are succinct, we can
update our scheme to make ciphertexts succinct.

Let SHE = (KeyGen(), Enc(), Dec(), Eval()) be any somewhat® homomorphic
encryption scheme that is also resilient to adaptive bounded leakage of A bits,
and let HE™) = (KeyGen(), Enc(), Dec(), mEval(), CombinePK(), CombineSK())
be any N-key multikey fully homomorphic encryption scheme. Then we consider
the following combined scheme:

Scheme3.KeyGen(17): Run (pk, sk) <— SHE.KeyGen(17). Set the public and se-
cret keys to be pk, sk.
Scheme3.Enc(pk, m): First, run (pk’, sk’) «+ HE.KeyGen(17).
Then output (pk’, HE.Enc(pk’, m), SHE.Enc(pk, sk’)) as the ciphertext.
Scheme3.Eval(pk, f,c1,...,¢): First parse ¢; = (pk, ¢i1,ci2) for i € [t].
Then, calculate ¢; = HE™ Eval(pky, ..., pkj, f,c11,- .. ce),
pk"* = HE™) CombinePK (pk/, ..., pk}),
¢5 = SHE.Eval(pk, HE.CombineSK, ¢1 2, . . . , ¢ 2).
Finally, output (pk™,cj,c5).
Scheme3.Dec(sk, ¢): To decrypt a ciphertext ¢, first parse ¢ = (pk’, ¢1,¢2), and
obtain sk’ = SHE.Dec(sk, ¢2). Then output HE.Dec(sk’, ¢1).

This lets us achieve the following theorem.

3 SHE must support circuits large enough to evaluate CombineSK, but does not need
to be fully homomorphic.



Theorem 5.2. Let SHE be a C-homomorphic encryption scheme for some cir-
cuilt class C such that HE™) .CombineSK € C. Let HE™) be an N-Key multikey
FHE scheme. If SHE is resilient to adaptive, bounded leakage of \ bits, then
Scheme3 has the following properties:

1. It allows homomorphic evaluation of (up to) N-ary circuits of arbitrary
(poly(n)) depth.

2. If SHE is a leveled homomorphic encryption scheme, then the ciphertext size
depends on N. If SHE is fully homomorphic, then Scheme3 has succinct
ciphertexts (whose lengths do not depend N ).

8. It is resilient to adaptive bounded leakage of X bits.

Proof. We address each statement in turn.

1. This follows immediately from the fact that by definition, HE™ allows ho-
momorphic evaluation of (up to) N-ary circuits of arbitrary (poly(n)) depth.

2. If SHE is leveled, its key-size is dependent on L, the number of levels of
homomorphic evaluation it can support. To instantiate Scheme3, we need
SHE to homomorphically evaluate CombineSK, an N-ary circuit whose depth
is a function of its arity. Thus, the key size of SHE, and by extension, of
Scheme3 is a function of N. In contrast, if SHE is not leveled, its key size is
independent of L, and thus of N as well.

3. A simple reduction shows that if SHE is leakage resilient, then Scheme3 will
be as well. Given a probabilistic polynomial time adversary A who wins the
ALR game with Scheme3 with non-negligible advantage, it is easy to con-
struct a ppt B who wins the ALR game with SHE with the same advantage.
Upon receiving the public key from SHE, B simply forwards this informa-
tion to A. Whenever A requests an encryption of a message, B simply runs
HE.KeyGen, and then follows Scheme3.Enc(), and forwards the result to .A.
When A decides upon a leakage function, B uses that same leakage function.
A’s view when interacting with B is exactly its view when interacting with
Scheme3 so its advantage is the same. Therefore, B would have the same
advantage when interacting with Scheme3.

5.4 Instantiation

We instantiate Scheme3 using LRGSW for SHE and LTV for HE™). The LTV
construction can be summarized by the following theorem:

Theorem 5.3. (from theorem 4.5 in [?]) For every N = poly(n), under the
DSPR* and RLWE? assumptions with proper parameters, there exists an N-key
multi-key (leveled) Fully Homomorphic Encryption Scheme. Under the additional
assumption of weak circular security, we can remove the “leveled” constraint.

4 The DSPR assumption is the “Decisional Small Polynomial Ratio” introduced in

7).

® RLWE stands for “Ring Learning With Errors,” first introduced in [?].



The above theorem lets us instantiate Scheme3 with LTV and LRGSW, and
together with with theorem 7?7 gives us the following corollary:

Corollary 5.1. For every T = poly(n) there exists an FHE scheme that supports
homomorphic evaluation of all t-nary circuits fort < T, and depth poly(n), under
appropriate DSPR, RLWE, and DLWE assumptions. Under appropriate choices
of n and q chosen so that certain DLWE assumptions hold, the scheme is resilient
to adaptive bounded leakage of X bits, where A < n — 2logq — 4n.
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A Full Definitions

Below we provide full, formal definitions of concepts used throughout our paper.

A.1 Homomorphism

Definition A.1. A homomorphic (public-key) encryption scheme
HE = (HE.Keygen, HE.Enc, HE.Dec, HE.Eval)

1s a quadruple of probabilistic polynomial time algorithms as described below:

— Key Generation® The algorithm (pk, sk) < HE.Keygen(1%) takes a unary
representation of the security parameter, and outputs a public key pk and a
secret decryption key sk.

— Encryption The algorithm ¢ < HE.Enc,, (1) takes the public key pk and
a message i € {0,1} and outputs a ciphertext c.

— Decryption The algorithm p* <+ HE.Decgi(c) takes the secret key sk, a
ciphertezt ¢, and outputs a message pu* € {0,1}.

— Homomorphic Evaluation The algorithm cy <— HE.Evalp,(f,c1,...,ct)
takes the public key, pk, a function f : {0,1}* — {0,1}, and a set of t cipher-
texts c1,...,¢; and outputs a ciphertext cy. In our paper, we will represent
functions f as binary circuits constructed of NAND gates.

Definition A.2. Let HE be L — homomorphic and let fnqng be the augmented
decryption function defined below:

frnanda = HE.Dec(sk,c1) NAND HE.Dec(sk, c2)
Then HE is bootstrappable if fnung € L

Definition A.3. A public key encryption scheme (Gen, Enc, Dec) has weak cir-
cular security if it is secure even against an adversary with auxiliary informa-
tion containing encryptions of all secret key bits.

Definition A.4. For any class of circuits C = {Cy}, .y over {0,1}. A scheme
HE is C — homomorphic if for any function f € C, and respective inputs
Wiy it € {0,1}, 4t holds that

Pr[HE.Decg,(HE.Evalpi(f,c1,. .. ) # flpa, ..., )] = negl(n)
where (pk, sk) < HE.Keygen(1*) and ¢; < HE.Encpr(1;).

Definition A.5. A homomorphic scheme HE is compact if there exists a poly-
nomial p = p(n) such that the output length of HE.Eval(---) is at most p bits
long (regardless of f or the number of inputs).

5 In many schemes, the public key is split into two parts, the pk, which is used to
encrypt fresh messages, and the evaluation key (evk) that is used to homomorphically
evaluate circuits, so the output of the algorithm is: (pk, evk, sk) < HE.Keygen(17).



Definition A.6. A scheme is leveled fully homomorphic if it takes 1° as
additional input in key generation, where L = poly(n), and otherwise satisfies
the definitions for a compact, L-homomorphic encryption scheme, where L is
the set of all circuits over {0,1} of depth < L.

Definition A.7. A scheme HE is fully homomorphic if it is both compact
and C- homomorphic, where C = {Cﬂ}neN is the set of all circuits with arity and
depth polynomial in 7.

A.2 Learning With Errors

Definition A.8. The Decision Learning with Errors Problem:

. $ . .
Given a secret s < Zy, m = poly(n) samples a; < Z, and corresponding noise

q )
x; < X, Distinguish {As  }i = {as, (a;,s) + x; }i from {a;,b;}; & Zf; X Zg.

We denote an instance of the problem as DLWE, .. The decision learning
with errors assumption is that no probabilistic polynomial time adversary can
solve DLWE, , . with more than negligible advantage.

Definition A.9. A family of distributions x is called B-bounded if Pro. ||| >
B] = negl(n).

Definition A.10. The Gaussian distribution in one dimension with standard
deviation (3 is Dg := exp(—m(x/B)?)/B. For B € Z,, the discretized Gaussian,
U, is defined by choosing B’ such that B = ' - q, then choosing x & Dg and
computing |q - ¢]. Note that Ug is B-bounded when B is super-polynomial in 1).

When x = ¥ g we denote the DLWE instance as DLWE,, , 5.

A.3 Min-Entropy and the Leftover Hash Lemma

Definition A.11. A distribution X has min entropy > k, denoted Hoo(X) >
k, if
Vo€ X, PriX =x] <27

Definition A.12. (From [?]) For two random variables X and Y, the average
min-entropy of X conditioned on'Y, denoted Hoo(X|Y) is

Hoo(X|Y) = ~log _E_[[max Prix = o]y = ]| = ~log { E [2H°°(X|Yy>H
y<Y x y<Y

Definition A.13. (From [?]) For two random variables X andY, the e-smooth

average min-entropy of X conditioned on'Y, denoted HS (X|Y) is

HE (X|Y) = max Ho o (X'[Y")
(X, Y"):A(X,Y),(X",Y'))<e

Note that in particular, for any random variable X, given distributions Dy =~
Dy withY < Dy, Z < Dz, there exists some € such that A(Y, Z) < € = negl(n),
and

HS (X|Y) > H(X|Z)



We now-restate a version of the leftover hash lemma [?] relating to matrix-
vector multiplication in Z,, as it was stated in, for example, [?].

Lemma A.l. [Leftover Hash Lemma] For a security parameter n, let n =
poly(n), let C & Zg*"™ Let s < D € Zy, and let k = Hoo(D). If mlogq <
k—2log(L) +2 then A((C,Cs)(C,u & Zm)) < e.

In particular, by setting e = 27", if mlogq < k—2n+2 then (C, Cs) =~ (C,u &
Zy')

The leftover hash lemma can easily be generalized to the case where s has
high conditional average min-entropy.

Lemma A.2. [Generalized Leftover Hash Lemma] (from lemma 2.4 in [?]) For
a security parameter n, let n = poly(n), let C & Zg*™ Let s < D € Zy, let t
be any random variable, and let k = Hoo(s|t). If mlogq < k — 2log(L) + 2 then
A((C, Cs,t)(C,u & Zy'),t) < e. In particular, setting e = 27", if mlogq <
k— 21 +2 then (C, Cs,t) ~, (C,u ¢ 2, 1)

An immediate consequence of the above lemma is the following corollary:

Corollary A.1 (Epsilon-Smooth Variant of LHL). For a security parame-

ter n, let n = poly(n), let C & Zg*™ Let s < D € Zy, let t be any random vari-

able, and let HE (s|t) > k. Ifmlog q < k—2log(L)+2 Then A((C, Cs,t)(C,u &

€2
Z;n),t) < 261 + €.

Proof. The definition of e-smooth average min-entropy means there exists a
random variable s’ over the same domain as s and a random variable ¢’ over
the same domain as ¢ such that A((s,t)(s’,¢')) < €1, and Hy(s'|t') > k.

Lemma ?? tell us that A((C, Cs’,t)(C,u & Zy'),t') < €. Furthermore, clearly
A(t,t") < ;. Finally, since statistical distance is a metric, we can conclude
A((C, Cs,t)(C,u,t)) < 261 + €2

B More Details about Parameter Setting

We now describe in more detail the constraints that drive our setting of parame-
ters. We include full proofs of Lemma ?? and Lemma ?7?, which drive the setting
of many of our parameters.

B.1 Parameter Setting Using Lemma 77

Below we restate and prove Lemma 77.
Lemma ??. There exists a distribution Lossy such that A < Lossy ~. U &

mxn ; $ n [Te A A —
Zg>" and given t < Zy, and e < x, HS (t|A, At +e) > n, where ¢ = negl(n).



Proof. Recall that we define Lossy as follows:

Choose C & ZZ””X"/, D& Z;"X”, and Z « @len, where % = negl(n) and
n’log__qg n—2n+ 2.
Let A=CD+Z

output A.

First, observe that A ~. U & Ly
A isa DLWE instance, with D as the secret and Z as the error term, so as long
as DLWEy 4. is hard, then A ~. Z;"*".

Next, observe that H_(t|At + e) = n, where € = negl(n):
Since t & Zy' is identically distributed to t = to + t1 where to & {0,1}™, and
t1 ﬁ ZZT, we may consider consider t = tg + t1.

Clearly for any e, HS_ (t|At 4+ e) > HS (to|At + €), so it suffices to bound
the min-entropy of to.

We can then rewrite At + e as

= CDtg + Ztg + CDty + Zt; + e

Since e is drawn from a discretized Gaussian distribution, and since each
element of Ztg is negligibly small compared to the corresponding element of e,
we know that e + Ztg ~, e. Thus there exists some €; = negl(n) such that

H;(t(ﬂCDto + CDtl + Ztl + e) Z f?[oo(to|CDt0 + CDtl + Ztl + Zto + e)

Since Ho, (to|CDt1+Zt1+€e) > n, Lemma ?7 tells us that for our choice of n/,

(CDtg 4+ CDt1 + Zt1 +€) =, (Cug + CDty + Zt; +e), where ug & Zgl. Since
the statistical distance between these two distributions is some e3 = negl(n),
there is some € = €1 + €2 = negl(n) such that

H¢ (to|Cug 4+ CDty + Ztq + e) > Ho.(to|CDtg + CDty + Zty + Ztg + €)

Since each of C,up, D, Z, t1, e, is independent of to, this quantity equals H (to) =
n. Thus, we can conclude that HS (t|At + e) > n as well.

When using Lemma 77, the following constraints affect our parameter set-
ting:

1. Statistical Indistinguishability: There are three different places in our
hybrid argument where we prove that two distributions are statistically in-
distinguishable.

— In Lemma 77, we argue that the distribution Ztg + e is statistically close
to e, because the magnitude of each element of Ztg is small. This argu-
ment requires that e be a discretized Gaussian distribution, rather than
just a bounded distribution, as required by the original GSW scheme.



— In Claim ?7?, inside our proof of Lemma ??7, we use the leftover hash

lemma to show we can replace rA with u & Zgq. This step is part of
the security proof of all variations on the RPKE scheme, but an artifact
of our proof technique is that we consider an adversary who can see
r - e, which is ¢ = O(log q) bits long. So for r of dimension m, we have
f{m(r) = m — £. The analogous step in the GSW security proof assumes
H,.(r) = m. This leads us to increase the value of m. In our scheme, m
is set to 2nlogq + 3n.

— Again in Lemma ?7, in Claim 7?7, we use the leftover hash lemma to show

that given u & Ly, we can replace u -t with u & Zgq. As described in
our proof, the e-smooth average min-entropy of t is n — £ — A\, where A
is the the number of bits of leakage we can tolerate. Thus, we must set
A to a value that keeps Hoo(t) high enough for the leftover hash lemma
to apply. That is how we arrive at A <n — 2logq — 4.

2. DLWE Considerations: The security of our scheme is based on the hard-
ness of two different DLWE problems: DLWE,, , o, where the n/ and « come
from Lemma ??7, and DLWE,, 4 3. For our scheme to be secure, the following
three things need to be true:

- §= negl(n). This is a necessary condition in our proof of Lemma ?7?.
— DLWE, 4.0 is hard. We refer to Statement ?7, which shows that this
problem is at least as hard as GapSVP and to Statement 77?7, which

n'q/a
says the best known algorithms for solving GapSVP,, run in time

q/

29(“’“;"1/ a>). This quantity should be at least super-polynomial in our
security parameter for the scheme to be secure.
— DLWE, 45 is hard. Using the same theorems, we see that we need

29(109<:4/5) to be super-polynomial in n as well.

3. Correctness: The scheme needs 8(N + 1) < %, where L is the depth of
the circuit, g is the error bound, and N = (log ¢ + 1)n, in order to ensure
the noise never gets large enough to hamper accurate decryption.

Since our FHE scheme supports evaluation of circuits whose depth is poly-
nomial in the security parameter as long as that polynomial is pre-specified, we
know that there exists some constant ¢ such that L < n°. Let 7 = max{L,n?}.
Setting the parameters as follows satisfies all of the hardness and correctness
constraints for the scheme:

Let n = 7% Let ¢ = 7108”7 et 8= 2108”7 Recall that n' = (n—2n)/logq,
and let a =n/'.

Note that % is clearly negligible in 7 as required. Since the best algorithm for

GapSVP,, runs in time 29(“’9(:"1/“)), we look more closely at the exponent

q/a ,

: : ! —2 T =2

We can rewrite it as —%— = 2=£1 = ui
log(q)

: 2
TogZq = 72TogTr" Since 7 > n*, we know

n/
log(n’q/a)

that the above quantity is > 2:;;% > n for n > 16. Thus the hardness is 282(n).



Similarly, to bound the hardness of GapSVP, , 5 we consider the exponent
of 210g(7?q/5) .
n B n
log(ng/B) ~ logn +logq — log 3
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This means that DLWE, ;s is exponentially hard as well. Finally, we verify
that our parameter settings maintain the correctness of the scheme: We need
8(N +1)L < £ and since we chose T > L, it is sufficient to show 8(N +1)7 < i
We can upper bound the left hand side of this inequality as follows:

8(N +1)" <8(2nlogq)”
= 8(2r*7log? 7)7
< 939767
_ 93+7+6log® 7

Meanwhile, the right hand side is equal to 9(7—1)log? 7, which is clearly greater
than the left hand side for sufficiently high 7.

Finally, the number of bits of leakage we can support is n — 2logq — 4n =
7 — 27log? T — 4y = 18 — 32n* log n — 4n, which is positive for any n > 3.

B.2 Efficiency/Leakage Tradeoff

We can prove our scheme secure using the following alternate lemma, which gives
us better efficiency but a lower leakage bound.

Lemma B.1. For n,m,n’,q,a,3 such that DLWE, 4 and DLWE, ;3 are
hard, if 3 > anm, there exists a distribution Lossy’ such that A < Lossy’ =,
U& Zyg™*" and given t & 7y, and e < W, He (t|A, At +e) > n —n(logm +
2logn), where e = negl(n).

The proof of this lemma closely follows the outline of Lemma B.4 in [?], so we
defer it to the full version of our paper.
The new lemma leads immediately to the following:

Corollary B.1. The LRGSW scheme is resilient to A < n

nlogm — 4n bits of leakage when W5 is chosen so that % > lc’fgq,

(2+mn)logq —

2

Proof. This corollary is true as long as with the new parameter settings, the
scheme still maintains its correctness, so 8(N + 1)f < % and its hardness:

DLWE,: 4o, and DLWE, , 3, as well as the new requirement that % > na.



If we choose an a@ = O(n'), which we need for DLWE, , . to be hard, then
a < n/logq, so our setting of 5 is sufficient to meet this new requirement. Note
that with these settings, 3 is no longer super-polynomial in 7, and though ¢ will
remain superpolynomial in 3, this allows for a much smaller value of ¢ as well.
For example, if we let 7 = max{L,n?}, n = 73, ¢ = 271°8" m = 2nlogq + 37,
n' = (n—2n+2)/logq, a =72, f=3n373, then we have:
— DLWE, 4.4 is hard:
note that n’ = ri-2r42 <72=a.So 2108‘(:/q/a> > on'/1084 We can rewrite

37 log T

n—2n+2 _ n°—2n+2 n’/logq n
that exponent as og?q = 8TiSlegn So for n > 20, we have 2 > 21,

Thus we can conclude that since DLWE, . takes time 29(10g(s’q/a>> to
solve, it is super-polynomially hard to solve in 7.
— DLWE, 4 is hard:

Since 8 > n, we know that m >

_n_
logqg —

: 6

| WZT/?’ZTI/&SO
29(10g wa7p) is exponential in 7 as well.

— The scheme is correct:

We need to show: 8(N + 1) < 4. First, we rewrite N + 1.

q
Z.
N+1=n(logg+1)+1

=73 (tlog7®) + 713 + 1

=37t logT + 73 41

< 4rtlogr

So we have that 8(IV + 1)1 < 2322L24logmologlog ™ and since L < 7, we have,
that this is < 227 +4leg7+3+loglogT < 92r+5log ™

Meanwhile,

% — 2~rlogn/(3n37_3)

1

— Z9T logn—3logn—3log T
3
> 237' log T—12log T

This quantity is > 2275187 for sufficiently high 7, (for example, if 7 > 9,
meaning 7 > 3), so the scheme is secure.



