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Abstract. The notion of Zero Knowledge introduced by Goldwasser,
Micali and Rackoff in STOC 1985 is fundamental in Cryptography. Mo-
tivated by conceptual and practical reasons, this notion has been ex-
plored under stronger definitions. We will consider the following two
main strengthened notions.

Statistical Zero Knowledge: here the zero-knowledge property will
last forever, even in case in future the adversary will have unlimited
power.

Concurrent Non-Malleable Zero Knowledge: here the zero-knowledge
property is combined with non-transferability and the adversary fails
in mounting a concurrent man-in-the-middle attack aiming at trans-
ferring zero-knowledge proofs/arguments.

Besides the well-known importance of both notions, it is still unknown
whether one can design a zero-knowledge protocol that satisfies both
notions simultaneously.

In this work we shed light on this question in a very strong sense. We show
a statistical concurrent non-malleable zero-knowledge argument system
for NP with a black-box simulator-extractor.

1 Introduction

The notion of zero knowledge, first introduced in [10], is one of the most pivotal
cryptographic constructs. Depending on both natural and real-world attack sce-
narios, zero knowledge has been studied considering different conceptual flavors
and practical applications.

? Work done while visiting UCLA.



Zero knowledge and man-in-the-middle attacks. In distributed settings such as
the Internet, an adversary that controls the network can play concurrently as
a verifier in some proofs5 and as a prover in the other proofs. The goal of the
adversary is to exploit the proofs it receives from the provers to then generate
new proofs for the verifiers. The original notion of zero knowledge does not
prevent such attacks since it assumes the adversarial verifier to only play as a
verifier and only in sequential sessions.

The need of providing non-transferable proofs secure against such man-in-
the-middle (MiM, for short) attacks was first studied by Dolev, Dwork and Naor
in [7]. In [1], Barak, Prabhakaran and Sahai achieved for the first time such
a strong form of zero knowledge, referred to as concurrent non-malleable zero
knowledge (CNMZK, for short) is possible in the plain model. They provide a
poly(λ)-round construction, for λ being the security parameter, based on one-
way functions, and a O(log(λ))-round construction based on collision-resistant
hash functions. More recent results focused on achieving round efficiency with a
mild setup [23], computationally efficient constructions [22], security with adap-
tive inputs [16].

Zero knowledge and forward security. The zero-knowledge property says that
the view of the adversarial verifier does not help her in gaining any useful infor-
mation. This means that it does not include information that can be exploited
by a PPT machine. However, even though the execution of a zero-knowledge
protocol can be based on the current hardness of some complexity assumptions,
it is quite risky to rely on the assumed resilience of such assumptions against
more powerful machines of the future. What is zero knowledge in a transcript
produced today could not be zero knowledge in the eyes of a distinguisher that
will read the transcript in 2040.

It is therefore appealing to provide some forward security flavor so that what-
ever is zero knowledge today will be zero knowledge forever. Statistical zero
knowledge [2, 25, 21, 9, 20, 12, 19] is the notion that satisfies this requirement. It
has been achieved in constant rounds using collision-resistant hash functions [14],
and even under the sole assumption that one-way functions exist requiring more
rounds [13].

Unfortunately, all the known constructions for CNMZK protocols strongly
rely on the computational indistinguishability of the output of the simulator.
Techniques so far used to design protocols that are then proved to be CNMZK
require the protocol to fix a witness in a commitment, that therefore must be
statistically binding and thus only computationally hiding. There is therefore
no hope to prove those protocol to be statistical zero knowledge. Moreover it
does not seem that minor changes can establish the statistical zero knowledge
property still allowing to prove CNMZK.

5 While in our general discussion, we often refer to zero-knowledge proofs, we will
finally need to resort to only arguments since our goal is to achieve statistical zero-
knowledge property.



The Open Problem. Given the above state-of-the-art a natural question is the
following: is it possible to design an argument system that combines the best
of both worlds, namely, a statistical concurrent non-malleable zero-knowledge
argument system?

1.1 Our Contribution

In this work, we provide the first statistical concurrent non-malleable zero-
knowledge argument system. Our construction is an argument of knowledge
(AoK, for short) and has a black-box simulator-extractor producing a statis-
tically indistinguishable distribution.

As mentioned earlier, Barak et al. [1] presented the first CNMZKAoK proto-
col; we will refer to their work here as BPS. However, their construction had an
inherent limitation that the simulation can only be computational, the reason
being the following. In their protocol, the prover needs to commit to a valid
witness via a statistically binding non-malleable commitment scheme. The com-
mitment scheme being statistically binding is extremely crucial in their proof
of security. This implies that when the simulator cheats and commits to a non-
witness, the simulated view can only be computationally indistinguishable and
not statistically so.

In this work, we overcome this shortcoming with the following idea. We take
the BPS argument as a starting point and modify it. Firstly, we work on the
root of the problem – the non-malleable commitment. We replace it with a
special kind of a commitment scheme called ‘mixed non-malleable commitment ’
scheme. The notion of mixed commitment was first introduced by Damg̊ard and
Nielsen [6]. Our mixed non-malleable commitment is parameterized by a string
that if sampled with uniform distribution makes the scheme statistically hiding
and computationally binding. Instead, when it is taken from another (compu-
tationally indistinguishable) distribution it is a statistically binding, computa-
tionally hiding, and non-malleable. We will construct such a scheme by using as
distributions non-DDH and DDH tuples.

The next idea would be to append the (modified) BPS argument to a coin-
flipping phase in which the prover and the verifier generate a random string.
Thus, in the real-world the above mixed commitment is statistically hiding. This
thus enables us to prove statistical simulatability of our protocol. Furthermore,
in order to also achieve extractability of witnesses for the arguments given by
the adversary, we switch to a hybrid which biases the coin-flipping outcome
to a random DDH tuple. Typically, a coin-flipping protocol would involve the
verifier committing to its share of randomness, the prover sending its share
of randomness in the clear, and finally, the verifier opening the commitment.
However, in order to enable the simulator to bias the outcome, instead of the
verifier opening the commitment to its share of randomness, it gives only the
committed value in the clear and presents an AoK for the randomness used. This
argument is again played by using the BPS AoK, since we would need concurrent
non-malleability here.



In order to simplify our proofs, we rely on the Robust Extraction Lemma of
Goyal et al. [11] that generalizes concurrent extractability of the PRS preamble
(or concurrently extractable commitments – CECom, for short) [24] in the fol-
lowing sense. Consider an adversary who sends multiple CECom commitments
interleaving them arbitrarily and also interacts with an external party B in an
arbitrary protocol. Then, [11] shows how to perform concurrent extraction of the
CECom commitments without rewinding the external party B. The extractor
designed by them is called the ‘robust simulator’.

Technical Challenges. While we will encounter multiple technical challenges,
which will be clear as we go ahead, we point out the core technical challenge
here and the way we will solve it.

One of the main technical challenges is when we prove witness extractability
of our protocol. Namely, in our hybrid argument, we will encounter two con-
secutive hybrids Ha and Hb, wherein a coin-flipping phase of a particular right
hand session is ‘intact’ in Ha, but is biased in Hb. This results in the mixed
commitment changing from statistically hiding to statistically binding. In order
to finally be able to argue that the extracted values are indeed valid witnesses,
we will need to argue for the hybrid Hb that the value committed in this commit-
ment is a valid witness. Herein, we will need to reduce our claim to computational
binding of a CECom commitment in the protocol. Thus, the requirement in this
reduction would be that no extraction performed should rewind the external
CECom sender. Even the Robust Extraction Lemma will not be helpful here as
the Lemma requires that the external protocol have round complexity strictly
less than the round complexity of CECom commitments (on which the robust
simulator performs extraction) and the external protocol in this case is a CE-
Com commitment itself. The condition for the Lemma thus cannot be met. We
get around this difficulty through a carefully designed sequence of hybrid argu-
ments. A similar difficulty arises in the proof of statistical simulatability of our
protocol. Here again, we rely on a carefully designed sequence of hybrids.

The second main technical challenge, still of the same flavor as the first one
above, is in the proof of witness extractability. Here, we encounter a pair of hy-
brids: in the former hybrid, we would have a few CECom commitments of the
right session being extracted by the robust simulator; in the latter hybrid, the
modification introduced would be to change the value committed in a (statis-
tically hiding) CECom commitment of a left session from a valid witness to a
zero-string. Here again, we will not be able to argue a reduction to the hiding
property of the CECom commitment of the left session in question, just by rely-
ing on the Robust Extraction Lemma. Here, we instead present a more detailed
hybrid argument. Namely, in the CECom commitment, we change the commit-
ted value one sub-commitment at a time [24]. Since every sub-commitment in
the standard CECom commitment of [24] ranges over just three rounds, we are
now still able to apply the Robust Extraction Lemma.



2 Background

We assume familiarity with interactive Turing machines, denoted ITM. Given
a pair of ITMs, A and B, we denote by 〈A(x), B(y)〉(z) the random variable
representing the (local) output of B, on common input z and private input
y, when interacting with A with private input x, when the random tape of
each machine is uniformly and independently chosen. In addition, we denote
viewAB(x, z) to be the random variable representing the content of the random
tape of B together with the messages received by B from A during the interaction
on common input x and auxiliary input z to B.

If D1 and D2 are two distributions, then we denote that they are statistically
close by D1 ≈s D2; we denote that they are computationally indistinguishable
by D1 ≈c D2; and we denote that they are identical by D1 ≡ D2.

Definition 1 (Pseudorandom Language). An NP-language L ⊆ {0, 1}∗ is
said to be a pseudorandom language if the following holds. For λ ∈ N, let Dλ be
a uniform distribution over L∩{0, 1}λ. Then, for every distinguisher D running
in time polynomial in λ, there exists a negligible function negl(·) such that D can
distinguish between Dλ and Uλ with probability at most negl(λ).

We assume familiarity with notions like witness relation, interactive argu-
ment systems, and statistical witness-indistinguishable argument of knowledge
(sWIAoK).

The verifier’s view of an interaction consists of the common input x, followed
by its random tape and the sequence of prover messages the verifier receives
during the interaction. We denote by viewPV∗(x, z) a random variable describing
V∗(z)’s view of the interaction with P on common input x.

We will use various forms of commitment schemes. We will denote by SB,
SH, CB, CH the usual properties that can be enjoyed by classic commitment
schemes, namely: statistical binding, statistical hiding, computational binding
and computational hiding.

Statistical Concurrent Non-Malleable Zero Knowledge. The definition of sta-
tistical CNMZK is taken almost verbatim from [1] except for the additional
requirement on the simulation being statistical. Let 〈P,V〉 be an interactive
proof for an NP-language L with witness relation RL, and let λ be the secu-
rity parameter. Consider a man-in-the-middle adversaryM that participates in
mL “left interactions” and mR “right interactions” described as follows. In the
left interactions, the adversary M interacts with P1, . . . ,PmL

, where each Pi
is an honest prover and proves the statement xi ∈ L. In the right interactions,
the adversary proves the validity of statements x1, . . . , xmR

. Prior to the inter-
actions, both P1, . . . ,PmL

receive (x1, w1), . . . , (xmL
, wmL

), respectively, where
for all i, (xi, wi) ∈ RL. The adversary M receives x1, . . . , xmL

and the aux-
iliary input z, which in particular might contain a-priori information about
(x1, w1), . . . , (xmL

, wmL
). On the other hand, the statements proved in the right

interactions x1, . . . , xmR
are chosen by M. Let viewM(x1, . . . , xmL

, z) denote a



random variable that describes the view ofM in the above experiment. Loosely
speaking, an interactive argument is statistical concurrent non-malleable zero-
knowledge (sCNMZK) if for every man-in-the-middle adversaryM, there exists
a probabilistic polynomial time machine (called the simulator-extractor) that
can statistically simulate both the left and the right interactions for M, while
outputting a witness for every statement proved by the adversary in the right
interactions.

Definition 2 ((Black-Box) Statistical Concurrent Non-Malleable Zero
Knowledge Argument of Knowledge). An interactive protocol 〈P,V〉 is
said to be a (Black-Box) Statistical Concurrent Non-Malleable Zero Knowledge
(sCNMZK) argument of knowledge for membership in an NP language L with
witness relation RL, if the following hold:

1. 〈P,V〉 is an interactive argument system;
2. For every mL and mR that are polynomial in λ, for every PPT adversary
M launching a concurrent non-malleable attack (i.e.,M interacts with hon-
est provers P1, . . . ,PmL

in “left sessions” and honest verifiers V1, . . . ,VmR

in “right sessions”), there exists an expected polynomial time simulator-
extractor SE such that for every set of “left inputs” x1, . . . , xmL

we have
SE(x1, . . . , xmL

) = (view, w1, . . . , wmR
) such that:

– view is the simulated joint view of M and V1, . . . ,VmR
. Further, for

any set of witnesses (w1, . . . , wmL
) defining the provers P1, . . . ,PmL

,
the view view is distributed statistically indistinguishable from the view
of M, denoted viewM(x1, . . . , xmL

, z), in a real execution;
– In the view view, let trans` denote the transcript of `-th left execution,

and transt that of t-th right execution, ` ∈ [mL],t ∈ [mR]. If xt is the
common input in transt, transt 6= trans` (for all `) and Vt accepts, then
RL(xt, wt) = 1 except with probability negligible in λ.

The probability is taken over the random coins of SE. Further, the protocol
is black-box sCNMZK, if SE is a universal simulator that uses M only as
an oracle, i.e., SE = SEM.

We remark here that the statistical indistinguishability is considered only
against computationally unbounded distinguishers, and not against unbounded
man-in-the-middle adversaries. This restriction is inherent to the definition since
we require statistical zero-knowledge and thus cannot simultaneously ask for
soundness against unbounded provers.

Extractable Commitment Schemes.

Definition 3 (Extractable Commitment Schemes). An extractable com-
mitment scheme 〈Sender,Receiver〉 is a commitment scheme such that given
oracle access to any PPT malicious sender Sender∗, committing to a string,
there exists an expected PPT extractor E that outputs a pair (τ, σ∗) such that
the following properties hold:



Simulatability. The simulated view τ is identically distributed to the view of
Sender∗ (when interacting with an honest Receiver) in the commitment phase.

Extractability. the probability that τ is accepting and σ∗ correspond to ⊥ is at
most 1/2. Moreover if σ∗ 6=⊥ then the probability that Sender∗ opens τ to a
value different than σ∗ is negligible.

Lemma 1. [15] Comnm is an extractable commitment scheme.

As shown in [15], Comnm is an extractable commitment scheme. This is in fact
the core property of the scheme that is relied upon in proving its non-malleability
in [8, 15].

Extractable Mixed Robust Non-Malleable Commitments w.r.t. 1-Round Protocols.
In our protocol we make use of a special kind of commitment scheme, that we
call a extractable mixed robust non-malleable commitment scheme. These are
basically the mixed commitment schemes introduced by Damg̊ard and Nielsen [6]
that are also non-malleable (or robust) not only w.r.t. themselves but also w.r.t.
1-round protocols and also extractable.

We shall first discuss how we get mixed non-malleable commitments, and then
at the end, we shall discuss how we also get mixed non-malleable commitments
that are also robust w.r.t. 1-round protocols.

Intuitively, a mixed non-malleable commitment scheme is a commitment
scheme that is parameterized by a string srs in such a way that if srs is from some
specific distribution, then commitment scheme is SH, and if srs is from another
specific indistinguishable distribution, then the scheme is non-malleable. We re-
quire that both the distributions be efficiently samplable. When srs is randomly
sampled (from the dominion over which both the distributions are defined), we
would require that srs is such that with all but negligible probability the scheme
is SH. We denote such a scheme by NMMXComsrs. More formally:

Definition 4 (Mixed Non-Malleable Commitments). A commitment scheme
is said to be a mixed non-malleable commitment scheme if it is parameterized
by a string srs and if there exist two efficiently samplable distributions D1, D2,
such that, D1 ≈c D2, and if srs ← D1 then the commitment scheme is SH
and if srs ← D2 then the commitment scheme is non-malleable. Furthermore,
|Supp(D2)|/|Supp(D1)| = negl(λ).

Below, we show how to construct such a scheme. At a high level, we achieve
this by using a mixed commitment scheme which, roughly speaking, is a commit-
ment scheme parameterized by a string srs in such a way that if srs is from some
specific efficiently samplable distribution, then commitment scheme is SH, and
if srs is from another specific indistinguishable efficiently samplable distribution,
then the scheme is SB. We denote such a scheme by MXComsrs. More formally:

Definition 5 (Mixed Commitments). A commitment scheme is said to be a
mixed commitment scheme if it is parameterized by a string srs and if there exist
two efficiently samplable distributions D1, D2, such that, D1 ≈c D2, and if srs←
D1 then the commitment scheme is SH and if srs ← D2 then the commitment
scheme is SB. Furthermore, |Supp(D2)|/|Supp(D1)| = negl(λ).



In [6], Damg̊ard and Nielsen gave two constructions of mixed commitment
schemes, one based on one based on the Paillier cryptosystem and the other
based on the Okamoto-Uchiyama cryptosystem. For concreteness, we provide
a construction below based on Σ-protocols and that builds on previous ideas
presented in [5, 3, 4].

Constructing Mixed Commitments. Let us first describe how to construct a
mixed commitment scheme. The idea is to have D1 be uniform over {0, 1}poly(λ)
and D2 be uniform over a pseudorandom language L (as per Definition 1) with
a Σ-protocol (i.e., public-coin 3-round special-sound special honest-verifier zero-
knowledge proof system). Then, to commit to a value β, sender would first run
the simulator of the Σ-protocol for the statement that srs ∈ L such that the
simulated proof has β as the challenge; let (α, β, γ) be the simulated proof.
Then the commitment would just be α. The opening would be γ.

Observe that if srs 6∈ L, then for any β there is only one accepting (α, β, γ),
making the scheme parameterized by this srs to be SB. Furthermore, with srs
sampled uniformly at random from {0, 1}∗ \ L, we will also be able to argue
that the resulting scheme is CH. On the other hand, if srs ∈ L, then, for every
α (in its valid domain as defined by the Σ-protocol), there exists γ′ for every
β′ such that (α, β′, γ′) is an accepting transcript. This implies that there exists
an opening of α to any β′. This makes the scheme SH. Furthermore, with srs
sampled uniformly at random from L, it shall hold for any PPT machine that
it can only run the simulator and it is infeasible for the machine to open α to
also any β′ 6= β (with some γ′ as an opening), assuming special-soundness of
the Σ-protocol (Otherwise, one could extract the witness from (α, β, γ, β′, γ′)).
This makes the system only computationally binding. In detail:

Mixed Commitment from Σ-protocol. Let RL be a hard relation for a pseudo-
random language L i.e., L = {srs ∈ {0, 1}λ| ∃w : RL(srs, w) = 1} and L ≈c Uλ.
Consider a Σ-protocol for the above language L. The special honest-verifier
zero-knowledge property of the Σ-protocol implies existence of a simulator S
that on input the instance srs, a string β and a randomness r, outputs a pair
(α, γ) such that (srs, α, β, γ) is computationally indistinguishable from a tran-
script (srs, α, β, γ) played by the honest prover when receiving β as challenge.

The commitment scheme played by sender C and receiver R that we need
goes as follows.

Shared Random String: A random string srs ∈ {0, 1}λ is given as a common
input to both the parties;

Commitment Phase: We denote the commitment function by MXComsrs(·; ·)
and to commit to a string β ∈ {0, 1}λ:

1. C runs the Σ-protocol simulator S(srs, β, r) to obtain (α, γ);
2. C sends α to R;

Decommitment Phase: To open α to β:

1. C sends (β, γ) to R;
2. R accepts if (srs, α, β, γ) is an accepting transcript for the Σ-protocol.



If srs ∈ L, then the commitment is computationally binding (since, with two
openings one gets two accepting conversations for the same α, and from the
special-soundness property of the Σ-protocol one can extract the witness) and
statistically hiding (which is directly implied by perfect completeness of the Σ-
protocol; i.e., for any α output as the first message by the simulator – for any
β as the challenge – for every β′, given the witness, one can efficiently compute
a final message γ′ such that the verifier accepts). If srs 6∈ L the commitment is
statistically binding (since, for any α, there exists at most one β that makes R
accept the decommitment, as there is no witness for srs ∈ L and two accepting
transcripts (α, β, γ), (α, β′, γ′) with β 6= β′ implies a witness owing to the special-
soundness property of the Σ-protocol) and computationally hiding (since, if on
input α, one can guess β efficiently, then this can be used to decide whether or
not srs ∈ L, a contradiction).

While there are many instantiations for L, we shall work with the following
simple one. Define L = {(g1, g2, g3, g4) ∈ G4| ∃a, b : a 6= b ∧ ga1 = g2 ∧ gb3 = g4}
with G being a prime order group, where DDH is believed to be hard. That is, L is
the language of non-DDH triplets. Note that in this case if srs is chosen uniformly
at random from G4 the commitment is statistically hiding with overwhelming
probability (most strings are not DDH triplets).

Relaxing the assumption. Another example for L is the following language: let
(G,E,D) be a dense cryptosystem (i.e., valid public keys and ciphertexts can
be easily extracted from random strings). The language L is:

L = {(pk0, pk1, c0, c1)|∃r0, r1,m0,m1, s0, s1 : m0 6= m1, (pk0, sk0)← G(1k, r0),

c0 = Epk0(m0, s0), (pk1, sk1)← G(1k, r1), c1 = Epk1(m1, s1))}.

Also in this case most strings are in the language, while the simulator can
choose a string not in the language (i.e., with m0 = m1).

Moreover, we can plug this mixed commitment MXCom in a zero-knowledge
protocol in the SRS model NMMXCom, so that when srs is a random DDH
triple, the zero-knowledge protocol is a proof (i.e., statistically sound) and com-
putational zero-knowledge, while when the srs is a random non-DDH triple then
the zero-knowledge protocol is statistical zero-knowledge (and computationally
sound). For eg., an implementation of Blum’s protocol by using MXCom as com-
mitment scheme when the prover commits to the permuted adjacency matrices
gives us a computational zero-knowledge proof-of-knowledge (ZKPoK, for short)
if srs of the MXCom commitment used is a random DDH tuple and a statistical
zero-knowledge argument-of-knowledge (ZKAoK, for short) if the srs is a random
non-DDH tuple.

Constructing Mixed Non-Malleable Commitments. As mentioned earlier, we show
how to construct a mixed non-malleable commitment scheme by using a mixed
commitment scheme. For concreteness, we shall work with the mixed commit-
ment scheme MXCom described earlier. To thus recall, by the construction of
MXCom, our mixed non-malleable commitment scheme will be non-malleable



when srs is a random DDH tuple and, is statistically hiding and computation-
ally binding when srs is a random non-DDH tuple.

Our scheme NMMXComsrs is described as follows. At a high level, our ap-
proach is to slightly modify the DDN non-malleable commitment scheme in [8].
In fact, we shall describe our modification by considering the concurrent non-
malleable commitment scheme that appears in [15] (whose analysis of non-
malleability is similar to that of the DDN commitment and is simpler). The
protocol in [15] is in fact non-malleable w.r.t. any arbitrary protocols of logarith-
mic round-complexity, a property that is called log(λ)-robust non-malleability.
This is one of the properties which will be of a crucial use to us and we shall elab-
orate on this property shortly. In fact, we only need 1-robust non-malleability.
The scheme of [15] is described below.

Common Input : An identifier ID ∈ {0, 1}L, where L = poly(λ). Define
` := log(L) + 1.

Input for Sender : A string V ∈ {0, 1}λ.
Sender ← Receiver: Sender chooses V1, V2, . . . , VL ← {0, 1}λ such that

V1 ⊕ V2 ⊕ . . .⊕ VL = V . For each i ∈ [L], run Stage 1 and Stage 2 in
parallel with v := Vi and id = (i, IDi), where IDi is the i-th bit of ID.

Stage 1 :
Sender ← Receiver: Receiver samples x← {0, 1}λ, computes y = f(x),

and sends s to Sender. Sender aborts if y is not in the range of f .
Sender → Receiver: Sender chooses randomness← {0, 1}λ and sends

c = Comsb(v; randomness).
Stage 2 :

Sender → Receiver: 4` special-sound WI proofs of the statement:
either there exists values v, randomness such that c = Comsb(v; randomness)
or there exists a value x such that y = f(x)
with 4` WI proofs in the following schedule:
For j = 1 to ` do: Execute designidj

followed by design1−idj
.

Fig. 1. O(log(λ))-round Non-Malleable Commitment of [15]

At a high level, the protocol of the sender who wishes to commit to some
value v proceeds as follows. To catch the core of the intuition, we describe here
a simplified version of the protocol while ignoring the currently unnecessary
details (such as parallel repetitions, etc.); later in the formal description, we
shall present the original protocol of [15]. The sender proceeds as follows. In the
first stage, upon receiving an output of a one-way function from the receiver,
commit to v using a statistically binding commitment scheme Comsb. In the
second stage, engage in log(λ) (special-sound) WI proofs of knowledge of either
the value committed to using Comsb or of a pre-image of the one-way function
output sent by the receiver. (The number of WI proofs is logarithmic in the
length of the identities of the senders; hence, it is considered to be log(λ) in
general). We note here that a special-sound WI proof can be instantiated by



using Blum’s Hamiltonicity protocol, wherein the commitment sent by the WI
prover in this protocol is SB.

Now to construct the mixed non-malleable commitment, the idea is to replace
the SB commitment Comsb of the first stage and the SB commitment within the
Blum’s Hamiltonicity protocol (where both the commitments are given by the
sender to the receiver) with the mixed commitment MXComsrs. We shall analyze
the properties of the resulting commitment scheme, denoted by NMMXComsrs,
below.

Recall that if srs is a random DDH tuple, then MXComsrs is SB and CH.
Under this case, the resulting scheme would have the properties identical to the
original scheme of [18]; namely it is SB, CH, and non-malleable. On the other
hand, if srs is a random non-DDH tuple, then MXComsrs is SH and CB. This
would render the the resulting scheme to be SH (owing to the SH property of
the commitment scheme in the first phase and witness-indistinguishability of
the Hamiltonicity protocol that is instantiated with SH commitment) and CB
(owing to the computational binding property of the commitment scheme in
the first phase; this is due to the fact that decommitment of the scheme in [15]
is simply an opening of the commitment of the first phase). In fact, if srs is a
random string, then it is a non-DDH tuple with all but negligible probability.
Hence, we also have that when srs is a random string, MXComsrs is SH and CB
with all but negligible probability. For future reference, we shall bookmark this
into the following proposition.

Proposition 1. If srs is a uniform DDH tuple, then MXComsrs is SB, CH, and
non-malleable. If srs is a uniform random string, then MXComsrs is SH and CB.

Robustness w.r.t. 1-Round Protocols of the Mixed Non-Malleable Commitments.
Recall that we modified the [15] non-malleable commitment scheme that is ro-
bust w.r.t. 1-round protocols to get mixed non-malleable commitment scheme. It
turns out that the modified scheme still retains robust w.r.t. 1-round protocols.
Here, we only give a high-level description of the reason behind this fact as this
can be easily verified. The reason is that robustness of the non-malleable commit-
ment scheme in Figure 1 is proved in [15] by relying only upon the structure (the
‘designs’, in particular) of the commitment scheme in Figure 1. In particular,
this proof does not rely upon the specifics of the underlying commitment scheme.
Now recall that the only modification we introduced in the robust non-malleable
commitment scheme of [15] to get a mixed non-malleable commitment scheme
is the following. Instead of using any underlying commitment scheme, we used
a mixed commitment scheme. Thus, the scheme continues to be non-malleable
commitment scheme robust w.r.t. 1-round protocols even when the underlying
commitment schemes are mixed commitments.

Non-Malleability of NMMXComsrs w.r.t. Comnm. Another property of NMMXComsrs

that we need is the following. Let Comnm be the NMCom commitment robust
w.r.t. 1-round protocol. We shall argue below that NMMXComsrs is non-malleable
w.r.t. Comnm.



Proposition 2. The non-malleable commitment NMMXComsrs is robust w.r.t.
the non-malleable commitment Comnm.

Proof sketch. Essentially, the proof is exactly the same as the proof of
non-malleability of the non-malleable commitment scheme of [15] presented in
Figure 1. We argue this here next. Consider a MiM adversary against non-
malleability of NMMXComsrs that executes a Comnm session on the left by playing
the role of the receiver and a NMMXComsrs session on the right by playing the
role of a sender. The key technique in proving non-malleability in [8, 18, 15] is to
show that, immaterial of the way a MiM adversary interleaves the left and right
commitments, there exists at least one WI proof (within some design) on the
right session such that it is ‘safe’ to rewind the MiM adversary for this proof;
by ‘safe’, we mean that rewinding the MiM adversary at this point can be done
without rewinding the external sender on the left. (Recall that to rewind a WI
proof is to rewind to the point between the first and the second message of the
proof). To then understand what WI proof qualifies to be safe to rewind, we
begin by giving a high level idea of when a proof does not qualify to be safe.
Consider any WI proof (αr, βr, γr) on the right. If it is trying to use and ‘maul’
some WI proof (αl, βl, γl) on the left, then the right proof is positioned in time
with respect to the left one as shown in Figure 2. Observe that rewinding such a
proof on the right with a new challenge may make the MiM adversary send a new
challenge for the left proof too asking for a new response which tantamounts to
rewinding the sender on the left. [8, 18, 15] provide a characterization for theWI
proofs on the right that qualify as safe for being rewound; however, the details
of this characterization itself will not be important to us; the core argument in
proving non-malleability in [8, 18, 15] is an argument that, immaterial of the way
a MiM adversary interleaves the left and right commitments, there exists a WI
proof on the right that is safe to rewind. This is so owing to the fact that the
adversary can use only one proof on the left for every proof on the right and
to the fact that there are exactly the same number of proofs on the left and
the right. This would imply that if the left and the right identities are distinct
(at least at one bit position), then at proofs corresponding to this bit position,
design0 on the left ‘matches up’ with design1 on the right, depicted in Figure 2.
With a closer look at this interleaving, it can be easily derived that at least one
of the WI proofs within this design1 on the right is safe to be rewound.

We first observe that the only way NMMXComsrs differs from Comnm in Fig-
ure 1 is that a specific kind of commitment, namely, a mixed commitment is used
to instantiate the underlying commitments used in building Comnm in Figure 1.
Next, we observe that non-malleability of the commitment scheme NMMXComsrs

is mainly due to the structure (or designs) of the WI proofs, and the same ar-
guments on interleaving and safety of rewinding would hold even if the left
commitment is under an Comnm session. ut

We remark that in fact the non-malleable commitments NMMXComsrs and
Comnm are robust w.r.t. each other by the same arguments as above. However,
it suffices for us that NMMXComsrs is robust w.r.t. Comnm.
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Concurrently Extractable Commitment Schemes. Concurrently extractable com-
mitment (CECom) schemes consist of committing using the PRS preamble, and
decommitting by opening all the commitments within the preamble [24]. Roughly
speaking, the preamble consists of the sender committing to multiple shares of
the value to be committed; then the receiver, in multiple rounds, would challenge
the sender to open a subset of them in such a way that the opened shares do
not reveal the committed value, but this would somehow facilitate consistency
checks as shown in [24, 20].

A challenge-response pair in the preamble is called a ‘slot’. [20] formalized
concurrent extractability and showed that the PRS preamble satisfies it if the
number of slots therein is ω(log(λ)). We denote a CECom commitment that is
SB by CEComsb, the one that is SH by CEComsh.

Robust Concurrent Extraction. In [24], Prabhakaran et al. demonstrated an ex-
traction procedure by which, for an adversary Sender∗ that executes multiple
concurrent sessions of CECom commitments, commitment information (com-
mitment value and randomness) for each session can be extracted in polynomial
time before the corresponding commitment phase is completed.

In [11], Goyal et al. extended the technique of [24] and showed how to per-
form efficient extractions of CECom commitments when an adversary Sender∗,
besides concurrently performing CECom commitments, also interacts with an
‘external’ party B in some arbitrary protocol Π. This setting now additionally
requires that the extraction procedure rewinds the adversary Sender∗ in a way
that B does not get rewound in the process. This is achieved in [11] by build-
ing a robust concurrent simulator (or just ‘robust simulator’) RobustSim that
interacts with both a robust concurrent adversary, which commits to multiple
CECom commitments, and an external party B, with which it runs some arbi-
trary protocol Π. For every CECom commitment that is successfully completed,
Goyal et al. show that, the robust concurrent simulator – without rewinding
the external party – extracts a commitment information, with all but negligible
probability. [11] present this result as the Robust Extraction Lemma which in-
formally states that if `external = `external(λ) and `cecom = `cecom(λ) denote the
round complexities of Π and the CECom commitment, respectively, the Lemma
guarantees the following two properties for RobustSim:

– RobustSim outputs a view whose statistical distance from the adversary’s
view is at most 2−(`cecom−`external·log(T (λ))), where, T (λ) is the maximum
number of total CECom commitments by the adversary.

– RobustSim outputs commitment information for every CECom commitment
sent by the adversary with an assurance that the external party B of protocol
Π is not rewound.

3 Statistical Concurrent Non-Malleable Zero-Knowledge

We start by giving an intuition behind the design of our protocol. In [1], Barak
et al. gave a construction of a computational CNMZK argument of knowledge.



The simulation for this protocol was restricted to be only computational due to
the following reason. In their protocol, one of the messages sent by the prover is
a non-malleable commitment to a valid witness. Since the non-malleable com-
mitment is SB, and the simulator, unlike an honest prover, does not use a valid
witness in this non-malleable commitment, the simulated view was only compu-
tationally indistinguishable from the real-world view of a MiM adversary. It will
be quite relevant for us to note that the non-malleable commitment being SB
was crucially used in the proof of concurrent non-malleability of their protocol,
therefore it is not possible to replace the above commitment scheme with a sta-
tistically hiding non-malleable commitment. More specifically, the proof would
begin with the real-world view and through a series of hybrids would move to-
wards the simulated view. In some certain hybrid along the way there would be
introduced PRS rewindings to facilitate simulation. Given such a hybrid that
performs PRS rewindings, it would be difficult to establish that one can ex-
tract a value out of the non-malleable commitment and that the extracted value
is a valid-witness. The difficulty here is in ensuring that the PRS rewindings
would not interfere with the non-malleable commitment on which the NMCom
extractor is run. The idea in their proof instead was to first prove for the real-
world view itself that the value committed in the NMCom commitment is a valid
witness, and then make transitions to hybrids by introducing PRS rewindings.
The point to be noted here is that it was crucial in their proof that the non-
malleable commitment is a statistically binding commitment, so that they could
put forth arguments on the values committed in it. With this, since introducing
PRS rewindings would only bias the distribution of the view output by at most a
negligible amount, their proof boiled down to proving that the value committed
in the NMCom commitment does not adversely change as we move across various
hybrids. Now, since we began with a hybrid where the values committed were
valid witnesses, the values committed in the NMCom commitments after the
PRS rewindings too are valid witnesses by non-malleability (and in particular
statistical binding) of the commitment scheme.

Our idea begins from noticing that statistical binding of the NMCom com-
mitment is crucial in proving extractability of valid witnesses and not important
in simulating the view of the adversary. So the core idea is to somehow ensure
that when we prove the indistinguishability of the simulation, the commitment
scheme is statistically hiding. Instead, when we need to argue that the distri-
bution of the extracted message does not change, then the commitment should
be statistically binding. With this being the crux of our idea, the way we shall
execute it is via what we call ‘mixed non-malleable commitments’. Intuitively, a
mixed non-malleable commitment scheme is associated with two efficiently sam-
plable, computationally indistinguishable distributions, and every commitment
is parameterized by some string. Furthermore, one of the distributions is such
that if the string is uniformly sampled from this distribution then the commit-
ment is SH and CB; on the other hand, a commitment that is parameterized by
a string that is uniformly sampled from the other distribution is SB and CH.
Given such a commitment scheme, our protocol basically is an instantiation of



the BPS protocol except that the NMCom commitment in the BPS protocol is
replaced by a mixed non-malleable commitment. Also, the string that param-
eterizes this commitment computed jointly by both the prover and the verifier
is the outcome of a coin-flipping protocol. Namely, in our mixed non-malleable
commitment scheme, the distribution on the parameter that produces a SH, CB
commitment is the uniform distribution. Hence, the parameter generated via the
coin-flipping protocol is SH and CB, as required. The BPS protocol forms the
Main BPS Phase and the coin-flipping protocol is run in the Coin-flipping
Phase of our protocol.

A traditional coin-flipping protocol would involve the verifier committing to a
random string in the first round, followed by the prover sending another random
string in the clear in the second round, the verifier opening the commitment in
the third round, and finally having the prover’s and the verifier’s strings XOR-
ed as the outcome of the coin-flipping protocol. However, now that we would
also like to be able to cheat and bias the outcome to another (computationally
indistinguishable) distribution (so that the mixed non-malleable commitment
would then be SB), we modify the third round. Namely, instead of the third
round being the verifier opening the commitment by giving both the committed
value and the randomness used, the verifier would only give the committed value
and then give an argument that there exists a randomness that would explain
the commitment to this value. However, we won’t be able to work with just any
argument since we are in the concurrent setting. Furthermore, we also would
like to ensure that when our simulator cheats in the argument to bias the coin-
flipping outcome, the MiM adversary will not get any undue advantage. Thus,
the argument that we use here is a CNMZK argument. In particular, we use the
BPS argument itself. This argument forms the BPSCFP Phase in our protocol.

Furthermore, towards simplifying our proof, we introduce the following slight
modification of the BPS protocol in the ‘Main BPS Phase’. In the original BPS
protocol, the commitment in which the prover commits the valid witness to is
an NMCom commitment; on the other hand, in the ‘Main BPS Phase’, besides
sending the NMCom commitment to the witness, the prover also sends a concur-
rently extractable (CECom) commitment to the same witness. The simplification
we achieve by adding the CECom commitment is that even the extraction of the
witnesses (by the simulator-extractor) can be performed just like an extraction
on any other CECom commitments in the protocol. Since, for simulation, we
anyway need to employ certain techniques for the extraction from the other CE-
Com commitments, we are now able to recycle the same techniques for witness
extractions too, thus letting our focus stay on the other crucial subtleties (which
we shall see as we get to the proofs of security).

We will now give a formal description of the protocol.

3.1 Our sCNMZKAoK Protocol 〈P,V〉
Ingredients.

1. Let CEComsh and CEComsb be SH and SB concurrently-extractable com-
mitment scheme, respectively. Let each of them be of kcecom-slots, where



kcecom ∈ ω(log λ). Let the sender’s randomness space for these commitments
be RandSpacececom.

2. Let Comsh be a SH commitment scheme. Let ksh be its round-complexity,
where ksh is a constant.

3. Let sWIAoK be a statistical WIAoK protocol. Let kswiaok be its round-
complexity, where kswiaok is a constant.

4. Let NMMXCom(·) be our mixed non-malleable commitment scheme. Recall
that it satisfies extractability and is robust w.r.t. 1-round protocols. Let
knmmxcom be its round-complexity, where knmmxcom is O(log(λ)).

5. Let Comnm be the non-malleable commitment scheme (described in Fig. 1).
Recall that it satisfies extractability and is robust w.r.t. 1-round protocols.
Let knmcom be its round-complexity.

In summary, the round complexities of the sub-protocols in our protocol are
as follows: kcecom ∈ ω(log λ), kswiaok, ksh are constants, and knmcom, knmmxcom ∈
O(log(λ)).

Coin-Flipping Phase (CFP).

cfp1 (V → P): Sample rV ← {0, 1}λ, rand ← RandSpacececom and commit to
rV using CEComsh and randomness rand.

cfp2 (P → V): Sample rP ← {0, 1}λ and send rP .
cfp3 (V → P): Send rV .

BPSCFP Phase.

bpscfp1 (P → V): Sample α← {0, 1}λ and commit to α using CEComsb.
bpscfp2 (V → P): Commit to 0λ using Comsh and argue knowledge of a commit-

ment information (i.e., a commitment value and randomness) using sWIAoK.
bpscfp3 (P → V): Open the commitment of Step bpscfp1 to α.
bpscfp4 (V → P): Commit to rand (used as commitment randomness in Step

cfp1) using the NMCom commitment Comnm. In the rest of the paper, we
shall refer to rand as the sub-witness.

bpscfp5 (V → P): Send sWIAoK to argue knowledge of either rand or rcomsh
such that:
1. the value committed to by V with the NMCom commitment at Step

bpscfp4 is rand and rand explains the CECom commitment at Step cfp1
to rV .

2. Randomness rcomsh explains Comsh at Step bpscfp2 being committed to
α.

Let srs = rP ⊕ rV .

Main BPS Phase.

bps1 (V → P): Sample σ ← {0, 1}λ and commit to it using CEComsb.
bps2 (P → V): Commit to 0λ using Comsh and argue knowledge of a commit-

ment information (i.e., a commitment value and randomness) using sWIAoK.



bps3 (V → P): Open the commitment of Step bps1 to σ.

bps4 (P → V): Commit to the witness w using mixed commitment NMMXComsrs.

bps4+ (P → V): Commit to the witness w using CEComsh
6.

bps5 (P → V): Send sWIAoK to argue knowledge of either w, rnm, rcecom or
r′comsh such that:

1. rnm and rcecom explain the NMMXComsrs commitment of Step bps4 and
the CECom commitment of Step bps4+ to w, respectively, and w is such
that RL(x,w) = 1,

2. Randomness r′comsh explains Comsh at Step bps2 being committed to σ.

3.2 Proofs of Security

In this section, we prove that our proposed protocol 〈P,V〉 is a statistical con-
current non-malleable zero-knowledge argument of knowledge. In other words,
we show that there exists a simulator-extractor SE that, for every concurrent
MiM adversary M, outputs a view view that is statistically indistinguishable
from the view viewM(x1, . . . , xmL

, z) ofM in a real execution, and also outputs
valid witnesses y1, . . . , ymR

for all accepting right sessions.

Our simulator-extractor. The simulator-extractor SE runs RobustSim which is
the robust concurrent simulator for a robust concurrent attack. The adversary
of the robust concurrent attack is a procedure I that we describe below. SE will
then output the output of RobustSimI(z). Recall that RobustSim runs a given
adversary that mounts a robust concurrent attack by committing to multiple
CECom commitments, where the adversary also interacts with an external party
B in an arbitrary external protocol. RobustSim then is guaranteed to extract
commitment information from every CECom commitment sent by the adversary
before the completion of its commitment phase, in such a way that the external
party B does not get rewound.

Procedure I(z). I incorporates the MiM adversary M, initiates an execution,
and simulates its view as follows. Let the mL left sessions be ordered with some
arbitrary ordering. Let the mR right sessions be ordered as follows: Consider any
two right sessions, the i-th and the j-th; i ≤ j if and only if the CEComsb commit-
ment at Step bps1 of the i-th session begins earlier to the CEComsb commitment
at Step bps1 of the j-th session.

For every right session: Run the code of the verifier except isolate CEComsh at
Step bps4+ and relay it to external receiver. Let value y′t be received from the
outside (RobustSim) at the end of the CEComsh commitment.

6 In order to make the difference from the BPS protocol more easily noticeable, the
five steps here that are common to the BPS protocol are numbered in sequence from
bps1 through bps5, while this ‘extra’ step is given a distinctive notation, bps4+.



For every left session: When M initiates an `-th new session on the left, I
proceeds as follows.

– Run the coin-flipping phase and the BPSCFP phase honestly. Let srs be the
outcome.

– Isolate CEComsb at Step bps1 and relay it to an external receiver. Let σ′ be
the value received from the outside (RobustSim) at the end of the CEComsb

commitment.
– Then commit to σ′ using Comsh at Step bps2; also, use the same extracted

value as the witness in executing the sWIAoK of Step bps2.
– In Step bps3, letM opens its CEComsb (of Step bps1) to σ. Abort if σ 6= σ′.
– Commit to 0λ using the mixed non-malleable commitment NMMXComsrs in

Step bps4.
– Commit to 0λ using the CEComsh commitment in Step bps4+.
– Use σ′ committed to in Step bps2 as the witness in executing sWIAoK of

Step bps5.

When M halts, I outputs the view of M together with y′1, . . . , y
′
mR

, and
halts.

Statistical simulation. We shall prove that the view output by SE is distributed
statistically close to the real-world view of the MiM adversary M.

Theorem 1. For every PPT adversaryM, {viewM(x1, . . . , xmL
)}x1,...,xmL

∈L ≈s
{view}x1,...,xmL

∈L.

We only provide an intuition to the proof here below. Full proof appears in the
full version of the paper.

Proof sketch. To prove the indistinguishability, we first take note of the ways
in which the view generated by the simulator differs from the real-world view
of the MiM adversary. Basically, the differences are that: for left sessions, the
simulator does not use valid witnesses but tries to get ‘fake’ witnesses via the
robust simulator; and for the right sessions, the simulator tries to extract wit-
nesses via the robust simulator. While we know that using the robust simulator
can incur at most negligible distance, what still remains to be shown is that the
simulator using fake-witnesses for the left sessions also creates at most negligible
distance from the real-view. For this, we simply rely on the statistical properties
of the sub-protocols in which the simulator uses different values; namely, we rely
upon SH of Comsh of Step bps2, sWI property of sWIAoK of Step bps2, SH of
the mixed non-malleable commitment of Step bps4, and sWI of sWIAoK of Step
bps5– the steps at which the simulator uses different values in left sessions. Ex-
cept for SH of the mixed non-malleable commitment of Step bps4, all the above
properties are already guaranteed by the corresponding primitives themselves;
however, on the other hand, to ensure that the mixed non-malleable commit-
ment – parameterized by srs which is the outcome of the coin-flipping protocol
– is SH, we need to ensure that srs is uniformly random with all but negligible
probability. Before we proceed, we thus prove that in the real-world view srs is
uniform in every left session with all but negligible probability.



Claim. In the real-world view viewM(x1, . . . , xmL
), for every left session, srs is

uniformly random with all but negligible probability.

Proof sketch. We begin by outlining the structure of the proof.

1. First, we show that, there exists a PPT algorithm that can extract a value
r′V from CEComsh of Step cfp1 of every left session before Step cfp2 of that
session is reached. Thus, since rP is sent to the adversary after r′V is ex-
tracted, r′V is independent of rP , and since rP is uniformly random, rP ⊕ r′V
is also uniformly random with all but negligible probability.

2. Then, we show that, in every left session, with all but negligible probability,
r′V = rV , where, rV is the value sent by M in Step cfp3.

The above items together imply that srs = rP ⊕ rV is uniformly random, with
all but negligible probability.

We prove the first step above by relying upon the Robust Extraction Lemma.
Basically, the PPT algorithm (mentioned in the first step above) just emulates
honest provers and honest verifiers to M except that it relays the CEComsh

of Step cfp1 of every left session to RobustSim for extraction. We establish the
second step as follows. Recall that a commitment information for r′V of CEComsh

of Step cfp1 in question is extractable as shown for the first step. Furthermore,
from the witness-extractability of the BPS protocol in BPSCFP phase, we can
extract a witness – that we call sub-witness – for rV being committed in the
same CEComsh commitment. Thus, if rV 6= r′V , we break CB of CEComsh.

However, the proof is still not complete. The reason is for an implicit as-
sumption in proving the second step above that the BPS argument given by
the adversary in BPSCFP phase of the left session is sound. To prove this, we
establish the following claim.

Sub-Claim 1 In the real world view, if BPSCFP phase of the `-th left session is
accepted by the prover P`, then the value committed to by M in Comnm at Step
bpscfp4 of the `-th left session is a valid sub-witness.

Proof sketch. Intuitively, Comnm at Step bpscfp4 of the `-th left session contains
a valid sub-witness owing to

computational hiding of CEComsb – to argue that M does not learn α, com-
mitted to by the prover in CEComsb, and use it in its commitment Comsh

and sWIAoK at Step bpscfp2,
knowledge-soundness of sWIAoK in Step bpscfp2– to extract knowledge of com-

mitment information (i.e., commitment value and randomness) for Comsh in
Step bpscfp2 and to verify that the extracted value will not be α,

knowledge-soundness of sWIAoK in Step bpscfp5– to argue that either the value
committed to in Comnm at Step bpscfp4 is a valid sub-witness or to argue
knowledge of a commitment information for Comsh in Step bpscfp2 with com-
mitment value as α,

and finally, computational binding of Comsh at Step bpscfp2 to show the knowl-
edge extracted is not α as a commitment value.



We prove each of the above steps by carefully designing interfaces that launch
robust concurrent attacks and by crucially relying upon the Robust Extraction
Lemma for extraction of commitment information out of these interfaces. ut

With this, we continue with a hybrid argument by moving from the real-
world view to the simulated view. This is facilitated by the already established
facts that the messages where the simulator deviates in its behavior from the
real-world are statistically hiding (in some sense). ut

ut

Witness extractability. We shall prove that the values y′1, . . . , y
′
mR

extracted by
the simulator-extractor SE are valid witnesses for the statements of the corre-
sponding right sessions.

Theorem 2. For every PPT adversary M, the output of the simulator SE(x1,
. . . , xmL

, z) = (view, y1, . . . , ymR
) is such that, ∀i ∈ [mR], (xi, yi) ∈ RL.

We discuss some of the core technical difficulties of the proof together with a
high-level proof structure. Full proof appears in the full version of the paper

Proof sketch. Recall that in our protocol, the prover commits to a valid
witness in NMMXComsrs at Step bps4 and also commits to the same valid witness
in CEComsh at Step bps4+ (accompanied by a sWIAoK later in Step bps5 for
correctness of behavior). Note that both of these commitments are extractable.
However, we cannot in a straight-forward manner employ the proof techniques
of [1] or [17] to prove that the values extracted from these commitments by the
simulator are indeed valid witnesses.

We begin by pointing out the reason why we are not able to simply make
use of the proofs of [1] or [17]. In both [1] and [17], the prover commits to the
witness with a non-malleable commitment. Thus, the commitment is statistically
binding. Their proofs essentially proceed in the following manner: First, prove
that the values committed to in the non-malleable commitments are valid wit-
nesses. Secondly, move to a hybrid where extractions are performed to extract
‘trapdoors’ for cheating in the left sessions and to extract witnesses of the right
sessions. Although cheating by the simulator on the left sessions may adversely
change the values committed by M in the commitments of the right sessions,
one can argue that the values committed to in the commitments of the right
sessions are still valid witnesses owing to non-malleability of the commitment
schemes.

Indeed, the statistically binding NMCom commitments are the reason why
the protocols of [1] and [17] are not statistical CNMZK, but only computation-
ally so. Our approach, to recall, is to use a mixed NMCom commitment which is
parameterized by a string that is output of the coin-flipping phase that precedes
the main argument phase. Thus, in the real-world, as proven earlier for Theo-
rem 1, the parameter is a uniform random string rendering the mixed NMCom
commitment to be SH. (Recall that the commitment being SH was crucial in
proving statistical simulation in Theorem 1). Thus, it is not clear how to solely
rely on the proof techniques of [1, 17] for our proof.



Our proof technique instead is as follows. We begin with the real-world ex-
periment where the outcome of the coin-flipping protocol is a uniform random
string and thus the commitment scheme at Step bps4 is a SH commitment. Then
we start moving towards the hybrid which cheats in right sessions by biasing the
outcome of the coin-flipping protocol to a uniform DDH tuple. The technical
challenge will be the following. Fix any right session. Let Ha and Hb be the two
hybrids in our hybrid sequence such that, the commitment at Step bps4 in Ha is
SH while the same commitment is SB in Hb (due to cheating in the coin-flipping
protocol). Here, we need to establish that in Hb, the committed value in the
commitment at Step bps4 is a valid witness. We establish this through a care-
ful design of hybrids and their sequence. We expand on our techniques and the
whole high-level structure of the proof here below. We shall discuss the further
multiple technical difficulties in the full proof in the full version of the paper.

We begin with a hybrid that is identical to the real-world view. Then we
gradually modify the behavior of the hybrid for the right sessions towards bias-
ing the coin-flipping protocol outcome to a random DDH tuple (from a uniform
random string). Here, we will also prove that the values committed to by the
MiM adversary in the mixed commitment at Step bps4 is a valid witness (note
that, with the outcome of coin-flipping being a random DDH tuple, this commit-
ment scheme is now SB, thus allowing us to put forth arguments on the values
committed in it). Next, we further move to hybrids which also behave differently
in the left sessions by using ‘trapdoors’ (or fake-witnesses) extracted from the
adversary itself (instead of valid witnesses). Here, we argue that such deviation
in the hybrids’ behavior for the left sessions does not adversely change the values
committed to in the mixed NMCom commitments of the right sessions. Finally,
we thereby reach a hybrid that behaves the same as our simulator-extractor,
thus proving that the values extracted by SE are indeed valid witnesses.

Observe that it is easy to prove indistinguishability of hybrids as we change
hybrids’ behavior for the left sessions. The reason is that the left sessions will
still have the outcome of coin-flipping to be uniformly random and thus the cor-
responding mixed commitment is SH. Thus, hybrids using fake-witnesses instead
of the real ones will only introduce negligible statistical distance. However, the
challenging part would be to argue indistinguishability of hybrids as they devi-
ate in their behavior on the right sessions. We expand on the difficulty and our
techniques briefly here below.

In order for hybrids to start cheating in coin-flipping phases of the right
sessions, it is crucial that the hybrids are ordered carefully. Note that, we cannot
at once move to a hybrid which changes the outcome of the coin-flipping phase
due to soundness of the BPS protocol in BPSCFP phase. Thus, we first simulate
this BPS protocol. We do so by extracting a trapdoor from the adversary in
a way similar to [1]. Then, the next hybrid would be ‘free’ to bias the coin-
flipping outcome to a random DDH tuple. However, note that this change is
not statistically indistinguishable but only computationally so. Hence, this may
adversely change the values committed to in the NMCom commitments in the
protocol. However, with a careful sequence of arguments, we will be able to



obtain a reduction to robustness w.r.t. 1-round protocols. Here it will be crucial
to ensure that the other rewindings performed by the hybrids would not rewind
the external NMCom receiver of the reduction.

Let us now consider the first hybrid that biases the coin-flipping outcome of
the i-th right session. By this hybrid, we will already have biased coin-flipping
outcomes of the first i− 1 sessions. We thus need to make sure that this biasing
will also not adversely change the values committed to in the mixed NMCom
commitments at Step bps4 of the first i− 1 right sessions. Here again we rely on
w.r.t. 1-round protocols for these NMCom commitments too.

A major technical difficulty would be the following. Fix any right session.
Consider the first hybrid that biases the coin-flipping outcome of this session.
Note that the previous hybrid had coin-flipping outcome to be a random string
and thus the mixed commitment at Step bps4 of the right session here to be
SH. But in the current hybrid, due to the bias, the commitment scheme is SB.
Here we need to argue that the committed value is a valid witness. As shown
in the full proof, this would entail proving computational binding of a CEComsh

commitment. Here, we are no longer able to rely only upon the Robust Extraction
Lemma to ensure us of successful extractions for the following reason. In Robust
Extraction Lemma, it is essential that the external protocol whose party is not
supposed to be rewound is such that its round complexity is strictly less than
the number of slots of the CECom commitments extracted from. However, in
the current case, the external protocol itself is a CECom commitment and hence
this condition can not be met. We get around this difficulty again with a careful
sequencing of hybrid arguments.

Furthermore, the above technical difficulty arises at another juncture in
the proof of witness extractability. Namely, we encounter a hybrid where coin-
flippings of all right sessions are biased, and in the subsequent hybrid we start
changing the values committed in CEComsh commitments of the left sessions.
Here, we are still able to rely on the robustness of the concurrent extraction as
follows. Although one cannot use the Robust Extraction Lemma for a reduction
to statistical hiding of the entire left CEComsh commitment, we can consider in-
termediate hybrids where, at a time, only one sub-commitment of the CEComsh

commitment is changed. Thus, we are still able to use robustness of the concur-
rent extraction since the sub-protocol in question is only of three rounds (as per
the standard CECom commitment of [24]).

Then, once we ensure that the commitments at Step bps4 of right sessions
contain valid witnesses, we proceed to argue that the values extracted from the
CEComsh commitments are are valid witnesses with the following argument. We,
along the way, show that the adversary cannot have a trapdoor, namely, r′comsh
that explains Comsh at Step bps2 being committed to σ. This implies that, for
every right session, the witness that is extractable from the sWIAoK argument
at Step bps5 of is an opening of the CEComsh commitment (together with the
opening of the NMMXComsrs commitment of Step bps4) to a valid witness.



With this, we finally are at a hybrid that extracts valid witnesses from the
right sessions. Furthermore, this hybrid is identical to our simulator-extractor,
thus proving witness extractability of our protocol 〈P,V〉.

ut
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