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Abstract. Consider a joint distribution (X,A) on a set X ×{0, 1}ℓ. We
show that for any family F of distinguishers f : X × {0, 1}ℓ → {0, 1},
there exists a simulator h : X → {0, 1}ℓ such that
1. no function in F can distinguish (X,A) from (X,h(X)) with advan-

tage ε,
2. h is only O(23ℓε−2) times less efficient than the functions in F .

For the most interesting settings of the parameters (in particular, the
cryptographic case where X has superlogarithmic min-entropy, ε > 0 is
negligible and F consists of circuits of polynomial size), we can make the
simulator h deterministic.
As an illustrative application of our theorem, we give a new security proof
for the leakage-resilient stream-cipher from Eurocrypt’09. Our proof is
simpler and quantitatively much better than the original proof using the
dense model theorem, giving meaningful security guarantees if instanti-
ated with a standard blockcipher like AES.
Subsequent to this work, Chung, Lui and Pass gave an interactive variant
of our main theorem, and used it to investigate weak notions of Zero-
Knowledge. Vadhan and Zheng give a more constructive version of our
theorem using their new uniform min-max theorem.

1 Introduction

Let X be a set and let ℓ > 0 be an integer. We show that for any joint distribution
(X,A) over X × {0, 1}ℓ (where we think of A as a short ℓ-bit auxiliary input to
X), any family F of functions X ×{0, 1}ℓ → {0, 1} (thought of as distinguishers)
and any ε > 0, there exists an efficient simulator h : X → {0, 1}ℓ for the auxiliary
input that fools every distinguisher in F , i.e.,

∀f ∈ F : |E[f(X,A)]− E[f(X,h(X))]| < ε.

Here, “efficient” means that the simulator h is Õ(23ℓε−2) times more complex
than the functions from F (we will formally define “more complex” in Defini-
tion 6). Without loss of generality, we can model the joint distribution (X,A) as
(X, g(X)), where g is some arbitrarily complex and possibly probabilistic func-
tion (where P[g(x) = a] = P[A = a|X = x] for all (x, a) ∈ X × {0, 1}ℓ). Let us
stress that, as g can be arbitrarily complex, one cannot hope to get an efficient
simulator h where (X, g(X)) and (X,h(X)) are statistically close. Yet, one can
still fool all functions in F in the sense that no function from F can distinguish
the distribution (X,A) from (X, g(X)).
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Relation to [25]. Trevisan, Tulsiani and Vadhan [25, Thm. 3.1] prove a concep-
tually similar result, stating that if Z is a set then for any distribution Z over
Z, any family F̃ of functions Z → [0, 1] and any function g̃ : Z → [0, 1], there

exists a simulator h̃ : Z → [0, 1] whose complexity is only O(ε−2) times larger

than the complexity of the functions from F̃ such that

∀f̃ ∈ F̃ : |E[f̃(Z)g̃(Z)]− E[f̃(Z)h̃(Z)]| < ε. (1)

In [25], this result is used to prove that every high-entropy distribution is in-
distinguishable from an efficiently samplable distribution of the same entropy.
Moreover, it is shown that many fundamental results including the Dense Model
Theorem [23,14,21,10,24], Impagliazzo’s hardcore lemma [18] and a version of
Szémeredi’s Regularity Lemma [11] follow from this theorem. The main differ-
ence between (1) and our statement

∀f ∈ F : |E[f(X, g(X))]− E[f(X,h(X))]| < ε (2)

is that our distinguisher f sees not only X , but also the real or fake auxiliary
input g(X) or h(X), whereas in (1), the distinguisher f̃ only seesX . In particular,
the notion of indistinguishability we achieve captures indistinguishability in the
standard cryptographic sense. On the other hand, (1) is more general in the

sense that the range of f̃ , g̃, h̃ can be any real number in [0, 1], whereas our f
has range {0, 1} and g, h have range {0, 1}ℓ.

Nonetheless, it is easy to derive (1) from (2): consider the case of ℓ = 1 bit of
auxiliary input, and only allow families F of distinguishers where each f ∈ F is
of the form f(X, b) = f̂(X)b for some function f̂ : X → [0, 1]. For this restricted
class, the absolute value in (2) becomes

|E[f(X, g(X))]− E[f(X,h(X))| = |E[f̂(X)g(X)]− E[f̂(X)h(X)]| (3)

As f̂ is arbitrary, this restricted class almost captures the distinguishers consid-
ered in (1). The only difference is that the function g̃ has range [0, 1] whereas our
g has range {0, 1}. Yet, note that in (1), we can replace g̃ having range [0, 1] by
a (probabilistic) g with range {0, 1} defined as P[g(x) = 1] = g̃(x), thus, leaving

the expectation E[f̃(X)g̃(X)] = E[f̃(X)g(X)] unchanged.1

In [25], two different proofs for (1) are given. The first proof uses duality of
linear programming in the form of the min-max theorem for two-player zero-sum
games. This proof yields a simulator of complexity O(ε−4 log2(1/ε)) times the
complexity of the functions in F . The second elegant proof uses boosting and
gives a quantitatively much better O(ε−2) complexity.

1 The simulator h̃ from [25] satisfies the additional property |E[h̃(X)]−E[g̃(X)]| = 0.
If this property is needed, we can get it by requiring that the function f(X, b) = b is
in F . Then (2) for this f implies |E[g(X)]− E[h(X)]| < ε. One can make this term
exactly zero by slightly biasing h towards 0 if E[h(X)] > E[g(X)] or 1 otherwise,
slightly increasing the advantage from ε to at most 2ε.



Proof outline. As it was just explained, (1) follows from (2). We do not know
if one can directly prove an implication in the other direction, so we prove (2)
from scratch. Similarly to [25], the core of our proof uses boosting with the same
energy function as the one used in [25].

As a first step, we transform the statement (2) into a “product form” like (1)
where Z = X × {0, 1}ℓ (this results in a loss of a factor of 2ℓ in the advantage

ε; in addition, our distinguishers f̂ will have range [−1, 1] instead of [0, 1]). We

then prove that (1) holds for some simulator h̃ : Z → [0, 1] of complexity ε−2

relative to F . Unfortunately, we cannot use the result from [25] in a black-box

way at this point as we need the simulator h̃ : Z → [0, 1] to define a probability

distribution in the sense that h̃(x, b) ≥ 0 for all (x, b) and
∑

b∈{0,1}ℓ

h̃(x, b) = 1 for

all x. Ensuring these conditions is the most delicate part of the proof. Finally,
we show that the simulator h defined via P[h(x) = b] = h̃(x, b) satisfies (2). Note

that for h to be well defined, we need h̃ to specify a probability distribution as
outlined above.

Efficiency of h. Our simulator h is efficient in the sense that it is only O(23ℓε−2)
times more complex than the functions in F . We do not know how tight this
bounds is, but one can prove a lower bound of max{2ℓ, ε−1} under plausible
assumptions. The dependency on 2ℓ is necessary under exponential hardness
assumptions for one-way functions.2 A dependency on ε−1 is also necessary.
Indeed, Trevisan et al. [25, Rem. 1.6] show that such a dependency is necessary

for the simulator h̃ in (1). Since (1) is implied by (2) with h and h̃ having exactly
the same complexity, the ε−1 lower bound also applies to our h.

1.1 Subsequent work

The original motivation for this work was to give simpler and quantitatively
better proofs for leakage-resilient cryptosystems as we will discuss in Section 4.
Our main theorem has subsequently been derived via two different routes.

First, Chung, Lui and Pass [4] investigate weak notions of zero-knowledge. On
route, they derive an “interactive” version of our main theorem. In Section 4,
we will show how to establish one of their results (with better quantitative
bounds), showing that every interactive proof system satisfies a weak notion of
zero-knowledge.

Second, Vadhan and Zheng [26, Thm.3.1-3.2] recently proved a version of von
Neumann’s min-max theorem for two-player zero sum games that does not only
guarantee existence of an optimal strategy for the second player, but also con-
structs a nearly optimal strategy assuming knowledge of several best responses of
the second player to strategies of the first player, and provide many applications

2 More precisely, assume there exists a one-way function where inverting becomes 2ℓ

times easier given ℓ bits of leakage. It is e.g. believed that the AES block-cipher gives
such a function as (K,X) → (AES(K,X), X).



of this theorem. Their argument is based on relative entropy KL projections
and a learning technique known as weight updates and resembles the the proof
of the Uniform Hardcore Lemma by Barak, Hardt and Kale [2] (see also [16]
for the original application of this method). They derive our main theorem [26,
Thm.6.8], but with incomparable bounds. Concretely, to fool circuits of size t,
their simulator runs in time Õ(t ·2ℓ/ε2+2ℓ/ε4) compared to ours whose run-time
is Õ(t · 23ℓ/ε2). In particular, their bounds are better whenever 1/ε2 ≤ t · 22ℓ.
The additive 2ℓ/ε4 term in their running time appears due to the sophisticated
iterative“weight update” procedure, whereas our simulator simply consists of a
weighted sum of the evaluation of Õ(23ℓ/ε2) circuits from the family we want to
fool (here, circuits of size t).

1.2 More applications

Apart from reproving one of [4]’s results on weak zero-knowledge mentioned
above, we give two more applications of our main theorem in Section 4:

Chain Rules for Computational Entropy. Gentry and Wichs [13] show that
black-box reductions cannot be used to prove the security of any succinct non-
interactive argument from any falsifiable cryptographic assumption. A key tech-
nical lemma used in their proof ([13, Lem. 3.1]) states that if two distributions X

and X̃ over X are computationally indistinguishable, then for any joint distribu-
tion (X,A) over X ×{0, 1}ℓ (here, A is a short ℓ-bit auxiliary input) there exists

a joint distribution (X̃, Ã) such that (X,A) and (X̃, Ã) are computationally in-
distinguishable. Our theorem immediately implies the stronger statement that
not only such an (X̃, Ã) exists, but in fact, it is efficiently samplable, i.e., there

exists an efficient simulator h : X → {0, 1}ℓ such that (X̃, h(X̃)) is indistinguish-

able from (X̃, Ã) and thus from (X,A). Reyzin [22, Thm.2] observed that the
result of Gentry and Wichs implies a chain rule for conditional “relaxed” HILL
entropy. We give a short and simple proof of this chain rule in Proposition 2 of
this paper. We then show in Corollary 1 how to deduce a chain rule for (regular)
HILL entropy from Proposition 2 using the simple fact (Lemma 1) that short
(i.e., logarithmic in the size of the distinguishers) computationally indistinguish-
able random variables must already be statistically close. Chain rules for HILL
entropy have found several applications in cryptography [10,21,7,12]. The chain
rule that we get in Corollary 1 is the first one that does not suffer from a sig-
nificant loss in the distinguishing advantage (we only lose a constant factor of
4). Unlike the case of relaxed HILL-entropy, here we only prove a chain rule for
the ”non-conditional” case, which is a necessary restriction given a recent coun-
terexample to the (conditional) HILL chain rule by Krenn et al. [19]. We will
provide more details on this negative result after the statement of Corallary 1.

Leakage Resilient Cryptography. The original motivation for this work is to sim-
plify the security proofs of leakage-resilient [10,20,7] and other cryptosystems [12]
whose security proofs rely on chain rules for computational entropy (as discussed



in the previous paragraph). The main idea is to replace the chain rules with
simulation-based arguments. In a nutshell, instead of arguing that a variable
X must have high (pseudo)entropy in the presence of a short leakage A, one
could simply use the fact that the leakage can be efficiently simulated. This not
only implies that X has high (pseudo)entropy given the fake leakage h(X), but
if X is pseudorandom, it also implies that (X,h(X)) is indistinguishable from
(U, h(U)) for a uniform random variable U on the same set as X . In the security
proofs, we would now replace (X,h(X)) with (U, h(U)) and will continue with
a uniformly random intermediate variable U . In contrast, the approach based
on chain rules only tells us that we can replace X with some random variable
Y that has high min-entropy given A. This is not only much complex to work
with, but it often gives weaker quantitative bounds. In particular, in Section 4.3
we revisit the security proof of the leakage-resilient stream-cipher from [20] for
which we can now give a conceptually simpler and quantitatively better security
proof.

2 Notation and Basic Definitions

2.1 Notation

We use calligraphic letters such as X to denote sets, the corresponding capital
letters X to denote random variables on these sets (equivalently, probability
distributions) and lower-case letters (e.g., x) for values of the corresponding
random variables. Moreover, x ← X means that x is sampled according to the
distribution X and x ← X means that x is sampled uniformly at random from
X . Let Un denote the random variable with uniform distribution on {0, 1}n.
We denote by ∆(X ;Y ) =

1

2

∑

x∈X

|P[X = x] − P[Y = x]| the statistical distance

between X and Y . For ε > 0, s ∈ N, we use X ∼ Y to denote that X and Y
have the same distribution, X ∼ε Y to denote that their statistical distance is
less than ε and X ∼ε,s Y to denote that no circuit of size s can distinguish X
from Y with advantage greater than ε. Note that X ∼ε,∞ Y ⇐⇒ X ∼ε Y and
X ∼0 Y ⇐⇒ X ∼ Y .

Finally, if h : X → {0, 1}ℓ is a probabilistic (randomized) function then we
will use [h] to denote the random coins used by h (a notation that will be used
in various probabilities and expectations).

2.2 Entropy Measures

A random variable X has min-entropy k, if no (computationally unbounded)
adversary can predict the outcome of X with probability greater than 2−k.

Definition 1. (Min-Entropy H∞) A random variable X has min-entropy k,
denoted H∞(X) ≥ k, if max

x
P[X = x] ≤ 2−k.



Dodis et al. [8] gave a notion of average-case min-entropy defined such that X
has average-case min-entropy k conditioned on Z if the probability of the best
adversary in predicting X given Z is 2−k.

Definition 2. (Average min-Entropy [8] H̃∞) Consider a joint distribution
(X,Z), then the average min-entropy of X conditioned on Z is

H̃∞(X |Z) = − log( E
z←Z

[
max
x

P[X = x|Z = z]
]
) = − log( E

z←Z

[
2−H∞(X|Z=z)

]
)

HILL-entropy is the computational analogue of min-entropy. A random variable
X has HILL-entropy k if there exists a random variable Y having min-entropy
k that is indistinguishable from X . HILL-entropy is further quantified by two
parameters ε, s specifying this indistinguishability quantitatively.

Definition 3. (HILL-Entropy [15] HHILL) X has HILL entropy k, denoted
by H

HILL
ε,s (X) ≥ k, if

H
HILL

ε,s (X) ≥ k ⇐⇒ ∃Y : H∞(Y ) ≥ k and X ∼ε,s Y

Conditional HILL-entropy has been defined by Hsiao, Lu and Reyzin [17] as
follows.

Definition 4. (Conditional HILL-Entropy [17]) X has conditional HILL
entropy k (conditioned on Z), denoted HHILL

ε,s (X |Z) ≥ k, if

H
HILL

ε,s (X |Z) ≥ k ⇐⇒ ∃(Y, Z) : H̃∞(Y |Z) ≥ k and (X,Z) ∼ε,s (Y, Z)

Note that in the definition above, the marginal distribution on the conditional
part Z is the same in both the real distribution (X,Z) and the indistinguishable
distribution (Y, Z). A “relaxed” notion of conditional HILL used implicitly in
[13] and made explicit in [22] drops this requirement.

Definition 5. (Relaxed Conditional HILL-Entropy [13,22]) X has re-
laxed conditional HILL entropy k, denoted Hrlx-HILL

ε,s (X |Z) ≥ k, if

H
rlx-HILL

ε,s (X |Z) ≥ k ⇐⇒ ∃(Y,W ) : H̃∞(Y |W ) ≥ k and (X,Z) ∼ε,s (Y,W )

3 The main theorem

Definition 6. (Complexity of a function) Let A and B be sets and let G be
a family of functions h : A → B. A function h has complexity C relative to
G if it can be computed by an oracle-aided circuit of size poly(C log |A|) with C
oracle gates where each oracle gate is instantiated with a function from G.

Theorem 1. (Main) Let ℓ ∈ N be fixed, let ε > 0 and let X be any set. Con-
sider a distribution X over X and any (possibly probabilistic and not necessarily



efficient) function g : X → {0, 1}ℓ. Let F be a family of deterministic (cf. re-
mark below) distinguishers f : X ×{0, 1}ℓ → {0, 1}. There exists a (probabilistic)
simulator h : X → {0, 1}ℓ with complexity3

O(23ℓε−2 log2(ε−1))

relative to F which ε-fools every distinguisher in F , i.e.

∀f ∈ F :

∣∣∣∣ E
x←X,[g]

[f(x, g(x))]− E
x←X,[h]

[f(x, h(x))]

∣∣∣∣ < ε, (4)

Moreover, if
H∞(X) > 2 + log log |F|+ 2 log(1/ε) (5)

then there exists a deterministic h with this property.

Remark 1 (Closed and Probabilistic F). In the proof of Theorem 1 we as-
sume that the class F of distinguishers is closed under complement, i.e., if f ∈ F
then also 1−f ∈ F . This is without loss of generality, as even if we are interested
in the advantage of a class F that is not closed, we can simply apply the theorem
for F ′ = F ∪ (1 − F), where (1 − F) = {1 − f : f ∈ F}. Note that if h has
complexity t relative to F ′, it has the same complexity relative to F . We also
assume that all functions f ∈ F are deterministic. If we are interested in a class
F of randomized functions, we can simply apply the theorem for the larger class
of deterministic functions F ′′ consisting of all pairs (f, r) where f ∈ F and r is a
choice of randomness for f . This is almost without loss of generality, except that
the requirement in eq.(5) on the min-entropy of X becomes slightly stronger
as log log |F ′′| = log log(|F|2ρ) where ρ is an upper bound on the number of
random coins used by any f ∈ F .

4 Applications

4.1 Zero-Knowledge

Chung, Lui and Pass [4] consider the following relaxed notion of zero-knowledge

Definition 7 (distributional (T, t, ε)-zero-knowledge). Let (P ,V) be an in-
teractive proof system for a language L. We say that (P ,V) is distributional
(T, t, ε)-zero-knowledge (where T, t, ε are all functions of n) if for every n ∈ N,
every joint distributions (Xn, Yn, Zn) over (L ∩ {0, 1}n)× {0, 1}∗× {0, 1}∗, and
every t-size adversary V∗, there exists a T -size simulator S such that

(Xn, Zn, outV∗ [P(Xn, Yn)↔ V∗(Xn, Zn)]) ∼ε,t (Xn, Zn, S(Xn, Zn))

where outV∗ [P(Xn, Yn) ↔ V∗(Xn, Zn)] denotes the output of V∗(Xn, Zn) after
interacting with P(Xn, Yn).

3 If we model h as a Turing machine (and not a circuit) and consider the expected

complexity of h, then we can get a slightly better O(23ℓε−2) bound (i.e. without the
log2(ε−1) term).



If L in an NP language, then in the definition above, Y would be a witness
for X ∈ L. As a corollary of their main theorem, [4] show that every proof
system satisfies this relaxed notion of zero-knowledge where the running time T
of the simulator is polynomial in t, ε and 2ℓ. We can derive their Corollary from
Theorem 1 with better quantitative bounds for most ranges of parameters than
[4]: we get Õ(t23ℓε−2) vs. Õ(t32ℓε−6), which is better whenever t/ε2 ≥ 2ℓ.

Proposition 1. Let (P ,V) be an interactive proof system for a language L, and
suppose that the total length of the messages sent by P is ℓ = ℓ(n) (on common
inputs X of length n). Then for any t = t(n) ≥ Ω(n) and ε = ε(n), (P ,V) is
distributional (T, t, ε)-zero-knowledge, where

T = O(t23ℓε−2 log2(ε−1))

Proof. Let M ∈ {0, 1}ℓ denote the messages send by P(Xn, Yn) when talking to
V∗(Xn, Zn). By Theorem 1 (identifying F from the theorem with circuits of size
t) there exists a simulator h of size O(t · 23ℓε−2 log2(ε−1)) s.t.

(Xn, Zn,M) ∼ε,2t (Xn, Zn, h(Xn, Zn)) (6)

Let S(Xn, Zn) be defined as follows, first compute M ′ = h(Xn, Zn) (with h as
above), and then compute out∗V [M

′ ↔ V∗(Xn, Zn)]. We claim that

(Xn, Zn, outV∗ [P(Xn, Yn)↔ V∗(Xn, Zn)]) ∼ε,t (Xn, Zn, S(Xn, Zn)) (7)

To see this, note that from any distinguisher D of size t that distinguishes the
distributions in (7) with advantage δ > ε, we get a distinguisher D′ of size 2t
that distinguishes the distributions in (6) with the same advantage by defining
D′ as D′(Xn, Zn, M̃) = D(Xn, Zn, outV∗ [M̃ ↔ V∗(Xn, Zn)]). ⊓⊔

4.2 Chain Rules for (Conditional) Pseudoentropy

The following proposition is a chain rule for relaxed conditional HILL entropy.
Such a chain rule for the non-conditional case is implicit in the work of Gentry
and Wichs [13], and made explicit and generalized to the conditional case by
Reyzin [22].

Proposition 2. ([13,22]) Any joint distribution (X,Y,A) ∈ X × Y × {0, 1}ℓ
satisfies4

H
rlx-HILL

ε,s (X |Y ) ≥ k ⇒ H
rlx-HILL

2ε,ŝ (X |Y,A) ≥ k−ℓ where ŝ = Ω

(
s · ε2

23ℓ log2(1/ε)

)

4 Using the recent bound from [26] discussed in Section 1.1, we can get ŝ =

Ω
(
s · ε2ℓ

2ℓ
+ ℓ2 log2(1/ε)

ε4

)



Proof. Hrlx-HILL
ε,s (X |Y ) ≥ k means that there exists a random variable (Z,W )

such that H∞(Z|W ) ≥ k and (X,Y ) ∼ε,s (Z,W ). For any ε̂, ŝ, by Theorem 1,

there exists a simulator h of size sh = O
(
ŝ · 2

3ℓ log2(1/ε̂)
ε̂2

)
such that (we explain

the second step below)

(X,Y,A) ∼ε̂,ŝ (X,Y, h(X,Y )) ∼ε,s−sh (Z,W, h(Z,W ))

The second step follows from (X,Y ) ∼ε,s (Z,W ) and the fact that h has com-
plexity sh. Using the triangle inequality for computational indistinguishability5

we get
(X,Y,A) ∼ε̂+ε,min(ŝ,s−sh) (Z,W, h(Z,W ))

To simplify this expression, we set ε̂ := ε and ŝ := Θ(sε2/23ℓ log2(1/ε)), then
sh = O(s), and choosing the hidden constant in the Θ such that sh ≤ s/2 (and
thus ŝ ≤ s− sh = s/2), the above equation becomes

(X,Y,A) ∼2ε,ŝ (Z,W, h(Z,W )) (8)

Using the chain rule for average case min-entropy in the first, and H∞(Z|W ) ≥ k
in the second step below we get

H̃∞(Z|W,h(Z,W )) ≥ H̃∞(Z|W )− H0(h(Z,W )) ≥ k − ℓ . (9)

Now equations (8) and (9) imply Hrlx-HILL

2ε,ŝ (X |Y,A) = k − ℓ as claimed. ⊓⊔

By the following lemma, conditional relaxed HILL implies conditional HILL if
the conditional part is short (at most logarithmic in the size of the distinguishers
considered.)

Lemma 1. For a joint random variable (X,A) over X ×{0, 1}ℓ and s = Ω(ℓ2ℓ)
(more concretely, s should be large enough to implement a lookup table for a
function {0, 1}ℓ → {0, 1}) conditional relaxed HILL implies standard HILL en-
tropy

H
rlx-HILL

ε,s (X |A) ≥ k ⇒ H
HILL

2ε,s (X |A) ≥ k

Proof. Hrlx-HILL
ε,s (X |A) ≥ k means that there exist (Z,W ) where H̃∞(Z|W ) ≥ k

and
(X,A) ∼ε,s (Z,W ) (10)

We claim that if s = Ω(ℓ2ℓ), then (10) implies that W ∼ε A. To see this,
assume the contrary, i.e., that W and A are not ε-close. There exists then a
computationally unbounded distinguisher D where

|P[D(W ) = 1]− P[D(A) = 1]| > ε.

5 which states that for any random variables α, β, γ we have

α ∼ε1,s1 β & β ∼ε2,s2 γ ⇒ α ∼ε1+ε2,min(s1,s2) γ



Without loss of generality, we can assume that D is deterministic and thus,
implement D by a circuit of size Θ(ℓ2ℓ) via a lookup table with 2ℓ entries (where
the ith entry is D(i).) Clearly, D can also distinguish (X,A) from (Z,W ) with
advantage greater than ε by simply ignoring the first part of the input, thus,
contradicting (10). As A ∼ε W , we claim that there exist a distribution (Z,A)
such that

(Z,W ) ∼ε (Z,A). (11)

This distribution (Z,A) can be sampled by first sampling (Z,W ) and then out-
putting (Z, α(W )) where α is a function that is the identity with probability at
least 1 − ε (over the choice of W ), i.e., α(w) = w and with probability at most
ε, it changes W so that it matches A. The latter is possible since A ∼ε W .

Using the triangle inequality for computational indistinguishability (cf. the
proof of Proposition 2) we get with (10) and (11)

(X,A) ∼2ε,s (Z,A) (12)

As H̃∞(Z|W ) ≥ k (for α as defined above)

H̃∞(Z|W ) ≥ k ⇒ H̃∞(Z|α(W )) ≥ k ⇒ H̃∞(Z|A) ≥ k (13)

The first implication above holds as applying a function on the conditioned part
cannot decrease the min-entropy. The second holds as (Z,A) ∼ (Z, α(W )). This
concludes the proof as (12) and (13) imply that HHILL

2ε,s (X |A) ≥ k. ⊓⊔

As a corollary of Proposition 1 and Lemma 1, we get a chain rule for (non-
conditional) HILL entropy. Such a chain rule has been shown by [10] and follows
from the more general Dense Model Theorem (published at the same conference)
of Reingold et al. [21].

Corollary 1. For any distribution (X,A) ∈ X × {0, 1}ℓ and ŝ = Ω
(

s·ε2

23ℓ log2(ℓ)

)

H
HILL

ε,s (X) ≥ k ⇒ H
rlx-HILL

2ε,ŝ (X |A) ≥ k − ℓ ⇒ H
HILL

4ε,ŝ (X |A) ≥ k − ℓ

Note that unlike the chain rule for relaxed HILL given in Proposition 2, the chain
rule for (standard) HILL given by the corollary above requires that we start
with some non-conditional variable X . It would be preferable to have a chain
rule for the conditional case, i.e., and expression of the form HHILL

ε,s (X |Y ) = k ⇒
HHILL

ε′,s′(X |Y,A) = k − ℓ for some ε′ = ε · p(2ℓ), s′ = s/q(2ℓ, ε−1) (for polynomial
functions p(.), q(.)), but as recently shown by Krenn et al. [19], such a chain rule
does not hold (all we know is that such a rule holds if we also allow the security
to degrade exponentially in the length |Y | of the conditional part.)

4.3 Leakage-Resilient Cryptography

We now discuss how Theorem 1 can be used to simplify and quantitatively im-
prove the security proofs for leakage-resilient cryptosystems. These proofs cur-
rently rely on chain rules for HILL entropy given in Corollary 1. As an illustrative



example, we will reprove the security of the leakage-resilient stream-cipher based
on any weak pseudorandom function from Eurocrypt’09 [20], but with much bet-
ter bounds than the original proof.

For brevity, in this section we often write Bi to denote a sequence B1, . . . , Bi

of values. Moreover, A‖B ∈ {0, 1}a+b denotes the concatenation of the strings
A ∈ {0, 1}a and B ∈ {0, 1}b.

A function F : {0, 1}k × {0, 1}n → {0, 1}m is an (ε, s, q)-secure weak PRF
if its outputs on q random inputs look random to any size s distinguisher, i.e.,
for all D of size s

∣∣∣∣ P
K,Xq

[D(Xq,F(K,X1), . . . ,F(K,Xq) = 1]− P
Xq,Rq

[D(Xq, Rq) = 1

∣∣∣∣ ≤ ε,

where the probability is over the choice of the random Xi ← {0, 1}n, the choice
of a random key K ← {0, 1}k and random Ri ← {0, 1}m conditioned on Ri = Rj

if Xi = Xj for some j < i.

A stream-cipher SC : {0, 1}k → {0, 1}k × {0, 1}n is a function that, when
initialized with a secret initial state S0 ∈ {0, 1}k, produces a sequence of output
blocks X1, X2, . . . recursively computed by

(Si, Xi) := SC(Si−1)

We say that SC is (ε, s, q)-secure if for all 1 ≤ i ≤ q, no distinguisher of size s can
distinguish Xi from a uniformly random Un ← {0, 1}n with advantage greater
than ε given X1, . . . , Xi−1 (here, the probability is over the choice of the initial
random key S0)

6, i.e.,

∣∣∣∣P
S0

[D(X i−1, Xi) = 1]− P
S0,Un

[D(X i−1, Un]

∣∣∣∣ ≤ ε

A leakage-resilient stream-cipher is (ε, s, q, ℓ)-secure if it is (ε, s, q)-secure
as just defined, but where the distinguisher in the jth round not only getsXj , but
also ℓ bits of arbitrary adaptively chosen leakage about the secret state accessed
during this round. More precisely, before (Sj , Xj) := SC(Sj−1) is computed, the
distinguisher can choose any leakage function fj with range {0, 1}ℓ, and then

not only get Xj , but also Λj := fj(Ŝj−1), where Ŝj−1 denotes the part of the
secret state that was modified (i.e., read and/or overwritten) in the computation
SC(Sj−1).

Figure 1 illustrates the construction of a leakage-resilient stream cipher SCF

from any weak PRF F : {0, 1}k × {0, 1}n → {0, 1}k+n from [20]. The initial
state is S0 = {K0,K1, X0}. Moreover, in the ith round (starting with round
0), one computes Ki+2‖Xi+1 := F(Ki, Xi) and outputs Xi+1. The state after

6 A more standard notion would require X1, . . . , Xq to be indistinguishable from ran-
dom; this notion is implied by the notion we use by a standard hybrid argument
losing a multiplicative factor of q in the distinguishing advantage.



this round is (Ki+1,Ki+2, Xi+1).
7 In this section we will sketch a proof of the

following security bound on SC
F as a leakage-resilient stream cipher in terms of

the security of F as a weak PRF.

Lemma 2. If F is a (εF, sF, 2)-secure weak PRF then SC
F is a (ε′, s′, q, ℓ)-secure

leakage resilient stream cipher where

ε′ = 4q
√
εF2ℓ s′ = Θ(1) · sFε

′2

23ℓ

The bound above is quantitatively much better than the one in [20]. Setting

the leakage bound ℓ = log ε−1
F

/6 as in [20], we get (for small q) ε′ ≈ ε
5/12
F

,

which is by over a power of 5 better than the ε
1/13
F

from [20], and the bound

on s′ ≈ sFε
4/3
F

improves by a factor of ε
5/6
F

(from sFε
13/6
F

in [20] to sFε
8/6
F

here).
This improvement makes the bound meaningful if instantiated with a standard
block-cipher like AES which has a keyspace of 256 bits, making the assumption
that it provides sF/εF ≈ 2256 security.8

Besides our main Theorem 1, we need another technical result which states
that if F is a weak PRF secure against two queries, then its output on a sin-
gle random query is pseudorandom, even if one is given some short auxiliary
information about the uniform key K. The security of weak PRFs with non-
uniform keys has first been proven in [20], but we will use a more recent and
elegant bound from [1]. As a corollary of [1, Thm.3.7 in eprint version], we get
that for any (εF, sF, 2)-secure weak PRF F : {0, 1}k×{0, 1}n → {0, 1}m, uniform
and independent key and input K ∼ Uk, X ∼ Un and any (arbitrarily complex)
function g : {0, 1}k → {0, 1}ℓ, one has9

(X,F(K,X), g(K)) ∼ε̂,sF/2 (X,Um, g(K)) where ε̂ = εF+
√
εF2ℓ+2−n ≈

√
εF2ℓ

(14)
Generalizing the notation of ∼ε,s from variables to interactive distinguishers,
given two (potentially stateful) oracles G,G′, we write G ∼ε,s G

′ to denote that
no oracle-aided adversary A of size s can distinguish G from G′, i.e.,

G ∼ε,s G
′ ⇐⇒ ∀A, |A| ≤ s : |P[AG → 1]− P[A

G′ → 1]| ≤ ε.

Proof (of Lemma 2 (Sketch)). We define an oracle Greal
0 that models the stan-

dard attack on the leakage-resilient stream cipher. That is, Greal
0 samples a

random initial state S0. When interacting with an adversary AGreal
0 , the oracle

7 Note that Xi is not explicitly given as input to fi even though the computation
depends on Xi. The reason is that the adversary can choose fi adaptively after
seeing Xi, so Xi can be hard-coded it into fi.

8 We just need security against two random queries, so the well known non-uniform
upper bounds on the security of block-ciphers of De, Trevisan and Tulsiani [6,5] do
not seem to contradict such an assumption even in the non-uniform setting.

9 The theorem implies a stronger statement where one only requires that K has k− ℓ

bits average-case min-entropy (which is implied by having K uniform and leaking ℓ

bits), we state this weaker statement as it is sufficient for our application.



Greal
0 expects as input adaptively chosen leakage functions f1, f2, . . . , fq−1. On

input fi, it computes the next output block (Xi,Ki+1) := SC(Ki−1, Xi−1) and
the leakage Λi = fi(Ki−1). It forwards Xi, Λi to A and deletes everything except
the state Si = {Xi,Ki,Ki+1}. After round q − 1, Greal

0 computes and forwards
Xq (i.e., the next output block to be computed) to A. The game Grand

0 is defined
in the same way, but the final block Xq is replaced with a uniformly random Un.

To prove that SCF is an (ε′, s′, ℓ, q)-secure leakage-resilient stream cipher, we
need to show that

Greal
0 ∼ε′,s′ G

rand
0 , (15)

for ε′, s′ as in the statement of the lemma.

Defining games Greal
i and Grand

i for 1 ≤ i ≤ q − 1. We define a series of
games Greal

1 , . . . , Greal
q−1 where Greal

i+1 is derived from Greal
i by replacing Xi,Ki+1

with uniformly random values X̃i, K̃i+1 and the leakage Λi with simulated fake
leakage Λ̃i (the details are provided below). Games Grand

i will be defined exactly
as Greal

i except that (similarly to the case i = 0), the last block Xq is replaced
with a uniformly random value.

For every i, 1 ≤ i ≤ q− 1, the variables K̃i, X̃i as defined by the oracles real-
izing the games Grand

j and Greal
j where j ≥ i will satisfy the following properties

(as the initial values (X0,K0,K1) never get replaced, for notational convenience

we define (X̃0, K̃0, K̃1)
def
= (X0,K0,K1))

i. K̃i, X̃i are uniformly random.
ii. Right before the (i − 1)th round (i.e. the round where the oracle computes

Xi‖Ki+1 := F(X̃i−1, K̃i−1)), the oracle has leaked no information about
K̃i−1 except for the ℓ bits fake leakage Λ̃i.

iii. Right before the (i − 1)th round K̃i−1 and X̃i−1 are independent given
everything the oracle did output so far.

The first two properties above will follow from the definition of the games.
The third point follows using Lemma 4 from [9], we will not discuss this here
in detail, but only mention that the reason for the alternating structure of the
cipher as illustrated in Figure 1, with an upper layer computing K0,K2, . . . and
the lower layer computing K1,K3, . . ., is to achieve this independence.

We now describe how the oracleGreal
i+1 is derived from Greal

i . For concreteness,

we set i = 2. In the third step, Greal
2 computes (X3,K4) := F(K̃2, X̃2), Λ3 =

f3(K̃2) and forwards X3, Λ3 to A. The state stored after this step is S3 =

{X3, K̃3,K4}. Let V2
def
= {X̃2, Λ̃2} be the view (i.e. all the outputs she got from

her oracle) of the adversary A after the second round.

Defining an intermediate oracle. We now define an oracle Greal
2/3 (which will be

in-between Greal
2 and Greal

3 ) derived from Greal
2 by replacing Λ3 = f3(K̃2) with

fake leakage Λ̃3 computed as follows: let h(·) be a simulator for the leakage
Λ̃3 := f3(K̃2) such that (for ε̂, ŝ to be defined)

(Z, h(Z)) ∼ε̂,ŝ (Z, Λ̃3) where Z = {V2, X3,K4} (16)



By Theorem 1, there exists such a simulator of size sh
def
= O(ŝ23ℓ/ε̂2). Note that

h not only gets the pseudorandom output X3,K4 whose computation has leaked
bits, but also the view V2. The reason for the latter is that we need to fool an
adversary who learned V2. Equation (16) then yields

Greal
2 ∼ε̂,ŝ−s0 Greal

2/3 , (17)

where s0 is the size of a circuit required to implement the real game Greal
0 . The

reason we loose s0 in the circuit size here is that in a reduction where we use a
distinguisher for Greal

2 and Greal
2/3 to distinguish (Z, h(Z)) and (Z, Λ̃3) we must

still compute the remaining q − 4 rounds, and s0 is an upper bound on the size
of this computation.

The game Greal
3 is derived from Greal

2/3 by replacing the values X3‖K4 :=

F(K̃2, X̃2) with uniformly random X̃3‖K̃4 right after they have been computed
(let us stress that also the fake leakage that is computed as in (16) now uses
these random values, i.e., Z = {V2, X̃3, K̃4}).

Proving indistinguishability. We claim that the games are indistinguishable with
parameters

Greal
2/3 ∼√εF2ℓ,sF/2−sh−s0

Greal
3 (18)

Recall that in Greal
2/3 , we compute X3‖K4 := F(K̃2, X̃2) where by i. X̃2, K̃2 are

uniformly random, by ii. only ℓ bits of K̃2 have leaked and iii. X̃2 and K̃2 are
independent. Using these properties, equation (14) implies that the outputs are

roughly (
√

εF2ℓ, sF/2) pseudorandom, i.e.,

(X̃2, X3‖K4, Λ̃1) ∼√εF2ℓ,sF/2
(X̃2, X̃3‖K̃4, Λ̃1), (19)

from which we derive (18). Note the loss of sh in circuit size in equation (18) due
to the fact that given a distinguisher for Greal

2/3 and Greal
3 , we must recompute

the fake leakage given only distributions as in (19).
We will assume that s0 ≤ ŝ/2, i.e., the real experiment is at most half as

complex as the size of the adversaries we will consider (the setting where this is
not the case is not very interesting anyway.) Then ŝ− s0 ≥ ŝ/2.

Up to this point, we have not yet defined what ε̂ and ŝ are, so we set them
to

ε̂
def
=
√
εF2ℓ and ŝ

def
= Θ(1)

sFε̂
2

23ℓ
then sF = 8 · sh = Θ(1)

ŝ23ℓ

ε̂2
.

With (17) and (18), we then get Greal
2 ∼2ε̂,ŝ/2 Greal

3 . The same proof works for
any 1 ≤ i ≤ q − 1, i.e., we have

Greal
i ∼2ε̂,ŝ/2 Greal

i+1 , Grand
i ∼2ε̂,ŝ/2 Grand

i+1 .

Moreover, using i.-iii. with (14),

Greal
q−1 ∼2ε̂,ŝ/2 Grand

q−1 .



Using the triangle inequality 2q times, the two equations above yield

Greal
0 ∼4qε̂,ŝ/2 Grand

0 ,

which which completes the proof of the lemma.

K0 F F

X0 K1 F F
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A A A A A

X1 X2 X3 X4
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K3

K4

X0

X1

X2

X3

f1 f1(K0) f2 f2(K1) f3 f3(K2) f4 f4(K3)

Fig. 1. Leakage resilient stream-cipher SC
F from a any weak pseudorandom function

F. The regular evaluation is shown in black, the attack related part is shown in gray
with dashed lines. The output of the cipher is X0, X1, . . ..
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A Proof of Theorem 1

We will prove Theorem 1 not for the family F directly, but for a family F̂ which
for every f ∈ F contains the function f̂ : X × {0, 1}ℓ → [−1, 1] defined as

f̂(x, b) = f(x, b)−wf(x) where wf (x) = E
b←{0,1}ℓ

[f(x, b)] = 2−ℓ
∑

b∈{0,1}ℓ

f(x, b)

http://www.cs.bu.edu/~reyzin/papers/entropy-survey.pdf


Any simulator that fools F̂ also fools F with the same advantage since ∀f̂ ∈ F̂ ,
∣∣∣∣ E
x←X,[g]

[f̂(x, g(x))] − E
x←X,[h]

[f̂(x, h(x))]

∣∣∣∣

=

∣∣∣∣ E
x←X,[g]

[f(x, g(x))− wf (x)]− E
x←X,[h]

[f(x, h(x)) − wf (x)]

∣∣∣∣

=

∣∣∣∣ E
x←X,[g]

[f(x, g(x))] − E
x←X,[h]

[f(x, h(x))]

∣∣∣∣

Evaluating f̂ requires 2ℓ evaluations of f as we need to compute wf (x). We thus

lose a factor of 2ℓ in efficiency by considering F̂ instead of F . The reason that
we prove the theorem for F̂ instead of for F is because in what follows, we will
need that for any x, the expectation over a uniformly random b ∈ {0, 1}ℓ is 0,
i.e.,

∀f̂ ∈ F̂ , x ∈ X : E
b←{0,1}ℓ

[f̂(x, b)] = 0. (20)

To prove the theorem, we must show that for any joint distribution (X, g(X))
over X × {0, 1}ℓ, there exists an efficient simulator h : X → {0, 1}ℓ such that

∀f̂ ∈ F̂ :

∣∣∣∣ E
x←X

[f̂(x, g(x)) − f̂(x, h(x))]

∣∣∣∣ < ε. (21)

Moving to product form. We define the function g̃ : X × {0, 1}ℓ → [0, 1] as
g̃(x, a) := P

[g]
[g(x) = a]. Note that for every x ∈ X , we have

∑

a∈{0,1}ℓ

g̃(x, a) = 1. (22)

We can write the expected value of f̂(X, g(X)) as follows:

E
x←X,[g]

[f̂(x, g(x))] =
∑

a∈{0,1}ℓ

E
x←X

[
f̂(x, a) P

[g]
[g(x) = a]

]
=

=
∑

a∈{0,1}ℓ

E
x←X

[
f̂(x, a)g̃(x, a)

]
=

= 2ℓ E
x←X,u←{0,1}ℓ

[f̂(x, u)g̃(x, u)]. (23)

We will construct a simulator h̃ : X × {0, 1}ℓ → [0, 1] such that for γ > 0 (to be
defined later),

∀f̂ ∈ F̂ : E
x←X,b←{0,1}ℓ

[f̂(x, b)(g̃(x, b)− h̃(x, b))] < γ. (24)



From this h̃, we can then get a simulator h(·) like in (21) assuming that h̃(x, ·)
is a probability distribution for all x, i.e., ∀x ∈ X ,

∑

b∈{0,1}ℓ

h̃(x, b) = 1, (25)

∀b ∈ {0, 1}ℓ : h̃(x, b) ≥ 0. (26)

We will define a sequence h0, h1, . . . of functions where h0(x, b) = 2−ℓ for all
x, b.10 Define the energy function

∆t = E
x←X,b←{0,1}ℓ

[(g̃(x, b)− ht(x, b))
2].

Assume that after the first t steps, there exists a function f̂t+1 : X × {0, 1}ℓ →
[−1, 1] such that

E
x←X,b←{0,1}ℓ

[f̂t+1(x, b)(g(x, b) − ht(x, b))] ≥ γ,

and define
ht+1(x, b) = ht(x, b) + γf̂t+1(x, b) (27)

The energy function then decreases by γ2, i.e.,

∆t+1

= E
x←X,b←{0,1}ℓ

[(g̃(x, b)− ht(x, b)− γf̂t+1(x, b))
2] =

= ∆t + E
x←X,b←{0,1}ℓ

[γ2f̂t+1(x, b)]

︸ ︷︷ ︸
≤γ2

− E
x←X,b←{0,1}ℓ

[2γft+1(x, b)(g̃(x, b)− ht(x, b))]

︸ ︷︷ ︸
≥2γ2

≤ ∆t − γ2.

Since∆0 ≤ 1,∆t ≥ 0 for any t (as it is a square) and∆i−∆i+1 ≥ γ2, this process

must terminate after at most 1/γ2 steps meaning that we have constructed h̃ =

ht that satisfies (24). Note that the complexity of the constructed h̃ is bounded by
2ℓγ−2 times the complexity of the functions from F since, as mentioned earlier,
computing f̃ requires 2ℓ evaluations of f . In other words, h̃ has complexity
O(2ℓγ−2) relative to F .

Moreover, since for all x ∈ X and f̂ ∈ F̂ , we have
∑

b∈{0,1}ℓ

h0(x, b) = 1 and

∑

b∈{0,1}ℓ

f̂(x, b) = 0, condition (25) holds as well. Unfortunately, (26) does not

hold since it might be the case that ht+1(x, b) < 0. We will explain later how

to fix this problem by replacing f̂t+1 in (27) with a similar function f̂∗t+1 that

10 It is not relevant how exactly h0 is defined, but we need
∑

b←{0,1}ℓ [h0(x, b)] = 1 for
all x ∈ X .



satisfies ht+1(x, b) = ht + γf̂∗t+1 ≥ 0 for all x and b in addition to all of the

properties just discussed. Assume for now that h̃ satisfies (24)-(26).
Let h : X → {0, 1}ℓ be a probabilistic function defined as follows: we set

h(x) = b with probability h̃(x, b). Equivalently, imagine that we have a biased
dice with 2ℓ faces labeled by b ∈ {0, 1}ℓ such that the probability of getting the

face with label b is h̃(x, b). We then define h(x) by simply throwing this dice and

reading off the label. It follows that P
[h]
[h(x) = b] = h̃(x, b). This probabilistic

function satisfies

E
[h],x←X

[f̂(x, h(x))] = E
x←X

∑

a∈{0,1}ℓ

f̂(x, a) P
[h]
[h(x) = a]

= E
x←X

∑

a∈{0,1}ℓ

f̂(x, a)ht(x, a)

= E
x←X,u←{0,1}ℓ

2ℓf̂(x, u)ht(x, u). (28)

Plugging (28) and (23) into (24), we obtain

∀f̂ ∈ F : E
x←X,[h]

[
f̂(x, g(x))

2ℓ
− f̂(x, h(x)]

2ℓ

]
< γ.

Equivalently,

∀f̂ ∈ F : E
x←X,[h]

[
f̂(x, g(x)) − f̂(x, h(x))

]
< γ2ℓ (29)

We get (4) from the statement of the theorem by setting γ := ε/2ℓ. The simulator

h̃ is thus of complexity O(23ℓ(1/ε)2) relative to F .

Enforcing ht(x, b) ≥ 0 for ℓ = 1. We now fix the problem with the positivity of
ht(x, b). Consider the case ℓ = 1. Consider the following properties:

i.
∑

b∈{0,1}

ht(x, b) = 1 for x ∈ X ,

ii. ∀b ∈ {0, 1}, ht(x, b) ≥ 0 for x ∈ X ,
iii. E

x←X,b←{0,1}
[f̂t+1(x, b)(g(x, b) − ht(x, b))] ≥ γ for γ > 0.

Assume that ht : X → {0, 1} and f̂t+1 : X ×{0, 1} → [−1, 1] satisfy i) and ii)
for all x ∈ X and iii) for some γ > 0. Recall that ∆t = E

x←X,b←{0,1}
[(g̃(x, b) −

ht(x, b))
2]. We have shown that ht+1 = ht + γf̂t+1 satisfies

∆t+1 ≤ ∆t − γ2. (30)

Moreover, for all x ∈ X , ht+1 will still satisfy i) but not necessarily ii). We define

a function f̂∗t+1 such that setting ht+1 = ht + γf̂∗t+1 will satisfy i) and ii) for all
x ∈ X and an inequality similar to (30).



First, for any x ∈ X for which condition ii) is satisfied, let f∗t+1 = f̂t+1.
Consider now x ∈ X for which ii) fails for some b ∈ {0, 1}, i.e., for which

ht(x, b) + γf̂t+1(x, b) < 0. Let γ′ = −ht(x, b)/ft+1(x, b). Note that 0 ≤ γ′ ≤ γ

and ht(x, b) + γ′f̂t+1(x, b) = 0. Let

f̂∗t+1(x, b) =
γ′

γ
f̂t+1(x, b) f̂∗t+1(x, 1− b) = f̂t+1(x, 1− b) +

1− γ′

γ
f̂t+1(x, b).

Let ht+1(x, ·) = ht(x, ·) + γf̂∗t+1(x, ·) and note that

∑

b∈{0,1}

f̂∗t+1(x, b) =
∑

b∈{0,1}

f̂t+1(x, b) = 0.

Condition i) is then satisfied for ht+1 for any x ∈ X . By the definition of γ′,
condition ii) is satisfied for any x ∈ X as well. Condition iii) is more delicate
and in fact need not hold. Yet, we will prove the following:

Lemma 3. If f̂t+1 and ht satisfy i) and ii) for every x ∈ X , and iii) then

E
x←X,b←{0,1}

[f̂t+1(x, b)(g(x, b) − ht(x, b))]

− E
x←X,b←{0,1}

[f̂∗t+1(x, b)(g(x, b) − ht(x, b))] ≤
γ

4
. (31)

Proof. To prove (31), it suffices to show that for every x ∈ X ,
∑

b∈{0,1}

f̂t+1(x, b)(g(x, b) − ht(x, b))−
∑

b∈{0,1}

f̂∗t+1(x, b)(g(x, b)− ht(x, b)) ≤
γ

2
.

(32)
If x ∈ X is such that ii) is satisfied for ht+1 then there is nothing to prove.
Suppose that ii) fails for some x ∈ X and b ∈ {0, 1}. For brevity, let f :=

f̂t+1(x, b), g := g(x, b), h = ht(x, b). We have −1 ≤ f < 0, h+ γf < 0, 0 ≤ g ≤ 1
and h = −γf∗. Using g − h ≥ −h, the left-hand side of (32) then satisfies

2(f + h/γ)(g − h) ≤ 2(f + h/γ)(−h)

=
2

γ
(−fγ − h)h ≤ 2

γ

(−fγ − h+ h

2

)2

=
γf2

2
≤ γ

2
, (33)

where we have used the inequality uv ≤
(
u+ v

2

)2

.

If iii) holds then Lemma 3 implies γ− E
x←X,b←{0,1}

[f̂∗t+1(x, b)(g(x, b)−ht(x, b))] ≤
γ

4
. Equivalently,

E
x←X,b←{0,1}

[f̂∗t+1(x, b)(g(x, b)− ht(x, b))] ≥
3γ

4
. (34)



Defining ht+1 = ht + γf̂∗t+1, we still get

∆t+1 ≤ ∆t −
(
3γ

4

)2

= ∆t −
9γ2

16
. (35)

Remark 2. In this case, the slightly worse inequality (35) will increase the com-

plexity of h̃, but only by a constant factor of 16/9, i.e., h̃ will still have complexity
O(2ℓγ−2) relative to F .

Enforcing ht(x, b) ≥ 0 for general ℓ. Let f̂t+1(x, b) be as before and suppose

that there exists x ∈ X such that ht(x, b) + γf̂t+1(x, b) < 0 for at least one

b ∈ {0, 1}ℓ. We will show how to replace f̂t+1 with another function f̂∗t+1 such
that it satisfies an inequality of type (34) and such that ht+1(x, b) = ht(x, b) +

γf̂∗t+1(x, b) ≥ 0. Let S be the set of all elements b ∈ {0, 1}ℓ for which ht(x, b) +

γf̂t+1(x, b) < 0. For b ∈ S, it follows that f̂t+1(x, b) < 0. As before, for b ∈ S,

define f̂∗t+1(x, b) = −
ht(x, b)

γ
. Note that for each such b, we have added a positive

mass −ht(x, b) + γf̂t+1(x, b)

γ
to modify each f̂t+1(x, b). Let

M =
∑

b∈S

−
(
f̂t+1(x, b) +

ht(x, b)

γ

)
(36)

be the total mass. For b /∈ S, define f̂∗t+1(x, b) = f̂t+1(x, b) −
M

2ℓ − s
. Clearly,

E
b←{0,1}ℓ

f̂∗t+1(x, b) = 0. We will now show the following

Lemma 4. For every x ∈ X , the function f̂∗t+1 satisfies

∑

b∈{0,1}ℓ

(f̂t+1(x, b)− f̂∗t+1(x, b))(g(x, b)− ht(x, b)) < 2ℓ−1γ.

Proof. Let s = |S| and hS =

s∑

i=1

ht(x, bi). First, note that (as in the case ℓ = 1)

∀b ∈ S :

(
f̂t+1(x, b) +

ht(x, b)

γ

)
(g(x, b)− ht(x, b))

≤ −
(
f̂t+1(x, b) +

ht(x, b)

γ

)
ht(x, b). (37)

Moreover, ∑

b/∈S

g(x, b) ≤
∑

b∈{0,1}ℓ

g(x, b) = 1. (38)



The difference that we want to estimate is then

∆ =
∑

b∈{0,1}ℓ

(f̂t+1(x, b)− f̂∗t+1(x, b))(g(x, b)− ht(x, b))

=
∑

b∈S

(
f̂t+1(x, b) +

ht(x, b)

γ

)
(g(x, b)− ht(x, b)) +

M

2ℓ − s

∑

b/∈S

(g(x, b)− ht(x, b))

(37),(38)

≤
∑

b∈S

−
(
f̂t+1(x, b) +

ht(x, b)

γ

)
ht(x, b) +

M

2ℓ − s

(
1−

∑

b/∈S

ht(x, b)

)

︸ ︷︷ ︸
=hS

(36)
=
∑

b∈S

−
(
f̂t+1(x, b) +

ht(x, b)

γ

)
ht(x, b)

︸ ︷︷ ︸
≤γ/4

+
hS

2ℓ − s

∑

b∈S

−
(
f̂t+1(x, b) +

ht(x, b)

γ

)

(33)

≤ sγ

4
− hS

2ℓ − s

∑

b∈S

f̂t+1(x, b)−
h2
S

γ(2ℓ − s)
=

sγ

4
+

hSfS
2ℓ − s

− h2
S

γ(2ℓ − s)
,

where fS = −
∑

b∈S

f̂t+1(x, b). Note that
∑

b∈S

−f̂t+1(x, b) ≤ s and (using (20))

∑

b∈S

−f̂t+1(x, b) =
∑

b/∈S

f̂t+1(x, b) ≤ 2ℓ − s, i.e., fS ≤ min{s, 2ℓ − s}. Since

hSfS
2ℓ − s

− h2
S

γ(2ℓ − s)
=

1

γ(2ℓ − s)
hS(γfS − hS)

≤ 1

γ(2ℓ − s)

(
hS + (γfS − hS)

2

)2

≤ sγ

4
,

where we have used that f2
S ≤ s(2ℓ−s). Since s < 2ℓ, we obtain ∆ ≤ sγ

2
< 2ℓ−1γ

which proves the lemma.

To complete the proof, note that the above lemma implies that

E
x←X,b←{0,1}ℓ

[f̂t+1(x, b)(g(x, b)− ht(x, b))]

− E
x←X,b←{0,1}ℓ

[f̂∗t+1(x, b)(g(x, b)− ht(x, b))] <
γ

2
,

and hence,

E
x←X,b←{0,1}ℓ

[f̂∗t+1(x, b)(g(x, b) − ht(x, b))] >
γ

2
. (39)

Remark 3. Similarly, the slightly worse inequality (39) will increase the com-

plexity of h̃ by a constant factor of 4, i.e., h̃ will still have complexity O(2ℓγ−2)
relative to F .



A.1 Derandomizing h̃

Next, we discuss how to derandomize h̃. We can think of the probabilistic func-
tion h̃ as a deterministic function h̃′ taking two inputs where the second input
represents the random coins used by h̃. More precisely, for R ← {0, 1}ρ (ρ is

an upper bound on the number of random bits used by h̃) and for any x in the

support of X , we have h̃′(x,R) ∼ h̃(x).

To get our derandomized ĥ, we replace the randomnessR with the output of a
function φ chosen from a family of t-wise independent functions for some large t,
i.e., we set ĥ(x) = h̃′(x, φ(x)). Recall that a family Φ of functions A → B is t-wise
independent if for any t distinct inputs a1, . . . , at ∈ A and a randomly chosen
φ ← Φ, the outputs φ(a1), . . . , φ(at) are uniformly random in Bt. In the proof,
we use the following tail inequality for variables with bounded independence:

Lemma 5 (Lemma 2.2 from [3]). Let t ≥ 6 be an even integer and let
Z1, . . . , Zn be t-wise independent variables taking values in [0, 1].
Let Z =

∑n
i=1 Zi, then for any A > 0

P[|Z − E[Z]| ≥ A] ≤
(
nt

A2

)t/2

Recall that the min-entropy of X is H∞(X) = − log
(
max

x
P[X = x]

)
, or equiv-

alently, X has min-entropy k if P[X = x] ≤ 2−k for all x ∈ X .
Lemma 6. (Deterministic Simulation) Let ε > 0 and assume that

H∞(X) > 2 + log log |F|+ 2 log(1/ε). (40)

For any (probabilistic) h̃ : X → {0, 1}ℓ, there exists a deterministic ĥ of the same

complexity relative to F as h̃ such that

∀f ∈ F :

∣∣∣∣∣ E
x←X,[h̃]

[f(x, h̃(x))] − E
x←X

[f(x, ĥ(x))]

∣∣∣∣∣ < ε (41)

Remark 4. About the condition (40). A lower bound on the min-entropy
of X in terms of log log |F| and log(1/ε) as in (40) is necessary. For example
one can show that for ε < 1/2, (41) implies H∞(X) ≥ log log |F|. To see this,
consider the case when X is uniform over {0, 1}m (so H∞(X) = m), F contains
all 22

m

functions f : {0, 1}m×{0, 1} → {0, 1} satisfying f(x, 1− b) = 1− f(x, b)

for all x, b ∈ {0, 1}m+1, and h̃(x) ∼ U1 is uniformly random for all x (so it

ignores its input). Now, given any deterministic ĥ, we can choose f ∈ F where

f(x, ĥ(x)) = 1 for all x ∈ {0, 1}m (such an f exists by definition of F). For this
f , ∣∣∣∣∣∣∣∣∣∣

E
x←X,[h̃]

[f(x, h̃(x))]

︸ ︷︷ ︸
=1/2

− E
x←X

[f(x, ĥ(x))]

︸ ︷︷ ︸
=1

∣∣∣∣∣∣∣∣∣∣

= 1/2.



In terms of log(1/ε), one can show that (41) implies H∞(X) ≥ log(1/ε)−1 (even
if |F| = 1). For this, let h̃ and X be as above, F = {f} is defined as f(x, b) = b

if x = 0m and f(x, b) = 0 otherwise. For any deterministic ĥ, we get

| E
x←X,[h̃]

[f(x, h̃(x))]

︸ ︷︷ ︸
1/2m+1

− E
x←X

[f(x, ĥ(x))]

︸ ︷︷ ︸
1/2m or 0

| = 1/2m+1

and thus, ε = 1/2m+1. Equivalently H∞(X) = m = log(1/ε)− 1. The condition
(40) is mild and in particular, it covers the cryptographically interesting case
where F is the family of polynomial-size circuits (i.e., for a security parameter
n and a constant c, |F| ≤ 2n

c

), X has superlogarithmic min-entropy H∞(X) =
ω(logn) and ε > 0 is negligible in n. Here, (40) becomes

ω(logn) > 2 + c logn+ 2 log ε−1

which holds for a negligible ε = 2−ω(logn).

Proof (Proof of Lemma 5). Let m = H∞(X). We will only prove the lemma for
the restricted case where X is flat, i.e., it is uniform on a subset X ′ ⊆ X of
size 2m. 11 Consider any fixed f ∈ F and the 2m random variables Zx ∈ {0, 1}
indexed by x ∈ X ′ sampled as follows: first, sample φ ← Φ from a family of
t-wise independent functions X → {0, 1}ρ (recall that ρ is a upper bound on the

number of random bits used by h̃). Now, Zx is defined as

Zx = f(x, h̃′(x, φ(x))) = f(x, ĥ(x))

and Z =
∑

x∈X ′

Zx. Note that the same φ is used for all Zx.

1. The variables Zx for x ∈ X ′ are t-wise independent, i.e., for any t dis-
tinct x1, . . . , xt, the variables Zx1

, . . . , Zxt
have the same distribution as

Z ′x1
, . . . , Z ′xt

sampled as Z ′xi
← f(xi, h̃

′(xi, R)). The reason is that the
randomness φ(x1), . . . , φ(xt) used to sample the Zx1

, . . . , Zxt
is uniform in

{0, 1}ρ as φ is t-wise independent.

2. E[Zx] = E
φ←Φ

[f(x, h̃′(x, φ(x))] = E
[h̃]

[f(x, h̃(x))].

3. P
x←X,[h̃]

[f(x, h̃(x)) = 1] = E
φ←Φ

[Z/2m].

11 Any distribution satisfying H∞(X) = m can be written as a convex combination of
flat distributions with min-entropy m. Often, this fact is sufficient to conclude that
a result proven for flat distributions with min-entropy m implies the result for any
distribution with the same min-entropy. Here, this is not quite the case, because we
might end up using a different φ for every flat distribution. But as the only property
we actually require from X is P[X = x] ≤ 2−m, the proof goes through for general
X, but becomes somewhat more technical.



Let µ = E
φ←Φ

[Z] = E
φ←Φ

[
∑

x∈X ′

Zx

]
. By Lemma 5, we have

P[|Z − µ| ≥ ε2m] ≤
(

t

ε22m

)t/2

.

Let us call φ bad for f if |Z − µ| ≥ ε2m (or equivalently, using iii)),
∣∣∣∣∣ E
x←X,[h̃]

[f(x, h̃(x))]− E
x←X

[f(x, φ(x))]

∣∣∣∣∣ ≥ ε

We want to choose t such that the probability of φ being bad for any particular
f ∈ F is less than 1/|F|, i.e.

(t/ε22m)t/2 < |F|−1. (42)

We postpone for a second how to choose t and discussing when this is even
possible. Assuming (42),

P
φ←Φ

[|Z − µ| ≥ ε2m] ≤
(

t

ε22m

)t/2

< |F|−1,

and by taking a union bound over all f ∈ F , we get

P
φ←Φ

[∃f ∈ F : |Z − µ| ≥ ε2m] < 1,

which implies that there exits φ ∈ Φ such that

∀f ∈ F : |Z − µ| < ε2m.

Equivalently, using how Z and µ were defined,

∀f ∈ F :

∣∣∣∣∣
∑

x∈X ′

f(x, ĥ(x)) −
∑

x∈X ′

f(x, h̃(x))

∣∣∣∣∣ < ε2m.

Finally, using that X is uniform over X ′, we get (for the above choice of φ) the
statement of the lemma

∀f ∈ F :

∣∣∣∣∣ E
x←X

[f(x, ĥ(x))] − E
x←X,[h̃]

[f(x, h̃(x))]

∣∣∣∣∣ < ε.

We still have to determine when t can be chosen so that (42) holds. By taking
logarithm and rearranging the terms, (42) becomes

mt/2 > log |F|+ (t/2) log(t) + t log(1/ε),

i.e.,
m > 2 log |F|/t+ log(t) + 2 log(1/ε).

Setting t = log |F|, we get

m > 2 + log log |F|+ 2 log(1/ε).

which holds as it is the condition (5) we made on the min-entropy m = H∞(X).
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