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Abstract. Multi-linear secret-sharing schemes are the most common
secret-sharing schemes. In these schemes the secret is composed of some
field elements and the sharing is done by applying some fixed linear map-
ping on the field elements of the secret and some randomly chosen field
elements. If the secret contains one field element, then the scheme is
called linear. The importance of multi-linear schemes is that they pro-
vide a simple non-interactive mechanism for computing shares of linear
combinations of previously shared secrets. Thus, they can be easily used
in cryptographic protocols.
In this work we study the power of multi-linear secret-sharing schemes.
On one hand, we prove that ideal multi-linear secret-sharing schemes in
which the secret is composed of p field elements are more powerful than
schemes in which the secret is composed of less than p field elements (for
every prime p). On the other hand, we prove super-polynomial lower
bounds on the share size in multi-linear secret-sharing schemes. Previ-
ously, such lower bounds were known only for linear schemes.

Keywords: Ideal secret-sharing schemes, multi-linear matroids, Dowl-
ing geometries

1 Introduction

Consider a scenario where a user holds some secret information and wants to
store it on some servers such that only some predefined sets of servers (i.e.,
trusted sets) can reconstruct this information. Secret-sharing schemes enable
such storage, where the dealer – the user holding the secret – computes some
strings, called shares, and privately gives one share to each server. In the sequence
we will refer to the servers as the parties and to the collection of sets of parties
that can reconstruct the secret as an access structure. Secret-sharing schemes
are an important cryptographic primitive and they are used nowadays as a basic
tool in many cryptographic protocols, e.g., [2, 9, 10, 12, 27, 18, 41, 34, 37].

In this work we study the most useful construction of secret-sharing schemes,
namely, multi-linear secret-sharing schemes. In these schemes the secret is a
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sequence of elements from some finite field, and each share is a linear combination
of these elements and some random elements from the field. If the secret contains
exactly one element of the field, then the scheme is called linear. Linear and
multi-linear secret-sharing schemes are very useful as they provide a simple non-
interactive mechanism for computing shares of linear combinations of previously
shared secrets.

We prove two results on the power of multi-linear secret-sharing schemes.
Our first results shows advantages of multi-linear secret-sharing schemes com-
pared to linear schemes, that is, we prove that ideal schemes in which the secret
contains p elements of the field are more efficient than schemes in which the
secret contains less than p field elements (for every prime p). Our second re-
sults proves super polynomial lower bounds on the size of shares in multi-linear
secret-sharing schemes.

Previous Results. Threshold secret-sharing schemes, where all sets of parties
whose size is at least some threshold, were introduced by Shamir [33] and Blak-
ley [5]. Secret-sharing schemes for general access structures were introduced and
constructed by Ito et al. [19]. Better constructions were introduced by Benaloh
and Leichter [3]. Linear secret-sharing schemes were presented by Brickel [7] for
the case that each share is one field element and by Krachmer and Wigder-
son [20] for the case that each share can contain more than one field element.
Karchmer and Wigderson’s motivation was studying a complexity model called
span programs; in particular, they proved that monotone span programs are
equivalent to linear secret-sharing schemes. It is important to note that all previ-
ously mentioned constructions of secret-sharing schemes are linear. Multi-linear
secret-sharing schemes were studied by [4, 13], who gave the conditions when
a multi-linear scheme realizes an access structure. Construction of multi-linear
secret-sharing schemes were given by, e.g., [36, 6, 39, 38].

To explain why linear secret-sharing schemes are useful, we describe the
basic idea in using secret-sharing schemes in protocols, starting from [2]. In such
protocols the parties share their inputs among the other parties, and, thereafter,
the shares of different secrets are “combined” to produce shares of some function
of the original secrets. For example, the parties hold shares of two secrets a and
b, and they want to compute shares of a+ b (without reconstructing the original
secrets). If the schemes are multi-linear, the two secrets a and b are shared using
the same multi-linear scheme, and each party sums the shares of the two secrets,
then the resulting shares are of the secret a+ b.

In any secret-sharing scheme, the size of the share of each party is at least
the size of the secret [21]. An ideal secret-sharing scheme is a scheme in which
the size of the share of each party is exactly the size of the secret. For ex-
ample, Shamir’s scheme [33] is ideal. Brickell [7] considered ideal schemes and
constructed ideal schemes for some access structures, e.g., for hierarchical access
structures. Brickell and Davenport [8] showed an interesting connection between
ideal access structures and matroids, that is, (1) If an access structure is ideal
then it is induced by a matroid, (2) If an access structure is induced by a repre-
sentable matroid, then the access structure is ideal. Following this work, many



works have studied ideal access structures and matroids, e.g. [32, 35, 25, 24]. In
particular, if an access structure is induced by a multi-linear representable ma-
troid, then it is ideal [35].

Simonis and Ashikhmin [35] considered the access structure induced by the
Non-Pappus matroid. They construct an ideal multi-linear secret-sharing scheme
realizing this access structure, where the secret contains two field elements, and
they prove (using known results about matroids) that there is no ideal linear
secret-sharing realizing this access structure (that is, in any linear secret-sharing
realizing this access structure at least one share must contain more than one
field element). Pendavingh and van Zwam [29] (implicitly) provided another
example of an access structure that can be realized by an ideal multi-linear
secret-sharing scheme, where the secret contains two field elements, but cannot
be realized by an ideal linear secret-sharing scheme. Their example is the access
structure induced by the rank-3 Dowling matroid of the quaternion group. Note
that the rank-3 Dowling matroid [15, 14] can be defined with an arbitrary group
(see Definition 2.9); in this paper we will use it with properly chosen groups.

For a scheme to be efficient and useful, the size of the shares should be small
(i.e., polynomial in the number of parties). The best known schemes for general
access structures, e.g., [19, 3, 20, 13], are highly inefficient, that is, for most access
structures the size of shares is 2O(n) times the size of the secret, where n is the
number of parties in the access structure. The best lower bound known on the
total share size for an access structure is Ω(n2/ log n) times the size of the
secret [11]. Thus, there exists a large gap between the known upper and lower
bounds. Bridging this gap is one of the most important questions in the study
of secret-sharing schemes. In contrast to general secret-sharing schemes, super-
polynomial lower bounds are known for linear secret-sharing schemes. That is,
there exist explicit access structures such that the total share size of any linear
secret-sharing scheme realizing them is nΩ(logn) times the size of the secret [1,
16, 17].

Our Results and Techniques. The simplest way to construct a multi-linear secret-
sharing scheme, where the secret is composed of k field elements, is to share each
field element independently using a linear secret-sharing scheme. This results in
a multi-linear scheme whose information ratio (the ratio between the length of
the shares and the length of the secret) is the same as the information ratio
of the linear scheme. The question is if one can construct multi-linear secret-
sharing schemes whose information ratio is better than linear schemes. Our first
result gives a positive answer to this question. Our second result implies that in
certain cases the answer is no – we show that the lower bound of [17] for linear
secret-sharing schemes holds also for multi-linear secret-sharing schemes.

Our first results shows advantages of multi-linear secret-sharing schemes com-
pared to linear schemes. For every prime p > 2, we show that there is an access
structure such that: (1) It has an ideal multi-linear secret-sharing scheme in
which the secret is composed of p field elements. (2) It does not have an ideal
multi-linear secret-sharing scheme in which the secret is composed of k field el-
ements, for every k < p. In other words, we prove that schemes in which the



secret is composed of p field elements are more efficient than schemes in which
the secret is composed of less than p field elements. Previously, this was known
only for p = 2.

To prove this result we consider the access structures induced by rank-3
Dowling matroids of various groups. By known results, it suffices to study when
these matroids are k-linearly representable. We study this question and show
that it can be answered using tools from representation theory. The important
step in our proof is showing that the Dowling matroid of a group G is k-linearly
representable if and only if the group G has a fixed-point free representation
of dimension k (see Section 2.5 for definition of these terms). To complete our
proof, we show that for every p there is a group Gp that has a fixed-point free
representation of dimension p and does not have a fixed-point free representation
of dimension k < p.

Our second results is super polynomial lower bounds on the size of shares in
multi-linear secret-sharing schemes. Prior to our work, such lower bounds were
known only for linear secret-sharing schemes. As proving super polynomial lower
bounds for general secret-sharing schemes is a major open question, any exten-
sion of the lower bounds to a broader class of schemes is important. Specifically,
as the class of multi-linear secret-sharing schemes is the class that is useful for
applications, it is interesting to prove lower bounds for this class. We show that
the method of Gál and Pudlák [17] for proving lower bounds for linear secret-
sharing schemes applies also to multi-linear secret-sharing schemes. As a result,
we get that there exist access structures such that the total share size of any
multi-linear secret-sharing scheme realizing them is nΩ(logn) times the size of
the secret (even when the secret contains any number of field elements).

2 Preliminaries

Notations. We will frequently use block matrices throughout this paper. To
differentiate these block matrices, they will be inside square brackets, or in bold

letters (e.g. A =

[
A B
C D

]
, where A,B,C,D are matrices). In all the proofs and

examples, except in the proof of Theorem 4.5, all blocks are of size k × k. For
a matrix A, we denote the ith column of A by Ai. We denote fields by F or E
(general fields), C (complex numbers), F̃ (algebraic closure of F), and Fpm (the
unique field with pm elements). We denote the integers by Z and the non-negative
integers by N.

2.1 Secret-Sharing Schemes

A secret-sharing scheme is, informally, an algorithm in which a dealer distributes
a secret to a set of parties in such that only authorized subsets of parties can
reconstruct the secret, while unauthorized subsets cannot learn anything about
the secret. We next define secret-sharing schemes, starting with some notations.



Definition 2.1. Let {p1, . . . , pn} be a set of parties. A collection A ⊆ 2{p1,...,pn}

is monotone if B ∈ A and B ⊆ C imply that C ∈ A. An access structure is a
monotone collection A ⊆ 2{p1,...,pn} of non-empty subsets of {p1, . . . , pn}. Sets
in A are called authorized, and sets not in A are called unauthorized.

Definition 2.2 (secret-sharing). A secret-sharing scheme Σ with domain of
secrets S is a pair Σ = 〈Π,µ〉, where µ is a probability distribution on some
finite set R called the set of random strings and Π is a mapping from S ×R to
a set of n-tuples K1 ×K2 × · · · ×Kn, where Kj is called the domain of shares
of pj. A dealer distributes a secret s ∈ S according to Σ by first sampling a
random string r ∈ R according to µ, and applying the mapping Π on s and
r, that is, computing a vector of shares Π(s, r) = (s1, . . . , sn), and privately
communicating each share sj to party pj. For a set A ⊆ {p1, . . . , pn}, we denote
ΠA(s, r) as the restriction of Π(s, r) to its A-entries.

Correctness. The secret s can be reconstructed by any authorized set of parties.
That is, for any set B ∈ A (where B = {pi1 , . . . , pi|B|}), there exists a
reconstruction function ReconB : Ki1 × . . .×Ki|B| → S such that for every
s ∈ S,

Pr[ ReconB(ΠB(s, r)) = s ] = 1. (1)

Perfect Privacy. Every unauthorized set cannot learn anything about the secret
(in the information theoretic sense) from their shares. Formally, for any set
T /∈ A, for every two secrets a, b ∈ S, and for every possible vector of shares
〈sj〉pj∈T :

Pr[ΠT (a, r) = 〈sj〉pj∈T ] = Pr[ΠT (b, r) = 〈sj〉pj∈T ]. (2)

The information ratio of a secret-sharing scheme is
max1≤j≤n log |Kj |

log |S| , where S

is the domain of secrets and Kj is the domain of shares of pj .
In every secret-sharing scheme, the information ratio is at least 1 [21]. Ideal

secret-sharing schemes are those where the information ratio is exactly 1, which
means that the size of the domain of the shares is exactly the size of the domain
of the secret.

Multi-linear secret-sharing schemes are schemes in which the computation of
the shares is a linear mapping. More formally, in a multi-linear secret-sharing
scheme over a finite field F, the secret is a vector of elements of the field. To
share a secret s ∈ Fk, the dealer first chooses a random vector r ∈ Fm with
uniform distribution (for some integer m). Each share is a vector over the field
such that each coordinate of this vector is some fixed linear combination of the
coordinates of the secret s and the coordinates of the random string r.

2.2 Matroids

Matroids are combinatorial objects that can be defined in many equivalent ways.
To make things simple, we will stick to one definition based on rank function.



Definition 2.3. A matroid M is an ordered pair (E, r) with E a finite set (usu-
ally E = {1, ..., n}) called the ground set and a rank function r : 2E → N satis-
fying the following conditions, called the matroid axioms:

1. r(∅) = 0,
2. If X ⊆ E and x ∈ E, then r(X) ≤ r(X ∪ {x}) ≤ r(X) + 1,
3. If X ⊆ E and x, y ∈ E such that r(X ∪ {x}) = r(X ∪ {y}) = r(X) then

r(X ∪ {x} ∪ {y}) = r(X).

A set X ⊆ E is independent if r(X) = |X|, otherwise X is dependent. The
rank of the matroid is defined r(M) := r(E). A base of M is an independent set
X ⊆ E such that r(X) = r(M). The set of bases of a matroid uniquely identifies
the matroid. A circuit is a minimal dependent set. The set of all circuits of
a matroid also uniquely identifies the matroid. Throughout this paper we will
assume that every set X ⊆ E of size 2 is independent (called simple matroids or
geometries in the literature).

The simplest example of a matroid is the size of a group, i.e., let E = {1, ..., n}
and r(X) = |X|. The 3 axioms are trivially verified. In this matroid, all sets
are independent. Matroids originated from trying to generalize axioms in graph
theory and linear algebra.

Example 2.4. Let E = {v1, ..., vn} be a set of vectors over some field F. For
X ⊆ E let r(X) = dim(span(X)). By linear algebra, the 3 matroid axioms hold.
Furthermore, we can look at the matrix A, in which the ith column is the vector
vi. In this case, r(X) is the rank of the submatrix containing the columns of the
vectors in X. Matroids that arise in this manner are called linearly representable
(over F). This can also be generalized as follows:

Definition 2.5. Let M = (E = {1, ..., n}, r) be a matroid and F a field. A k-
linear representation of M over F is a matrix A with k · n columns A1, ..., Ak·n
such that the rank of every set X = {i1, ..., ij} ⊆ E satisfies

r(X) =
dim(span(Ui1 ∪ · · · ∪ Uij ))

k
,

where U` = {A(`−1)·k+1, A(`−1)·k+2, ..., A`·k} for 1 ≤ ` ≤ n. If such a repre-
sentation of M exists then M is k-linearly representable. One-linearly repre-
setable matroids are called linearly representable. A matroid is multi-linearly
representable if it is k-linearly representable for some k ∈ N.

An example of a multi-linear representation is given in Example 2.6.
Matroids of rank 3 can be expressed by a geometric representation on a plane

as follows – the bases are the sets of 3 points that are not on a single line. For
a diagram on the plane to represent a matroid it must satisfy the following
condition: Every 2 distinct points lie on a single line. Since every 2 points lie on
a line, usually only lines that pass through at least 3 points are drawn. See [28,
Chapter 1.5] for more details and the more general statement.



Example 2.6. Let A and B be the following matrix and block matrix:

1 2 3 g′1 g′′1 g′′′1 1 2 3 g′1 g′′1 g′′′1

A =

1 0 0 −1 0 1
0 1 0 1 −1 0
0 0 1 0 1 −1

 ,B =

Ik 0 0 −Ik 0 Ik
0 Ik 0 Ik −Ik 0
0 0 Ik 0 Ik −Ik

 .
For any field F, the matrix A (resp. the block matrix B) is a linear (k-linear)
representation of the matroid with 6 points whose geometric representation is
Figure 1 (a). For example, the columns labelled by 1, 2, g′′1 are independent.
Therefore, they do not lie on the same line in Figure 1 (a). On the other hand,
the columns labelled by 1, 2, g′1 are dependent, thus, they lie on a line.
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Fig. 1. Geometric Representation of the matroids Q3({1}) and Q3(Z2).

Definition 2.7. Let M be a matroid and F a field. We say that that M is k-
minimally representable over F if there is a k-linear representation of M over
F, but for every j < k there is no j-linear representation of M over F. We will
say that M is k-minimally representable if it is k-minimally representable over
some field F, but not j-linearly representable over any field for j < k.

Example 2.8. The Non-Pappus matroid (cf. [28, Example 1.5.15, page 39]) whose
geometric representation appears in Figure 2 is not linearly representable over
any field [28, Proposition 6.1.10], but has a 2-linear representation over F3 [35].
Therefore, the Non-Pappus matroid is 2-minimally representable.

Our primary focus in the first part of the paper will be the multi-linear
representability of the rank-3 Dowling Matroids. These matroids were presented
by Dowling [15, 14]. We will show that for every prime p there is a Dowling
Matroid which is p-minimally representable, and furthermore, over a relatively
small field. The Dowling Matroid is defined as follows:

Definition 2.9. Let G = {1G = g1, g2,. . . ,gn} be a finite group. The rank-
3 Dowling Matroid of G, denoted Q3(G), is a matroid of rank 3 on the set
E = {1, 2, 3, g′1, . . . , g′n, g′′1 , . . . , g′′n, g′′′1 , . . . , g′′′n }. That is, for every element
gi ∈ G, there are 3 elements in the ground set of the matroid g′i, g

′′
i , g
′′′
i ∈ E and
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Fig. 2. The Non-Pappus matroid.

there are 3 additional ground set elements 1, 2, 3 not related to the group. Every
subset of 3 elements not in C1 ∪ C2 ∪ C3 ∪ C4 is a base of the matroid, where,

C1 = {{1, 2, g′i}|1 ≤ i ≤ n} ∪ {{1, g′i, g′j}|1 ≤ i < j ≤ n} ∪ {{2, g′i, g′j}|1 ≤ i < j ≤ n},
C2 = {{2, 3, g′′i }|1 ≤ i ≤ n} ∪ {{2, g′′i , g′′j }|1 ≤ i < j ≤ n} ∪ {{3, g′′i , g′′j }|1 ≤ i < j ≤ n},
C3 = {{1, 3, g′i}|1 ≤ i ≤ n} ∪ {{1, g′′′i , g′′′j }|1 ≤ i < j ≤ n} ∪ {{3, g′′′i , g′′′j }|1 ≤ i < j ≤ n},
C4 = {{g′i, g′′j , g′′′` }|gj · gi · g` = 1}.

Alternatively, it can be defined by the geometric representation appearing in
Figure 3, with additional lines that go through points g′i, g

′′
j , g
′′′
` if and only if

gj · gi · g` = 1G (e.g., there is always a line that goes through g′1, g
′′
1 , g
′′′
1 since

g1 = 1G and 1G · 1G · 1G = 1G).5
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Fig. 3. The Rank-3 Dowling matroid with the lines corresponding to sets

{
g′i, g

′′
j , g
′′′
`

}
such that gj · gi · g` = 1G missing.

We note that the matroid in Example 2.6 is the Dowling matroid of the trivial
group. Figure 1 (b) is a geometric representation of the Dowling matroid of the
group Z2, the unique group with 2 elements. Dowling [15, 14] showed that Q3(G)
is linearly representable over F if and only if G is isomorphic to a subgroup of
F∗, the group of invertible elements in F. Our main theorem generalizes this

5 In the literature, the matroid is sometimes defined a bit differently, e.g., a line goes
through g′i, g

′′
j , g
′′′
` if and only if (gj)

−1 · (gi)−1 · g` = 1G. This is just a different
naming of the ground set elements.



statement for multi-linear representability. Other forms of representability of
Q3(G), namely representability over partial fields and skew partial fields, have
been studied by Semple and Whittle [30] and Pendavingh and Van Zwam [29].

2.3 Ideal Secret-Sharing Schemes and Matroids

There is a strong connection between secret-sharing schemes and matroids. Ev-
ery matroid with ground set E = {p0, p1, . . . , pn} induces an access structure
A with n parties E′ = {p1, . . . , pn} by the rule ∀A ⊆ E′, A ∈ A if and only if
r(A∪{p0}) = r(A). The access structure A is also known as the matroid port. In
a sense, we think of p0 as the dealer. Brickell and Davenport [8] showed that all
access structures admitting ideal secret-sharing schemes are induced by matroids.
However, not all access structures induced by matroids are ideal [32][25]. The
class of matroids inducing ideal access structures are called secret-sharing ma-
troids and also almost affinely representable, and discussed in [35]. Every multi-
linearly representable matroid is a secret-sharing matroid. It is still open whether
this inclusion is proper. There is also a strong connection between ideal multi-
linear secret-sharing schemes and multi-linearly representable matroids [20, 13].

Proposition 2.10 The class of access structures induced by multi-linearly rep-
resentable matroids is exactly the access structures admitting an ideal multi-
linear secret-sharing scheme.

2.4 Basic Results in Linear Algebra and Multi-Linear
Representability

In this section we give some basic results in linear algebra and matroid theory
that are used in the paper. Recall that a matrix A ∈ Mn×n(F) is invertible
if and only if it is of full rank if and only if Av 6= 0 for every v 6= 0. Also
recall that block matrix multiplication can be carried out in block fashion, e.g.,[
A B
C D

]
·
[
E F
G H

]
=

[
AE +BG AF +BH
CE +BG CF +DH

]
, as long as the dimensions match (note

that the order written is important as usually AE 6= EA, etc.).

Proposition 2.11 Let A,B,C be k × k matrices then

(a) rank

−Ik 0 C
A −Ik 0
0 B −Ik

 = 2k + rank(BAC − I).

(b) rank

−Ik −IkA B
0 0

 = k + rank(B −A).



Proof. Multiplying by invertible matrices does not change the rank of a matrix.
Therefore,

rank

−Ik 0 C
A −Ik 0
0 B −Ik

 = rank

−Ik 0 C
A −Ik 0
0 B −Ik

 ·
Ik 0 C

0 Ik A · C
0 0 Ik


= rank

−Ik 0 0
A −Ik 0
0 B BAC − Ik

 = 2k + rank(BAC − Ik).

and

rank

−Ik −IkA B
0 0

 = rank

−Ik −IkA B
0 0

 · [Ik −Ik
0 Ik

]
= rank

−Ik 0
A B −A
0 0

 = k + rank(B −A).

Proposition 2.12 Let B :=

B1,1 . . . B1,n

...
. . .

...
Bm,1 . . . Bm,n

 be a k-linear representation of

a matroid M , with Bi,j being k × k block matrices, and let G be any invertible
k × k matrix. Then:

a) For every 1 ≤ i ≤ n then

B1,1 . . . B1,j ·G . . . B1,n

...
. . .

...
. . .

...
Bm,1 . . . Bm,j ·G . . . Bm,n

 is a k-linear repre-

sentation of M .

b) For every 1 ≤ i ≤ m then



B1,1 . . . B1,n

...
. . .

...
G ·Bi,1 . . . G ·Bi,n

...
. . .

...
Bm,1 . . . Bm,n

 is a k-linear representation

of M .

c) If {1, . . . ,m} is a base of M then there exists a matrix of the formIk . . . 0 B′1,m+1 . . . B
′
1,n

...
. . .

...
. . .

...
0 . . . Ik B

′
m,m+1 . . . B

′
m,n

 that is also a k-linear representation of M .



Proof. a) Since G is invertible, it is immediate from basic linear algebra that

rank

B1,i1 . . . B1,i` . . . B1,is
...

. . .
...

. . .
...

Bm,i1 . . . B1,i` . . . Bm,is



= rank


B1,i1 . . . B1,i` . . . B1,is

...
. . .

...
. . .

...
Bm,i1 . . . B1,i` . . . Bm,is

 ·


Ik . . . 0 . . . 0
...

. . .
...

. . .
...

0 . . . G . . . 0
...

. . .
...

. . .
...

0 . . . 0 . . . Ik




= rank

B1,i1 . . . B1,i` ·G . . . B1,is
...

. . .
...

. . .
...

Bm,i1 . . . B1,i` ·G . . . Bm,is

 ,
for any submatrix (with j = i`), which is exactly what we need to prove.

b) Simillarly, for any submatrix,

rank



B1,1 . . . B1,n

...
. . .

...
Bi,1 . . . Bi,n

...
. . .

...
Bm,1 . . . Bm,n

 = rank





Ik . . . 0 . . . 0
...

. . .
...

. . .
...

0 . . . G . . . 0
...

. . .
...

. . .
...

0 . . . 0 . . . Ik

 ·


B1,1 . . . B1,n

...
. . .

...
Bi,1 . . . Bi,n

...
. . .

...
Bm,1 . . . Bm,n





= rank



B1,1 . . . B1,n

...
. . .

...
G ·Bi,1 . . . G ·Bi,n

...
. . .

...
Bm,1 . . . Bm,n

 .

c) Since {1,. . . ,m} is a base of M then the columns c1, . . . , cm·k of B are a basis
of the column space of B (which is, therefore, Fk·m). Therefore, there is an
invertible linear transformation T such that ∀1 ≤ i ≤ mk, T (ci) = ei. Since
T is invertible dim(span{T (ci1), . . . , T (cij )}) = dim(span{ci1 , . . . , cij}) for
any set of columns {ci1 , . . . , cij}, which implies that by applying T to all the
columns of B we get that

Ik 0 . . . 0
... . . .

...
0 Ik . . . 0 T (ckm+1) . . . T (ckn)
...

...
. . .

...
...

...
0 0 . . . Ik · ·


is a k-linear representation of M



We will call operations Proposition 2.12(a) and 2.12(b) column and row block-
scaling respectively.

2.5 Fixed-Point Free Representations

A standard tool in studying groups is representation theory. Our result relies
heavily on theorems from this extensively researched field of mathematics. We
will only give the necessary definitions and state the result. We then sketch the
main ideas of the proof of this result. The complete proof, which requires much
more representation theory, will appear in the full version.

Definition 2.13. Let G be a finite group and F a field. A representation of
G is a group homomorphism ρ : G → GLn(F) (the group of n × n invertible
matrices). The dimension or degree of a representation is n. A representation is
called faithful if it is injective. A representation ρ : G → GLn(F) is fixed-point
free if for every 1 6= g ∈ G the field element 1 is not an eigenvalue of ρ(g), i.e.,
ρ(g) · v 6= v for every g 6= 1 and for every v 6= 0. A fixed-point free group is one
which has a fixed-point free representation.

We note that not all representations of a fixed-point free group G are fixed-
point free, even if the representation is faithful. For example, cyclic groups are
fixed-point free, but also admit non fixed-point free representations:

Example 2.14. Let G = Zm be the additive group with m elements. Denote ζ =

e
2πi
m . If ρ : G→ GL2(C) is defined by ρ(k) =

(
ζk 0
0 1

)
then ρ is faithful (because

i 6= k ⇒ ρ(i) 6= ρ(k)) but not fixed-point free because

(
ζk 0
0 1

)(
0
1

)
=

(
0
1

)
(and

this should only happen for k = 0). However, if we define ρ(k) =

(
ζk 0
0 ζk

)
then ρ

is fixed-point free, because if k 6= 0 then 1 is not an eigenvalue of

(
ζk 0
0 ζk

)
. We

note that the group Zm also has a fixed-point free representation of dimension
1, by ρ(k) = (e

2kπi
m ).

Fixed-point free groups have been completely classified by the works of Burn-
side and later Vincent [40] and Zassenhaus [44]. The classification can be found,
for example, in [42]. For our purposes we will require only the following result,
easily achieved from the classification:

Proposition 2.15 For every prime p > 2, there exist a prime q > p and a
group Gp of order p2q such that:

1. Gp has a fixed-point free representation of dimension p over the field F2pq ,
i.e., the field of characteristic 2 with 2pq elements.

2. The group Gp does not admit a fixed-point representation of dimension less
than p over any field.



Moreover, there exists such q with q = O(p5.18), so the field F2pq has 2O(p6.18)

elements.

Our proof uses the construction of semidirect product of groups. The definition
can be found in most group theory books. See for example [26]. It also requires
some classical theorems from representation theory, which can be found, for
example, in [31].

The complete proof of Proposition 2.15 will be given in the full version. We
now sketch the main ideas of the proof.

Proof Sketch. Let p > 2 be a prime number. From Linnik’s Theorem [22, 23], there
exists a prime q such that q = np + 1 for some n ∈ N, and q is polynomially
bounded by p. The state of the art improvement, by Xylouris [43], shows that
q = O(p5.18).

From the fact that q = np + 1, it can be deduced that there exists a non-
trivial semidirect product Gp = Zq o Zp2 , with the action of Zp (we give a
brief explanation of the construction of this group, and why this group works,
in Appendix A). We then show, both directly and using the classification of
fixed-point free groups, that the group Gp is fixed-point free, and, thus, has a
fixed-point free representation.

Then, using classical theorems from representation theory, we show that a
fixed-point free representation of Gp is of dimension at least p, and that there
indeed exists a fixed-point free representation of dimension p. In particular, we
show directly that there exists such a representation over the field F2pq , which
has 2pq = 2O(p6.18) elements.

3 Main Theorem and Result

In this section, we prove that there is an access structure that has an ideal p-
linear secret-sharing scheme and does not have an ideal k-linear secret-sharing
scheme for every k < p. As explained in Section 2.3, it suffices to prove that
there is a matroid that is p-minimally representable. We prove this result for the
Dowling matroid, for an appropriate group G. We next state our main theorem.

Theorem 3.1 For a finite group G, the matroid Q3(G) is k-linearly repre-
sentable over a field F if and only if there is a fixed-point free representation
ρ : G→ GLk(F).

The main contribution of the theorem is the new connection between multi-linear
representation of the Dowling matroid over G to the existence of a fixed-point
free representation of the group G. The theorem transfers the problem of multi-
linear representablity of Q3(G) to finding fixed-point free representations of G.
Since fixed-point free groups and representations have been completely classified,
it gives a complete answer to this problem.

To discuss the representations of Q3(G), we define the following block matrix
Aρ. In Lemma 3.2, we will prove that if Q3(G) is multi-linearly representable,



then Aρ is a multi-linear representation of Q3(G) for some representation ρ of
G. Then we prove in Lemmas 3.3 and 3.4 that Aρ represents Q3(G) if and only
if ρ is fixed-point free.

For a finite group G = {1 = g1, g2, . . . , gn}, a field F, and a faithful repre-
sentation ρ : G → GLk(F) we denote by Aρ the following block matrix, which
contains 3k rows and 3(n+ 1)k columns.

Aρ :=

Ik 0 0 −Ik . . . −Ik
0 Ik 0 ρ(g1) . . . ρ(gn)
0 0 Ik 0 . . . 0

0 . . . 0 ρ(g1) . . . ρ(gn)
−Ik . . . −Ik 0 . . . 0
ρ(g1) . . . ρ(gn) −Ik . . . −Ik

 .
Lemma 3.2. If M = Q3(G) is k-linearly representable over F, then there exists
a faithful representation ρ : G→ GLk(F) such that Aρ is a k-linear representa-
tion of M .

Proof. The technique we use to prove this lemma is a standard one (e.g., see the
proofs of [28, Proposition 6.4.8, Lemma 6.8.5, Theorem 6.10.10] and [29, Lemma
3.35]). We generalize this technique to multi-linear representations by looking
at the representation matrix as a block matrix and using Proposition 2.12. We
repeatedly use the fact that for any multi-linear representation of M , if X ⊆ E
and r(X) = n then the rank of the relevant sub-matrix of the representation
(i.e., deleting the columns of elements not in X) is n · k.

Suppose that

B :=

B1,1 B1,2 B1,3 B1,g′1
. . . B1,g′n

B2,1 B2,2 B2,3 B2,g′1
. . . B2,g′n

B3,1 B3,2 B3,3 B3,g′1
. . . B3,g′n

B1,g′′1
. . . B1,g′′n B1,g′′′1

. . . B1,g′′′n

B2,g′′1
. . . B2,g′′n

B2,g′′′1
. . . B2,g′′′n

B3,g′′1
. . . B3,g′′n

B3,g′′′1
. . . B3,g′′′n


is a k-linear representation of M . Then r({1, 2, 3}) = 3 = r(M) so B1, . . . ,B3k

span the columns of B. By changing the basis of the column space of B (see
Proposition 2.12(c)) there exists a block matrix C of the form

C :=

Ik 0 0 C1,g′1
. . . C1,g′n

0 Ik 0 C2,g′1
. . . C1,g′n

0 0 Ik C3,g′1
. . . C1,g′n

C1,g′′1
. . . C1,g′′n

C1,g′′′1
. . . C1,g′′′n

C2,g′′1
. . . C2,g′′n

C2,g′′′1
. . . C2,g′′′n

C3,g′′1
. . . C3,g′′n

C3,g′′′1
. . . C3,g′′′n


that is a k-linear representation of M . As ∀g ∈ G, r({1, 2, g′}) = 2, we have that

rank

Ik 0 C1,g′

0 Ik C2,g′

0 0 C3,g′

 = 2k.

Thus, C3,g′ = 0. Also r({1, g′}) = 2, so

rank

Ik C1,g′

0 C2,g′

0 C3,g′

 = 2k,



therefore, C2,g′ is invertible (it has to be of full rank since C3,g′ = 0). Since
r({2, g′}) = 2, by the same argument C1,g′ is also invertible. Similarly ∀g ∈ G,
C1,g′′ = 0, and C3,g′′ , C2,g′′ are invertible, and C2,g′′′ = 0, and C1,g′′′ , C3,g′′′ are
invertible.

We now apply column block-scaling (Proposition 2.12(a)) on the columns of
g′1, . . . , g

′
n by −(C1,g′1

)−1, . . . ,−(C1,g′n
)−1 respectively to get thatIk 0 0 C1,g′1

(−(C1,g′1
)−1) . . . C1,g′n(−(C1,g′n)−1)

0 Ik 0 C2,g′1
(−(C1,g′1

)−1) . . . C2,g′n(−(C1,g′n)−1)

0 0 Ik 0 . . . 0

0 . . . 0 C1,g′′′1
. . . C1,g′′′n

C2,g′′1
. . . C2,g′′n 0 . . . 0

C3,g′′1
. . . C3,g′′n C3,g′′′1

. . . C3,g′′′n


=

Ik 0 0 −Ik . . . −Ik
0 Ik 0 C′2,g′1

. . . C′2,g′n
0 0 Ik 0 . . . 0

0 . . . 0 C1,g′′′1
. . . C1,g′′′n

C2,g′′1
. . . C2,g′′n 0 . . . 0

C3,g′′1
. . . C3,g′′n C3,g′′′1

. . . C3,g′′′n


is a k-linear representation of M . Now by row block-scaling (Propostion 2.12(b))
on the second row by (C ′2,g′1

)−1 we get that

Ik 0 0 −Ik . . . −Ik
0 (C′

2,g′1
)−1 0 Ik . . . C′

2,g′n
(C′

2,g′1
)−1

0 0 Ik 0 . . . 0

0 . . . 0 C1,g′′′1
. . . C1,g′′′n

C2,g′′1
(C′

2,g′1
)−1 . . . C2,g′′n

(C′
2,g′1

)−1 0 . . . 0

C3,g′′1
. . . C3,g′′n

C3,g′′′1
. . . C3,g′′′n



is a k-linear representation of M . We continue in the same fashion by block-
scaling on the columns of g′′1 , . . . , g

′′
n, then row block-scaling on the third row,

then column block-scaling of columns g′′′1 , . . . , g
′′′
n , and finally column block scal-

ing of columns 2, 3 to get that

D :=

Ik 0 0 −Ik −Ik . . . −Ik
0 Ik 0 Ik D2,g′2

. . . D2,g′n
0 0 Ik 0 0 . . . 0

0 0 . . . 0 D1,g′′′1
D1,g′′′2

. . . D1,g′′′n
−Ik −Ik . . . −Ik 0 0 . . . 0
Ik D3,g′′2

. . . D3,g′′n −Ik −Ik . . . −Ik


is a k-linear representation of M .

We next use the fact that D is a multi-linear representation of Q3(G) to prove
that blocks in different parts of the representation are equal, e.g., D3,g′′ = D2,g′ .
Since r({g′1, g′′1 , g′′′1 }) = 2, we have that

rank

−Ik 0 D1,g′′′1
Ik −Ik 0
0 Ik −Ik

 = 2k,

and this forces D1,g′′′1
= Ik. For j, ` such that gj = g−1` (thus, gj · g1 · g` = 1), we

have that r({g′1, g′′j , g′′′` }) = 2. So,

rank

−Ik 0 D1,g′′′`
Ik −Ik 0
0 D3,g′′j

−Ik

 = 2k.

By Proposition 2.11(a) we get that rank(D3,g′′j
· D1,g′′′`

− Ik) = 0 so D3,g′′j
=

(D1,g′′′`
)−1. By symmetric arguments, D1,g′′′j

= (D2,g′`
)−1 and D2,g′j

= (D3,g′′`
)−1.



Therefore,

∀g ∈ G,D3,g′′ = D2,g′ = D1,g′′′ . (3)

Now let ρ : G→ GLk(F) be the map ρ(g) = D2,g′ . We see that ρ(1) = I (because
D2,g′1

= I). By Proposition 2.11(a)

rank

 −Ik 0 D1,g′′′`
D2,g′i

−Ik 0
0 D3,g′′j

−Ik

 = 2k + rank(D3,g′′j
D2,g′i

D1,g′′′`
− I)

= 2k + rank(ρ(gj) · ρ(gi) · ρ(g`)− I). (4)

By the matroid rank, it is equal to 2k if gj · gi · g` = 1 and 3k otherwise, thus,

∀gi, gj , g` ∈ G, gj · gi · g` = 1⇔ ρ(gj) · ρ(gi) · ρ(g`) = I. (5)

We now use (5) to show that ρ is an injective group homomorphism, which
completes the proof:

For every g ∈ G, since 1 · g−1 · g = 1, we have I = ρ(1) · ρ(g−1) · ρ(g) =
I · ρ(g−1) · ρ(g), forcing ρ(g)−1 = ρ(g−1).

Therefore, ∀g, h ∈ G, as g ·h ·(gh)−1 = 1, we have I = ρ(g) ·ρ(h) ·ρ((gh)−1) =
ρ(g) · ρ(h) · ρ(gh)−1. Thus, ρ(gh) = ρ(g) · ρ(h). This proves that ρ is a group
homomorphism.

For injectivity, if g 6= h then g · h−1 · 1 6= 1, which implies that ρ(g) · ρ(h)−1 ·
ρ(1) 6= I, so ρ(g) 6= ρ(h).

Lemma 3.3. Let ρ : G → GLk(F) be a faithful representation. If Aρ is a k-
linear representation of Q3(G) then ρ is fixed-point free.

Proof. Since Aρ is a k-linear representation of Q3(G), for every g 6= 1G we have
that r({g′1, g′}) = 2. So

rank

−Ik −IkIk ρ(g)
0 0

 = 2k. (6)

By Proposition 2.11(b) we have that

rank

−Ik −IkIk ρ(g)
0 0

 = k + rank(ρ(g)− Ik). (7)

By combining (6) and (7), rank(ρ(g) − Ik) = k. This implies that ρ(g) − Ik is
invertible, so ∀v 6= 0, (ρ(g)−Ik)v 6= 0, therefore, ∀v 6= 0, ρ(g)v 6= v, which means
that 1 is not an eigenvalue of ρ(g). So, ρ is fixed-point free, as desired.

Lemma 3.4. If ρ : G→ GLk(F) is a fixed-point free representation, then Aρ is
a k-linear representation of Q3(G).



Proof. To prove that Aρ is a k-linear representation of M , we need to verify
that ∀X ⊂ E, if r(X) = n then the rank of the relevant sub-matrix of Aρ (i.e.,
deleting the columns of elements not in X) is nk. Ranks of most sub-matrices
are trivially verified, e.g.,

rank

Ik 0 −Ik
0 Ik 0
0 0 ρ(g)

 = rank

Ik −Ik −Ik0 ρ(gi) 0
0 0 ρ(gj)

 = 3k, rank

Ik −Ik0 ρ(g)
0 0

 = 2k.

(Note that ∀g ∈ G, the matrix ρ(g) is invertible, and, therefore, of rank k). So
it is necessary and sufficient to ensure that the following 2 requirements hold:

1. For every two distinct elements gi 6= gj

rank

−Ik −Ikρ(gi) ρ(gj)
0 0

 = 2k, (8)

2. For all gi, gj , g` ∈ G (not necessarily distinct)

rank

−Ik 0 ρ(g`)
ρ(gi) −Ik 0

0 ρ(gj) −Ik

 = r(
{
g′i, g

′′
j , g
′′′
`

}
) =

2k if gj · gi · g` = 1,

3k otherwise.
(9)

Ranks of all other relevant sub-matrices follow from similar arguments.

We first show that Equation (8) holds. By Proposition 2.11(b)

rank

−Ik −Ikρ(gi) ρ(gj)
0 0

 = k + rank(ρ(gj)− ρ(gi)), (10)

so in order to show that Equation (8) holds, we need to verify that for every
two distinct group elements gi, gj rank(ρ(gi) − ρ(gj)) = k. Since ρ is fixed-
point free and g−1i gj 6= 1, for every v 6= 0, v 6= ρ(g−1i gj)v = (ρ(gi)

−1ρ(gj))v, so
∀v 6= 0, ρ(gi)v 6= ρ(gj)v, thus, ∀v 6= 0, (ρ(gi) − ρ(gj))v 6= 0, which implies that
ρ(gi)− ρ(gj) is invertible and, therefore, of rank k, so (8) holds.

We next show that Equation (9) holds. By Proposition 2.11(a) and the defi-
nition of a homomorphism,

rank

−Ik 0 ρ(g`)
ρ(gi) −Ik 0

0 ρ(gj) −Ik

 = 2k + rank(ρ(gj · gi · g`)− Ik). (11)

So, to prove that (9) holds, we need to show that

rank(ρ(gj · gi · g`)− Ik) =

{
0 if gj · gi · g` = 1
k otherwise.

By arguments similar to the above



1. If gj · gi · g` 6= 1 then rank(ρ(gj · gi · g`)− Ik) = k, as ρ is fixed-point free.

2. If gj · gi · g` = 1 then rank(ρ(gj · gi · g`)− Ik) = 0. (This in fact true for any
representation because ρ(gj · gi · g`) = ρ(1) = Ik.)

Proof (Proof of Theorem 3.1). Combining the lemmas we get Theorem 3.1:
If G has a fixed-point free representation ρ of dimension k, then by Lemma 3.4,
the block matrix Aρ is a k-linear representation of Q3(G), and, in particular,
Q3(G) has a k-linear representation. On the other hand, if Q3(G) is k-linearly
representable then, by Lemma 3.2, it has a faithful representation ρ of dimension
k such that Aρ is a k-linear representation of Q3(G), so, by Lemma 3.3, ρ is
fixed-point free.

We combine Theorem 3.1 with Proposition 2.15 to get our desired result:

Corollary 3.5. For every prime p > 2 there is a matroid that is p-minimally
representable. Moreover, the matroid has poly(p) ground points and this repre-

sentation exists over a finite field with 2O(p6.18) elements.

Proof. Let q and Gp be as in Proposition 2.15. By Theorem 3.1 and Proposition
2.15, over the field F2pq , the matroid Q3(Gp), which has 3p2q+3 elements in the
ground set, is p-linearly representable. Furthermore, over any field, the matroid
Q3(Gp) is not j-linearly representable for any j < p. So, Q3(Gp) is p-minimally
representable. By Proposition 2.15, if we chose the appropriate q, then the field
F2pq has 2O(p6.18) elements.

We next rephrase the result in secret-sharing terms.

Corollary 3.6. For every prime p, there exists an access structure with poly(p)
parties, which has an ideal p-linear secret-sharing scheme with secrets of length
poly(n), but has no ideal k-linear secret-sharing scheme for every k < p.

Since the matroid has 3p2q + 3 elements in the ground set, the corresponding
access structure has 3p2q + 2 parties. Therefore, for every prime p, the smallest
access structure of this type has O(p7.18) parties. Also note that the schemes is
over a field with 2poly(p) elements, so every share can be represented by poly(p)
bits.

4 Lower Bounds for Multi-Linear secret-sharing Schemes

The best known lower bounds for linear secret-sharing schemes is nΩ(logn) [1,
16, 17]. By modification of the claims in [17], we show that these lower bounds
hold also for multi-linear secret-sharing schemes. Thus, even using multi-linear
schemes one cannot construct efficient schemes for general access structures.

We will use the following alternative definition of multi-linear secret sharing
schemes, proven to be equivalent in [13] (following [7, 20]).



Definition 4.1 (Multi-Target Monotone Span Program). A multi-target
monotone span program is a quadruple M = (F,M, ρ,X), where F is a finite
field, M is an a × b matrix over F, the function ρ : {1, . . . , a} → {p1, . . . , pn}
labels each row of M by a party, and X is a set of k independent vectors in Fb
such that for every A ⊆ {p1, . . . , pn} either

– The rows of the sub-matrix obtained by restricting M to the rows labeled by
parties in A, denoted MA, span every vector in X. In this case, we say that
M accepts A, or,

– The rows of MA span no non-zero vector in the linear space spanned by X.
In this case, we say that M rejects B.

We say that M accepts an access structure A if M accepts a set B if B ∈ A,
and rejects every set B /∈ A. The size of a multi-target monotone span program
is a/k, where a is the number of rows in the matrix and k is the number of
vectors in the set X.

Note that not every labeled matrix is a multi-target span program. For example,
if k > 1 and for some set A, the rows in MA span exactly one vector in X, then
this is not a multi-target span program. By [13] a multi-linear secret-sharing
scheme realizing an access structure A with total share size a exists if and only if
there exists a multi-target monotone span program accepting A that has a rows.
In particular, if there exists a multi-target monotone span program accepting
A with aj rows labeled by pj for 1 ≤ j ≤ n and k vectors in the set X, then
the exists a multi-linear secret-sharing scheme realizing A with information ratio
max1≤j≤n aj/k. In ideal multi-linear secret-sharing schemes aj = k for every j.

Assume, w.l.o.g., that X = {e1, . . . , ek}. We make 2 observations regarding
multi-target monotone span program.

Observation 4.2 If B ∈ A and N = MB then the rows of N span X, thus
∀0 < s < k there exists some vector vs such that es = vsN .

Observation 4.3 If T /∈ A then for every s ∈ {1, . . . , k} there exists a vector
ws ∈ Fb such that the following hold: (1) MTws = 0, (2) ∀i 6= s, ei · ws = 0,
and (3) es ·ws = 1 (that is, the coordinate s in ws is 1).

Proof. If T /∈ A, then the rows of MT do not span any of the vectors in X. Let
MT,X be the matrix containing the rows of MT and additional rows e1, . . . , ek
and MT,X\{s} the same matrix with the row es deleted. By simple linear algebra,
for every 1 ≤ s ≤ k, we have that rankMT,X < rankMT,X\{s}, which implies

that |kernelMT,X | >
∣∣kernelMT,X\{s}

∣∣, and so there is some vector ws ∈ Fb
such that es · ws = 1 and MT,X\{s}ws = 0 (so evidently MTws = 0 and
∀i 6= s, ei ·ws = 0).

We next quote the definition of a collection with unique intersection from [17].
Such collections are used in [17] to prove lower bounds for monotone span pro-
grams; we show that the same lower bound holds for multi-target monotone span
programs.



Definition 4.4. Let A be a monotone access structure, with B = {B1, . . . , B`}
the collection of minimal authorized sets in A. Let C = {(C1,0, C1,1), (C2,0, C2,1),
. . . ,(Ct,0, Ct,1)} be a collection of pairs of sets of parties. We say that C satisfies
the unique intersection property for A if

1. For every 1 ≤ j ≤ t, {p1, . . . , pn} \ (Cj,0 ∪ Cj,1) /∈ A.
2. For every 1 ≤ i ≤ ` and every 1 ≤ j ≤ t, exactly one of the following

conditions hold (1) Bi ∩ Cj,0 6= ∅, (2) Bi ∩ Cj,1 6= ∅.

Note that if B ∈ A and {p1, . . . , pn} \ C /∈ A, then B ∩ C 6= ∅ (otherwise,
B ⊆ {p1, . . . , pn}\C, contradicting the monotonicity of A). Thus, Condition (2)
in Definition 4.4 requires that Bi intersects at most one of the sets Cj,0, Cj,1.

Theorem 4.5. Let C be a collection satisfying the unique intersection property
for A. Define a matrix D of size ` × t, with Di,j = 0 if Bi ∩ Ci,0 6= ∅ and
Di,j = 1 if Bi ∩ Ci,1 6= ∅. Then, the size of every multi-target monotone span
program accepting A is at least rankF(D).

Proof. Let M = (F,M, ρ,X = {e1, . . . , ek}) be a multi-target monotone span
program accepting A, and denote the number of rows of M by m. For every
1 ≤ i ≤ ` since Bi ∈ A the rows of M labeled by the parties of Bi span X. By
Observation 4.2, for every 1 ≤ r ≤ k, there exists vi,r such that vi,rM = er and
the non-zero coordinates of vi,r are only in rows labeled by Bi.
Fix 1 ≤ j ≤ t and let Tj = {p1, . . . , pn} \ (Cj,0 ∪ Cj,1). Since Tj /∈ A, by Obser-
vation 4.3, for every 1 ≤ s ≤ k there exists a vector wj,s such that MTjwj,s = 0,
es ·wj,s = 1 and ∀r 6= s, er ·wj,s = 0. Let yj,s := Mwj,s and define zj,s to be
the column vector achieved from yj,s by replacing all coordinates in yj,s labeled
by parties in Cj,0 with zero. The only non-zero coordinates in zj,s are in coor-
dinates labeled by Cj,1.
Define L as the matrix with rows v1,1, . . . , v`,1, v1,2, . . . , v`,2, . . . , v`,k and R the
matrix with columns z1,1, . . . , z`,1, z1,2, . . . , z`,2,. . . , z`,k. Note that by definition
the rows of L are of length m, so L has m columns, thus, rank(L) ≤ m.

Let D = LR. We next prove that D is a block matrix of the form:

D =


D 0 . . . 0
0 D . . . 0
...

...
. . .

...
0 0 . . . D

 , (12)

whereD is the matrix defined in the Theorem. We need to show that vi,r ·zs,j = 0
if r 6= s (off the diagonal matrix block) and vi,r · zs,j = Di,j if r = s.

– If Bi ∩ Cj,0 6= ∅, Di,j = 0. Furthermore, Bi ∩ Cj , 1 = ∅, thus, vi,r and zs,j
do not share non-zero coordinates and vi,r · zs,j = 0. In particular, if r = s
then vi,r · zr,j = 0 = Di,j , and if r 6= s then vi,r · zs,j = 0 as desired.

– If Bi ∩ Cj,1 6= ∅, then Di,j = 1, Bi ∩ Cj,0 = ∅, and all coordinates in vi,r
labeled by Cj,0 are zero, thus,

vi,r · zs,j = vi,r · ys,j = vi,rMws,j = er ·ws,j =

{
0 r 6= s
1 r = s

.



In particular, if r = s then vi,r ·zr,j = 1 = Di,j and if r 6= s then vi,r ·zs,j = 0.

So rankF(D) = k · rankF(D), and sinceM is a k-linear representation, its size is
m
k ≥

rankF(L)
k ≥ rankF(D)

k = rankF(D).

By [17], for every n there is an access structure A with n parties, for which
there exists a collection C satisfying the unique intersection property, such that
rankF(D) ≥ nΩ(logn) (where D is as defined in Theorem 4.5). So by Theorem
4.5,

Corollary 4.6. For every n, there exists an access structure Nn with n parties
such that every multi-target monotone span program over any field accepting it
has size nΩ(logn).

As multi-target monotone span program are equivalent to multi-linear secret-
sharing schemes [20], the same lower bound applies to multi-linear secret-sharing
schemes.

Corollary 4.7. For every n, there exists an access structure Nn with n par-
ties such that the information ratio of every multi-linear secret-sharing scheme
realizing it is nΩ(logn).
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A The Construction of the Group Gp

In this section we briefly explain the construction of the group Gp (for any prime
p), which appears in Proposition 2.15. We then give a partial explanation of why
any fixed-point free representation of Gp is of dimension at least p. The complete
proofs, and more details on the construction, will be given in the full version.

Semidirect products. We assume some familiarity with group basics, such as
group homomorphisms and automorphisms. Let N be a group. Recall that the
set of all automorphisms of N , denoted Aut(N), is also a group, with group
operation being composition, and the identity element being the identity map.
We now recall the definition of an action of a group H on a group N .

Definition A.1. Let H and N be two groups. By an action of H on N , denoted
H y N , we mean a group homomorphism φ : H → Aut(N).

To simplify the notation, if no confusion is possible, we use shorter notation
xg := (φ(g))(x). Since φ is a homomorphism, the identity of G is mapped to the
identity automorphism.



Example A.2. For any pair of groups H and N , there always exists the trivial
action τ : H → Aut(N), which maps every element of H to the identity auto-
morphism. A non-trivial action, however, does not always exist, and depends on
the choice of H and N .

Example A.3. Let H = Z2 and N = Z3. To avoid confusion we denote N =
{0, 1, 2} and H = {f0, f1} . Then H acts on N by φ(f1)(1) = 2. We note that
this completely identifies the action because f1 and 1 are generators of H and
N respectively. Thus, for example, f1(2) = f1(1 + 1) = f1(1) + f1(1) = 2 + 2 = 1
and f0(1) = f1 ◦ f1(1) = f1(2) = 1. So it remains to verify only that this is well
defined, which is a very small task.

Lemma A.4. Let ψ : G1 → G2 be a group homomorphism, and φ : G2 y N a
group action. Then ψ induces a group action ψ∗(φ) : G1 y N , given by compo-
sition (ψ∗(φ))(x) := φ(ψ(x)). Furthermore, if ψ is surjective and the action φ is
non-trivial then so is ψ∗(φ).

Proof. Follows easily from the definitions.

The following proposition is well known.

Proposition A.5 For any prime q, the group of automorphisms of Zq is iso-
morphic to the group Zq−1.

This allows us to build a non-trivial action of Zp on Zq, if p, q are primes such
that q ≡ 1 mod p.

Proposition A.6 Let p, q ∈ N be two primes such that q ≡ 1 mod p. Then Zp
admits a non-trivial action on Zq.

Proof. From Proposition A.5 Aut(Zq) ' Zq−1. Thus, it suffices to construct a
non-trivial homomorphism φ : Zp → Zq−1. Let n ∈ N be such that q − 1 = np,
and set φ(x) := nx mod q. Then φ is a non-trivial homomorphism.

Corollary A.7. Let p, q be as in Proposition A.6. Then Zp2 admits a non-trivial
action on Zq.

Proof. We have a natural surjective homomorphism ψ : Zp2 → Zp given by
ψ(x) := x mod p. Thus, by Proposition A.6 and Lemma A.4, ψ∗(φ) is a non-
trivial action of Zp2 on Zq.

There may exist other non-trivial actions of Zp2 on Zq. However, from now
on when we mention the action of Zp2 on Zq, we mean that we have fixed
an isomorphism Aut(Zq) ' Zq−1 and we refer to the non-trivial action ψ∗(φ)
constructed in the proof of Corollary A.7.

Definition A.8. Let H be a group acting on another group N , and φ : H →
Aut(N) the action. The semidirect product, denoted NoφH, is the set N×H =
{(n, h)|n ∈ N,h ∈ H} equipped with the following operation

(n1, h1) · (n2, h2) := (n1 · nh1
2 , h1 · h2). (13)



We leave to the reader to verify that (13) indeed defines a group-law. We will
often omit φ in the notation of the semidirect product, and write simply N oG.
When the action of G on N is not trivial we will say that the semidirect product
is non-trivial. An attractive property of non-trivial semidirect products is that
they are not abelian, even if H and N are.

Lemma A.9. If NoG is a non-trivial semidirect product then it is not abelian.

Proof. Since G acts non-trivially, there exist g ∈ G and h ∈ N such that hg 6= h.
Therefore (eN , g) · (h, eG) = (hg, g) 6= (h, g) = (h, eG) · (eN , g).

Proposition A.10 Let p and q be prime integers satisfying q ≡ 1 mod p. Then
there exists a non-trivial semidirect product Gp = Zq oZp2 . The group has p2 · q
elements.

Proof. Follows immediately from the definitions and Corollary A.7.

Suitability of Gp. We now explain why the above construction works for us.
Since a full proof requires quite a few pages of background in representation
theory, we will only give a brief overview and refrain from proving the following
claims, which rely on some classical theorems in representation theory. But first
we state Linnik’s theorem:

Theorem A.11 (Linnik’s Theorem). There exists constants c, L such that
for any pair of co-prime integers a and d, with 1 ≤ a < d, the smallest prime of
the form a+ nd (n ≥ 1) is smaller than cdL.

Linnik didn’t give an explicit bound on L, but later works have shown that L is
in fact very small. The current state of the art is L ≤ 5.18 due to Xylouris [43].

Corollary A.12. For every prime p, there exists a prime q, with q = O(p5.18),
for which a non-trivial semidirect product Zq o Zp2 exists.

Now fix a prime p and a prime q such that q ≡ 1 mod p, and let Gp =
Zq o Zp2 be the non-trivial semidirect product explained above.

Lemma A.13. The group Gp is solvable and every proper subgroup of Gp is
cyclic. Thus, from the classification of solvable fixed-point free groups (see for
example [42, Theorem 6.1.11]), the group Gp admits a fixed-point free represen-
tation.

Lemma A.14. The group Gp is not abelian. This implies that Gp does not have
fixed-point free representations of dimension 1.

Lemma A.15. The group Gp does not have any fixed-point free representations
over fields of characteristic p, q.

Lemma A.16. Over fields of characteristic different from p, q, the dimension of
the smallest fixed-point representation of Gp divides the order of Gp. Thus, since
the dimension cannot be 1, Gp has a fixed-point free representation of dimension
≥ p.

The completion of Proposition 2.15 (i.e., bounding the size of the field) is done
by explicitly building a fixed-point free representation of Gp of dimension p over
the field F2pq .


