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Abstract. In this paper, we show two new constructions of chosen ciphertext
secure (CCA secure) public key encryption (PKE) from general assumptions.
The key ingredient in our constructions is an obfuscator for point functions with
multi-bit output (MBPF obfuscators, for short), that satisfies some (average-case)
indistinguishability-based security, which we call AIND security, in the presence
of hard-to-invert auxiliary input. Specifically, our first construction is based on
a chosen plaintext secure PKE scheme and an MBPF obfuscator satisfying the
AIND security in the presence of computationally hard-to-invert auxiliary input.
Our second construction is based on a lossy encryption scheme and an MBPF
obfuscator satisfying the AIND security in the presence of statistically hard-to-
invert auxiliary input. To clarify the relative strength of AIND security, we show
the relations among security notions for MBPF obfuscators, and show that AIND
security with computationally (resp. statistically) hard-to-invert auxiliary input is
implied by the average-case virtual black-box (resp. virtual grey-box) property
with the same type of auxiliary input. Finally, we show that a lossy encryption
scheme can be constructed from an obfuscator for point functions (point obfus-
cator) that satisfies re-randomizability and a weak form of composability in the
worst-case virtual grey-box sense. This result, combined with our second generic
construction and several previous results on point obfuscators and MBPF ob-
fuscators, yields a CCA secure PKE scheme that is constructedsolely from a
re-randomizable and composable point obfuscator. We believe that our results
make an interesting bridge that connects CCA secure PKE and program obfusca-
tors, two seemingly isolated but important cryptographic primitives in the area of
cryptography.
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1 Introduction

1.1 Background and Motivation

One of the fundamental research themes in cryptography is to clarify what the minimal
assumptions to realize various kinds of cryptographic primitives are, and up to now,
a number of relationships among primitives have been investigated and established.
Clarifying these relationships gives us a lot of insights for how to construct and/or
prove the security of cryptographic primitives, enables us to understand the considered
primitives more deeply, and leads to systematizing the research area in cryptography.



In this paper, we focus on the constructions of public key encryption (PKE) schemes
secure against chosen ciphertext attacks (CCA) [54, 29] from general cryptographic
assumptions. CCA secure PKE is one of the most important cryptographic primitives
that has been intensively studied, due to its resilience against practical attacks such as
[10], and its implication to many useful security notions, such as non-malleability [29]
and universal composability [18].

The first successful result regarding this line of research is the construction by
Dolev, Dwork, and Naor [29] that uses a chosen plaintext secure (CPA secure) PKE
scheme and a non-interactive zero-knowledge proof. Since these two primitives can be
constructed from (an enhanced variant of) trapdoor permutations (TDP) [35], CCA se-
cure PKE can be constructed solely from TDPs. Canetti, Halevi, and Katz [20] showed
that CCA secure PKE can be constructed from an identity-based encryption (IBE). It
was later shown that in fact, a weaker primitive called tag-based encryption suffices
[45]. Peikert and Waters [53] showed that CCA secure PKE can be constructed from any
lossy trapdoor function (TDF), and subsequent works showed that injective TDFs with
weaker properties suffice: injective TDFs secure for correlated inputs [55], slightly lossy
TDFs [49], adaptive one-way TDFs [46], and adaptive one-way relations [59]. (CPA se-
cure) PKE schemes with additional security/functional properties have also turned out
to be useful for constructing CCA secure PKE: Hemenway and Ostrovsky [40] showed
that we can construct CCA secure PKE in several ways from homomorphic encryption
with appropriate properties. The same authors [41] also showed that CCA secure PKE
can be constructed from a lossy encryption scheme [6] if the plaintext space is larger
than the randomness space (the results of [40, 41] achieve CCA secure PKE via lossy
TDFs [53]). Hohenberger, Lewko, and Waters [42] showed that if one has a PKE scheme
which satisfies the notion called detectable CCA security, which is somewhere between
CCA1 and CCA2 security, then using it one can construct a CCA secure PKE scheme.
Myers and Shelat [50] showed how to construct a CCA secure PKE scheme that can en-
crypt plaintexts with arbitrary length from a CCA secure one with 1-bit plaintext space.
Lin and Tessaro [47] showed how to amplify weak CCA security into ordinary one.
Very recently, Dachman-Soled [25] constructs CCA secure PKE from PKE satisfying
(standard model) plaintext-awareness together with some additional property.

The main purpose of this work is to show that a different kind of cryptographic prim-
itives is also useful for achieving CCA secure PKE. Specifically, we add new recipes
for the construction of CCA secure PKE, based on the techniques and results from pro-
gram obfuscation [3] for the very simple classes of functions, point functions and point
functions with multi-bit output. Despite the tremendous efforts, it is not known whether
it is possible to construct CCA secure PKE only from CPA secure one (in fact, a partial
negative result is known [33]). Clarifying new classes of primitives that serve as build-
ing blocks is important for tackling this problem. In particular, it has been shown that
there is no black-box construction of IBE and a TDF from (CCA secure) PKE [11, 34]
and thus to tackle the CPA-to-CCA problem, the attempts to construct IBE or the above
TDF-related primitives from a CPA secure PKE scheme seem hopeless (though there is
a possibility that some non-black-box construction exists). Our new constructions based
on (multi-bit) point obfuscators do not seem to be covered by these negative results, and
thus potentially it could serve as a new target for building CCA secure PKE.



1.2 Our Contribution

In this paper, we show two new constructions of CCA secure PKE schemes from general
cryptographic assumptions, using the techniques and results from program obfuscation
[3]. We actually construct CCA secure key encapsulation mechanisms (KEMs) [24],
where a KEM is a “PKE”-part of hybrid encryption that encrypts a random “session-
key” for symmetric key encryption (SKE). By combining a CCA secure KEM with a
CCA secure SKE scheme, one obtains a full-fledged CCA secure PKE scheme [24]. The
key ingredient in our constructions is an obfuscator for point functions with multi-bit
output (MBPF obfuscators) [48, 19, 27, 37, 21, 7], that satisfies a kind of average-case
indistinguishability-based security in the presence of “hard-to-invert” auxiliary inputs.
The formal definition of this security notion is given in Section 3. For brevity, we call
it AIND security.

Our first construction in Section 4.1 is based on a CPA secure PKE scheme and
an MBPF obfuscator satisfying the above mentioned AIND security in the presence of
computationally hard-to-invert auxiliary input. Our second construction in Section 4.2
is based on a lossy encryption scheme [6] and an MBPO satisfying the above mentioned
AIND security in the presence of statistically hard-to-invert auxiliary input. Interest-
ingly, the first and the second constructions are in fact exactly the same, and we show
two different security analyses from different assumptions on building blocks. These
two constructions add new recipes into the current picture of the constructions of CCA
secure PKE schemes/KEMs from general cryptographic assumptions.

In order to clarify where these AIND security definitions for MBPF obfuscators are
placed, in Section 5 we show that AIND security with computationally (resp. statisti-
cally) hard-to-invert auxiliary inputs is implied by the (average-case) virtual black-box
property [3] (resp. virtual grey-box property [7]) in the presence of the same auxiliary
inputs. Besides these, we show the relations among several related worst-/average-case
virtual black-/grey-box properties under several types of auxiliary inputs, and summa-
rize them in Fig. 2, which we believe is useful for further research on this topic and
might be of independent interest.

Finally, in Section 6, we show that a lossy encryption scheme can be constructed
from an obfuscator for point functions (point obfuscator) that satisfies re-randomizability
[7] and a weak form of composability [48, 19, 7] in the worst-case virtual grey-box
sense. This result, combined with our second generic construction and the results on
composable point obfuscators with the virtual grey-box property in [7], shows that a
CCA secure PKE scheme can be constructedsolely from a point obfuscator which is
re-randomizable and composable.

We believe that our results make an interesting bridge that connects CCA secure
PKE and program obfuscators,1 two seemingly isolated but important primitives in the
area of cryptography, and hope that our results motivate further studies on them.

1 Recently, Sahai and Waters [57] (among others) showed how to construct CCA secure PKE us-
ing indistinguishability obfuscation. We explain the difference with our results in Section 1.4.



1.3 Overview of Techniques

Our proposed constructions of KEMs are based on the “witness-recovering” technique
[53, 55, 50, 42] in which a part of randomness used to generate a ciphertext is somehow
embedded into the ciphertext itself, and is later recovered in the decryption process for
checking the validity of the ciphertext by re-encryption. What we believe is novel in
our constructions is how to implement this mechanism of witness-recovering by using
an MBPF obfuscator with an appropriate security property.

Let Iα→β denote an MBPF such thatIα→β(x) = β if x = α and⊥ otherwise,
and letMBPO denotes an MBPF obfuscator which takes an MBPFIα→β as input, and
outputs an obfuscated circuitDL for Iα→β . (“DL” stands for “digital locker,” the name
due to [19].) LetΠ = (PKG,Enc,Dec) be a PKE scheme, wherePKG, Enc, andDec
are the key generation, the encryption, and the decryption algorithms ofΠ, respectively.

Below we give a high level idea behind our main proposed constructions in Sec-
tion 4 by explaining how the “toy” version of our constructionsΠ ′ = (PKG′,Enc′,
Dec′), constructed usingΠ andMBPO, is provedCCA1 secure based on the assump-
tions thatΠ is CPA secure and thatMBPO satisfies the virtual black-box property with
respect to dependent auxiliary input [36]. (As mentioned earlier, in this paper we ac-
tually construct KEMs rather than PKE schemes, but the intuition for our results are
captured by the explanation here.) A public/secret key pair(PK,SK) of Π ′ is of the
form PK = (pk1, pk2), SK = (sk1, sk2), where each(pki, ski) is an independently
generated key pair by runningPKG. To encrypt a plaintextm underPK,Enc′ first picks
a random stringα ∈ {0, 1}k (wherek is the security parameter) and two randomness
r1 andr2 for Enc, and computes a ciphertextC in the following way:

C = (c1, c2, DL) =
(
Enc(pk1, (m∥α); r1),Enc(pk2, (m∥α); r2),MBPO(Iα→(r1∥r2))

)
where “∥” denotes the concatenation of strings, and “Enc(pk,m; r)” means to encrypt
the plaintextm under the public keypk using the randomnessr. To decryptC, we first
decryptc1 by usingsk1 to obtain(m∥α), then runDL(α) to recover(r1∥r2). Finally,
m is returned ifci = Enc(pki, (m∥α); ri) holds for bothi = 1, 2, and otherwise we
rejectC. Here, it should be noted that due to the symmetric roles ofpk1 andpk2 and the
validity check by re-encryption performed inDec′, we can also decryptC usingsk2, so
that the decryption result ofC usingsk1 and that usingsk2 always agree.

Now, recall the interface of aCCA1 adversaryA = (A1,A2), whereA1 andA2 rep-
resent an adversary’s algorithm before and after the challenge, respectively.A1 is firstly
given a public keyPK, and can start using the decryption oracleDec′(SK, ·). After
that,A1 terminates with output two plaintexts(m0,m1) and some state informationst
that is passed toA2. A2 is given st and the challenge ciphertextC∗ = (c∗1, c

∗
2, DL

∗)
which is an encryption ofmb (whereb is the challenge bit), and outputs a bit as its
guess forb.

The key observation is thatA2 can be seen as an adversary for the MBPF obfuscator
MBPO, by regarding(st, c∗1, c

∗
2) as an auxiliary inputz about the obfuscated circuitDL∗

of the MBPFIα∗→(r∗1∥r∗2 ). Then, ifMBPO satisfies the virtual black-box property with
respect to dependent auxiliary input [36], there exists a simulatorS that takes only
z = (st, c∗1, c

∗
2) as input, has oracle access toIα∗→(r∗1∥r∗2 ), and has the property that



A’s success probability (in guessingb) is negligibly close to the probability thatS
succeeds in guessingb. (For convenience, let us call the latter probability “S ’s success
probability,” althoughS is not aCCA1 adversary and thus its task is not to guess a
challenge bit.) This means that ifS ’s success probability is close to1/2, then so isA’s
success probability, which will prove theCCA1 security ofΠ ′.

To show thatS ’s success probability is close to1/2, we consider the hypothetical
experiment forS in which the auxiliary inputz is generated so that decryption queries
fromA1 are answered usingsk2, and bothc∗1 andc∗2 are an encryption of a fixed value
(say,0|m0|+k). Sincez contains no information onb andα∗, in this hypothetical exper-
imentS ’s success probability is exactly1/2 and the probability thatS makes the query
α∗ (which is chosen randomly) is negligible. Next, we make the experiment closer to
the actualS ’s experiment, by changingc∗1 into an encryption of(mb∥α∗). By theCPA
security regardingpk1, S ’s success probability as well as the probability ofS making
the queryα∗ is negligibly close to those in the hypothetical experiment. Then, we fur-
ther modify the previous experiment by changingc∗2 into an encryption of(mb∥α∗), but
this time we usesk1 for answeringA1’s queries. Notice that this is exactly the actual
experiment forS. As mentioned above, switchingsk2 to/from sk1 for answeringA1’s
queries does not affectA1’s behavior, and thus again by theCPA security regardingpk2,
S ’s success probability is negligibly close to1/2 and the probability thatS makes the
queryα∗ is negligible. Then, by the virtual black-box property ofMBPO with auxiliary
input,A’s original success probability is negligibly close to1/2, meaning thatA has
negligible advantage in breaking theCCA1 security of the schemeΠ ′.

The above completes a proof sketch of howΠ ′ is provedCCA1 secure. By encrypt-
ing a randomK, Π ′ can be used as aCCA1 secure KEM. Our proposedCCA2 secure
KEMs are obtained by applying several optimizations and enhancement to this KEM:

– Firstly, we do not need the full virtual black-box property with auxiliary input of
[36]. As mentioned earlier, an indistinguishability-based definition in the presence
of only “hard-to-invert” auxiliary input is sufficient for a similar argument to work.

– Secondly, we need not include a plaintext into each ofci. Instead, we pick a ran-
domnessK ∈ {0, 1}k used as a plaintext of a KEM, and include thisK into the
output of the MBPF, i.e now we obfuscate the MBPFIα→(r1∥r2∥K). (This is the
actual our basic construction whose formal description and security proof are given
in the full version.)

– Lastly, note that the above construction cannot be proved to beCCA2 secure as
it is. In particular, the obfuscated circuitDL could be malleable. To deal with this
issue, instead of the Naor-Yung-style double encryption [52], we employ the Dolev-
Dwork-Naor-style multiple encryption [29] together with the technique of the “undu-
plicatable set selection” [56]. Unlike the classical method of using a one-time signa-
ture scheme, we implement the technique using a universal one-way hash function
(UOWHF) [51], where a hash value of the obfuscated circuitDL is used as a “selec-
tor” of the public key components. Another issue is that the second stage adversary
A2 in theCCA2 experiment can also make decryption queries, and thus the above
explained idea of replacingA2 with a simulatorS does not work. However, our
indistinguishability-based security definition for MBPF obfuscators enables us to



directly work with an originalCCA2 adversary, and we can avoid considering how
a simulator deal with the queries fromA2. For more details, see Section 4.

1.4 Related Work: Program Obfuscation

Roughly speaking, an obfuscator is an algorithm that takes a program (e.g. Turing ma-
chine or circuit) as input, and outputs another program with the same functionality, but
otherwise “unintelligible.”

After the impossibility of general-purpose program obfuscation satisfying the nowa-
days standard security notion calledvirtual black-boxproperty shown in the seminal
work by Barak et. al. [3], several subsequent works extended the impossibility in vari-
ous other settings [36, 58, 38, 7]. The other line of research pursues possibilities of ob-
fuscating a specific class of functions. Before 2013, most known positive results were
about obfuscation for point functions and their variants, e.g. [48, 58, 19, 22, 7]. Relaxing
the security requirements to “average-case” in which a program is sampled according
to some distribution, several more complex tasks have been shown to be obfuscatable,
such as proximity testing [28] and cryptographic tasks such as re-encryption [43].

Since the first candidates of a cryptographic multilinear map have been proposed in
2013 [30, 23], the research field of (cryptographic) obfuscation has drastically changed
and accelerated. Brakerski and Rothblum [14] showed how to construct an obfuscator
for conjunctions from graded encoding schemes [30, 23], and the same authors showed
a further extension [13]. Most recently, they showed a general-purpose obfuscator sat-
isfying a virtual black-box property in an idealized model called the generic graded en-
coded scheme model [15]. Barak et al. [2] studied obfuscation for a class of functions
called evasive functionswhich in particular includes point functions (with multi-bit
output). A series of works [32, 57, 44, 31] (and many other recent works) have shown
that a general-purpose obfuscator satisfying a security notion weaker than the virtual
black-box property, calledindistinguishability obfuscator, which seems to be too weak
to be useful, is in fact surprisingly powerful and can be used as a building block for
constructing a various kinds of cryptographic primitives. Garg et al. [32] constructed
the first candidate of general-purpose indistinguishability obfuscation. A security no-
tion stronger than indistinguishability obfuscation, calleddiffering-inputs obfuscation
(a.k.a.extractability obfuscation[12]), has also been shown to be quite powerful and
useful [1, 12].

Among a number of recent fascinating results, especially relevant to our work is
the work by Sahai and Waters [57] who showed (among several other primitives) how
to construct CCA secure PKE from an indistinguishability obfuscator (and a one-way
function). Although our work and [57] have the common property that both works build
CCA secure PKE using techniques and results from obfuscation, our use of obfuscators
and that of [57] are quite different: We use an obfuscator for a specific class of functions,
point functions and MBPFs, while [57] uses an obfuscator for all polynomial-sized cir-
cuits. Furthermore, the indistinguishability-based security notion for MBPF obfuscators
used in our main result is about randomly chosen MBPFs, while that used in [57] is for
the worst-case choice of circuits (that compute the same functions). We would also like
to stress that our work and [57] were done concurrently and independently.



1.5 Paper Organization

The rest of the paper is organized as follows: In Section 2 (and Appendix A) we review
the basic notations and definitions of primitives. In Section 3, we introduce the formal
definitions of our new indistinguishability-based security notions for MBPF obfusca-
tors. In Section 4, we show our main results: two CCA secure KEMs using a MBPF
obfuscator. In Section 5, we investigate relations between our new security notions and
other notions for MBPF obfuscators. In Section 6, we show how to construct a lossy
encryption scheme from a point obfuscator with re-randomizability and composability.
In Section 7, we discuss some issues on the MBPF obfuscators that we use.

2 Preliminaries

Here, we review the basic notation and the definitions for lossy encryption [6] and
(cryptographic) obfuscation. The definitions for standard cryptographic primitives that
are not given here are given in Appendix A, which include PKE, KEMs, and UOWHFs.

Basic Notation.N denotes the set of all natural numbers, and ifn ∈ N then [n] =
{1, . . . , n}. “x← y” denotes thatx is chosen uniformly at random fromy if y is a finite
set,x is output fromy if y is a function or an algorithm, ory is assigned tox otherwise.
If x andy are strings, then “|x|” denotes the bit-length ofx, and “x∥y” denotes the

concatenationx andy. “x
?
= y” is the operation that returns1 if and only if x = y.

“PPTA” stands for aprobabilistic polynomial time algorithm. If A is a probabilistic
algorithm theny ← A(x; r) denotes thatA computesy as output by takingx as input
and usingr as randomness.AO denotes an algorithmA with oracle access toO. A
function ϵ(k) : N → [0, 1] is said to benegligible if for all positive polynomialsp(k)
and all sufficiently largek ∈ N, we haveϵ(k) < 1/p(k). Throughout this paper, we use
the character “k” to denote a security parameter.

2.1 Lossy Encryption

Definition 1. A tuple of PPTAsΠ = (PKG,Enc,Dec, LKG) is said to be anϵ-lossy
encryptionscheme2 if the following properties are satisfied:

– (Syntax) (PKG,Enc,Dec) constitutes a PKE scheme. The algorithmLKG is called
a lossy key generation algorithm, which takes1k as input, and outputs a “lossy”
public keypk.

– (Indistinguishability of ordinary/lossy keys) For all PPTAsA, AdvKEYΠ,A(k) := 2 ·
|Pr[ExptKEYΠ,A(k) = 1] − 1/2| is negligible, where the experimentExptKEYΠ,A(k) is
defined as follows:

[ (pk0, sk)← PKG(1k); pk1 ← LKG(1k); b← {0, 1}; b′ ← A(pkb);

Return (b′
?
= b) ].

2 In this paper, we consider the “exact security”-style definition for lossy encryption andCPA

secure PKE. This is to quantify the “hardness” of inverting an auxiliary input functions used
in the security definitions of MBPF obfuscators. For details, see Section 3.



– (Statistical lossiness) For all computationally unbounded algorithmsA and for all
sufficiently largek ∈ N it holds thatAdvLOS- CPA

Π,A (k) := 2 · |Pr[ExptLOS- CPA
Π,A (k) =

1]−1/2| ≤ ϵ(k), where the experimentExptLOS- CPA
Π,A (k) is defined in the same way as

the ordinaryCPA experimentExptCPAΠ,A(k) except that the public keypk is generated
aspk ← LKG(1k). We callϵ lossiness.

2.2 Obfuscation for Circuits and Worst-Case Security Definitions

Here, we recall the definition of circuit obfuscations, following the definitions given
in [3, 48, 36, 8]. In the following, byC we denote an ensemble{Ck}k∈N, whereCk is
a collection of circuits whose input length isk and whose size is bounded by some
polynomial ofk.

Definition 2. We say that a PPTAObf is an obfuscator forC if it satisfies the following:

– (Functionality) For everyk ∈ N and everyC ∈ Ck, a circuit output fromObf(C)
computes the same function asC.

– (Polynomial blowup) There exists a polynomialp = p(k) > 0 such that for every
k ∈ N and everyC ∈ Ck, the size of a circuit output fromObf(C) is bounded byp.

Note that Definition 2 is only about the functionality requirements of obfuscators.
Next, we recall the security definitions for “worst-case” choice of circuits.: The

virtual black-box propertyis due to Barak et al. [3], thevirtual black-box property with
(dependent) auxiliary inputis due to Goldwasser and Kalai [36], andvirtual “grey”-box
(with (dependent) auxiliary input)is due to Bitansky and Canetti [7].

Definition 3. We say that an obfuscatorObf for C satisfies:

– the worst-case virtual black-box property(WVB security, for short), if for every
PPTAA (adversary) and every positive polynomialq = q(k), there exists a PPTA
S (simulator) such that for all sufficiently largek ∈ N and all circuitsC ∈ Ck, it
holds that

|Pr[A(1k,Obf(C)) = 1]− Pr[SC(1k) = 1]| ≤ 1/q,

– the worst-case virtual black-box property w.r.t. auxiliary input(WVB- AI security,
for short), if for every PPTAA and every positive polynomialsq = q(k) andℓ =
ℓ(k), there exists a PPTAS such that all sufficiently largek ∈ N, all circuits
C ∈ Ck, and all stringsz ∈ {0, 1}ℓ, it holds that

|Pr[A(1k, z,Obf(C)) = 1]− Pr[SC(1k, z) = 1]| ≤ 1/q,

where the probabilities are over the randomness consumed byObf,A, andS.
Furthermore, we define theworst-case virtual grey-box property(WVG security), and

theworst-case virtual grey-box property w.r.t. auxiliary input(WVG-AI security) ofObf,
in the same way as the definitions for the corresponding virtual black-box properties,
except that we replace “a PPTAS” in each definition with “a computationally un-
bounded algorithmS that makes only polynomially many queries.”



Note that in the above definitions, the simulatorS can depend on the polynomialq
which represents the “quality of simulation.” Wee [58] refers to the simulators of this
type as a “weak simulator.”

We also define (t-)composability of obfuscations [48, 19, 7, 21]. Following [8], we
only define the composability in the grey-box (WVG) notion, using a computationally
unbounded simulator, which is sufficient for our purpose in this paper.

Definition 4. ([7]) Let t = t(k) > 0 be a polynomial. We say that an obfuscatorObf
for C satisfiest-composability, if for every PPTAA and a positive polynomialq = q(k),
there exists a computationally unbounded algorithmS that makes only polynomially
many queries, such that for all sufficiently largek ∈ N and for all circuitsC1, . . . , Ct ∈
Ck, it holds that:

|Pr[A(1k,Obf(C1), . . . ,Obf(Ct)) = 1]− Pr[SC1,...,Ct(1k) = 1]| ≤ 1/q,

where the probabilities are over the randomness consumed byObf,A, andS.

Notations for Point Obfuscators and MBPF Obfuscators.LetX be a finite set,t ∈ N,
α ∈ X , andβ ∈ {0, 1}t. A point functionIα and amulti-bit point function(MBPF)
Iα→β are functions defined as follows:

Iα(x) =

{
⊤ if x = α

⊥ otherwise
and Iα→β(x) =

{
β if x = α

⊥ otherwise

We refer toα andβ as thepoint addressand thepoint value, respectively.
In this paper, we will only consider circuits for computing point functions/MBPFs

with the properties that (1) the description is given in some canonical form and thus
there is a one-to-one correspondence between a point address/value and the circuit for
computing the point function/MBPF, and (2) the description of the circuits reveals the
point address/value in the clear. Hereafter, we will identify a point function and an
MBPF with circuits that compute them (with the above mentioned properties).

For an ensembleX = {Xk}k∈N, where eachXk is a set, we denote byPF(X ) the
ensemble of point functions{Iα}α∈Xk

. Similarly, forX and a polynomialt, we denote
by MBPF(X , t) the ensemble MBPFs{Iα→β}α∈Xk,β∈{0,1}t .

Hereafter, we refer to an obfuscator for point functions as apoint obfuscatorand
will denote it byPO. Furthermore, we refer to an obfuscator for MBPFs as anMBPF ob-
fuscatorand will denote it byMBPO. Moreover, we call an ensembleX = {Xk}k∈N a
“domain ensemble” (for point functions and MBPFs)if (1) for all k ∈ N, each element
of Xk is k-bit, (2) |Xk| is superpolynomially large ink (and thus1/|Xk| is negligible),
and (3) we can efficiently sample an element fromXk uniformly at random.

Concrete Instantiations of a Composable Point Obfuscator and an MBPF Obfusca-
tor. In Appendix B, we recall the concrete construction of a point obfuscator due to
the results [17, 7], which is originally proposed by Canetti [17] as a perfectly one-
way function and is later shown to bet-composable under thet-strong vector decision
Diffie-Hellman (t-SVDDH) assumption [7], which is a stronger variant of the decisional
Diffie-Hellman (DDH) assumption. There, we also recall the construction of an MBPF
obfuscator based on a composable point obfuscator [19, 7].



3 New Security Definitions for MBPF Obfuscators

In this section, we introduce and formalize the new security notions for MBPF obfusca-
tors that we callaverage-case indistinguishability w.r.t. (computationally/statistically)
partially uninvertible auxiliary input, which will play a central role in our proposed
KEMs given in Section 4. This security definition requires that obfuscated circuits of
MBPFs hide the point values on average, even in the presence of “dependent” auxiliary
inputs [36, 27], as long as the auxiliary input has some “hard-to-invert” property.

In the following, we formally define what we mean by “hard-to-invert” auxiliary
input in Section 3.1. Then, in Section 3.2, we define the new indistinguishability-based
notions.

For notational convenience, in this section,X will always denote a domain ensem-
ble{Xk}k∈N, andt = t(k) > 0 be a polynomial that will be used for MBPF obfuscators
for MBPF(X , t), and do not introduce them in each definition.

3.1 Auxiliary Input Functions and Partial Uninvertibility

For MBPF obfuscators, we will consider the average-case security in the presence of
“dependent” auxiliary input [36] that depends on the description of an MBPFIα→β be-
ing obfuscated. We will capture this by a probabilistic functionai that takes as input the
point address/value pair(α, β) ∈ Xk×{0, 1}t. Furthermore, we consider the (average-
case) “partial uninvertibility” of the functionai. That is, givenz output byai(α, β) for a
randomly chosen(α, β), it is hard to findα. We consider computational and statistical
partial uninvertibility.

Definition 5. Let δ : N → [0, 1], and letai : Xk × {0, 1}t → {0, 1}∗ be a (possi-
bly probabilistic) two-input function. We say thatai is a δ-computationally (resp.δ-
statistically) partially uninvertible auxiliary input function (δ-cPUAI (resp.δ-sPUAI)
function, for short)if (1) it is efficiently computable, and (2) for all PPTAs (resp. com-
putationally unbounded algorithms)F and for all sufficiently largek ∈ N, it holds
that AdvP- Inv

ai,F (k) := Pr[ExptP- Inv
ai,F (k) = 1] − 1/|Xk| ≤ δ(k),3 where the experiment

ExptP- Inv
ai,F (k) is defined as follows:

[ α← Xk; β ← {0, 1}t; z ← ai(α, β); α′ ← F(1k, z); Return (α′ ?
= α) ].

Furthermore, we say thatai is ℓ-bounded if the output length ofai is bounded by
ℓ = ℓ(k).

3.2 Average-Case Indistinguishability of Point Values with Auxiliary Input

In our proposed KEM constructions, what we need for an MBPF obfuscator is that it
hides the point value “on average,” in the presence of auxiliary input that issimlta-
neouslydependent on the point address and the point value. This indistinguishability-
based definition, formalized below, enables us to avoid using simulator-based security
notions, and helps to make the security analyses of our proposed constructions simpler.

3 Here, the subtraction of1/|Xk| is to offset the trivial success probability by a random guess.



Definition 6. Let δ : N → [0, 1]. We say that an MBPF obfuscatorMBPO satisfies
average-case indistinguishability w.r.t.δ-computationally (resp.δ-statistically) partially
uninvertible auxiliary input( AIND-δ-cPUAI (resp.AIND-δ-sPUAI) secure, for short), if
for all PPTAsA and all δ-cPUAI (resp.δ-sPUAI) functionsai, AdvAIND- AI

MBPO,ai,A(k) := 2 ·
|Pr[ExptAIND- AI

MBPO,ai,A(k) = 1]−1/2| is negligible, where the experimentExptAIND- AI
MBPO,ai,A(k)

is defined as follows:

[ α← Xk; β0, β1 ← {0, 1}t; z ← ai(α, β0); b← {0, 1};

DL← MBPO(Iα→βb
); b′ ← A(1k, z, DL); Return (b′

?
= b) ].

In the experiment,DL stands for a “digital locker” (the name is due to [19]).
The following is a simple fact that in order for the new definitions to be meaningful,

δ has to be a negligible function. (The proof is given in the full version.)

Lemma 1. Let δ : N→ [0, 1]. If δ is non-negligible, then an MBPF obfuscator cannot
beAIND-δ-sPUAI secure (and hence it cannot beAIND-δ-cPUAI secure, either).

4 Chosen Ciphertext Security via MBPF Obfuscation

In this section, we show our main results: two constructions ofCCA2 secure KEMs. The
first and second constructions are given in Sections 4.1 and 4.2, respectively. We also
explain several extensions applicable to our proposed constructions in Section 4.3.

4.1 First Construction

LetΠ = (PKG,Enc,Dec) be a PKE scheme with the plaintext space{0, 1}k, the public
key lengthℓPK(k), the randomness lengthℓR(k), and the ciphertext lengthℓC(k) (where
the definitions of these are given in Appendix A). We definet(k) = k · ℓR(k) + k and
t′(k) = k·ℓPK(k)+k·ℓC(k)+k. LetX = {Xk}k∈N be a domain ensemble such that each
element inXk is of lengthk, and letMBPO be an MBPF obfuscator forMBPF(X , t).
Furthermore, letH = (HKG,H) be a UOWHF. Then we construct the proposed KEM
Γ = (KKG,Encap,Decap) as in Fig. 1.

Useful Properties ofΓ . To show theCCA2 security of the proposed KEMΓ , it is useful
to note the following two simple properties, which are both due to the validity check
performed in the last step ofDecap (and the correctness of the underlying PKE scheme
Π). The first property states that in order to generate a valid ciphertext, an obfuscated
circuit DL cannot be copied from other valid ciphertexts.

Lemma 2. Let (PK,SK) be a key pair output byKKG(1k), andC = (c1, . . . , ck, DL)
be a ciphertext output byEncap(PK). Then, for any ciphertextC ′ = (c′1, . . . , c

′
k, DL

′)
satisfyingDL′ = DL and (c′1, . . . , c

′
k) ̸= (c1, . . . , ck), it holds thatDecap(SK,C ′) =

⊥.



KKG(1k) :
κ← HKG(1k)

(pk
(j)
i , sk

(j)
i )← PKG(1k) for (i, j) ∈ [k]× {0, 1}

PK ← ({pk(j)
i }i∈[k],j∈{0,1}, κ)

SK ← ({sk(j)
i }i∈[k],j∈{0,1}, κ)

Return(PK,SK)

Encap(PK) :

ParsePK as({pk(j)
i }i∈[k],j∈{0,1}, κ)

α← Xk; β ← {0, 1}t
DL← MBPO(Iα→β)
h← Hκ(DL)

View h as(h1∥ . . . ∥hk) ∈ {0, 1}k
Parseβ as(r1, . . . , rk,K) ∈ ({0, 1}ℓR)k × {0, 1}k

ci ← Enc(pk
(hi)
i , α; ri) for i ∈ [k]

C ← (c1, . . . , ck, DL)
Return(C,K)

Decap(SK,C) :

ParseSK as({sk(j)
i }i∈[k],j∈{0,1}, κ)

ParseC as(c1, . . . , ck, DL)
h← Hκ(DL)

View h as(h1∥ . . . ∥hk) ∈ {0, 1}k

α← Dec(sk
(h1)
1 , c1)

If α = ⊥ then return⊥
β ← DL(α)
If β = ⊥ then return⊥
Parseβ as(r1, . . . , rk,K)

∈ ({0, 1}ℓR)k × {0, 1}k

If ∀i ∈ [k] : Enc(pk
(hi)
i , α; ri) = ci

then returnK else return⊥

Fig. 1.The proposedCCA2 secure KEMΓ .

The second property is the existence of the “alternative” decapsulation algorithm
AltDecap. For ak-bit stringh∗ = (h∗

1∥ . . . ∥h∗
k) ∈ {0, 1}k and a key pair(PK,SK)

output byKKG(1k), whereSK = ({sk(j)i }i∈[k],j∈{0,1}, κ), we define the “alternative”

secret keŷSKh∗ associated withh∗ by ŜKh∗ = (h∗, PK, {sk(1−h∗
i )

i }i∈[k]). AltDecap

takes an “alternative” secret keŷSKh∗ and a ciphertextC = (c1, . . . , ck, DL) as input,
and runs as follows:

AltDecap(ŜKh∗ , C): First check ifHκ(DL) = h∗, and return⊥ if this is the case.
Otherwise, leth = Hκ(DL) and letℓ ∈ [k] be the smallest index such thathℓ =
1−h∗

ℓ , wherehℓ is theℓ-th bit ofh. (Note that suchℓ must exist becauseh ̸= h∗ in
this case.) Run in exactly the same way asDecap(SK,C), except that it executes

Dec(sk
(1−h∗

ℓ )
ℓ , cℓ) in the fifth step, instead of executingDec(sk(h1)

1 , c1).

RegardingAltDecap, the following lemma holds due to the symmetric role of each of
sk

(j)
i and the validity check of eachci by re-encryption performed at the last step.

Lemma 3. Leth∗ ∈ {0, 1}k be a string,(PK,SK) be a key pair output byKKG(1k),
and ŜKh∗ be an alternative secret key defined as above. Then, for any ciphertextC =
(c1, . . . , ck, DL) (which could be outside the range ofEncap(PK)) satisfyingHκ(DL) ̸=
h∗, it holds thatDecap(SK,C) = AltDecap(ŜKh∗ , C).

The formal proofs of Lemmas 2 and 3 are given in the full version.

CCA2 Security ofΓ . The security ofΓ is guaranteed by the following theorem. (The
formal proof is given in the full version.)

Theorem 1. Assume thatΠ is ϵ-CPA secure with negligibleϵ, H is a UOWHF, and
MBPO is AIND-δ-cPUAI secure withδ(k) ≥ kϵ(k). Then, the KEMΓ constructed as
in Fig. 1 isCCA2 secure.



Proof Sketch of Theorem 1.Let A = (A1,A2) be any PPTA adversary that attacks
theCCA2 security of the KEMΓ . Consider the following sequence of games: (Here, the
values with asterisk (*) represent those related to the challenge ciphertext forA.)

Game 1: This is the experimentExptCCA2Γ,A (k) itself. Without loss of generality, we gen-
erate the challenge ciphertextC∗ = (c∗1, . . . , c

∗
k, DL

∗) and the challenge session-key
K∗

b for A, whereb is the challenge bit forA, before runningA1. (Note that this
modification does not affectA’s behavior.)

Game 2: Same as Game 1, except that all decapsulation queriesC = (c1, . . . , ck, DL)
satisfyingDL = DL∗ are answered with⊥.

Game 3: Same as Game 2, except that all decapsulation queriesC = (c1, . . . , ck, DL)
satisfyingHκ(DL) = h∗ = Hκ(DL

∗) are answered with⊥.
Game 4: Same as Game 3, except that all decapsulation queriesC are answered with

AltDecap(ŜKh∗ , C), whereŜKh∗ is the alternative secret key corresponding to
(PK,SK) andh∗ = Hκ(DL

∗) ∈ {0, 1}k.
Game 5: Same as Game 4, except thatDL∗ is replaced with an obfuscation of the

MBPF Iα∗→β′ with an independently chosen random valueβ′ ∈ {0, 1}t. That is,
the step “DL∗ ← MBPO(Iα∗→β∗)” is replaced with the steps “β′ ← {0, 1}t; DL∗ ←
MBPO(Iα∗→β′).” (Note that eachr∗i andK∗

1 are still generated fromβ∗.)

Fori ∈ [5], letSi be the event thatA succeeds in guessing the challenge bit (i.e.b′ =
b occurs) in Gamei. Using the above notation,A’s CCA2 advantage can be calculated
as follows:

AdvCCA2Γ,A (k) = 2 · |Pr[S1]−
1

2
| ≤ 2 ·

∑
i∈[4]

|Pr[Si]−Pr[Si+1]|+ 2 · |Pr[S5]−
1

2
|. (1)

To complete the proof, it remains to upperbound the right hand side of the above in-
equality (1).

Firstly, notice that the difference between Game 1 and Game 2 is only in howA’s
decapsulation queryC = (c1, . . . , ck, DL) satisfyingDL = DL∗ is answered. (It is an-
swered with⊥ in Game 2, while it may be answered with some value that is not⊥ in
Game 1.) However, due to Lemma 2, the only ciphertextC that containsDL∗ and can
be decapsulated to some value that is not⊥ is the challenge ciphertextC∗ itself, and
A2 is not allowed to ask it. Furthermore, sinceDL∗ is information-theoretically hidden
fromA1’s view, the probability ofA1 making a decapsulation query containingDL∗ is
negligible. Hence, the oracles behave almost identically in both Game 1 and Game 2,
which shows that|Pr[S1]− Pr[S2]| is negligible.

Next, notice that|Pr[S2] − Pr[S3]| can be upperbounded by the probability of
A making a decapsulation queryC = (c1, . . . , ck, DL) satisfyingHκ(DL) = h∗ =
Hκ(DL

∗) andDL ̸= DL∗ (because Game 2 and Game 3 proceed identically without such
a query), but it is easy to see that this probability is negligible due to the security of the
UOWHFH.

It is also easy to see thatPr[S3] = Pr[S4], because the behavior of the oracle in
Game 3 and that in Game 4, are identical due to Lemma 3.

To show the upperbound of|Pr[S4] − Pr[S5]|, we need to use theAIND-δ-cPUAI
security ofMBPO. We therefore first specify the auxiliary input function that we are



going to consider. Define the probabilistic functionaiΓ : Xk×{0, 1}t → {0, 1}t
′
which

takes(α, β) ∈ Xk ×{0, 1}t as input, and computesz = ({pki}i∈[k], c
∗
1, . . . , c

∗
k,K

∗) ∈
{0, 1}t′ in the following way:

aiΓ (α, β) : [ (pki, ski)← PKG(1k) for i ∈ [k];

Parseβ as(r∗1 , . . . , r
∗
k,K

∗) ∈ ({0, 1}ℓR)k × {0, 1}k;
c∗i ← Enc(pki, α; r

∗
i ) for i ∈ [k]; Returnz ← ({pki}i∈[k], c

∗
1, . . . , c

∗
k,K

∗) ].

Note thataiΓ is efficiently computable. Furthermore, due to theϵ-CPA security of the
underlying PKE schemeΠ and the security of thek-repetition constructionΠk (which
is (kϵ)-CPA secure based on theϵ-CPA security ofΠ)4, it is straightforward to see that
aiΓ is (kϵ)-computationally partially uninvertible (in particular, in theP- Inv experi-
ment regardingaiΓ , eachr∗i is a uniformly chosen randomness (independently of any
other values), and thus we can rely on theCPA security ofΠ). In the full proof, we will
show that there exists a PPTABo such thatAdvAIND- AI

MBPO,aiΓ ,Bo
(k) = |Pr[S4] − Pr[S5]|:

Bo takes an auxiliary inputz = ({pki}i∈[k], c
∗
1, . . . , c

∗
k,K

∗) ← aiΓ (α, β0) and an ob-
fuscated circuitDL∗ which is either computed asMBPO(Iα→β0) orMBPO(Iα→β1) as
input.Bo will generateA’s challenge ciphertextC∗ based on the auxiliary inputz and
the obfuscated ciphertextDL∗ that it receives, and generates the remaining key materi-
als, which enablesBo to generate the alternative keŷSKh∗ , and thus usingAltDecap,
Bo can perfectly simulate the decryption oracle in Game 4 (and Game 5) forA. Here,
by regardingα, β0, andβ1 in Bo’s experiment asα∗, β∗, andβ′ (in Game 4 and Game
5), respectively,Bo will simulate the whole of Game 4 or Game 5 perfectly forA de-
pending on the value ofB’s challenge bit, and we can deriveAdvAIND- AI

MBPO,aiΓ ,Bo
(k) =

|Pr[S4]− Pr[S5]|. But here, sinceaiΓ is a(kϵ)-cPUAI function andδ(k) ≥ kϵ(k), the
AIND-δ-cPUAI security ofMBPO guarantees that|Pr[S4]− Pr[S5]| is negligible.

Finally, observe that in Game 5, the “real” session-keyK∗
1 is independent of the

challenge ciphertextC∗ and thus the challenge session-keyK∗
b (together with other

values available toA in Game 5) is distributed identically regardless ofA’s challenge
bit b. This impliesPr[S5] = 1/2.

Therefore, the right hand side of the inequality (1) is shown to be negligible, which
implies thatΓ is CCA2 secure. ⊓⊔

4.2 Second Construction

In the first construction shown above, we used an ordinaryCPA secure PKE scheme
for Π. Now, we consider the construction of the KEMΓ in whichΠ is replaced with
a lossy encryption scheme.Π now has the lossy key generation algorithmLKG, and
thus is of the formΠ = (PKG,Enc,Dec, LKG). (The lossy key generation algorithm
LKG is actually not used in the construction, and is used only in the security proof.)
Because of this change, we can now relax the requirement for the MBPF obfuscator

4 Here, by “k-repetition construction”Πk we mean the PKE scheme in which a public key con-
sists ofk independently generated public keys ofΠ, and a ciphertext consists ofk ciphertexts
of a same plaintext.



MBPO to be secure in the presence of only statistically partially uninvertible auxiliary
input. This result is captured by the following theorem. (The formal proof is given in
the full version.)

Theorem 2. AssumeΠ is anϵ-lossy encryption scheme with negligibleϵ,H is a UOWHF,
andMBPO is AIND-δ-sPUAI secure withδ(k) ≥ kϵ(k). Then, the KEMΓ constructed
as in Fig. 1 isCCA2 secure.

Proof Sketch of Theorem 2.The proof proceeds very similarly to that of Theorem 1.
The main difference is that we consider an additional game between Game 4 and

Game 5 (say, Game 4.5), in which we generate all public keys for{pk(h
∗
i )

i }i∈[k] by
using the lossy key generation algorithmLKG(1k), instead ofPKG(1k), whereh∗

i is
the i-th bit of h∗ = Hκ(DL

∗). Then the difference between aCCA2 adversaryA’s suc-
cess probability in Game 4 and that in Game 4.5 can be bounded to be negligible by the
indistinguishability of keys of thek-repetition lossy encryption schemeΠk. In particu-

lar, the corresponding secret keys{sk(h
∗
i )

i }i∈[k] are already not used in Game 4, and the
reduction algorithm (for distinguishing ordinary/lossy public keys ofΠk) need not use
them. Correspondingly to the above, in order to show that the difference betweenA’s
success probability in Game 4.5 and that in Game 5 is negligible, we will use theAIND-
δ-sPUAI security ofMBPO, with the auxiliary inputai′Γ : Xk × {0, 1}t → {0, 1}t

′

that is defined in the same way asaiΓ used in the proof of Theorem 1 except that
the public keys{pki}i∈[k] are generated by executing the lossy key generation algo-
rithm LKG(1k). Since the keys{pki}i∈[k] are generated fromLKG, due toϵ-lossiness
of the lossy encryption schemeΠ and(kϵ)-lossiness of thek-repetition construction
Πk (where(kϵ)-lossiness ofΠk based onϵ-lossiness ofΠ can be shown by a standard
hybrid argument), we can easily see thatai′Γ is a (kϵ)-sPUAI function. The rest of the
proof proceeds identically to that of Theorem 1. ⊓⊔

4.3 Extensions

A-priori Fixed and Bounded-length Auxiliary Input Functions.Note that for both of our
proposed constructions, the auxiliary input functions under which the building block
MBPF obfuscatorMBPO needs to be secure, are dependent only on the building block
PKE/lossy encryption schemeΠ, which is fixed whenΠ is fixed. In particular,MBPO
is required to satisfyAIND-δ-cPUAI (andAIND-δ-sPUAI) security only fort′-bounded
δ-cPUAI (andδ-sPUAI) functions witht′(k) = k · ℓPK(k) + k · ℓC(k) + k. This a-priori
bounded output length for auxiliary input functions might make it easier to achieve
AIND-δ-cPUAI (andAIND-δ-sPUAI) secure MBPF obfuscators. We note that a similar
observation on the possibility of weakening the requirement regarding auxiliary inputs
by bounding the output length is also given in [9].

Using MBPF Obfuscators with Short Point Values.In our constructions, the MBPF
obfuscatorMBPO needs to obfuscate an MBPFIα→β whose point valueβ is relatively
long (which consists ofk randomness{ri}i∈[k] and ak-bit string K). For our first
construction, however, we can shorten the length of a point value of MBPFs that need
to be obfuscated by utilizing a pseudorandom generator (PRG). More specifically, let



G : {0, 1}k → {0, 1}t be a PRG (wheret(k) = k · ℓR(k) + k). Then instead of picking
{ri}i∈[k] andK ∈ {0, 1}k uniformly at random, these values can be generated from
a short seeds ∈ {0, 1}k by β = (r1∥ . . . ∥rk∥K) ← G(s), and now we only need to
obfuscateIα→s, instead ofIα→β . However, this modification is at the cost of a stronger
requirement forAIND-δ-cPUAI security ofMBPO. That is, nowδ has to be large enough
to incorporate the security of the used PRG. Specifically, if the PRG isϵg-secure, then it
is required thatδ ≥ kϵ+ ϵg (where a PRG is said to beϵ-secure if all PPTA adversaries
have at most advantageϵ = ϵ(k) in distinguishing a pseudorandom value from a truly
random value for all sufficiently largek ∈ N). We note that this idea of using a PRG
does not work for our second construction, because we cannot use a pseudorandom
string as a randomness in the encryption algorithm of a lossy encryption scheme. Using
a pseudorandomness violates the statistical lossiness property in general.

A Simpler Construction withCCA1 Security. We can show that a simpler variant of the
proposed construction which employs the Naor-Yung-style double encryption [52] (in-
stead of the Dolev-Dwork-Naor-style multiple encryption), leads aCCA1 secure KEM.
This KEM is partly explained in Introduction, and we will show the details in the full
version. Interestingly, unlike ourCCA2 secure constructions, in the proof of thisCCA1
secure variant, we need to use an auxiliary input function that internally runs (a part of)
aCCA1 adversary, and thus its output length cannot be a-priori bounded.

5 Relations among Security Notions for MBPF Obfuscators

In this section, we investigate the relations between our new indistinguishability-based
security notions for MBPF obfuscators,AIND-δ-cPUAI/sPUAI, and the worst-/average-
case virtual black-/grey-box properties in the presence of auxiliary inputs. For the
average-case virtual black-/grey-box properties, we consider the auxiliary input func-
tions defined in Section 3.1, and show that our new security notions are implied by the
average-case virtual black-/grey-box properties with the same type of auxiliary inputs.

We first formally define the average-case virtual black-/grey-box properties. For
notational convenience, for an MBPF obfuscatorMBPO, a probabilistic algorithmM
whose output is restricted to be a bit, and a two-input probabilistic functionai : Xk ×
{0, 1}t → {0, 1}∗, we define the following three experiments:

ExptRealMBPO,ai,M(k) :
α← Xk

β ← {0, 1}t
z ← ai(α, β)
DL← MBPO(Iα→β)

Return b←M(1k, z, DL)

ExptSimai,M(k) :
α← Xk

β ← {0, 1}t
z ← ai(α, β)
Return b←MIα→β (1k, z)

Expts- Sim
ai,M (k) :

α← Xk

β ← {0, 1}t
z ← ai(α, β)
Return b←M(1k, z)

(Note that inExpts- Sim
ai,M (k), the algorithmM does not have access to any oracle.)

Definition 7. We say that an MBPF obfuscatorMBPO satisfies

– theaverage-case virtual black-box property w.r.t.δ-computationally (resp.
δ-statistically) partially uninvertible auxiliary input(AVB-δ-cPUAI (resp. AVB-δ-
sPUAI) security, for short), if for every PPTAA and all positive polynomialsq =
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Fig. 2. Relations among security notions for MBPF obfuscators defined in this paper. The arrow
“X→ Y” indicates thatX-security impliesY-security. The dotted arrows indicate the implications
that hold only for the non-uniform setting in which an adversary (and a simulator) are non-
uniform algorithms. In the figure,δ is a negligible function.

q(k) andℓ = ℓ(k), there exists a PPTAS such that for everyℓ-boundedδ-cPUAI
(resp.δ-sPUAI) functionai and all sufficiently largek ∈ N, it holds that

AdvA- MBPO- AI
MBPO,ai,A,S(k) := |Pr[Expt

Real
MBPO,ai,A(k) = 1]− Pr[ExptSimai,S(k) = 1]| ≤ 1/q.

– the strong average-case virtual black-box property w.r.t.δ-computationally (resp.
δ-statistically) partially uninvertible auxiliary input(SAVB-δ-cPUAI (resp.SAVB-
δ-sPUAI) security, for short), if for every PPTAA and all positive polynomials
q = q(k) and ℓ = ℓ(k), there exists a PPTAS such that for everyℓ-bounded
δ-cPUAI (resp.δ-sPUAI) functionai and all sufficiently largek ∈ N, it holds that

AdvSA- MBPO- AI
MBPO,ai,A,S(k) := |Pr[Expt

Real
MBPO,ai,A(k) = 1]−Pr[Expts- Sim

ai,S (k) = 1]| ≤ 1/q.

Furthermore, we define the(strong) average-case virtual grey-box property w.r.t.
δ-computationally (resp.δ-statistically) partially uninvertible auxiliary input((S)AVG-
δ-cPUAI (resp.(S)AVG-δ-sPUAI) security for short) for an MBPF obfuscatorMBPO, in
the same way as the definitions for the corresponding virtual black-box properties, ex-
cept that we replace “a PPTAS” in each definition with “a computationally unbounded
algorithmS that makes only polynomially many queries.”

Now, we show the relations among security notions, which are summarized in
Fig. 2. Most of the relations are obvious. Namely, the virtual black-box properties al-
ways imply the virtual grey-box properties for the same class of auxiliary inputs. Fur-
thermore,WVB-AI security impliesAVB-δ-cPUAI security for arbitrary (not necessarily
negligible)δ, andAVB-δ-cPUAI security impliesAVB-δ-sPUAI security because the class
of δ-sPUAI functions are smaller than the class ofδ-cPUAI functions for the sameδ.
Moreover, by definition, for bothX ∈ {δ- cPUAI, δ- sPUAI}, SAVB-X andSAVG-X imply
AVB-X andAVG-X, respectively, because the former notions consider simulators that do
not make any oracle queries and thus can also be used as simulator for the latter.

In the following, we show the implications of the non-trivial directions. The follow-
ing equivalence is due to the result by Bitansky and Canetti [7]. (Note that the following



results are only for non-uniform PPTA adversaries, while our default notions in this pa-
per are with respect to uniform PPTA adversaries.)

Lemma 4. ([8, Propositions 8.3 and A.3]) For MBPF obfuscators,WVB security for
non-uniform PPTA adversaries with non-uniform PPTA simulators,WVG security for
non-uniform PPTA adversaries, andWVG-AI security for PPTA non-uniform adver-
saries, are equivalent.

The following is useful for showing the implication to theAIND security notions
that we will show later.

Lemma 5. Let δ : N → [0, 1] be a negligible function. For MBPF obfuscators, for
both X ∈ {δ- cPUAI, δ- sPUAI}, AVB-X security andSAVB-X security are equivalent.
Furthermore,AVG-δ-sPUAI security andSAVG-δ-sPUAI security are equivalent.

Intuition. For bothcPUAI andsPUAI cases, the implication from the latter to the for-
mer is trivial by definition. The implications of the opposite directions can be shown
because the partial uninvertibility of an auxiliary input function guarantees that a simu-
lator cannot find the point address of the MBPF being obfuscated and thus having oracle
access to an MBPF does not give much advantage. The computational uninvertibility
and statistical uninvertibility naturally correspond to the uninvertibility of auxiliary in-
put functions against a PPTA simulator and that against a computationally unbounded
simulator, respectively.

Finally, the following implications clarify thatAIND notions introduced in Sec-
tion 3.2 are indeed implied by the average-case virtual black-box/grey-box properties.

Lemma 6. Let δ : N → [0, 1] be a negligible function. For bothX ∈ {δ- cPUAI,
δ- sPUAI}, if an MBPF obfuscator isSAVG-X secure, then it isAIND-X secure.

Intuition. This lemma is shown by considering a hybrid experiment in which a (com-
putationally unbounded) simulatorS (due toSAVG-δ-cPUAI/sPUAI security) is given
only an auxiliary inputai(α, β) (for randomly chosen(α, β)) as input, and outputs a
bit.; By theSAVG-δ-cPUAI/sPUAI security, for both casesb ∈ {0, 1}, the probability
that an adversary (attacking theAIND-δ-cPUAI/sPUAI security) on inputai(α, β0) and
MBPO(Iα→βb

) (for randomly chosenα, β0, β1) outputs1 can be shown to be negli-
gibly close to the probability that the simulatorS outputs1 in the hybrid experiment,
which proves the lemma.

6 Lossy Encryption from Re-randomizable Point Obfuscation

In this section, we show that a re-randomizable point obfuscator yields a lossy encryp-
tion scheme. We first recall the definition of re-randomizability [7].

Definition 8. ([7]) Let X = {Xk}k∈N be a domain ensemble and letPO be a point
obfuscator forPF(X ) whose randomness space is{0, 1}ℓ(k). We say thatPO is re-
randomizableif there exists a PPTAReRand (called the re-randomization algorithm)
such that for allk ∈ N, all α ∈ Xk, and for all r ∈ {0, 1}ℓ, the distribution of
ReRand(PO(Iα; r)) and the distribution ofPO(Iα) are identical.



PKG(1k) :
α0 ← Xk

α1 ← Xk\{α0}
P̂i ← PO(Iαi) for i ∈ {0, 1}
pk ← (P̂0, P̂1); sk ← α0

Return(pk, sk)
LKG(1k) :
α← Xk

P̂i ← PO(Iα) for i ∈ {0, 1}
Returnpk ← (P̂0, P̂1)

Enc(pk,m) :

Parsepk as(P̂0, P̂1)
View m as
(m1∥ . . . ∥mt) ∈ {0, 1}t

Pi ← ReRand(P̂mi)
for i ∈ [t]

Returnc← (P1, . . . , Pt)

Dec(sk, c) :
Parsec as(P1, . . . , Pt)
For i ∈ [t]:

mi ←

{
0 if Pi(sk) = ⊤
1 otherwise

End For
Returnm← (m1∥ . . . ∥mt)

Fig. 3.Lossy encryption from a re-randomizable point obfuscator.

We note that the point obfuscator based on the perfect one-way hash function by Can-
neti [17] is re-randomizable. (We review the construction in Appendix B.)

Now, we formally describe our proposed lossy encryption scheme. LetX = {Xk}k∈N
be a domain ensemble, and letPO be a re-randomizable point obfuscator forPF(X )
with the re-randomization algorithmReRand, and lett = t(k) > 0 be a polynomial.
Then we construct a lossy encryption schemeΠ = (PKG,Enc,Dec, LKG) whose plain-
text space is{0, 1}t as in Fig. 3.

Our construction is inspired partly by the construction of a PKE scheme from a re-
randomizable point obfuscator due to Bitansky and Canetti [7], and partly by the con-
struction of lossy encryption from a re-randomizable encryption scheme due to Hemen-
way et al. [39]. The following theorem guarantees thatΠ constructed as above is indeed
a lossy encryption scheme. (The formal proof is given in the full version.)

Theorem 3. If PO is re-randomizable and2-composable, thenΠ constructed as in
Fig. 3 is a0-lossy encryption scheme.

Intuition. Theorem 3 is shown by using the equivalence oft-composability andt-
distributional indistinguishability for coordinate-wise well-spread (CWS) distributions,
established by Bitansky and Canetti [8]. The latter property roughly states that if(α1,
. . . , αt) are chosen from a distribution so that eachαi has high min-entropy (butαi’s
could be arbitrarily correlated),(PO(α1), . . . ,PO(αt)) is computationally indistinguish-
able from(PO(u1), . . . ,PO(ut)) where eachui is chosen uniformly at random (the
formal definition appears in the full version). This property can be used to show the
indistinguishability of keys, which is easy to see due to the design ofPKG andLKG.
Moreover, note that a lossy key consists of a pair of obfuscated circuits of point func-
tions with a same point address. Therefore, due to the re-randomizability, an encryption
of any plaintext have identical distribution, which implies0-statistical lossiness.

CCA2 Secure PKE/KEM Based Solely on Re-randomizable, Composable Point Obfusca-
tors. Recall that when considering non-uniform PPTA adversaries,WVB security (with
non-uniform PPTA simulators),WVG security, andWVG-AI security for MBPF obfusca-
tors are equivalent (see Lemma 4). Therefore, theWVG secure MBPF obfuscator fort-bit
point values due to [19, 7] based on a(t+ 1)-composable point obfuscator can be used
as anAIND-δ-sPUAI secure MBPF obfuscator (with any negligibleδ). Note that if we



denote byℓ the length of the randomness used byReRand, then the randomness length
ℓR of the lossy encryption schemeΠ for thek-bit plaintext space isℓR(k) = k · ℓ(k).
Combining these results with our second generic construction, we obtain the following.

Theorem 4. Assume there exists a point obfuscator which is (1) re-randomizable where
ReRand usesℓ(k)-bit randomness, and (2)(k2 · ℓ(k) + k + 1)-composable for non-
uniform PPTA adversaries. Then there exists aCCA2 secure PKE scheme/KEM.

7 Discussion

On Replacing MBPF Obfuscators with SKE.As has been clarified in several previous
works [19, 27, 37, 21], there is a strong connection between MBPF obfuscators and SKE
schemes. More specifically, an MBPF obfuscator can always be used as a SKE scheme.
In order for the opposite direction to be true, among other things regarding security, it
is necessary that a SKE scheme has the property called theunique-keyproperty [27, 37,
21]. Therefore, a variant of our KEMΓ in Section 4 in which an MBPF obfuscator is
replaced with a SKE scheme that has the unique-key property and satisfies the security
that we callAIND-δ-cPUAI (andAIND-δ-sPUAI) security (which is defined similarly to
that for MBPF obfuscator), can also be provedCCA2 secure.

Since the unique-key property is not satisfied by SKE schemes in general, it may
be the case that a SKE scheme is in general a weaker primitive than an MBPF obfus-
cator, and is potentially easier to achieve. (Although a generic transformation of a SKE
scheme into one that has this property was proposed in [21], we could not figure out
whether this transformation preservesAIND-δ-cPUAI security andAIND-δ-sPUAI secu-
rity.) Motivated by this observation, in the full version we will show another variant of
the proposed KEM based on a SKE scheme without the unique-key property.

On the Difficulty of AchievingAIND-δ-cPUAI Security. We have shown thatAIND-δ-
sPUAI security is implied by the virtual grey-box properties (see Fig. 2), and thus by
the results established by [19, 7] we can construct anAIND-δ-sPUAI secure MBPF ob-
fuscator (or SKE) from any composable point obfuscator. Unfortunately, however, we
could not come up with a natural assumption that is sufficient to realize anAIND-δ-
cPUAI secure MBPF obfuscator, and we would like to leave it as an interesting open
problem. In the full version, we will show that constructing it is at least as difficult as
constructing a SKE scheme which is one-time chosen plaintext secure in the presence of
computationally hard-to-invert leakage where leakage occurs only from a key. There,
we will also show that the MBPF obfuscator by Lynn et al. [48] can be shown to be
AIND-δ-cPUAI secure for any negligibleδ. This at least suggests that it can be achieved
under a strong assumption. We conjecture that the MBPF obfuscator by Lynn et al. can
be shown to beAIND-δ-cPUAI secure for any negligibleδ if we instantiate the random
oracle as a family of hash functions satisfying (some version of) UCE security that is
recently introduced by Bellare et al. [5].

We see that the difficulty of achievingAIND-δ-cPUAI security is that it allows a
leakage from a random point address/value pair(α, β) (or a key/message pair in the
case of SKE) that could be arbitrarily correlated, as long as partial uninvertibility is sat-
isfied. This definition allowsβ to be (a part of) the source of the hardness of the partial



uninvertibility. For example, we could consider an auxiliary input functionai(α, β) that
returns an encryption of the “plaintext”α under the “key”β, using some SKE scheme,
which will be aδ-cPUAI function under a reasonable assumption on the SKE scheme.
This is quite different from a usual indistinguishability-based security definition (e.g.
CPA security of a SKE scheme) in which a point value (or a message in SKE) is chosen
by an adversary, and thus cannot be a source of hardness. This is one of the reasons why
we cannot straightforwardly use the existing results on MBPF obfuscators/SKE [27, 21]
(or a stronger primitive of PKE secure under hard-to-invert leakage [26]). We notice that
the formulation ofAIND-δ-cPUAI security looks close to the security definition for de-
terministic encryption in the hard-to-invert auxiliary input setting [16], which considers
a leakage from a plaintext (as opposed to a key). This setting is in some sense a “dual”
of the settings that consider leakage only from a key. We also notice the similarity to the
notion called security underchosen distribution attacks[4] that considers the security
under a correlated leakage from a message and randomness simultaneously (this is a se-
curity notion for PKE but can be considered for SKE as well), but this does not consider
a leakage from a key or leakage with computational uninvertibility. It would be worth
clarifying further whether it is possible to leverage techniques from these various kinds
of “leakage resilient” cryptography for achievingAIND-δ-cPUAI/sPUAI secure MBPF
obfuscators/SKE schemes.
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ExptCPAΠ,A(k) :

(pk, sk)← PKG(1k)
(m0,m1, st)← A1(pk)
b← {0, 1}
c∗ ← Enc(pk,mb)
b′ ← A2(st, c

∗)

Return(b′
?
= b)

ExptCCA2Γ,A(k) :

(pk, sk)← KKG(1k)

st← ADecap(sk,·)
1 (pk)

(c∗,K∗
1 )← Encap(pk)

K∗
0 ← {0, 1}k; b← {0, 1}

b′ ← ADecap(sk,·)
2 (st, c∗,K∗

b )

Return(b′
?
= b)

ExptUOWH,A(k) :

(m, st)← A1(1
k)

κ← HKG(1k)
m′ ← A2(st, κ)
If Hκ(m

′) = Hκ(m) ∧m′ ̸= m
then return1 else return0

Fig. 4.TheCPA security experiment for a PKE schemeΠ (left), theCCA2 security experiment for
a KEM Γ (center), and the security experiment for a UOWHFH (right).

A Basic Cryptographic Primitives

Public Key Encryption.A public key encryption (PKE) schemeΠ consists of the three
PPTAs(PKG,Enc,Dec) with the following interface:

Key Generation: Encryption: Decryption:
(pk, sk)← PKG(1k) c← Enc(pk,m) m (or⊥)← Dec(sk, c)

whereDec is a deterministic algorithm,(pk, sk) is a public/secret key pair, andc is a
ciphertext of a plaintextm underpk. We require for allk ∈ N, all (pk, sk) output by
PKG(1k), and allm, it holds thatDec(sk,Enc(pk,m)) = m.

We define the “public key length” ℓPK(k) as the length ofpk output byPKG(1k).
Moreover, ifEnc can encryptk-bit plaintexts (for security parameterk), we define the
“ randomness length” ℓR(k) and the “ciphertext length” ℓC(k), respectively, as the length
of randomness used byEnc and the length of ciphertexts output fromEnc.

We say that a PKE schemeΠ is ϵ-CPA secure if for all PPTAsA = (A1,A2) and
for all sufficiently largek ∈ N, it holds thatAdvCPAΠ,A(k) := 2 · |Pr[ExptCPAΠ,A(k) =

1]− 1/2| ≤ ϵ(k), where the experimentExptCPAΠ,A(k) is defined as in Fig. 4 (left). In the
experiment, it is required that|m0| = |m1|.

Key Encapsulation Mechanism.A key encapsulation mechanism (KEM)Γ consists of
the three PPTAs(KKG,Encap,Decap) with the following interface:

Key Generation: Encapsulation: Decapsulation:
(pk, sk)← KKG(1k) (c,K)← Encap(pk) K (or⊥)← Decap(sk, c)

whereDecap is a deterministic algorithm,(pk, sk) is a public/secret key pair, andc is a
ciphertext of a session-keyK ∈ {0, 1}k underpk. We require for allk ∈ N, all (pk, sk)
output byKKG(1k), and all(c,K)← Encap(pk), it holds thatDecap(sk, c) = K.

We say that a KEMΓ isCCA2 secure if for all PPTAsA = (A1,A2),Adv
CCA2
Γ,A (k) :=

2 · |Pr[ExptCCA2Γ,A (k) = 1] − 1/2| is negligible, where the experimentExptCCA2Γ,A (k) is
defined as in Fig. 4 (center). In the experiment,A2 is not allowed to queryc∗.

Universal One-Way Hash Function.We say that a pair of PPTAsH = (HKG,H) is a
universal one-way hash function (UOWHF) if the following two properties are satisfied:



MBPO(Iα→β) :
P0 ← PO(Iα)
View β as(β1∥ . . . ∥βt) ∈ {0, 1}t
α′ ← Xk\{α}
For i ∈ [t]:

Pi ←

{
PO(Iα) if βi = 1

PO(Iα′) otherwise
End For
ReturnDL← CP0,...,Pt .

CP0,...,Pt(x) :
If P0(x) = ⊥ then return⊥
For i ∈ [t]:

βi ←

{
1 if Pi(x) = ⊤
0 otherwise

End For
Returnβ ← (β1∥ . . . ∥βt).

Fig. 5. The construction of an MBPF obfuscatorMBPO from a composable point obfuscator
PO [19, 7]. MBPO takes an MBPFIα→β as input, and returns a circuitDL = CP0,...,Pt that is
described in the right column.

(1) On input1k, HKG outputs a hash-keyκ. For any hash-keyκ output fromHKG(1k),
H defines an (efficiently computable) function of the formHκ : {0, 1}∗ → {0, 1}k. (2)
For all PPTAsA = (A1,A2), Adv

UOW
H,A(k) := Pr[ExptUOWH,A(k) = 1] is negligible, where

the experiment is defined as in Fig. 4 (right).

B Concrete Instantiations of Point/MBPF Obfuscators

Composable Point Obfuscator.Here we recall the point obfuscator due to Canetti [17]
(which was originally introduced as a perfectly one-way hash function). LetG be a
cyclic group with prime orderp (where the size ofp is determined by the security
parameterk). Then, consider the following point obfuscatorPO for PF(Zp):

PO(Iα): (whereα ∈ Zp) Pick a group elementr ← G uniformly at random, and
outputs the circuitCr,rα(·) : Zp → {⊤,⊥}, whereCA,B is the circuit which takes
x ∈ Zp as input, and outputs⊤ if Ax = B and otherwise outputs⊥.

Bitansky and Canetti [7] showed that the above point obfuscator ist-composable,
under a strong variant of the decisional Diffie-Hellman (DDH) assumption, called the
t-strong vector DDH (t-SVDDH) assumption (see [7] for a formal definition).

We remark that as mentioned in [7], the point obfuscator based on thet-SVDDH
assumption described here satisfies the re-randomizability in the sense of Definition 8.
Specifically, we can just re-randomize two group elements in an obfuscated circuit out-
put fromPO without changing the point address.

WVG Secure MBPF Obfuscator from Composable Point Obfuscator.We recall the con-
struction of an MBPF obfuscator based on a composable point obfuscator, due to Canetti
and Dakdouk [19] and Bitansky and Canetti [7]. LetPO be a point obfuscator for
PF(X ) and lett = t(k) > 0 be a polynomial. Then an MBPF obfuscatorMBPO
for MBPF(X , t) is constructed as in Fig. 5.

Based on the result of [19], Bitansky and Canetti [7] showed that ifPO is (t + 1)-
composable, then the MBPF obfuscatorMBPF constructed as in Fig. 5 is aWVG secure.
By instantiating this conversion with the above mentioned point obfuscator, we obtain
aWVG securet-bit-output MBPF obfuscator under the(t+ 1)-SVDDH assumption.


