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Abstract. Suppose many messages are encrypted using a public-key
encryption scheme. Imagine an adversary that may adaptively ask for
openings of some of the ciphertexts. Selective opening (SO) security re-
quires that the unopened ciphertexts remain secure, in the sense that this
adversary cannot derive any nontrivial information about the messages
in the unopened ciphertexts.

Surprisingly, the question whether SO security is already implied by stan-
dard security notions has proved highly nontrivial. Only recently, Bel-
lare, Dowsley, Waters, and Yilek (Eurocrypt 2012) could show that a
strong form of SO security, simulation-based SO security, is not implied
by standard security notions. It remains wide open, though, whether the
potentially weaker (and in fact comparatively easily achievable) form of
indistinguishability-based SO (i.e., IND-SO) security is implied by stan-
dard security. Here, we give (full and partial) answers to this question,
depending on whether active or passive attacks are considered.

Concretely, we show that:

(a) For active (i.e., chosen-ciphertext) security, standard security does
not imply IND-SO security. Concretely, we give a scheme that is
IND-CCA, but not IND-SO-CCA secure.

(b) In the case of passive (i.e., chosen-plaintext) security, standard se-
curity does imply IND-SO security, at least in a generic model of
computation and for a large class of encryption schemes. (Our sep-
arating scheme from (a) falls into this class of schemes.)

Our results show that the answer to the question whether standard se-
curity implies SO security highly depends on the concrete setting.

Keywords: security definitions, public-key encryption, selective opening
security.

1 Introduction

Motivation. It is a challenging task to find a useful and achievable definition
of security for encryption schemes. There seems to be no “one size fits all”
security notion; for instance, certain settings involve key-dependent messages
(e.g., [7, 9, 2]) or leakage of key material (e.g., [18, 13, 1]). In most of these specific



settings, it is easily seen that standard encryption security notions (such as IND-
CPA or IND-CCA security) do not provide any reasonable security guarantees.
However, one particularly challenging setting is the setting of selective opening
attacks, which models a specific (and realistic) form of adaptive corruptions. The
topic of this paper is the connection of standard and selective opening security.

Selective opening attacks. The premise of a selective opening (SO) attack
is as follows: suppose an adversary observes many ciphertexts ci, and then gets
to request openings of some of them. (Here, an opening corresponds to an adap-
tive corruption of the sender, and yields not only the plaintext mi but also
the random coins used during encryption.) The question is: can the adversary
learn anything about the unopened mi? Of course, if the encrypted messages
are related, then the opened messages may already reveal information about the
unopened messages. (In fact, this is the main source of trouble when trying to
define selective opening security.) However, we would like to express that the
unopened messages remain “as secure as possible”, given the opened messages.

Selective opening security notions. . . Dwork et al. [12] were the first
to propose a formal SO security notion; their notion is simulation-based and
was formulated for commitments. Bellare et al. [5] gave a public-key encryption
(PKE) version of the definition of [12] (SIM-SO-CPA1), along with a weaker,
indistinguishability-based notion (weak IND-SO-CPA).2 Most relations among
SO security notions (and between SO and standard security notions) have al-
ready been investigated (see also Figure 1). Specifically, [8] provided separations3

between SO notions, and Bellare et al. [4] have separated SIM-SO-CPA security
from IND-CPA security. The only remaining open question (that we approach
in this paper) is thus

Does standard security already imply indistinguishability-based selective
opening security?

. . . and constructions. Bellare et al. [5] proved lossy encryption [22, 21, 20]
weakly IND-SO-CPA secure, and the scheme of Goldwasser and Micali [15] SIM-
SO-CPA secure. Subsequently, several works have developed chosen-ciphertext
secure (i.e., weakly IND-SO-CCA and SIM-SO-CCA secure) PKE schemes [14,
16, 17]. However, it seems safe to say that (weak) indistinguishability-based SO
security is significantly easier to achieve than simulation-based SO security. In
particular, the most efficient SO secure PKE schemes are not known to be SIM-
SO secure. This makes the question whether standard security implies weak
IND-SO security even more interesting.

1 The naming of SO notions is not quite consistent in the literature. We follow the
naming of Böhl et al. [8].

2 There is also a stronger indistinguishability-based SO notion called full IND-SO-
CPA. Weak and full IND-SO-CPA security differ in the sense that the considered
(joint) message distributions are arbitrary in full IND-SO-CPA, but restricted in
weak IND-SO-CPA security. No fully IND-SO-CPA secure schemes are known.

3 Here, with a “separation” between two security notions X and Y , we mean that
there is a scheme that achieves X but not Y (or vice versa). We do not mean that
a Y -secure scheme cannot be constructed from an X-secure one (or vice versa).
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Fig. 1: Relations among notions of selective opening security and IND-CPA security.
Solid arrows denote implications, crossed arrows denote concrete counterexamples, and
the dashed arrow stands for the remaining open question investigated in this paper.

Our contribution. We tackle this last remaining question both in the chosen-
plaintext (CPA) and in the chosen-ciphertext (CCA) case. We give a definite
answer in the CCA case and a partial answer in the CPA case. First, we sep-
arate IND-CCA and IND-SO-CCA security: we give an IND-CCA secure but
IND-SO-CCA insecure PKE scheme. Our result utilizes the standard model of
computation and works under the minimal assumption that IND-CCA secure
PKE schemes exist. Nonetheless, the IND-SO-CCA attack on our scheme is com-
pletely generic and does not make use of, e.g., non-black-box techniques (such
as using the internal structure of the IND-CCA secure scheme). Our second re-
sult shows that IND-CPA and IND-SO-CPA security are equivalent in a generic
model of computation and with respect to a restricted class of PKE schemes.
We stress that the generic model considered for the CPA equivalence is realistic:
it covers, e.g., ElGamal, Cramer-Shoup and similar encryption schemes, and in
fact also concrete instantiations (e.g., based on Cramer-Shoup) of our separat-
ing example for the CCA case (including our attack on its weak IND-SO-CCA
security). Interestingly, [4] shows that there is no such equivalence in the case of
SIM-SO-CPA for the class of committing encryption schemes which also includes
ElGamal and Cramer-Shoup. The adversary for which they can show that no
simulator exists is a simple generic algorithm.

Another interesting point of view on our results is the following: For a broad
class of encryption schemes (including instances of our separating scheme), it
holds that any generic IND-SO-CPA adversary can be turned into a generic
IND-CPA adversary, while this does not hold in the CCA case. For instance,
there exists an efficient generic IND-SO-CCA adversary against our separating
scheme, while there are no generic (or even non-generic) IND-CCA adversaries.

Details on our IND-CCA/IND-SO-CCA separation. To construct our
separating scheme, we take an arbitrary IND-CCA secure PKE scheme and mod-
ify it such that a weak IND-SO-CCA attack becomes possible. To understand
the basic idea behind our modification, recall that in the weak IND-SO-CCA
experiment, an adversary A first receives a ciphertext vector c = (ci)i with
ci ← Enc(pk ,mi) for messages mi sampled from a (joint) adversarially selected
message distribution D. A can then select a subset I of all ci to be opened.
In addition to the openings of all mi (for i ∈ I), A also receives a full mes-
sage vector m which either consists of all actually encrypted messages mi, or
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of messages m′i freshly sampled from D, conditioned on m′i = mi for all i ∈ I.
As usual, A has to decide which case it is. Thus, A has to distinguish between
the encrypted messages and messages that are “just as plausible” given only the
opened messages.

To obtain our separating scheme, we take an IND-CCA secure scheme and
modify its decryption algorithm. Namely, we now allow a special type of decryp-
tion queries (soa, Z) in which Z contains a whole ciphertext vector c, along with
openings of a subset of these ciphertexts. (For now, it is easiest to imagine that
this subset is selected externally and randomly.) If the openings are valid, then
decryption will return an error-corrected version of the message vector from c.
(Hence, the scheme itself actually helps an adversary that can prove that it is
taking part in an SO attack.)

This immediately gives rise to a weak IND-SO-CCA attack: a suitable ad-
versary A essentially only has to relay between its decryption oracle and the SO
experiment to obtain the decryption of all challenge ciphertexts. The message
distribution considered in the attack will only select codewords, so that the men-
tioned error correction will not disturb the decryption. Moreover, the underlying
code has the property that a codeword is not fixed by the openings that occur
during the attack. (Hence, a re-sampling will lead to a different message vector
and can thus be detected.)

It is more challenging to prove that our modification does not harm the
scheme’s IND-CCA security. Intuitively, an IND-CCA adversary B could try to
embed its own (IND-CCA) challenge c∗ into a ciphertext vector c and obtain
the decryption of c∗ through a suitable (soa, Z) query. (With a little luck, B will
not have to open c∗, so decryption will return the full message vector, including
the decryption of c∗.)

To cope with such an IND-CCA adversary B, we will answer (soa, Z) only
with the error-corrected message vector. Decryption will ensure (by the random
choice of I and by ensuring suitably valid openings) that most of the encrypted
messages mi and all opened messages are consistent with a unique single code-
word. (If this is not the case, then the query is rejected. Of course, we will have to
make sure that B also learns nothing from the fact that the query was rejected.)
Decryption then returns this unique codeword, and not simply the decryption
of all individual ciphertexts. This procedure makes sure that a single ciphertext
c∗ embedded into c alone has no significant influence on the returned value.

Our strategy is somewhat reminiscent of the strategy of Bellare et al. [5], who
show a black-box impossibility for IND-SO secure commitments. Our approach
can be seen as a refinement and adaptation of their ideas to the PKE setting
and to the standard model.

Note that our attack only uses two decryption queries; furthermore, one
of these queries can be substituted by a random oracle query when adapting
the scheme to the random oracle model. Thus, our scheme also gives rise to
a separation between IND and weak IND-SO security in a bounded CCA set-
ting [10]. Moreover, since CCA settings with only 1 decryption query and non-
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malleability are tightly related [6], our counterexample has also implications for
non-malleability notions of security. (See Section D for details.)

Details on our generic group IND-CPA/IND-SO-CPA equivalence.
Our equivalence result applies to a broad class of encryption schemes over prime
order groups for which public keys as well as ciphertexts can be described by
(low-degree) polynomials “in the exponent”. We model the underlying group as
generic (following Shoup’s formalization) with respect to the IND-SO-CPA ad-
versary and the adversarial message sampling algorithm. That means that the
only basic group operations such algorithms may perform are equality testing,
application of the group law, and computation of inverse elements. However,
note that this is already sufficient, e.g., for realizing our efficient IND-SO-CCA
adversary (see also Section C). A potential hash function utilized by the encryp-
tion scheme is modeled as a Random Oracle. Although the model we consider
for our equivalence result may appear highly idealized, proving the equivalence
is anything but trivial. There are several novel and challenging aspects about
this proof; we only highlight a few here.

The common strategy of a proof in the generic group model is to show that,
with overwhelming probability, an adversary does not obtain any information
about the underlying secrets (e.g., secret keys, the challenge bit in indistinguisha-
bility games, etc.) of the considered game (IND-SO-CPA in our case). Thus, it
can only win by mere guessing. To this end, one shows by means of a simulation
game (where all secrets are replaced by formal variables) that a generic algo-
rithm may only obtain information about secrets from nontrivial equations that
hold between low-degree combinations of these secrets. (An equation is called
trivial if it holds for all possible choices of the secrets.) If the secret values are
chosen uniformly at random then by applying standard techniques (e.g., the
Schwartz-Zippel Lemma in the case of prime power order groups) one can see
that such equations may occur only very rarely. However, in our setting also
the adversarial messages, which are chosen according to an arbitrary (efficiently
re-samplable) distribution, belong to the secrets for which we want to argue that
they are hidden information-theoretically. Moreover, in the opening phase, parts
of the secrets are even disclosed to the adversary. We cope with these issues by
modifying the way we usually simulate in the generic model and, hence, how
non-trivial equations are defined. In particular, we need to adapt the simulation
when the opening phase starts and show that a non-trivial equation and “bad”
message distribution can be leveraged to win the IND-CPA game.

In a nutshell, our proof is split into two parts: First, we show that in or-
der to win the IND-CPA game, it suffices that for all possible public keys and
encryptions of a message vector, we can efficiently compute a non-trivial repre-
sentation of the neutral group element in terms of the public key and (at least
one of) the corresponding ciphertexts. The idea is to replace one of the mes-
sages with a different one for which this equation does not hold anymore and
use the two messages in the IND-CPA game. Second, we show that from any
generic IND-SO-CPA adversary, such a representation and message vector can
be extracted.
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Outline. After recalling some definitions in Section 2, we describe our separa-
tion in Section 3. The generic equivalence in the passive case can be found in
Section 4. Sections A, B, and C discuss the restrictions we make for the CPA
case, and in particular show that our separating scheme from the CCA case (and
its analysis) is generic in our sense. Finally, Section D briefly describes extensions
to our CCA separation.

2 Preliminaries

Notation. For n ∈ N, let [n] := {1, . . . , n}. Throughout the paper, k ∈ N
denotes the security parameter. For a finite set S, we denote by s ← S the
process of sampling s uniformly from S. For a probabilistic algorithm A, we
denote with RA the space of A’s random coins. y ← A(x;R) denotes the process
of running A on input x and with randomness R ← RA, and assigning y the
result. We write y ← A(x) for y ← A(x;R) with uniform R. If A’s running time
is polynomial in k, then A is called probabilistic polynomial-time (PPT).

PRFs. A pseudorandom function (PRF) is a function PRF : K × D → R for
finite K,R, such that oracle access to PRFK(·) (for K ← K) is indistinguishable
from oracle access to a truly random function RF : D → R. Concretely, for
a distinguisher D, let AdvprfPRF,D(k) := Pr

[
DPRFK(·) = 1

]
− Pr

[
DRF (·) = 1

]
. We

require that AdvprfPRF,D is negligible for all PPT D.

PKE schemes. A public-key encryption (PKE) scheme PKE with message
spaceM consists of three PPT algorithms Gen,Enc,Dec. Key generation Gen(1k)
outputs a public key pk and a secret key sk . Encryption Enc(pk ,m) takes pk
and a message m ∈M, and outputs a ciphertext c. Decryption Dec(sk , c) takes
sk and a ciphertext c, and outputs a message m. For correctness, we want
Dec(sk , c) = m for all m ∈M, all (pk , sk)← Gen(1k), and all c← Enc(pk ,m).

Standard security notions. Let PKE be a PKE scheme as above. For an
adversary A, consider the following experiment: first, the experiment samples
(pk , sk) ← Gen(1k) and runs A on input pk . Once A outputs two messages
m0,m1, the experiment flips a coin b ← {0, 1} and runs A on input c∗ ←
Enc(pk ,mb). We say that A wins the experiment iff b′ = b for A’s final output

b′. We denote A’s advantage with Advind-cpaPKE,A(k) := Pr [A wins]−1/2 and say that

PKE is IND-CPA secure iff Advind-cpaPKE,A is negligible for all PPT A. Similarly, write

Advind-ccaPKE,A(k) := Pr [A wins]−1/2 for A’s winning probability when A additionally
gets access to a decryption oracle Dec(sk , ·) at all times. (To avoid trivialities,
A may not query Dec on c∗, though.) PKE is IND-CCA secure iff Advind-ccaPKE,A is
negligible for all PPT A.

Security under selective openings. Following [5, 16, 8], we present an
indistinguishability-based definition for security under selective openings that
captures security of an encryption scheme under adaptive attacks.
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Experiment Expweak-ind-so-cpaPKE,A

b← {0, 1}
(pk , sk)← Gen(1k)

samp(·)← A(pk)

m0 := (mi)i∈[n] ← samp()

R := (Ri)i∈[n] ← (REnc)
n

c := (ci)i∈[n] := (Enc(pk ,mi;Ri))i∈[n]

I ← A(sel, c)

m1 ← samp(mI)

outA ← A(out, (Ri)i∈I ,mb)

return 1 if outA = b, and 0 otherwise

Fig. 2: Weak IND-SO-CPA experiment.

Intuitively, an adversary A that re-
ceives a vector of ciphertexts, along
with openings of a subset of these
ciphertexts, should not be able to
distinguish the messages in the un-
opened ciphertexts from indepen-
dently selected messages. The en-
crypted message vector is selected
according to a (joint) message dis-
tribution selected by A. A also se-
lects the set of ciphertexts to be
opened, in a way possibly depend-
ing on the ciphertexts themselves.
Since we currently do not know
how to achieve this security notion
for arbitrary (efficiently samplable)
message distributions, we further
restrict to efficiently re-samplable
message distributions:

Definition 1 (Efficiently re-samplable). Let n = n(k) > 0, and let D be a
joint distribution over Mn. We say that D is efficiently re-samplable if there is
a PPT algorithm samp such that for any I ⊆ [n] and any partial vector m′I :=
(m′i)i∈I ∈M|I|, samp(m′I) samples from D |mI , i.e., from the distribution D,
conditioned on mi = m′i for all i ∈ I. Note that in particular, samp() samples
from D.

Definition 2 (Weak indistinguishability-based selective opening secu-
rity). For a PKE scheme PKE = (Gen,Enc,Dec), a polynomially bounded func-
tion n = n(k) > 0, and a stateful PPT adversary A, consider the experiment
in Figure 2. We only allow A that always output re-sampling algorithms as in
Definition 1. We call PKE weakly IND-SO-CPA secure if

Advind-so-cpaPKE,A (k) := Pr
[
Expweak-ind-so-cpaPKE,A (k) = 1

]
− 1

2

is negligible for all PPT A. Similarly, we define an experiment Expweak-ind-so-ccaPKE,A

(with advantage Advind-so-ccaPKE,A ) that is identical to Expweak-ind-so-cpaPKE,A , except that A
gets access to a decryption oracle Dec(sk , ·) at all times. To avoid trivialities, we
only allow A that never query their decryption oracle with any ciphertext from c.
We say that PKE is weakly IND-SO-CCA secure if Advind-so-ccaPKE,A (k) is negligible.

There are some minor technical differences between Definition 2 and the IND-
SO-ENC definition from [5]: IND-SO-ENC security universally quantifies over all
(efficiently re-samplable) message distributions. We let A choose samp instead,
e.g., to allow a message distribution that depends on the public key pk . (In
fact, otherwise it is not even clear that the resulting definition implies IND-CPA
security.) Besides, unlike Böhl et al. [8], we model only one round of openings
for simplicity. (However, our results hold also for multiple rounds of openings.)
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3 Our Separating Encryption Scheme

In this section, we describe a PKE scheme that is IND-CCA secure, but not
weakly IND-SO-CCA secure. So our scheme separates standard security from
even the weakest considered form of selective opening security.

3.1 The Scheme

Specific notation and assumptions. In the following, let F = Zp be the
finite field of size p for a prime p. (We will later choose a (k + 1)-bit p as part
of the public key of our scheme.) By ipol((Xi, Yi)

d
i=0) (for pairwise different Xi),

we denote the unique degree-≤ d polynomial F ∈ F[X] with F (Xi) = Yi for
all i. Let SS` denote the set of all `-sized subsets of S. We will assume a PRF

PRF : {0, 1}k × {0, 1}∗ → S [3k]k (such that oracle access to PRFK(·) for uniform
K ∈ {0, 1}k cannot be distinguished from access to a truly random function that
maps arbitrary bitstrings to uniform k-sized subsets of [3k]). We will also assume
an IND-CCA secure PKE scheme PKE′ = (Gen′,Enc′,Dec′) with message space
F. (The requirement about the message space is without loss of generality [19];
see also Section B for a scheme with a group as message space.)

Construction. PKE = (Gen,Enc,Dec) is constructed from PKE′:

Key generation adds a PRF key to sk : Gen(1k) outputs (pk , sk) = ((pk ′, p),
(sk ′,K)) for (pk ′, sk ′) ← Gen′(1k), a uniformly chosen (k + 1)-bit prime p,
and K ← {0, 1}k.

Encryption marks ciphertexts as “regular”: Enc(pk ,m) runs c′ ← Enc′(pk ′,m)
and outputs c = (reg, c′).

Decryption decrypts “regular” ciphertexts as PKE′, but also offers possibilities
to evaluate PRFK and perform a special type of attack by decrypting “non-
regular” ciphertexts:

Dec(sk , c) =


Dec′(sk ′, c′) if c = (reg, c′) for some c′,

PRFK(Z) if c = (sel, Z) for some Z,

SOA(sk , Z) if c = (soa, Z) for some Z,

⊥ else.

Here, the function SOA(sk , Z) operates as follows:

1. Parse Z as Z = ((c′i)i∈[3k], (mi, Ri)i∈I), where I = PRFK((c′i)i∈[3k]).

2. If there are indices i 6= j with c′i = c′j , then return ⊥.

3. If there is an i ∈ I with Enc′(pk ′,mi;Ri) 6= c′i, then return ⊥.

4. Decrypt the unopened ciphertexts by mi = Dec′(sk ′, c′i) for i ∈ [3k] \ I.

5. First, determine if there is a degree-≤ k polynomial F ∈ F[X] with
F = ipol((i,mi)i∈I∪{j}) for more than k values j ∈ [3k] \ I. Note that
there are only 2k candidates F` = ipol((i,mi)i∈I∪{`}) (for ` ∈ [3k] \ I)
for F ; hence, if such an F exists, it can be found efficiently (and in fact
is unique). Return F , or ⊥ if no such F exists.
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Intuitively, SOA(sk , Z) returns a polynomial F that is consistent with all
opened values mi (for i ∈ I), and most unopened values mi (for i ∈ [3k]\I).
(This slight distinction will be crucial to ensure that access to SOA does not
enable IND-CCA attacks.)

Rationale and intuition for security analysis. The rationale of our mod-
ifications to PKE′ is to enable a specific attack that only a weak IND-SO-CCA
adversary is able to perform. Concretely, once an adversary supplies 3k cipher-
texts along with openings of k of them (in a suitable Dec(sk , (soa, Z)) query),
the scheme itself helps to decrypt all ciphertexts. Indeed, PKE is weakly IND-
SO-CCA insecure with respect to the message distribution D = (F (i))i∈[3k] with
a uniform degree-≤ k polynomial F : by relaying between the experiment and its
Dec oracle, an adversary can obtain all (i.e., even unopened) challenge messages.

The difficult part will be to prove that our modification preserves the IND-
CCA security of PKE′. That is, we will have to prove that (sel, Z) and (soa, Z)
decryption queries do not help an IND-CCA adversary A on PKE. For (sel, Z)
queries, this is intuitively clear, as they are answered independently of the “ac-
tual” secret key sk ′. For (soa, Z) queries, we will argue that the answer can
already be deduced by “regular” decryption queries (reg, c′). Concretely, if the
PKE′ ciphertext c∗ from A’s own challenge (reg, c∗) does not appear as cipher-
text in Z, A can itself use Dec queries to emulate SOA(sk , Z). And even if Z
contains c∗, A can still use Dec to decrypt all ciphertexts in Z except for c∗. We
will show that SOA(sk , Z) can be reasonably well approximated when knowing
all plaintexts encrypted in Z except for at most one. Namely, in order not to be
rejected by SOA(sk , Z), almost all of the ciphertexts in Z must already decrypt
to a value F (i) that is consistent with one F . Knowing all but one plaintext
allows a simulation to compute this F , and thus SOA(sk , Z)’s answer.

Variations. Section D gives variations for bounded CCA security and non-
malleability.

3.2 Why PKE is not weakly IND-SO-CCA secure

We now formally show that PKE allows for a simple weak IND-SO-CCA attack.

Theorem 1. The PKE scheme PKE from Section 3.1 is not weakly IND-SO-
CCA secure.

Proof. We construct a weak IND-SO-CCA adversary A on PKE. On input pk ,
A outputs the 3k-message distribution

D =
{

(F (1), . . . , F (3k))
∣∣F ∈ F[X] uniformly chosen degree-≤ k polynomial

}
along with a suitable (re-)sampling algorithm samp. (For instance, samp can
randomly extend its input (F (i))i∈I to k+ 1 evaluation points as necessary and
then use polynomial interpolation to retrieve F and thus all F (i).) Note that
k messages mi = F (i) from a D-sample do not fully determine F and thus the
whole message vector.
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Once A receives a ciphertext vector c := (reg, c′i)i∈[3k], it queries its decryp-
tion oracle on (sel, (c′i)i∈[3k]) to receive a k-sized subset I ⊂ [3k]. This I is the
subset that A submits to its weak IND-SO-CCA experiment. Let badcoll be the
event that c′i = c′j for some i 6= j. By the correctness of PKE′, this can only
happen if mi = mj for these i, j. By definition of D, we have Pr [mi = mj ] =
1/|F| < 1/2k for any fixed i, j. Hence, a union bound over all i, j shows that

Pr [badcoll] <
3k(3k−1)

2 · 1
2k
< 5k2

2k
. We will thus assume ¬badcoll hereafter.

Upon receiving openings (mi, Ri)i∈I and a message vector m∗ = (m∗i )i∈[3k],
A queries its decryption oracle on (soa, ((c′i)i∈[3k], (mi, Ri)i∈I)). By definition of
Dec (and the function SOA), A will thus receive a polynomial F with mi = F (i)
for all i ∈ [3k] and can thus obtain the actually encrypted messages mi. Finally,
A will output outA = 0 iff m∗i = F (i) for all i ∈ [3k].

Still assuming ¬badcoll, it is clear that A will output outA = 0 when b = 0,
i.e., when m∗ = m0. On the other hand, if b = 1, then m∗ = m1 has been
re-sampled subject to m∗i = mi for all i ∈ I. However, since a message vector m
from D is not fixed by only k = |I| values mi, we have that m∗ 6= m0 (so that A
outputs outA = 1) except with probability at most 1/|F| < 1/2k. Summarizing,
we get

Advind-so-ccaPKE,A (k) = Pr [outA = b]−1

2
≥ Pr [outA = b | ¬badcoll]−Pr [badcoll]−

1

2

>
1

2

(
1 + (1− 1

2k
)

)
− 5k2

2k
− 1

2
=

1

2
− 5k2 + 2

2k
,

which is non-negligible (and in fact negligibly close to the maximal advantage).

3.3 Why PKE is still IND-CCA secure

We show that PKE inherits PKE′’s IND-CCA security.

Theorem 2. The PKE scheme PKE from Section 3.1 is IND-CCA secure, as-
suming that PKE′ is IND-CCA secure, and PRF is pseudorandom.

Proof. Let A be a PPT adversary on PKE that makes exactly q decryption
queries. We proceed in games, and let out i denote the output of Game i.

Game 1 is the original IND-CCA game with A. Consequently,

Pr [out1 = 1]− 1/2 = Advind-ccaPKE,A(k).

In Game 2, we answer decryption queries of the form (sel, Z) with RF (Z)

instead of PRFK(Z) for a truly random function RF : {0, 1}∗ → S [3k]k . (We
will assume that RF is efficiently implemented, e.g., using lazy sampling.) A
straightforward reduction to PRF’s pseudorandomness yields

Pr [out1 = 1]− Pr [out2 = 1] = AdvprfPRF,D(k)

for a suitable PRF distinguisher D.
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In Game 3, we slightly change the way decryption queries of the form
(soa, Z) are answered. Our goal is to avoid a decryption of c∗, where (reg, c∗) is
A’s own challenge ciphertext. Informally, we simply skip decrypting c′i if c′i = c∗

in Step 4 of the function SOA(sk , Z). In Step 5, we skip any comparison of mi

for c′i = c∗. Formally, we change Steps 4 and 5 into

4. Let I∗ be the set of all i ∈ [3k] \ I with c′i = c∗. (Note that |I∗| ≤ 1.)
Decrypt the unopened ciphertexts not equal to c∗ by mi = Dec′(sk ′, c′i) for
i ∈ [3k] \ (I ∪ I∗).

5. If there is a degree-≤ k polynomial F ∈ F[X] with F = ipol((i,mi)i∈I∪{j})
for more than k values j ∈ [3k] \ (I ∪ I∗), then return F . Else return ⊥.

This modified version SOA′ only yields different values from that of Game 2 if

(a) Z = ((c′i)i∈[3k], (mi, Ri)i∈I) with pairwise different c′i and I = RF ((c′i)i∈[3k]),

(b) all openings are valid in the sense Enc′(mi;Ri) = c′i for i ∈ I, and

(c) there are exactly k + 1 indices i ∈ [3k] \ I with mi = F (i) for a degree-≤ k
polynomial F .

In this case, SOA(sk , Z) will return F , while SOA′(sk , Z) might return ⊥ (in
case there is an unopened c′i = c∗ with mi = F (i)). Let us call a query (soa, Z)
satisfying (a)-(c) implausible. Denote by badimpl the event that A ever submits
an implausible decryption query. Unless badimpl occurs, Game 2 and Game 3 are
identical, so that Pr [badimpl] is the same in these games.

Intuitively, badimpl is unlikely, because it necessitates that the (randomly cho-
sen) subset I = RF ((c′i)i∈[3k]) happens to contain only indices i with mi = F (i)
for the uniquely determined polynomial F . However, requirement (c) states that
k − 1 indices i are not compatible with F , meaning mi 6= F (i). The probability
that any such i is contained in I is overwhelming. We prove the following lemma
after the main proof.

Lemma 1. Pr [badimpl] ≤ q ·
(
5
6

)k
for k ≥ 2.

Using Lemma 1, we thus get for k ≥ 2:

|Pr [out3 = 1]− Pr [out2 = 1]| ≤ Pr [badimpl] ≤ q ·
(

5

6

)k
.

Finally, we have

Pr [out3 = 1] = Advind-ccaPKE,B + 1/2 (1)

for a suitable IND-CCA adversary B on PKE′. Concretely, observe that the whole
Game 3 only uses sk ′ to decrypt PKE′ ciphertexts different from c∗. Hence, B
can simulate A, using its own challenge public key pk ′ and ciphertext c∗ as
A’s public key and challenge. A’s choice of challenge messages m0,m1 is also
used by B. A’s decryption queries (reg, c′) are relayed (as c′) to B’s decryption
oracle; (sel, Z) and (soa, Z) queries are answered by B for A, using B’s own
decryption oracle as necessary for (soa, Z) queries. (Note that B’s challenge c∗
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will never have to be decrypted by our change from Game 3.) This adversary B
thus perfectly simulates Game 3 for A, so we get (1).

Taking things together yields

∣∣∣Advind-ccaPKE,A − Advind-ccaPKE,B

∣∣∣ = |Pr [out1]− Pr [out3]| ≤ |AdvprfPRF,D(k)|+ q ·
(

5

6

)k
for k ≥ 2, which shows the theorem.

It remains to prove Lemma 1:

Proof (Proof of Lemma 1). Given a ciphertext vector c = (c′i)i∈[3k], define mi =
Dec(sk ′, c′i) for all i. (Correctness implies that these mi are the same that will
be recovered by SOA, either using openings given by A, or by decryption.) Say
that there is a (unique) degree-≤ k polynomial F and a (2k + 1)-sized subset
I ⊂ [3k] with mi = F (i)⇔ i ∈ I. (Note that this is a prerequisite for badimpl.)

The crucial observation is that the set I = RF (c) that determines which
ciphertexts A must open is chosen independently and uniformly from the set
of all k-sized subsets of [3n]. Furthermore, I is only chosen once A makes a
(sel, Z) or (soa, Z) query that involves c. If I 6⊂ I, then there can be no
implausible query with this c. (Condition (b) would require that some i∗ 6∈ I is
opened, so that Condition (c) cannot be met, as mi∗ 6= F (i∗).) Hence I ⊂ I is
a necessary requirement for an implausible query with this c. But I ⊂ I means
that a random k-sized subset I of [3k] is a subset of a fixed (2k+ 1)-sized subset
I ⊂ [3k]. Hence,

Pr
[
I ⊂ I

]
=

(
2k+1
k

)(
3k
k

) =
(2k + 1)!(2k)!

(3k)!(k + 1)!
=

(2k + 1) · · · (k + 2)

(3k) · · · (2k + 1)

k≥2
≤

(
5

6

)k
.

Since A makes only q decryption queries, it can only submit at most q dif-
ferent c. For each c, the probability is at most (5/6)k that an implausible query
with this c exists. Hence, a union bound shows that

Pr [badimpl] ≤ q ·
(

5

6

)k
.

4 Equivalence of IND-SO-CPA and IND-CPA in the
GGM

We give evidence towards the equivalence of IND-SO-CPA and IND-CPA by
showing that for a broad class of encryption schemes any efficient generic IND-
SO-CPA adversary can be turned into an efficient IND-CPA adversary.

In the following, some additional notation is needed: For a vector of variables
X or polynomials P, let |X| and |P| denote the size of the corresponding vector.
For a polynomial P , let |P | denote the number of non-zero monomials.
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4.1 The Class of (P,E,H,H)-CS-type Encryption Schemes

The following definition covers a broad class of public-key encryption schemes
over prime order groups where messages are group elements. This includes El-
Gamal, Cramer-Shoup (CS), and also a slight variation of the separating scheme
from Section 3.1, e.g., instantiated with Cramer-Shoup (see Section B). Note that
the restrictions on the polynomials in Definition 3 are reasonable for meaningful
encryption (see Section A).

Definition 3. Let G be a group of prime order p with generator g and F = Zp.
Furthermore, let u1, u2, u3, v1, v2 ∈ N,

– P = (P1 = 1, P2, . . . , Pu1
) be public key polynomials in F[X1, . . . , Xv1 ],

– E = (E1, . . . , Eu2
) be polynomials in F[X1, . . . , Xv1 , Y1, . . . , Yv2 , Z,M ], called

encryption polynomials, where all monomials have the form

αP e1Ze2Me3

v2∏
i=1

Y dii

with P ∈ P, e1, e3 ∈ {0, 1}, e1 + e3 ≤ 1, and e2, di ∈ N0,

– H = (H1, . . . ,Hu3
) be tuple of hash input polynomials, where Hi ∈ E,

degZ(Hi) = 0, and for at least one Hi it holds that degM (Hi) > 0 or
maxj(degYj

(Hi)) > 0,

– H : Gu3 7→ F be a hash function.

Then we call an encryption scheme over G a (P,E,H,H)-CS-type encryp-
tion scheme if the following conditions are satisfied:

– The public key is of the form (gP (x))P∈P, where x← F
v1 .

– The ciphertext of a message m = gm
′

is of the form c = (gE(x,y,z,m′))E∈E ,
where y← F

v2 and z is the output of H given gH1(x,y,m
′), . . . , gHu3

(x,y,m′).

Example 1. Cramer-Shoup encryption scheme can be viewed as (P,E,H,H)-
CS-type encryption scheme, where we assume that generator g from Definition 3
has been chosen randomly and

– P1 = 1, P2 = X1, P3 = X2 +X1X3, P4 = X4 +X1X5, P5 = X6

– E1 = P1Y1, E2 = P2Y1, E3 = P3Y1 + P4Y1Z, E4 = P5Y1 +M

– H : G3 7→ F is a collision resistant hash function computed over group
elements with exponents of the form H1 = E1, H2 = E2, H3 = E4.

4.2 IND-SO-CPA in the Generic Group Model

We base the formalization of the IND-SO-CPA game for generic adversaries on
the generic group model (GGM) introduced by Shoup [23]. In Shoup’s GGM
elements are encoded as unique random bit strings, ensuring that no special
property of a group’s representation can be exploited. More precisely, let E ⊂
{0, 1}dlog2(p)e, where |E| = p, denote the set of possible element encodings of a
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cyclic group G of order p. Since any such group G is isomorphic to (F,+), we
will always use F for the internal representation of G. A generic group oracle
defines the random map between group elements and encodings and allows A
to perform operations from Ω = {+,−} on encoded group elements. Equality
testing can be done without the help of O since encodings are unique.

Internal state of O. The oracle maintains two lists L and E which are used to
define the random mapping between F and E in a lazy manner: L ⊂ F will be
initially populated with the elements comprising the public key of the considered
encryption scheme. While A interacts with O, additional elements are added to
L. The list E ⊂ E contains the random encodings corresponding to the elements
in L. More precisely, the i-th encoding Ei represents the i-th element Li. We will
denote the encoding of an element a ∈ L by [[a]].

Encoding of elements. Each time an element a should be added to L, O
checks if a is already contained in L. If this is the case, [[a]] is already defined
and will be appended to E again. Otherwise, a fresh encoding σ ← E \ E is
sampled and appended to E . The encoding [[a]] is sent to A. We may assume
that a generic algorithm A always outputs encodings it has previously received
by the oracle: A fresh encoding not contained in E is associated with a random
a ∈ F\L. Assuming |L| is polynomial in log(p), such an element can be efficiently

generated by A itself with overwhelming probability 1− |L|p by sampling a random

a ∈ F. The corresponding encoding [[a]] can be computed from [[1]] using double-
and-add. Similarly, in our upcoming IND-SO-CPA setting, A will be able to
output an encoding that has been computed by another generic algorithm, but

has not explicitly given to A, only with negligible probability of at most |E|p .

Query operations. A may ask O to perform an operation ◦ ∈ Ω on encoded
elements [[a]], [[b]] ∈ E . Then a ◦ b is added to L and [[a ◦ b]] is sent to A.

The GGM IND-SO-CPA game. The IND-SO-CPA game for generic ad-
versaries against an (P,E,H,H)-CS-type encryption scheme is shown in Figure
3a. By abuse of notation we assume that for a new input [[a]] given to a generic
algorithm (in the sense that a 6∈ L), a is first added to L and then an encoding
is determined. The hash function H : Gu4 7→ F is modeled as a Random Oracle,
which on input of u4 concatenated encodings, outputs a fresh hash value z ← F

if it has not received this input before. Otherwise, the hash value which has been
chosen previously is returned. Furthermore, as can be seen from Figure 3a, both
the adversary A and samp are modeled as generic algorithms. The algorithm
samp is stateless but its output may depend on the public key [[P (x)]]P∈P since
this was given as input to A before samp was created.

4.3 Equivalence for (P,E,H,H)-CS-type Encryption

As a warm-up, consider the IND-SO-CPA game for ElGamal, viewed as a CS-
type encryption scheme where P = (1, X) and E = (Y,XY +M), in the GGM. In
this model, it is not hard to show (by means of a simulation game) that the only
source of information for the adversary about the challenge bit b are non-trivial
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equations between elements that are linear combinations of the secret key x,
the unopened random coins for encryption (yj)j 6∈I , and the unopened encrypted
messages (m′0,j)j 6∈I . More precisely, an adversary may only obtain information
about b if the difference ∆(x, y1, . . . , yn,m

′
0,1, . . . ,m

′
0,n) of two computed ele-

ments is zero, where ∆ is a non-zero polynomial of the form

∆ = α0 + α1X +

n∑
j=1

βjYj +

n∑
j=1

γj(XYj +Mj)

and βj = γj = 0 for j ∈ I (I = ∅ if we are not yet in the opening phase). What
is the probability that this happens? Note that in contrast to the secret key and
the random coins, the messages m′0,j are not necessarily uniformly chosen. So the
well-known Schwartz-Zippel Lemma cannot immediately be applied. However,
since samp is also assumed to be generic,m′0,j will be of the formm′0,j = Rj(x) for
some polynomial Rj of the form Rj = α0 +α1X. Let us consider the polynomial
∆′ = ∆(R1, . . . , Rn) which results from replacing any occurrence of Mj by Rj .
It is easy to see that ∆′ 6= 0 if ∆ 6= 0. Finally, we can apply Schwartz-Zippel
to ∆′ to upper bound the probability that ∆(x, y1, . . . , yn,m

′
0,1, . . . ,m

′
0,n) =

∆′(x1, y1, . . . , yn) is zero, yielding the bound 2
p .

Note that for more general public key and encryption polynomials as con-
sidered in Definition 3, ∆′ is not guaranteed to be non-zero anymore: For in-
stance, consider the slightly modified encryption polynomials E = (Y,XY +YM)
and the difference polynomial ∆ = −Y1 + (XY1 + Y1M1). Here ∆′ becomes
zero for R1 = 1 − X. Fortunately, it turns out that in this case the corre-
sponding encryption scheme is already IND-CPA insecure. In our example, this
is obvious: An IND-CPA adversary could choose m0 = g(gx)−1 and a ran-
dom message m1 and check whether for the challenge ciphertext c = (c1, c2)
holds that c−11 c2 = g∆(X=x,Y1=y1,M1=m

′
b) is equal to 1, where m′0 = 1 − x and

m′1 = logg(m1). With overwhelming probability this will not hold for b = 1.
More generally, we can show that any ∆ and Rj ’s can be used to build an

IND-CPA adversary that works similarly. This is done in the first part (The-
orem 3) of our proof which is actually independent of the generic model. It
essentially says that if for all possible public keys and all possible encryptions
of certain messages, we can efficiently compute a non-trivial representation of
1 ∈ G in terms of the public key and the ciphertexts, then we can win the
IND-CPA game with overwhelming probability. The idea is to replace one of the
messages with a different one for which the equation does not hold anymore and
use these two messages in the scope of the IND-CPA game. In the second part
(Theorem 4), we show that any efficient generic adversary who wins the IND-
SO-CPA game with non-negligible probability gives rise to such a representation
(in form of a polynomial) and corresponding messages.

Theorem 3. Let a (P,E,H,H)-CS-type encryption scheme PKE over a group
G of prime order p be given. Furthermore, let a polynomial ∆ of the form

∆ =
∑
P∈P

αPP (X) +

n∑
j=1

∑
E∈E

βj,EE(X,Yj , Zj ,Mj)
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and polynomials R1, . . . , Rn of the form Ri =
∑
P∈P αPP (X) over F be given

(where the coefficients α, β in the above representation are known) such that ∆ 6=
0 but ∆(M1 = R1, . . . ,Mn = Rn) = 0 . Then we can build a generic adversary
B who wins the IND-CPA game for PKE, modeling H as a Random Oracle,

with probability at least 1− deg(∆)
2p using O((maxE∈E(|E|)|E||Y|+ |P|) log(p)n)

multiplications over G and F.

Proof. First, observe that there is some 1 ≤ i ≤ n such that ∆(R1, . . . , Ri−1) 6=
0 but ∆(R1, . . . , Ri) = 0. Note that in this case, we know that degMj

(∆) =
degZj

(∆) = degY (∆) = 0, for all Y ∈ Yj and j > i. Clearly, also for uniform
x,y1, . . . ,yi, z1, . . . , zi, it holds that ∆(x,y1, . . . ,yi, z1, . . . , zi,m

′
1, . . . ,m

′
i) = 0,

where m′1 = R1(x), . . . ,m′i = Ri(x). Furthermore, if we additionally choose
m′′i ∈ F at random, the probability that

∆(x,y1, . . . ,yi, z1, . . . , zi,m
′
1, . . . ,m

′
i−1,m

′′
i ) = 0

is upper bounded by deg(∆)
p . This follows from the Schwartz-Zippel Lemma ob-

serving that ∆(R1, . . . , Ri−1) is a non-zero and of degree at most deg(∆).
Now, we are prepared to describe the IND-CPA adversary. First, B re-

ceives the public key (gP (x∗))P∈P of the (P,E,H,H)-CS-type encryption scheme
from the challenger. Using this key it creates the message gm

∗
0 = gRi(x

∗) =∏
P∈P(gP (x∗))αP , where Ri =

∑
P∈P αPP (X), and gm

∗
1 , where m∗1 ← F. Then

it sends them to the challenger who responds with the ciphertext

(gE(x∗,y∗,z∗,m∗b ))E∈E , (2)

where b ← {0, 1} and z∗ is the hash value associated with the message gm
∗
b .

Since we consider the IND-CPA game in the Random Oracle Model z∗ has been
chosen uniformly at random from F. Next, B creates the remaining values in
order to evaluate ∆ as exponent: It computes the messages gm

′
j = gRj(x

∗) and
chooses yj ← F

v2 , zj ← F, for j < i. Finally, it computes

g∆(x∗,y1,...,yi−1,y
∗,z1,...,zi−1,z

∗,m′1,...,m
′
i−1,m

∗) , (3)

where it is easy to see that B is in fact able to evaluate this polynomial in
the exponent (cf. paragraph on runtime). If the resulting element equals 1, B
outputs outB = 0 and otherwise 1.

As we know from the previous analysis, the element in Equation 3 happens to

be 1 for both messages with probability at most deg(∆)
p . So in this case B’s guess

is correct with probability 1
2 . If this failure does not happen B’s guess is correct

with probability 1. In total, we have a probability of at least 1
2
deg(∆)
p +1− deg(∆)

p .
Let us briefly consider the runtime of B. Note that elements involving yi =

y∗, and m′i = m∗ or zi = z∗, are given and do not need to be computed (cf. Equa-

tion 2). First, constructing the messages gm
′
j requires O(log(p)|P|n) group oper-

ations. To compute the group element from Equation 3, B uses the known rep-
resentation in P and E. For the first part

∏
P∈P(gP (x∗))αP about O(log(p)|P|)
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group operations are required. To compute the second at most n − 1 encryp-
tions are needed. More precisely, the second part

∏n
j=1

∏
E∈E g

βj,EE(x,yj ,zj ,m
′
j)

can be computed (for j 6= i) as a multi-exponentiation (the exponents are the
monomials of each E) with elements of the form

a
∏v2

k=1 y
dj,k
j,k z

e2
j βj,E ,

where a = g(P (x∗))e1 or a = gm
′
j
e3

which requires O(log(p)|Y|maxE∈E(|E|)|E|n)
multiplications.

Theorem 4 says that from any generic IND-SO-CPA adversary A certain
polynomials as required for Theorem 3 can be extracted using “white-box access”
to A. Here the extraction algorithm B does not only play the role of the IND-
SO-CPA challenger and restricts itself to considering the in- and output of A (in
this case we would be in the standard model) but closely observes the operations
A performs on its inputs, i.e., B substitutes (and modifies) the generic oracle.
More precisely, B’s strategy is as follows: It turns the real IND-SO-CPA game in
the generic model into a simulation game which does not reveal any information
about the secret bit b chosen by the challenger. So A has no better chance than
mere guessing to win the simulation game. Since the simulation game and the real
game are equivalent unless a certain failure event occurs, an adversary who has
a non-negligible advantage in winning the real game must cause this simulation
failure with non-negligible probability. The crucial point is that a failure event
is defined in a way such that it gives rise to the polynomials from Theorem 3.

Theorem 4. Let a (P,E,H,H)-CS-type encryption scheme PKE over a group
G of prime order p be given. Furthermore, let d = maxS∈P∪E(deg(S)), d′ =
maxS∈P(deg(S)), and r = maxS∈P∪E(|S|), and s = max(|X|, |Y|). Suppose
there is a generic group adversary A that wins the IND-SO-CPA game for PKE,
where we model H as Random Oracle, with advantage Advind-so-cpaPKE,A , and by using
n challenge messages. Let O(t) and O(t′) denote the runtime of A and samp,
respectively. Then there is a generic algorithm B which, by white-box access to
A, extracts a polynomial ∆ of degree at most d as well as polynomials R1, . . . , Rn
satisfying the conditions of Theorem 3 with a probability of at least Advind-so-cpaPKE,A −
dd′

p and by performing at most O(r(|P|+ |E|n)((t+ t′ + |P|+ |E|n)2 + log(p)s))
F-operations.

Proof. Game 1 is the real IND-SO-CPA game as shown in Figure 3a.
Game 2 is the transition game shown in Figure 3b, which is actually equiv-

alent to the real IND-SO-CPA game. Here, we define a new oracle O1 as follows:
O1 uses polynomials to internally represent elements from F. More precisely,
we have L ⊂ F[X,Y1, . . . ,Yn,Z,M]. Initially, the list is populated with the
polynomials P describing the public key. Later, for each message, polynomials E
describing its ciphertext are added. Applying the group operation in this poly-
nomial representation translates to polynomial addition over F. Moreover, the
oracle receives certain elements x,y1, . . . ,yn, z,m

′
0 which are used to evaluate
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Initialization & Challenge

b← {0, 1}
x← F

v1

samp(·)← AO0,H([[P (x)]]P∈P)

[[m′0,i]]i∈[n] ← sampO0,H()
(y1, . . . ,yn)← (Fv2 )n

zi ← H([[H(x,yi,m
′
0,i)]]H∈H), 1 ≤ i ≤ n

I ← AO0,H(sel, [[E(x,yi, zi,m
′
0,i)]]E∈E,i∈[n])

Opening

[[m′1,i]]i∈[n] ← sampO0,H([[m′0,i]]i∈I)

outA ← AO0,H(out, (yi)i∈I , [[m
′
b,i]]i∈[n])

(a) Real Game

Initialization & Challenge

b← {0, 1}
x← F

v1

samp(·)← AO1(x),H([[P (X)]]P∈P)

[[m′0,i]]i∈[n] ← sampO1(x),H()
(y1, . . . ,yn)← (Fv2 )n

zi ← H([[H(X,Yi,Mi)]]H∈H), 1 ≤ i ≤ n
I ← AO1(x,y1,...,yn,z,m′0),H(sel, [[E(X,Yi, Zi,Mi)]]E∈E,i∈[n])

Opening

[[m′1,i]]i∈[n] ← sampO2(x,y1,...,yn,z,m′0),H([[m′0,i]]i∈I)

outA ← AO2(x,y1,...,yn,z,m′0),H(out, (yi)i∈I , [[m
′
b,i]]i∈[n])

(b) Transition Game

Initialization & Challenge

b← {0, 1}
x← F

v1

samp(·)← AO2(),H([[P (X)]]P∈P)

[[m′0,i]]i∈[n] ← sampO2(),H()
(y1, . . . ,yn)← (Fv2 )n

zi ← H([[H(X,Yi,Mi)]]H∈H), 1 ≤ i ≤ n
I ← AO2(),H(sel, [[E(X,Yi, Zi,Mi)]]E∈E,i∈[n])

Opening

[[m′1,i]]i∈[n] ← samp
O2((yi,zi,m

′
0,i)i∈I),H

([[m′0,i]]i∈I)

outA ← A
O2((yi,zi,m

′
0,i)i∈I),H

(out, (yi)i∈I , [[m
′
b,i]]i∈[n])

(c) Simulation Game

Fig. 3: IND-SO-CPA Games: From the Real Game to the Simulation Game

the polynomials in order to determine encodings: Two elements R1, R2 ∈ L are
assigned the same encoding if

((R1 −R2)(M = m′0))(X = x,Y1 = y1, . . . ,Yn = yn,Z = z) ≡ 0 mod p . (4)

Note that a message m′0,j , 1 ≤ j ≤ n, might be a non-constant polynomial of
the form

∑
P∈P αPP (X) in which case we assume that it is also evaluated with

x. Now, each time a polynomial R1 is added to L, the list is searched for a poly-
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nomial R2 satisfying Equation 4. If such an element is found, the corresponding
encoding is returned, otherwise a fresh, unused encoding is sampled.

There is only a minor technical difference between the two oracles: O0 imme-
diately evaluates polynomials and calculates with F-elements, whereas O1 does
the calculation with polynomials and delays the evaluation to the point when
encodings are determined. However, this is equivalent and so A has the same
success probability in the real and the transition game.

Game 3 is the simulation game, as shown in Figure 3c, in which the compu-
tation is independent of the bit b. More precisely, we make the computation in-
dependent of all (unopened) secrets and messages. Thus, A has no better chance
than guessing b. The simulation game is equivalent to the transition game unless
a simulation failure occurs yielding polynomials which can be used to build an
IND-CPA adversary.

For the simulation game, we slightly modify O1 resulting in a oracle O2:

– During Initialization & Challenge, O2 assigns two elements R1, R2 ∈ L the
same encoding if they are equal as polynomials over F, i.e., (R1 −R2) ≡ 0.

– In the Opening Phase the oracle receives the choices {yi, zi,m′0,i}i∈I revealed
to A and assigns the same encoding if (R1 −R2)(yi, zi,m

′
0,i)i∈I ≡ 0.

The reason why we need to simulate differently in the Opening Phase is that the
adversary obtains additional information about part of the secrets. For instance,
he now can compute the encryption of m′0,i, for i ∈ I, on his own. So we need to
make sure that he receives the same encodings for the ciphertext that the oracle
has assigned in the previous phase.

Now, the crucial observation is that in the simulation game given [[m′b,1]], . . . ,
[[m′b,n]] the only source of information about b would be encodings given to A in
previous steps that depend on m′0,i or m′1,i for i 6∈ I since m′0,i = m′1,i for i ∈ I.
However, encodings representing (combinations of) encryptions are independent
of m′0,i (and m′1,i) for i 6∈ I, since we never evaluate the variables Mi. Hence,

the probability that outA equals b in the simulation game is 1
2 .

Clearly, due to the modification of O1 we changed the mapping between
encodings and group elements. This might lead to a different behavior of generic
algorithms when interacting with O2 in comparison to O1. More precisely, a
simulation failure occurs during the

– Initialization & Challenge Phase (bad1) if there exists R1, R2 ∈ L such that

(R1 −R2) 6≡ 0 but ((R1 −R2)(m′0))(x,y1, . . . ,yn, z) ≡ 0 (5)

– Opening Phase (bad2) if there exists R1, R2 ∈ L such that

((R1 −R2)(m′0,i)i∈I)(zi,yi)i∈I 6≡ 0
but

((R1 −R2)(m′0))(x,y1, . . . ,yn, z) ≡ 0
(6)

Note that if failure event bad1 did not happen (during Initialization & Chal-
lenge) then bad2 may only be caused by a new polynomial computed during the
Opening Phase. So the Initialization & Challenge Phases of the simulation and
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transition game are equivalent unless bad1 happens and the Opening Phases are
equivalent unless bad2 occurs. Hence, A’s probability in winning the IND-SO-
CPA game is upper bounded by 1

2 + Pr[bad1 ∨ bad2]. In other words, A causes a

simulation failure with probability at least Advind-so-cpaPKE,A .
It remains to show that we can extract polynomials as required for Theorem 3

in case bad1 or bad2 occurs. The extraction algorithm B plays the IND-SO-CPA
simulation game with A and takes over the role of the simulation oracle O2. B
checks if bad1 happens during the Initialization & Challenge Phase. If this is the
case, it considers the corresponding polynomials which have caused the failure.
Otherwise, it executes the Opening Phase and checks whether bad2 occurs.

Let us now assume that bad1 happens for some ∆ := R1 −R2 and m′0,1, . . . ,
m′0,n as well as x,y1, . . . ,yn, z chosen uniformly at random by B.4 Note that
since generic algorithms are only able to add polynomials whose encodings they
receive as input, ∆ is of the form

∆ =
∑
P∈P

αPP (X) +

n∑
j=1

∑
E∈E

βj,EE(X,Yj , Zj ,Mj) (7)

and m′0,1, . . . ,m
′
0,n are of the form m′0,i =

∑
P∈P αPP (X). The degree of ∆

is upper bounded by d = maxS∈P∪E(deg(S)) and the degree of m′0,i is upper
bounded by d′ = maxS∈P(deg(S)).

In case bad2 occurs, we consider the partially evaluated polynomial ∆ :=
((R1−R2)((m′0,i)i∈I))((zi,yi)i∈I) and the polynomials m′0,1, . . . ,m

′
0,n as before.

Due to the form of the monomials of E, evaluation of E with m′0,i, zi, and yi
results in polynomials of the form

∑
P∈P αPP (X). Hence, also ∆ can be viewed

as a polynomial of the form in Equation 7, where the βi,E coefficients are zero
for i ∈ I. The upper bounds d and d′ specified above also hold in this case.

To summarize, with probability at least Pr[bad1∨bad2], B can extract a non-
zero polynomial ∆ as in Equation 7 and polynomials m′0,1, . . . ,m

′
0,n. ∆ becomes

zero when evaluated with m′0,1, . . . ,m
′
0,n and uniformly and independently cho-

sen values x,yj , zj , where j ∈ {1, . . . , n} for the case bad1 and j 6∈ I for the case
bad2. Applying Lemma 2 stated below yields that ∆ already becomes zero when
evaluated with the messages with probability at least Pr[bad1 ∨ bad2] − dd′

p . In
this case B has found polynomials as required in Theorem 3.

Lemma 2. Let d, d′ ∈ N0, k, i ∈ N with 1 ≤ i ≤ k. Let dist be a distribution
over (i+1)-tuples (P, x1, . . . , xi) of polynomials from F[X1, . . . , Xk] where P 6= 0,
deg(P ) ≤ d, and deg(xj) ≤ d′ for 1 ≤ j ≤ i. Then it holds that

Pr
(P,x1,...,xi)←dist

[P (X1 = x1, . . . , Xi = xi) = 0] ≥

Pr
(P,x1,...,xi)←dist
xi+1,...,xk←F

[(P (X1 = x1, . . . , Xi = xi))(Xi+1 = xi+1, . . . , Xk = xk) = 0]− dd′

p

4 Note that the hash values zj are indeed uniformly chosen since the input to the
Random Oracle is guaranteed to be different for the n encryptions made: For 1 ≤ j ≤
n, the variable Mj or Yj,i ∈ Yj appear in at least one of the encryption polynomials
ensuring that the corresponding encoding, input to the hash function, is fresh.
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Proof.

Pr[(P (x1, . . . , xi))(xi+1, . . . , xk) = 0]
= Pr[(P (x1, . . . , xi))(xi+1, . . . , xk) = 0 ∧ P (x1, . . . , xi) = 0]
+ Pr[(P (x1, . . . , xi))(xi+1, . . . , xk) = 0 ∧ P (x1, . . . , xi) 6= 0]
≤ Pr[P (x1, . . . , xi) = 0]
+ Pr[(P (x1, . . . , xi))(xi+1, . . . , xk) = 0 | P (x1, . . . , xi) 6= 0]

≤ Pr[P (x1, . . . , xi) = 0] + dd′

p

The last inequality follows from the Schwartz-Zippel Lemma.

Let us briefly estimate the runtime of B. The algorithm runs A once, samp
twice, plays the role of the IND-SO-CPA challenger, the generic oracle O2, and
checks for a simulation failure. We will count the number of operations on poly-
nomials and group elements: B maintains the list L of polynomials on behalf of
O2. This requires at most O(t+ t′) additions of polynomials. Additionally, to de-
termine encodings, B needs to compute at most O(|L|2) = O((t+t′+|P|+|E|n)2)
difference polynomials ∆. Note that the monomials of all these polynomials come
from a set of at most at most r(|P|+ |E|n) different monomials. Thus, one poly-
nomial addition results in at most r(|P|+ |E|n) operations over F.

To check for simulation failures, B needs to evaluate the difference polynomi-
als ∆. To do so, B maintains a second list L′ ⊂ F just like the real O0 would do
and computes the corresponding differences. Evaluating P and E when added to
L′ requires O(log(p)(|X|maxP∈E(|P |)|P|+ |Y|maxE∈E(|E|)|E|n) F-operations
and computing the differences O(|L′|2) = O((t+ t′ + |P|+ |E|n)2) .

To check for a failure during the Opening Phase, B evaluates all polynomials
in L with yi, zi,m

′
0,i, for i ∈ I, when the Opening Phase starts. This requires

O(log(p)|Y|nmaxE∈Q(|E|)|E|) F-operations. These evaluations do not increase
the size of the set of monomials polynomials in L may consist of.

Note that the success probability of the IND-CPA adversary B from Theo-
rem 3 is non-negligible if the degrees of the public key and encryption polyno-
mials of PKE are small, i.e., polynomial in log(p). Moreover, B is efficient if the
representation of these polynomials is polynomial in log(p) (always the case for
an efficient encryption scheme) as well as the number n of involved message poly-
nomials Ri. The same statement holds for the polynomial extraction algorithm
from Theorem 4, where we additionally need to assume that the runtime of the
IND-SO-CPA adversary is polynomial and its advantage is non-negligible.
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A Some Remarks on Definition 3

We would like to note that the restrictions on the form and degrees of polyno-
mials made in Definition 3 are not of artificial nature and just derived from the
proofs but need to be satisfied by a meaningful encryption scheme. On the other
hand, we would like to stress that they are not sufficient for such a scheme as,
e.g., no conditions on the nature of the decryption algorithm are made.

In particular, the encryption polynomials E may not be “arbitrary” poly-
nomials in X since during encryption we are usually only given P (x) and do
not know how to evaluate encryption polynomials not being “combinations” of
public key polynomials. Furthermore, any public key polynomial may only ap-
pear linearly in any encryption polynomial. Otherwise, in absence of a pairing
we do not know how to compute, e.g., P 2 efficiently. In fact, in the case of a
single group this translates to solving the Square-DH problem. For this reason,
also any monomial of an encryption polynomial might only contain at most one
public key polynomial. Moreover, assume an encryption polynomial E would
include a monomial of the form αP e1Ze2Me3

∏v2
i=1 Y

di
i with e1 + e3 > 1. This

would mean that we have to solve a variant of the DH problem to encrypt a
message unless we know the DL of the message.

Finally, the condition on the input of the hash function ensures that the
input is not constant for different m′. The use of a hash function for constant
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input would be meaningless. Note that for an encryption scheme without hash
function like ElGamal e2 is simply set to zero in all encryption polynomials.

B A Separating CS-type Encryption Scheme

Interestingly, we again obtain a CS-type scheme if we instantiate (a slight varia-
tion of) the separating scheme from Section 3.1 with a CS-type scheme according
to Definition 3. Some details can be found in the following.

– Compared to the original definition of the separating scheme, the message
space of a CS-type scheme is a group G of order p and not F. But as already
mentioned, this is no real issue. What we can do in our particular case here
is the following: We only need a means such as the degree-≤ k polynomial F
before that allows to generate and reconstruct the data points (i,mi)i∈[3k],

where mi = gm
′
i ∈ G. This can easily be done “using F in the exponent”.

Especially, Lagrange Interpolation works in this case. To evaluate a degree-
≤ k interpolation polynomial F defined by k + 1 data points (i,mi) in the

exponent with some ` ∈ [3k], one would compute
∏
im

Qi(`)
i , where Qi(x) =∏

t 6=i
x−t
i−t is a Lagrange basis polynomial. To determine if there exists a

unique F in Step 5 of SOA(sk , Z), one could check if there exists some
j ∈ [3k] \ I such that ∏

i∈I∪{j}

m
Qi(`)
i = m`

for k values ` ∈ [3k] \ (I ∪ {j}). If this is the case, it suffices to return mj .

– The secret key of the CS-type scheme needs to be extended by a key K for
the PRF. Note that this is not forbidden by Definition 3. Moreover, due to
our slight modification above, we do not need an additional prime p in the
public key of the CS-type scheme.

– In order to mark a ciphertext as regular, Enc′ simply adds a fixed group
element to each regular CS-type ciphertext. For instance, this could translate
to adding polynomials P6 = 0 and E5 = P6 to the specification of Cramer-
Shoup as CS-type encryption scheme shown in Section 4.1. The other types
of inputs we allow to Dec′ can be marked similarly using other fixed elements.

– Note that apart from these markers, we do not need to care about how the
decryption function looks like since Definition 3 only specifies the form of
public keys and (regular) ciphertexts.

C Our CCA-Separation Works in the GGM

In this section, we briefly argue why our CCA-separation also holds in the GGM,
i.e., there exists a IND-CCA secure generic group encryption scheme that can
be efficiently broken by a generic group IND-SO-CCA adversary.

First, it is easy to see that our separating scheme works over any (prime
order) group G when it is instantiated with a generic group encryption scheme
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like Cramer-Shoup: The original IND-CCA secure scheme (CS in our case) is
treated as a black box and also the modifications applied work for any group.
In particular, in Section B we show how the message space can be switched
to G and how SOA(sk , Z) can be implemented in this case. It is clear, that
the resulting separating scheme is IND-CCA secure despite this switch of the
message space. To summarize, it perfectly makes sense and is meaningful to
consider the IND-SO-CCA game for our separating scheme in the GGM.

Second, the IND-SO-CCA adversary A and its sampling algorithm only apply
generic group operations: The message distribution A outputs will be

D =
{

(gF (1), . . . , gF (3k))
∣∣F ∈ F[X] uniformly chosen degree-≤ k polynomial

}
,

where 〈g〉 = G, and can be implemented by a generic group algorithm. Moreover,
the polynomial interpolation A’s resampling algorithm uses can be realized over
generic groups as shown in Section B. As also shown there, the interpolation
polynomial returned by the decryption oracle on a soa-query can be evaluated
using only multiplications with given group elements.

D Variations of our CCA-Separation

An observation. We remark that the attack from Theorem 1 actually only
uses two decryption queries. Moreover, one of these queries is a query (sel, Z)
to a (pseudo)random function. Our proof would work also in the random oracle
model, if we defined I = RO((c′i)i∈[3k]) (instead of I = PRFK((c′i)i∈[3k])). With
this change, we would get the same separation in the random oracle model, but
with a weak IND-SO-CCA attack that requires only one decryption query.

Bounded CCA security. Cramer et al. [10] define a bounded notion (called
IND-q-CCA security) of IND-CCA security, in which an adversary only gets an a-
priori bounded number q of decryption queries. If we define weak IND-SO-q-CCA
security in the obvious way, our observation above immediately yields a separa-
tion between IND-2-CCA and weak IND-SO-2-CCA security. Furthermore, we
get a separation between IND-1-CCA and weak IND-SO-1-CCA security in the
random oracle model.

Non-malleability. IND-1-CCA security is known to be tightly related to non-
malleability [11, 3]. Concretely, Bellare and Sahai [6] show that non-malleability
under chosen-plaintext attacks (NM-CPA) is equivalent to a mild form of IND-
CCA security, which in turn implies IND-1-CCA security. Since our results yield
a separation between IND-1-CCA and IND-SO-1-CCA security in the random
oracle model, we can expect a similar separation between between NM-CPA and
NM-SO-CPA security. Here, NM-SO-CPA stands for “non-malleability under
chosen-plaintext selective opening attacks,” a notion which has not yet been
formally defined. (We leave such a definition for future work; however, if one
opts to simply equip an NM-CPA adversary with an “opening oracle” for NM-
SO-CPA, the random oracle variation of our result seems to directly apply.)
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