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Abstract. One of the fundamental research themes in cryptography is to clarify
what the minimal assumptions to realize various kinds of cryptographic primi-
tives are, and up to now, a number of relationships among primitives have been
investigated and established. Among others, it has been suggested (and some-
times explicitly claimed) that a family of one-way trapdoor permutations (TDP)

is sufficient for constructing almost all the basic primitives/protocols in both
“public-key” and “private-key” cryptography. In this paper, however, we show
strong evidence that this is not the case for the constructions of a one-way per-
mutation (OWP), one of the most fundamental primitives in private cryptography.
Specifically, we show that there is no black-box construction of a OWP from a
TDP, even if the TDP igeally securewhere, roughly speaking, ideal security of

a TDP corresponds to security satisfied by random permutations and thus captures
major security notions of TDPs such as one-wayness, claw-freeness, security un-
der correlated inputs, etc. Our negative result might at first sound unexpected
because both OWP and (ideally secure) TDP are primitives that implement a
“permutation” that is “one-way”. However, our result exploits the fact that a TDP

is a “secret-coin” family of permutations whose permutations become available
only after some sort of key generation is performed, while a OWP is a publicly
computable function which does not have such key generation process.

Keywords: black-box separation, trapdoor permutation, one-way permutation,
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1 Introduction

1.1 Background and Motivation

One of the fundamental research themes in cryptography is to clarify what the minimal
assumptions to realize various kinds of cryptographic primitives are, and up to now,
a number of relationships among primitives have been investigated and established.
Clarifying these relationships gives us a lot of insights for how to construct and/or
prove the security of cryptographic primitives, enables us to understand the considered
primitives more deeply, and leads to systematizing the research area in cryptography.
In this paper, we focus on two central cryptographic primitives, a family of trap-
door permutations (TDP) and a one-way permutation (OWP). Among others, it has
been suggested, and sometimes explicitly claimed (see, e.g. [9]), that a TDP is suffi-
cient for constructing (almost) all basic primitives/protocols in both “public-key” and



“private-key” cryptography. In particular, it has been shown that a TDP can be used for
constructing a family of one-way trapdoor functions, public-key encryption schemes,
key agreement protocols, private information retrieval, oblivious transfer, etc. More-
over, it has also been shown that a OWP is sufficient to construct most of private-
key cryptographic primitives/protocols including symmetric key encryption schemes,
message authentication codes, digital signature schemes [37], pseudorandom genera-
tors/functions/permutations [7,47, 16, 32], bit commitment schemes [35], etc. (Some
of them later turned out to be possible to construct from any one-way function, e.g. a
pseudorandom generator from any one-way function [22].) These primitives can also
be constructed from a TDP as well.

Somewhat surprisingly, however, the following simple but fundamental question
has not been answered ye€&n we construct a OWP from a TDPPhe main motiva-
tion of this paper is to clarify the answer to this question, in order to fully establish the
relationships among these very basic and important primitives. One might think that the
answer is trivially yes (and that this is obvious), because a TDP is trivially a family of
one-way permutations if we keep trapdoors secret. However, we show strong evidence
that the answer to the above questiomdsby showing that there is niolack-box con-
structionof a OWP from a TDP. Roughly, a black-box construction of a target primitive
P from a building block primitive@ requires that the construction &f treats an in-
stance of) as a black-box (i.e. treats as an oracle) and furthermore that the reduction
algorithm for the security proof treats an adversary that breaks the security of the con-
struction of P (and the instance @) as a black-box. (The impossibility of the opposite
direction, i.e. constructing a TDP from a OWP in a black-box way, is due to [25].)

Actually, to tackle the above question, we have to be careful about the difference
between a “single” one-way permutation and a “family” of one-way permutations (one-
way permutation family, OWPP).Our black-box separation result mentioned above
separates a “single” one-way permutation from a TDP. Furthermore, for OWPFs, we
have to be also careful about the difference betweeptbéc-coincase and theecret-
coincase. Informally, a OWPF is said to pablic-coinif the randomness for choosing a
permutation from the family can be revealed together with the description of the permu-
tation. On the other hand, a OWPF is said t@beret-coirif the security (one-wayness)
is not guaranteed if the randomness is revealed. (The distinction between public-coin
primitives and secret-coin primitives is studied by Hsiao and Reyzin [24] for the case
of collision-resistant hash function families.) With these categorizations, it is straight-
forward to see that any one-way TDP can always be seen as a secret-coin OWPF by
regarding an evaluation-key (public-key) output from a key generation algorithm of the
TDP as an index specifying a permutation in the family. However, the same OWPF
derived from a TDP isot secure as a public-coin OWPF, because the randomness
for choosing the evaluation-key (public-key) cannot be revealed: If revealed, then any-
one can compute the corresponding trapdoor, which makes the permutation invertible.
Furthermore, it is also straightforward to see that a single OWP is a special type of
a public-coin OWPF (by implementing the permutations in the family with the given

Y 1n order not to mix up with the difference between single function and function family of
one-way permutations, when we just write “OWP”, we always mean it is a “single” one-way
permutation (i.e. not a family), and when we mean a family of OWPs, we write “BWP



single OWP). Here, what is not at all trivial is whether we can construct a public-coin
OWPFs from a TDP in general. We also partially answer to this question in the negative.

1.2 Our Contribution

In this paper, we show that there is no black-box construction of a OWP from a TDP,
even if the TDP iddeally securg11, 29], where, roughly speaking, ideal security of

a TDP corresponds to the security satisfied by random permutations (see Section 2.3
for the formal definition), and thus captures major security notions for a TDP such as
one-wayness, claw-freeness [19], security under correlated inputs [42], etc. Therefore,
our impossibility result rules out the black-box constructions of a OWP from TDP sat-
isfying these security notions, and is strictly stronger than the result by Chang et al.
[9] who showed the black-box separation of a OWP from a family of injective trap-
door functions. Our impossibility result might at first sound unexpected because both
OWP and (one-way) TDP are primitives that implement a “permutation” that is “one-
way”. However, our result is established by exploiting the essential difference between
a family of functions and a single function, that a TDP is a “secret-coin” family of per-
mutations whose permutations become available only after some sort of key generation
is performed, while a OWP is a publicly computable function which does not have such
key generation process. (We explain the overview of the proof in Section 1.3.)

The type of black-box constructions that our main result rules out is calieltya
black-box construction in the taxonomy of Reingold et al. [41]. (The formal definition
for a fully-black-box construction of a OWP from an ideal TDP is given in Section 3.)

In fact, our result can be easily strengthened to rule a#raiblack-box construction,
which is a less restrictive type than fully-black-box one, using the technique called “em-
bedding” by Reingold et al. [41]. (We discuss this extension in Section 4.) Although the
absence of (fully- and semi-)black-box constructions of a OWP from an ideal TDP does
not necessarily mean that constructing a OWP from an ideal TDP is generally impossi-
ble, it should be emphasized that most of the known primitive-to-primitive constructions
are fully-black-box, and thus the impossibility of black-box constructions is considered
as a very strong evidence that “natural” and “efficient” constructions are impossible.

Our result also sheds light on the difference between “public-coin” and “secret-
coin” OWPFs (their formal definitions can be found in Section 2.2). Whether a primitive
remains secure in the sense of public-coin is usually related to whether we need some
kind of trusted setup in a cryptographic protocol such as multi-party computation. Hsiao
and Reyzin [24] conjectured that there is no (fully-)black-box construction of a public-
coin OWPF from a secret-coin one. We patrtially answer to this conjecture: Specifically,
we show that there is no black-box construction of a public-coin OWPF that satisfies
a special property callecanonical domain samplinfthe formal definition is given in
Section 2.2) from an ideal TDP (and especially from a secret-coin OWPF). This result
is obtained as a corollary of our main result above by combining it with the result
by Goldreich et al. [17] who showed that a OWP can be constructed, in a black-box
manner, from a public-coin OWPF with the canonical domain sampling property. (See
Section 4 for more details.) We note that the techniques we use to prove the black-box
separation of a public-coin OWPF from a secret-coin one (and the black-box separation



of a OWP from an ideal TDP) are different from those used by Hsiao and Reyzin in
[24] (in fact, we use a part of the results in [24]).

Why Studying OWP vs. TDPHlistorically, OWP and (public-coin/secret-coin) OWPF
have much more often been treated as assumptions rather than as target primitives that
are constructed from other primitives, and thus one may wonder why we should care
the (im)possibility of constructing a OWP from TDP (or from other primitives).

Our opinion is that firstly, OWP, OWPF, and TDP are very basic primitives, and thus
clarifying any of their properties as well as relations is important, and we believe that
our results contribute to correctly understanding and firmly establishing relationships
among these basic cryptographic primitives. Specifically, our results suggest that there
is no simple hierarchy of black-box constructions even among very basic cryptographic
primitives. Our results also clarify explicitly that there is a real difference among single
function, public-coin and secret-coin families of functions in the case of permutations,
which should be contrasted with the case of “functions” because the existence of a
single one-way function is equivalent to the existence of a family of one-way functions
(regardless of whether the family is secret-coin or public-coin). Furthermore, our results
also show that it is not always the case that “public-key”-type primitives are stronger
than “non-public-key”-type primitives (at least in the case of permutations). This should
be again contrasted with the case of “functions”, where there is a (trivial) black-box con-
struction of a one-way function from basically all known “public-key”-type primitives
(because key generation algorithms typically have to be a one-way function), but there
does not exist a black-box construction for the opposite direction [25].

Secondly, there might actually be a cryptographic primitive that can be constructed
from a OWP, but not from a TDP. One of such candidates may be a public-coin point
obfuscation (an obfuscator for a point function) [1, 45]. Wee [45] showed that a point
obfuscator can be constructed from a (very strong) OWP, while his point obfuscator
does not seem to be proved secure if we replace the OWP in his construction with a
permutation from a TDP together with its public-key (at least the “public-coin” property
will be lost unless we assume some additional property for the TDP). We believe that
there are much more (natural) examples of this sort, and that it is interesting to seek
for such examples. (In particular, the difference between public-coin and secret-coin
primitives will stand out more in the context of interactive protocols.)

1.3 Technical Overview

The main result of our paper builds on the results and techniques from several previous
work [43, 26, 15, 24,9, 30, 23], and our technical contribution lies in coming up with
an appropriate combination of these results/techniques for achieving our purpose of
separating OWP from (ideal) TDP.

We will use the “two oracle separation” paradigm [15, 24] (which is an extension
of the one oracle separation [25, 41]) to show that there is no fully-black-box construc-
tion of a OWP from an ideal TDP. That is, we will use two oracles (more precisely, a
random instance picked from all possible instances of oracles): the first oracle models
a “building block” primitive (TDP in our case) and the second oracle is the “break-
ing” oracle that is useful for breaking all candidates of a target primitive (OWP in our



case) but useless for breaking the security of the building block oracle. As the “building
block” oracle, we use a random instance GflaP oracle7 that consists of suboracles

(G, &, D) that essentially constitutes a (random) TDP, nantghg the key generation,

£ is the evaluation of permutations, afis the inversion of permutations. As the
“breaking” oracle, we use theSPACE oracle that has often been used in the literature
of black-box separations, e.g. [25, 15, 9], mainly in order to guarantee that any compu-
tational hardness comes only from the building block oracle. If we fiiadlandomly,
then7 can be shown to be “ideally secure” even against computationally unbounded
adversary that makes only polynomially many querie$ t&ince such adversary can
simulate thePSPACE oracle by itself, it follows that an “ideally secure” TDP exists
relative to7 andPSPACE.

The difficult part of the proof is to show that any permutat®h is inverted, and
thus a OWP does not exist relativefcandPSPACE. Here, we note that the evaluation-
key space off cannot bedensd?20] (i.e. an inverse-polynomial fraction of strings are
in the range off), because in this case, an evaluation-&eyf permutations irf could
be picked without using, and thus implementing a permutatiBf by the permuta-
tion (in £) made available by this picked: might lead to a OWP (even in the presence
of the PSPACE oracle). To prevent this, we make the rangegjasparse, and makgé
useless unless it is invoked with an honestly generated evaluation-key that is generated
by making a query t@. This guarantees that when calculating the permuta®ion
permutations ir€ become available only after making a queryG@nd obtaining an
evaluation-keyek, together with the corresponding trapdoodf. Put differently, from
the viewpoint of an entity computing the permutati®h, every permutation iif as-
sociated withek that becomes available during the computatiof® 6fcan be seen as
aninvertible permutationbecause the entity must have knotdrcorresponding tek.

This observation leads to the idea of simulating the TDP oracie P7 with a block
cipheroracle, which is a family of invertible permutations. More specifically, we intro-
duce a new oracl®, which we callblock cipheroracle that models an ideally secure
block cipher, and show that for any permutati®h, there is another permutati(ﬁf‘

such that inverting? is as hard as inverting” . The idea and the technique of sim-
ulating a TDP oracle/” (used in a constructed primitive) with a block cipher oracle
is previously used by Lindell and Zarosim [30] who showed the black-box separation
of an adaptively secure oblivious transfer protocol from a TDP. Furthermore, by using
the result by Holenstein et al. [23] who showed that a random invertible permutation is
simulatable by the fourteen-round Feistel-network construction of a permutation [32]
in which each round function is an independent random funcétime, can simulate

the block cipher oracl® in the permutatiorﬁB with another oracl&R (which we call
round function oraclgthat consists only of random functions (not permutauons) More
specifically, we show that for any permutatuinlﬁg there is another permutaud??z

such that mvertngR is as hard as mvertm@B. Finally, using the previous results

by Rudich [43], Kahn et al. [26], and Chang et al. [9] on the black-box separations of

2 More precisely, [23] shows that the fourteen-round Feistel-networkdiferentialble [34]
from an (invertible) random permutation. The statement that a constant-round Feistel-network
was sufficient was originally suggested by Coron et al. [10]. However, it was pointed out in
[23] that the original proof in [10] for six rounds had a gap and was not completed.



a OWP from random (injective) functions, we can show that there is a good inverter
(which uses thé>SPACE oracle) for any permutatioR” .3 Then, this inverter can be
used to invert not onlf?”® but alsoP” , and thus any permutatid®’ is inverted using

the PSPACE oracle.

It is already known that a OWP is black-box separated from a one-way function
(OWF) [43, 26] and that there is a black-box construction of a pseudorandom permu-
tation, which is a standard security notion of a block cipher, from a OWF [22, 16, 32].
Therefore, one might wonder that if we give up the “ideal security” of a TDP and just
consider one-way TDPs, then we may be able to conclude that there is no black-box
construction of a OWP from a one-way TDP, as soon as we reduce a TDP-based permu-
tation P7 to a block-cipher-based permutati@ﬁ . However, that a OWP is separated
from a OWF in a black-box manner does not immediately mean that our block-cipher-
based permutatioﬁB cannot be proved one-way, because our block-cipher ofacle
contains random permutations which may HAéFpto be one-way (with some clever use
of permutations ir3). This is the main reason why we further reduce the block-cipher-
based permutatioﬁB to a random function-based permutatfbﬁ by using the result
of [23], so that random permutations in the oraBlelo not help achieving a OWP any
better than random “functions” in the oradRedo.

1.4 Related Work

Up to now, a number of black-box separations among various kinds of primitives have
been established. For an excellent survey of the literature and the techniques of black-
box separations, we refer the reader to [48]. Here, we review black-box separations
related to OWPs and TDPs.

Regarding the black-box separations of a OWP from other primitives, it is known
that it is separated from one-way functions [43, 26], from injective trapdoor functions
and a private information retrieval protocols [9], and from length-increasing injective
one-way functions (even if they are jusbit-increasing) [33].

On the other hand, recently, several black-box separation results have shown the
limitations of a (one-way) TDP as a base primitive for constructing and/or proving the
security of several “highly functional” cryptographic primitives or basic primitives with
special functional/security properties. Those include the impossibility of constructing
identity-based encryption [8], a wide class of predicate encryption [27], lossy trap-
door functions [42], trapdoor functions secure under correlated inputs [44], encryption
schemes secure under key-dependent inputs [21], adaptively secure oblivious transfer
protocols [30], non-interactive or perfectly binding commitment schemes secure under
selective-opening attacks [2], verifiable random functions [12], a natural class of three-
move blind signature schemes [13], succinct non-interactive argument systems [14],
constant-round sequentially witness-hiding special-sound protocols for unique witness

% We note that a random function (which is length preserving) is indistinguishable from a ran-
dom permutation for any (even computationally unbounded) algorithm that can make only
polynomially many queries to the random function (even in the presence &SRaCE or-
acle), but this fact does not mean that we can construct a OWP from a random function in a
black-box way (in fact, it is not possible [43, 26, 9, 33]).



relations [39], and many of the cryptographic primitives that admit the so-called sim-
ulatable attacks [46]. We note that in fact, the results of [21, 2, 13, 14, 39, 46] rule out
the possibility of constructions (and/or, security proofs) of the target primitives based
not only on one-way TDP but also on much broader class of primitives or assumptions,
such as all falsifiable assumptions [36].

Black-box separations for a particular construction that uses a TDP as a building
block are also known. The unforgeability of the FDH signature scheme [4] cannot be
based on an ideal TDP, if the TDP is treated as a black-box [11]. [6] shows a similar
result for the PSS signature scheme, and [29] shows the impossibility of basing chosen
ciphertext security of padding-based encryption schemes which include many known
TDP-based encryption schemes such as the OAEP encryption scheme [3], on the (ideal)
security of the building block TDP.

1.5 Paper Organization

The rest of this paper is organized as follows. In Section 2 we review some basic defi-
nitions and terminology. In Section 3, we show our main result on the black-box sepa-
ration of a OWP from an ideal TDP, and we discuss further results, and the possibility
of more general separation results in Section 4.

2 Preliminaries
In this section, we review the basic notation and the definitions of primitives.

Basic Notation. N denotes the set of natural numbers. Roe N, we define[n] =
{1,...,n}. If z andy are strings, then|%|” denotes the bit-length of, and (z||y)”
denotes a concatenation ofandy. “z < y” denotes an assignment gfto x. If S
is a set then[!S|” denotes its size, andi+—5 S” denotes that: is chosen uniformly
at random fromS. “PPTA’ denotesprobabilistic polynomial time algorithmf A is a
probabilistic algorithm, thenz' «— A(z,y, ...)" means thatd takesz, y, ... as input
and outputs, and %z < A(x,y,...;r)" means that4d takesz, y, ... as input, uses
as an internal randomness, and outputSor an oracle algorithml®, we say that4d©
has query complexity if A makes queries to the oradi® at mostq times. ‘Perm,,”
denotes the set of all permutations oyer1}™. If f is a function andD is its domain,
then we defindkange(f) = {f(x)|z € D}.

A function f : N — [0, 1] is said to benegligibleif f(k) < 1/p(k) for all positive
polynomialsp(k) and all sufficiently largé: € N, and a functiory : N — [0, 1] is said
to beoverwhelmingf the function f (k) = 1 — g(k) is negligible.

2.1 One-Way Permutations

Typically, security of a OWP is defined so that the security paranieisrits input

length. However, since later we consider constructions of a OWP from another primi-
tive, it will be convenient to consider the security parameter and the input length of the
constructed permutation separately, so that the one-wayness advantage of an adversary



and the input length of the constructed permutation are a function of the security pa-
rameter of the building block. Moreover, it is also convenient to identify a (one-way)
permutation with a PPTA that computes it. Therefore, we take these approaches for the
definition of a OWP.

Let¢ = ¢(k) be a positive polynomial and be a PPTA such th&t is a permutation
over{0, 1}*. We say that a PPTR is aone-way permutation (OWP) for lengttif the
following advantage functioAdv%"fiﬁé(k) is negligible for any PPTA adversay (we
assume thak is also givenl” but omit to write it for simplicity):

Advp® 4 (k) = Pr[z* = {0, 1y < P(a*);a’ < AR, y") 2’ = 7).

2.2 One-Way Permutation Families

A family of permutations (permutation family9F consists of the following three PP-
TAs (Gen, Eval, Samp): Gen is the probabilistic evaluation-key generation algorithm
which takesl* as input and outputs an evaluation-key. (An evaluation-key is also
called an index.Eval is the deterministic evaluation algorithm which takésand an
elementr € D, as input, and outputs € D.,, whereD,y, is the domain oEval(ek, )
that is determined byk. Samp is the probabilistic sampling algorithm which takes
as input, and outputs a (random) element D.;. As a correctness requirement, we
require that for alk € N and allek < Gen(1¥), (i) Samp(ek) is a uniform distribution
over D.y, and (ii) Eval(ek, -) is a permutation ovebD.y.

We say thaPF = (Gen, Eval, Samp) is aone-way permutation family (OWPK)
the following advantage functiohdvp 4 (k) is negligible for any PPTA adversan:

Advg"’;;(k) = Prfek <5 Gen(1%); 2* < Samp(ek); y* < Eval(ek, z*);
z' g Alek,y*) : 2’ = 2*].

If a permutation familyPF remains one-way even whehis given the randomness
7 that is used to generat& = Gen(1%;7), then we callPF a public-coirf OWPF, and
in order to distinguish it from an ordinary one, we call an ordinary OWBEG@iet-coin
OWPF.

Canonical Domain Sampling PropertyWe say that a OWPIPF has thecanonical
domain samplingproperty [17] if the following two conditions are satisfied:

1. (Recognizable domain)There exists a PPTA which, on inpet andz, tells if
x € D, or not.

2. (Dense domain)There exist a polynomial time computable functiba: ¢(k) and
a positive polynomiap = p(k) so thatD,;, C {0, 1} and|D,.| > 2¢/p.

Goldreich et al. [17] showed that a OWP can be constructed in a black-box man-
ner from a public-coin OWPF with the above property, and we briefly review their
construction. Given a public-coin OWREen, Eval, Samp) with the canonical domain

4 Goldreich et al. [17] called this propertatigmented one-waynesdere we use the name due
to Hsiao and Reyzin [24].



sampling property, wher€en(1*) uses a\ = \(k)-bit randomness, we construct a
single permutatiorP for length A + ¢ that works as follows: On inpur,||z) such

that |r,| = X and|z| = ¢, P first calculatesek «+ Gen(1*;r,), and then outputs
(rgl|Eval(ek, z)) if z € Dy or (14]|2) otherwise. Thid is indeed a permutation, and

can be shown to be weakly one-way. Then, this weak one-wayness can be amplified by
a standard technique (e.g. [47]) to obtain a OWP (with ordinary one-wayness).

2.3 Trapdoor Permutations

A family of trapdoor permutations (TDP) is a special class of secret-coin permuta-
tion family (Gen, Eval, Samp) with the following additional properties: (1) The algo-
rithm Gen is a deterministic polynomial-time algorithm that takésand a trapdoor

td € {0, 1}* as input, and outputs a corresponding evaluationekey(This process is
denoted by &k < Gen(1%,td)".) (2) There is a deterministimversionalgorithmInv
which takestd € {0,1}* and an elemenj € D.;, as input (wherek = Gen(1%,td)),

and outputs: € D, such thatval(ek, z) = y.

Hard Games and Ideal Securityn this paper, we consider “ideal security” of a TDP,
following [11, 29]. Roughly, ideal security of a TDP corresponds to security satisfied
by random permutations.

Let G be a PPTA (called a challenger) that can exchange messages with another al-
gorithm (called an adversary) by a shared communication tape. We say thdefines
a game regarding random permutations if b6thnd.A have access tbindependent
random permutations, ..., m, over {0, 1}*, wheret = t(k) is a polynomial deter-
mined byG, G interacts with.4, and finally outputs a decision hit This process is

denoted by & < Expt%}ﬁ#{{ff(ﬁ?ﬂt(.) (k).” (Here, “RP” stands for “random permuta-
tions.”) We say that the adversadywins the gamé if d = 1.

Informally, an oracle PPTAG defines aj-hard game regarding random permuta-
tions, whered < ¢ < 1, if no oracle algorithmA4 can win the games regarding
random permutations with probability significantly better tafypically, 5 = 0 for
“search games” (e.g. one-wayness experiment)-erl/2 for “distinguishing games”

(e.g. security experiment for a pseudorandom generator). We define the advantage of an
adversaryA4 in a gameG as follows:

w1 (), e (e)
Advizp 4(k) = Prlmi, ..., m <& Permp;d <5 EXptgp g (onomor (k) d = 1.

Then, we define thé-hardness of the gant&as follows.

Definition 1. We say that a gam@ is ¢-hard (for somé < § < 1) for adversaries with
polynomial query complexitif for any (even computationally unbounded) algorithim
whose query complexity is at most polynomial, there is a negligible fungtibhsuch
that AdvﬁPVA(k) — 0 < p(k). We call “6(G)” the hardnessf the gameG and is the
smallest value such th&is §-hard for adversaries with polynomial query complexity.

5 Itis usual to define th€en algorithm as a probabilistic algorithm so that it takésas input,
and outputs a paifek, td). However, in terms of existence, a TDP with such definition is
equivalent to one defined in this paper, because without loss of generality we can identify the
randomness for generating ek, td) < Gen(1%;r) with the trapdoor of a TDP.



We stress that unlike [11, 29], our definition of the hardn¥€5 of a gameG regard-
ing random permutations is with respecttamputationally unboundeativersaries, and
the restriction on an adversary is only on its query complexity, rather than its running
time. Though this requirement for hard games is stronger than the ones used in [11,
29] (and thus potentially harder to achieve), most security games thathaasd for
all PPTAs remairv-hard for computationally unbounded adversaries with polynomial
query complexity. Examples include one-wayness, claw-freeness [19], and security un-
dert(k)-correlated inputs [42] for any predetermined polynonial). See also [29,
Table 1] for other types of security games that can be capturedhayd games. We
note that, sinc& does not have access to inversions of permutations, our definition of
hard games does not capture adaptive one-wayness [38, 28].

A game for a TDP is then defined by replacing the random permutationsiaed
game with instantiations of permutations in the TDP. More specifically, we define the
advantage of an adversadyin a gameG for a TDPTDP = (Gen, Eval, Samp, Inv) as
follows:

tdy, ... tdy < {0,1}F; ek; < Gen(1*,td;) fori € [t
AdV'(l;'DP A(k) = Pr ! LR { éEval(ekl,-),...,Eval(gkt,-) ) [ ] d=1
’ d <& EXptpp A(ehs,....cky) (k)

Note that in the above experiment, the interfac&d exactly the same as that of a
game defined for random permutations. However, the interfacé isfchanged. Un-
like the games regarding random permutations, we do not prodiddth oracle ac-
cess toEval(ek;, -)'s because it gets evaluation keys:; } and thus can compute each
Eval(ek;, -) by itself.

Definition 2. We say thaflTDP is secure for gamé& if for all PPTAs A, there is a
negligible functionu(k) such thatAdv?Dp’A(k) —(G) < p(k). Furthermore, we say
that TDP is anideal TDPIf it is secure for all games.

Note that the definition of the hard games for a TDP considers only PPTA adversaries,
although the hardnesyG) is defined with respect to (computationally unbounded)
adversaries with polynomial query complexity.

It has been observed in [11] that ideal security is too strong to be satisfied by TDPs
implemented by PPTAs. However, we will show tmapossibility of constructing a
OWP from an ideal TDP in a black-box manner, and thus ruling out a black-box con-
struction from a TDP with such strong security makes our restdhger

3 Black-box Separation of OWP from Ideal TDP

In this section, we show our main result: there is no black-box construction of a OWP
from an ideal TDP.

We first recall the formal definition of the type of black-box constructions that we
will rule out, which is called dully-black-box construction (reduction) in the taxonomy
of Reingold et al. [41]. (The definition can be easily adapted to other primitives.)

Definition 3. We say that there exists a fully-black-box construction of a OWP from
an ideal TDP, if there exist a positive polynomiak ¢(k), an oracle PPTAP (called



“constructiofy), and an oracle PPTAR (called “reductiori) such that for all tuples
of algorithmsTDP = (Gen, Eval, Samp, Inv) that implement a TDP with security pa-
rameterk and all algorithmsA (where each algorithm iTDP and.4 are of arbitrary
complexity) the following two conditions hold:

(Correctness): PTPP is a permutation ovef0, 1}*.
(Security): If Advpor 4 (k) is non-negligible, then so iBdv§pp, r.a.ror (k) — 6(G)
for some gamé.

The main result in this paper is the following.
Theorem 1. There is no fully-black-box construction of a OWP from an ideal TDP.

Recall that the security games for most of the security notions of a TDP, such as (or-
dinary) one-wayness, security undeék)-correlated-inputs [42] for any predetermined
polynomialt = t(k), and claw-freeness [19], can be captured by dHeard games.
Since “a (fully-)black-construction of a primitive from another primitive” is a transitive
relation, we obtain the following as a corollary of Theorem 1.

Corollary 1. There is no fully-black-box construction of a OWP from a one-wayTDP
a TDP secure undet-correlated-input for any predetermined polynomiabr a claw-
free TDP.

To prove Theorem 1, we will use the following “two oracle separation” technique
[15, 24] (which is an extension from the “one oracle separation” by [25, 41]). Specifi-
cally, to prove Theorem 1, it is sufficient to show the following lemma.

Lemma 1. (adapted from [15, 24].) LePSPACE be an oracle for @#SPACE-complete
problem. Assume there exist a §ef oracles and a tuple of oracle PPTADP =
(Gen, Eval, Samp, Inv) that satisfy the following three conditions:

(1): TDP? = (Gen®, Eval?, Samp®, Inv®) is correct as a TDP for al) € Q.

(2): For any gameG and for any oracle PPTA, Eo« .0 [AdV-?—DPoﬁAO,PSPACE(k)] —
4(G) is negligible.

(3): For any positive polynomial = ¢(k) and for any oracle PPT/, if P is a
permutation over0, 1} for all O € O, then there exists an oracle PPTAsuch
thatEo.,o[AdVRG 4o eseace o(k)] is overwhelming.

Then, there is no fully-black-box construction of a OWP from an ideal TDP.

In order to use Lemma 1 for showing our main result, we define tH& e€tTDP”
oraclesT below, which will be used a® in the above lemma. Next, in Section 3.1, we
show Lemmas 2 and 3 which guarantee that there is a tuple of oracle PRJRAs=
(Gen, Eval, Samp, Inv) such thatT and TDP satisfy the conditions (1) and (2) of the
above lemma, respectively. Then, in Section 3.2, we show Lemma 4 which guarantees
that the sefl" satisfies the condition (3) of the above lemma. Theorem 1 follows by
combining these lemmas.

8 Actually, permutations in our TDP have a trivial domdid, 1}* and thus the TDP satisfies
doubly enhanced one-waynd48]. Furthermore, given ak-bit string ek, whether€ (ek, -)
defines a permutation can also be checked easily by checking the reS(ton*), and thus
it also satisfies theertified property [5]. Thus, our result also rules out constructions from a
one-way TDP with these properties.



TDP Oracle7. The TDP oracle7 models an ideally secure TDP whose evaluation-
key space is sparse. Formally, a TDP orgCleonsists of the following three suboracles
(G.€,D):

G : {0,1}* — {0, 1}2*: (Corresponding to the key generation for the TDP) This is an
injective function that takesl € {0, 1}* as input, and returnsk € {0, 1}2*.

€ :{0,1}**x{0,1}* — {0, 1}*U{L}: (Corresponding to evaluation) For evety c
Range(G), £(ek, -) is a permutation ovef0, 1}*, and for everyk ¢ Range(G) and
everya € {0,1}%, E(ek,a) = L.

D : {0,1}* x {0,1}* — {0,1}*: (Corresponding to inversion) This function takes

td € {0,1}* andp € {0, 1}* asinput, and returns € {0, 1}* such tha€(G(td), o)

We denote byl the set consisting of all possible TDP oracieshat satisfy the above
syntax.

3.1 Ideal Trapdoor Permutation Based on7~

Here, we show that there exists an ideal TDP that uses a TDP Graclég, £, D) € T.
Consider the following tupl&DP” = (Gen” , Eval”, Samp”, Inv”) of oracle PPTAs,
which are constructed straightforwardly from

— Gen” (1%, td): Computeek < G(td) and output the evaluation-key:.

— Eval” (ek,z): Computey + &(ek, x) and outputy. (We define the domaif, ;, of
Eval” (ek, ) to be{0, 1}* for all ek € Range(G).)

- SampT(ek): Pick x € {0, 1}* uniformly at random, and output (Note that this
algorithm does not usg at all.)

— Inv’ (td,y): Computer + D(td, y) and outputz.

RegardingTDP” described above, the following two lemmas can be shown:

Lemma 2. Forany7 € T, TDP” is correct as a TDP.

Lemma 3. For all gamesG and any oracle PPTA adversay, there exists a negligible
functionu(kj) such tha1ET<_RT [Adv-(l;—DpT7AT,PSPACE(k)] — 5(G) < ,u(k‘)

Lemma 2 is immediate from the definition of the TDP oragleThe formal proof of
Lemma 3 is given in the full version (but we will give a proof sketch below). Note that

if we pick T = (G, &, D) uniformly from T, theng is a random injective function that

is length-doubling, and every permutatiétek, -) with ek € Range(G) is an indepen-

dent random permutation. Kiltz and Pietrzak [29] showed that a similar construction of
a TDP oracle whose “key generation oracle” is also a random permutation is ideally se-
cure even against computationally unbounded adversary that makes only polynomially
many queries. Our proof of Lemma 3 is similar to theirs.

Proof Sketch of Lemma 3.Fix an arbitraryé-hard gameG, and lett = t(k) be a
polynomial implicitly determined b¥. Fix also an arbitrary PPTA adversary



The expectation (over the choice’dj of the advantage of the adversatyattacking
TDP7 = (Gen”, Eval”, Samp”, Inv") in the gameG (in the presence of theSPACE
oracle) can be written as follows:

E [ AdV-?—DPT’AT,PSPACE (k’)

T<+3T
tds, ... tdf <5 {0,1}%; ek « Gen” (1%,td?) fori € [t];
= E P GEvaIT(ckI,-),...,Eva\T(ck;‘,-) d=1
Te=T d < EXptTDPT,ATPSPACE(ekf,...,ek-;‘)(k)
T 5 T; tdf,... tdf <5 {0,1}%; ek} < G(td}) fori € [t];
= Pr GE(ekT ), E(ekt ) cd=1
d <—r EXPtTppT AT PsPACE (ks .. ckr) (F)

— G
Let us denote byExptrppr sreseace (k) the experiment in the probability in the last
equation.

Now, consider the following two games.

Game 1: This is the ordinarys-hard gameG for TDP”, in which sampling of the

— G
oracleT from T is also taken into account, i.Exptrppr _gr pseace (k).

Game 2: Same as Game 1, except théis queries of the following types are answered
with L: (i) a G-querytd; for some: € [t], and (ii) aD-query (td}, ) for some
i€t

Fori € {1,2}, let Succ; be the event thatl wins (i.e.d = 1 occurs) in Game. By
definition we haveETﬁT[Adv$DPT7AT,pspACE(k:)] = Pr[Succ,]. Furthermore, we have

LB _[AdvTopr g7 sseace (k)] = (G) = Pr[Suce] = 4(G)

< | Pr[Succy] — Pr[Succa]| + Pr[Succa] — 6(G). (1)

In the full version, we will show how to upperbound each term in the right hand side of
the inequality (1), which will prove Lemma 3. Below we explain the sketches for how
to show these.

| Pr[Succ;] — Pr[Succy]| can be shown to be negligible, because the advetdary
who can make only polynomially many queries, cannot tell the difference between
Game 1 and Game 2 (except with negligible probability). More specifically, Game 1
and Game 2 differ only in the response &5 G-queries andD-queries that contain
the preimagestd; };c, of the evaluation keys$ek; };cy, and thus in order for to
distinguish these games, has to find one oftd; };c[;). However, intuitively, finding
any of the preimagegtd; } ;¢ is hard because the TDP oradleis chosen randomly
and especially the functiogi is a random injective function, and we will formally show
that this intuition works.

Pr[Succs] — 6(G) can be shown to be negligible, roughly because Game 2 can be
perfectly simulated by another computationally unbounded adve&arith polyno-
mial query complexity that interacts with the PPTA (challendgefpr random permu-
tations(not for the TDPTDP”), in such a way thaAdvﬁyP,S(k:) = Pr[Succy]. But by
the assumption thas is a d-hard gameAdvgp’S(k) — 0(G) = Pr[Succy] — §(G) is
negligible.

This completes the proof sketch of Lemma 3. O



3.2 Breaking Any Candidate of One-Way Permutation Based oy~

Here, we show that any candidate of a OWP based on a TDP oraclg € T can be
broken by some oracle PPTA almost perfectly (usingRBBACE oracle). Specifically,
this subsection is devoted to proving the following lemma.

Lemma 4. Let? = {(k) be a positive polynomial anél be an oracle PPTA such that
P7 is a permutation ovef0, 1} for all 7 € T. Then there exists an oracle PPTA
such thaE 7., t[AdVET 47 rseace (k)] is overwhelming.

To prove Lemma 4, we need some further notations, two other oraclesjthand
several intermediate lemmas. Thus, we first introduce them, and in the last of this sub-
section show the proof of Lemma 4. The intuitive explanation on how the above lemma
is proved can be found in Section 1.3.

Further Notations. For notational convenience, we introduce two notations.(L&ie
a set of oracle®, ¢ = ¢(k) be a positive polynomial, an®t and .4 be oracle PP-
TAs. If P© is a permutation ovef0, 1}* for all oraclesO € O, then we denote by

—— OWP
Exptpo_go.rseace 4(k) the following experiment:
[0 ¢ 0; 2% = {01} y* = PO(a"); o’ - ADPPAE(LF 7).

—— OWP
Note thatExptpo go.rseace o (k) includes sampling an oracte from O.
. ——O0wp .
Then, we deﬂné\de@7A®,PSPACE7@(k) = EO<—R<D>[ Advg’g_Ao.PSPACE’g(kJ) ], 1.e.,

——0wP
AdVP’D’A@,PSPACE’g (kj)

= Pr[O 5 O;2% <5 {0,1}5 9" « PO(a*); 2’ <5 ADPSPACE(1R %) .2/ = 2¥].
——0OwP
(Our goal in this subsection is to show thedvpr 4reseace o (k) is Overwhelming.)

Block Cipher Oracle3. Here we introduce a “block cipher” oraclgé which models

an ideally secure block cipher (or, keyed invertible permutation) whose key space is
sparse. Formally, a block cipher oradfeconsists of the following three suboracles
(G. P, P1):

G: {0,1}* — {0,1}?*: (Corresponding to the key generation for the block cipher)
This is an injective function that taked € {0,1}* as input, and returnsk ¢

0,1}2k,

P :{{0, %}Qkx{o, 1}* — {0,1}*U{ L}: (Corresponding to encryption) For every c
Range(G), P(ek, ) is a permutation ovef0, 1}*, and for everyek ¢ Range(G)
and everyr € {0, 1}*, P(ek,a) = L.

P~ : {0,112 x {0,1}* — {0,1}* U {L}: (Corresponding to decryption) For ev-
ery ek € Range(G), P~1(ek, -) is the inversion ofP(ek,-), and for everyek ¢
Range(G) and eveny3 € {0, 1}*, P~1(ek, 8) = L.

We denote byB the set consisting of all possible block cipher oradé¥ebat satisfy the
above syntax.



Relationship betweef and5. We will use the following simple fact shown by Lindell
and Zarosim [30].

Lemma 5. ([30]) Let ¢ be the mapping that maps a block cipher oraBle= (§,P,
P~1) € B to a tuple of oracles(B) = (G, &, D), where the suboracles, £, andD
are defined in the following way: For aftl € {0,1}*, ek € {0,1}**, « € {0,1}* and
B €{0,1}*, we let

G(td) := G(td), E(ek,a):=P(ek,a), and D(td,f):= P~ (G(td), ).
Then,¢ is a bijection fromB to T.

Round Function OracléR. Here, we introduce a “round function” oracle which
models a set of “round functions” in the Feistel-network construction of permutations
[32] (whose evaluation key space is sparse). Formally, a round function Gtamba-

sists of the following two suboraclé§, F):

G: {0,1}* — {0,1}2*: (Corresponding to the key generation for each round func-
tion) This is an injective function that takeéd < {0,1}* as input, and returns
ek € {0,1}2.

F @ [14] x {0,1}%¢ x {0,1}*/2 — {0,1}*/2 U {L}: (Corresponding to the round
functions in the Feistel-network). For every indexe [14] andek € Range(G),
F(i, ek, ) is a function fromk /2 bit to k/2 bit, and for everyek ¢ Range(G) and
every(i,v) € [14] x {0,1}*/2, F(i,ek,~) = L.

We denote byR the set consisting of all possible round function ora@ethat satisfy
the above syntax.

Relationship betweefi and’R. Holenstein et al. [23] showed that the random oracle
model and the ideal cipher model are equivalent. (The statement itself was posed by
Coron et al. [10].) More concretely, they proved that a random invertible permutation
can be simulated by the fourteen-round Feistel-network construction of a permutation in
which each round function is an independent random function. (Technically, this means
that the latter isndifferentiable[34] from the former.) Based on their result, we can also
construct oracle PPTAG andS such thaf{C?, R) and(B, S?) are indistinguishable.

More formally, consider the following PPTA& that, given access &8 = (G, F) €
R, tries to simulate a block cipher oradi& = (G, P, P~!) as follows:

G(-): DefineG(-) = G(-). N

P(-,-): Oninput(ek,a) € {0,1}%* x {0,1}*, check ifek € Range(G) by making an
F-query(1, ek, 0%/2). If the answer fromF is L (meaningek ¢ Range(@)), then
return_L. Otherwise, regard asa = (Ly||Rp) so that|Ly| = |Ro| = k/2. Then,
for eachi € [14], computeL; < R;_ andR; < F(i,ek,R;—1) ® L;—1, and
finally output3 < (L14||R14)-

P1(.,-): Oninput(ek,8) € {0,1}2¢ x {0,1}*, check ifek € Range(G) as above.

If ek ¢ Range(G), then returnL. Otherwise, compute and output the inversion of
P(ek,-) using.F.



Constructed as above, it is guaranteed @fatc B for all R € R, because the Feistel-
network construction yields a permutation no matter what round functions are used.
Moreover, the result in [23] yields the following.

Lemma 6. (follows from [23].) LetC be the oracle PPTA as above. Then, for any
polynomialg = ¢(k), there exists an oracle PPTRsuch that for all (computationally
unbounded) oracle algorithni® making at mosg queries, the following difference is
negligible:
Pr [DCVR(1%) = 1] — Pr [DBS"(1F) = 1|.

| Pr [P RM) = 1] = Pr D8 (1F) = 1]]
TDP Oracle7 Can Be SimulatedHere, we show that if there exists a TDP-based
permutatignPT, then so does a “random function”-based permutaBénsuch that
inverting PR is as hard as invertin@” . Furthermore, the latter is true even in the
presence oPSPACE oracle.

Lemma 7. Let¢ = ¢(k) be a positive polynomial anél be an oracle PPTA such that
P7 is a permutation ovef0, 1}* for all 7 € T. Then, there exists another oracle PPTA
P that satisfies the following two properties: (1) For & € R, P® € Permy. (2) For
any oracle PPTAA, there exist another oracle PPTA and a negligible functiom (%)

——0WP ——Q0WP
such thaTAdVP'ﬂ"_AT,PSPACE’Z(k) > AdVﬁR’_ZR.PSPACE’g(/f) — /L(k)

Proof of Lemma 7. (The intuitive explanation can be found in Section 1.3.) £ahd

P be as stated in the lemma. First, define the “intermediate” oracle @Wﬁ‘g(-) =
P#(B)(.), where¢ is the bijection fromB to T due to Lemma 5. This construction
of P also guarantees th&” (-) = P® '(7)(.) where¢~! is the inversion function
of ¢ (i.e. 9! is also a bijection fronf to B). Next, define the oracle PPTR by
PR(.) = P<"(.), whereC is the oracle PPTA due to Lemma 6. Then, siRdec Perm;
for all 7 € T, we haveP? ¢ Perm, for all B € B. This in turn guarantees that
PR ¢ Perm, for all R € R, becaus€™® ¢ B for all R € R. ThereforeP satisfies the
property (1).

Next, we show thaP satisfies the property (2). Let be an arbitrary oracle PPTA
adversary that runs in the experimﬁ/xgtogl}?;wsme’Z(k) and makes in tota} = ¢(k)
oracle queries. Note that singkis a PPTAg is a polynomial. LeS be the simulator
corresponding to the polynomiglwhich is guaranteed to exist by Lemma 6, and define
an oracle PPTAA0):() (which expects to have access to an ordgle B and the
PSPACE oracle) by.AS"-(). That is, given access to af§ € B and thePSPACE
oracle, 48:PSPACE and 45°.PSPACE hehave identically. Since botd andS are oracle
PPTAs, A is also an oracle PPTA and thus makes at most polynomially many queries.

Then, consider the following sequence of games.

—— OWP ~
Game 1 This is the ordinary experimeiiiptpz gz rseace o (k) that.A runs in. That is:
[R ¢ R; 2% +5 {0,1}%; y* + ﬁR(ac*); R — ,ZR’PSPACE(lk,y*)].
Game 2 This game is defined as follows:
(B« B; «* & {0, 1} y* « PB(a*); o/ < ABPSPACE(TF ¢,



Game 3 This game is defined as follows:
[T <& T; o* +5 {0,1}%; y* « PT(2%); 2/ < ~,LT‘VI(7’)’PSPACE(1]€,y*)].

Game 4 Same as Game 3, except that whémmakes aP-query (ek,a) or aP~1-
query(ek, 8) such thakk is not an answer to some ofs previousgA—queries, the
query is answered with .

Fori € [4], letSucc; be the event that’ = z* occurs in Gameé. Then we have

m’ﬁR7KR,PSPACE7€(k) Pr[Succy] < Z | Pr[Succ;] — Pr[Succ;t1]| + Pr[Succy]. (2)
1€[3]

To complete the proof, we upperbound each term in the above inequality.
Claim 1 |Pr[Succ;]| — Pr[Succ,]| is negligible.

Proof of Claim 1. We show that we can constructamputationally unboundeatacle
algorithm (distinguisherp that, usmgP and A as its subroutines, makes at maqst
queries, and satisfies

|R1:R[DCR»R(1’C):1]—651;13[176’5 (1%) = 1]| = | Pr[Succ;] — Pr[Succy]|. (3)

D is given access to two oraclé®,, 0,), which is eitherC®, R) or (B, S¥), and runs
as follows:

DO (1%): D picksz* < {0,1}", computeg/* « P?1(2*), and then simulates
AO2.PSPACE 1k 4+) Note thatD is computationally unbounded, and thus can sim-
ulate thePSPACE oracle perfectly ford.

When A terminates with output’, D checks whether’ = z*. If this is the case,
thenD outputsl, otherwise outputs, and terminates.

The above completes the description?f Note that the number of queries that
makes is at most the number of queries madelbynd thus is at most.

Now, consider the case whé®,, O,) = (C®,R). Then it is clear thaD simu-
lates Game 1 perfectly fod. In particular, in this case we hafé: (x*) = pc” (x*) =
ﬁR(x*), and.A is given access t®, = R andPSPACE as in Game 1. Under this situ-
ation, the probability thaD outputsl is exactly the same as the probability thlsuc-
ceeds in outputting the preimagé underP” in Game 1, i.ePrr. z[DC R (1%) =
1] = Pr[Succy].

Next, consider the case whéf;, 0,) = (B, $5). Recall that we defined?-PSPACE
by AS® PSPACE . and thugA©2:PSPACE _ /S®,PSPACE _ 1B,PSPACE Racall also thaD
can S|mulatePSPACE perfectly by its computationally unbounded power. Therefore,
in this caseD perfectly simulates Game 2 fod. In particular, in this case we have
I301( *) = ﬁ“( ), and.A’s oracle queries are perfectly answered as in Game 2, us-
ing O; = B andD’s computationally unbounded power. Therefore the probability that
D outputsl is exactly the same as the probability théatoutputh in Game 2, i.e.
Prg.,s[D55° (1%) = 1] = Pr[Succ,].



In summary, our distinguishd? makes in total; queries and satisfies the equation
(3). Thus, Lemma 6 guarantees th&r[Succy] — Pr[Succs]| is upperbounded to be
negligible. This completes the proof of Claim 1. ad

Claim 2 Pr[Succz] = Pr[Succs].

Proof of Claim 2. Recall that due to Lemma B,(and thusp—!) is a bijection between

B andT. Therefore, the uniform distribution ov&ris equivalent to the distribution of
¢~1(T) whenT <y T. Moreover,P7 (-) = P¢ (T)(.) for all T € T by definition.
These imply that fromA's view point, all values in Game 2 and those in Game 3 are
distributed identically, and thuBr[Succy] = Pr[Succs]. This completes the proof of
Claim 2. O

Claim 3 | Pr[Succs] — Pr[Succy]| is negligible.

Proof Sketch of Claim 3Fori € {3, 4}, letFind,; be the event thatin GanieA makes

at least oneP- or P~l-query such thatk is not an answer to some of previoﬁSs
G-queries andk € Range(G). Note that Game 3 and Game 4 proceed identically until
Find3 or Find4 occurs in the corresponding games. Therefore, we have

| Pr[Succg] — Pr[Succy]| < Pr[Finds] = Pr[Findy].

Hence, to prove the claim it is sufficient to bouRd[Findy].

Recall that in Game 4 (and in Game 3) the oraflec T is picked uniformly,
and thusG oracle is a random injective function which is length-doubling. Therefore,
the probability thafind, occurs is exactly the same as the probability that an oracle
algorithm with polynomial query complexity, which is given access to a random length-
doubling injective function and the corresponding “membership” function for its range
(this membership function tells if a given value is in the range of the injective function),
finds a “fresh” element that is not obtained by actually making a query to the function
but belongs to its range. However, it is easy to prove that such a probability is negligible
(as long as the query complexity of the algorithm is at most polynomial), and this in turn
boundsPr[Find,4] to be negligible. (The formal proof is provided in the full version.)
This completes the proof sketch of Claim 3. ad

——0OwWP
Claim 4 There exists an oracle PPTA such thatPr[Succy] = Advpr gr.eseace 4 (k).

Proof of Claim 4. Using the oracle PPTA as a building block, we construct an
—— OwWP

oracle PPTAA that runs inExptpr yr.eseace ¢(k): A is given (1%, 4*) as input, where

y* = P7 (2*) for a randomly chosen* € {0,1}* and7 € T, given access tg and

PSPACE, and runs as follows:

AT PSPACE(1k ). A generates an empty liftused to store “knownG-query/answer
pairs, and then rund (1%, y*).
A responds to the queries frarhas follows:
— For ag-querytd, A forwards it toG, receives:k from G, and returns thisk to

~

A. A also stores the paitd, ek) into the listL.



— For aP-query (ek, «), if there is no entry of the fornix, ek) in L, then A
responds withL. Otherwise,A makes a-query (ek, «), receivess from &,
and finally returns thig to A.

— For aP~t-query (ek, B), if there is no entry of the forngx, ek) in L, then
A responds withL. Otherwise,A retrievestd that corresponds tek from L,
makes aD-query(td, 3), receivesy from D, and finally returns this: to A.

— For aPSPACE-query, A answers to it by usingl’s own PSPACE oracle.
When A terminates with output’, A also terminates with output this.

Itis easy to see thad perfectly simulates Game 4 fot in which the oracles given
access tod are¢~1(T) (that works as specified in Game 4) aPSPACE. Under this
situation, when4 succeeds in outputting the valug such thatP? " (7)(z*) = y*,
sinceP7 (-) = P? "(T)(.) for all T € T by definition, 4 also succeeds in outputting

the preimage unddét” . Therefore, we havéa/gfﬁ,psms(k) = Pr[Succy]. This com-
pletes the proof of Claim 4. a

Claims 1 to 4 imply that for any oracle PPTA, there exist an oracle PPTAand a

negligible functionu(k) such thaﬂ/%ﬁﬂ,psms’z(ls) > A_a\//glgij,PSPACE’g(k) — [L(k),
and thus the property (2) is satisfied as well. This completes the proof of Lemma 7.

“Mimicking” Algorithm N and Good InverteR for N. The combination of the results
by Rudich [43] and Kahn et al. [26] shows that any permutation which has oracle ac-
cess to a set of random functions can be inverted usind®8RACE oracle. On the
other hand, Lemma 7 shows that for any TDP-based permutBfignhere is another
“random function”-based permutatid?i’z such that ifP® can be inverted using the
PSPACE oracle, then so can 7. Here, it seems that by combining the results [43,
26] and Lemma 7 we can invert the “random function”-based permutﬁ%nusing
the PSPACE oracle. However, there is a subtle issue here: The subafatiea round
function oracleR is not a pure random function, everif is sampled randomly from
the sefR. Specifically,F returns an “invalid” symboll for some inputs, and thus we
cannot directly use the results [43, 26].

For convenience, let us refer to a query to the subor&dtea round function oracle
R € R asinvalid if the answer to the query is, and an oracle algorithid that expects
to access to an oracfe € R aslegalif N never makes an invalid query for &l ¢ R
and for all inputs.

To resolve the subtlety on invalid queries, we will use the approach by Chang et al.
[9]: we show two lemmas that enable us to finally show that a TDP-based permutation
can be inverted almost perfectly. The first lemma below (Lemma 8) roughly states that
fora permutatiorﬁR based on a round function oradke there is a “mimicking” algo-
rithm N which is legal and, for most inputs, computes almost the same resft as
for most oracleR € R.

Lemma 8. Let¢ = ¢(k) > 0 be a polynomial and be an oracle PPTA such th&®
is a permutation ovef0, 1}* for all R € R. Then, there exists an oracle PPRAthat
expects to access to an oracle frd@pwith the following properties: (iN is legal, and
(ii) For sufficiently largek’s, for at leastl — 2 - 2=%/6 fraction of stringsy € {0, 1}¢,
(NR)=1(y) = (PR)~1(y) holds for at leastt — 2~*/3 fraction of oraclesR € R.



The formal proof proceeds closely to that of [9, Claim 3 and Lemma 3], and is given in
the full version. We give a proof sketch.

Proof Sketch of Lemma 8Let ¢ andP be as stated in the lemma. UsiRgs a subrou-
tine, we construct the oracle PPTAthat satisfies the properties (i) and (Y.takes a
stringz € {0, 1}¢ as input, has access to an oraRles R, and runs as follows:

N (z): N firstly generates an empty ligt into which “known” evaluation-keysk €
Range(G) will be stored, and then runB(z). N responds to queries from as
follows:

— WhenP makes &-querytd € {0,1}*, N forwards it tog, receives a resuitk
from G, and returns thisk to P. N also storegk into the listL.
— WhenP makes aF-query(i, ek, ) € [14] x {0,1}?* x {0,1}*/2, N responds
with L if ek ¢ L. OtherwiseN forwards(i, ek,~) to F, receives an answer
§ € {0,1}*/2 from F, and returns to P.
WhenP terminates with outpug, N also terminates with outpuyt

The above completes the descriptio\bfNote thatN is legal, becaush’s F-queries
always satisfyek € Range(G). Hence, the property (i) is satisfied.

To show that the abovB satisfies the property (ii), we will show the following
two claims that together imply what we want (the formal proofs are given in the full

version), and hence enable us to complete the proof of Lemma 8:

Claim 5 For any stringz € {0,1}¢, Prr. z[NR(z) # PR(z)] < 27*/2 holds for
sufficiently largek’s.

Claim 6 For sufficiently largek’s, the following holds. There are at lealst- 2 - 2—k/6
fraction of stringsy € {0,1}¢ such that(N?)~1(y) = (P®)~1(y) holds for at least
1 — 27%/3 fraction of oraclesR € R.

Claim 5 can be shown in a similar manner to the negligible upperbouRd[Bfnd,] in
the proof of Claim 3. Specifically, it is clear from the descriptioriNahat for any input
x € {0,1}*, the output ofN and that ofP agree unles® makes ar-query (x, ek, )
such thatF is not an answer t8's previousG-queries. Therefore NR (z) # PR (z)"
must mean thaP makes such g -query. However, ifR is chosen uniformlyg~ is
a random length-doubling injective function, and thus the probabilit? dihding a
“fresh” element that belongs R)ange((j) is exponentially small. (Here% works as the
“membership” oracle regarding the rangeCJ’ofout it does not help much.)

For showing Claim 6, consider the Boolean mattix= (M, ) whose rows are

indexed byy € {0, 1}¢ and whose columns are indexedBy< R, so thatM(, z) = 1

if and only if (NR)~1(y) # (PR)~1(y). By Claim 5, we know that for sufficiently
largek’s, we have that for each € {0, 1}, N®(z) # PR(z) holds for at mosp—*/2
fraction of oraclesk € R. Since any such paitc, R) contributes at most twi's to the
matrix M (namely, to the entried/ y= (,) r) andM(ER(I),R)), the total fraction ofl’s
in M is at most2 - 27%/2. That is,Pr,._ 1011+ R & [M(y,r) = 1] < 2-27%/2. Then,
a simple counting argument yields Claim 6.



This completes the proof sketch of Lemma 8. O

We note that even iPR is a permutationN® in Lemma 8 is not guaranteed to
be a permutation (although”™ is very close to a permutation), and this is the main
reason why we cannot directly use the results from [43, 26]. A similar situation was
encountered in [9] where the authors could not directly apply the results from [43, 26]
to show the separation of a OWP from a trapdoor function.

Fortunately, we can use the next lemma, which is implied by the one shown and used
in [9, Section 3.2] (which is in turn based on [43, 26]). The following lemma roughly
says that if most of the images under a legal oracle algoritffrhave a unique preim-
age, (and in particular these properties are satisfied by the algaxithin Lemma 8),
then there is an oracle algorith@’*PSPACE that can inverN™ almost always, using
the PSPACE oracle.

Lemma 9. (follows from [9, Lemma 4].) Let = ¢(k) be a positive polynomial. There
exists a constant > 0 such that for every legal oracle PPT") : {0,1}¢ — {0,1}*
(that expects to access to an oracle fr@®), there is another oracle PPTA with
the following property: For any < X and anyy € {0,1}, if the size of the set
(N®)~1(y) = {z € {0,1}¥|NR(x) = y} is one forl — ¢ fraction of oraclesk € R,
thenQ™-PSPACE(1k 1)y = (N®)~1(y) holds forl — /¢ fraction of oraclesrR < R.

Inverting Any Permutation Based gn Proof of Lemma 4 Now, we are ready to prove
Lemma 4. Let/ andP be as stated in the lemma. By lemma 7, for thjghere is an
oracle PPTAP such thaP® ¢ Perm, for all R € R. Then, Lemma 8 tells us that for
this P, there exists an oracle PPT#that satisfies the properties (i) and (ii). SiicB is

a permutation for alR € R, the size ofthe séP™)~1(y) = {z € {0, 1}!|PR(z) = y}

is one for ally € {0,1}¢ and allR € R. Thus, if(N?)~1(y) = (PR)~!(y), the size of
the setN?)~1(y) = {x € {0,1}¥|N®(z) = y} must also be one. By the property (ii)
of N in Lemma 8, for at least — 2 - 2-%/6 fraction of stringsy € {0, 1}, the size of
the set(N®)~1(y) = {z € {0,1}¥|N®(z) = y} is one for at least — 2~%/2 fraction
of oraclesRk € R.

Sete’ = 27%/3, For any constank > 0, ¢ < X holds for all sufficiently large:’s,
and thus this’ can be used as thén Lemma 9. Cally € {0, 1} goodif (N?)~1(y) =
(PR)~1(y) holds for1 — 2—*/3 fraction of oracles® € R. By definition, ify is good,
then it is guaranteed that the size of the@®%) 1 (y) = {z € {0, 1}|N?(z) = y} is
one for atleast — ¢ = 1 — 2=%/3 fraction of oraclesR € R, and it is also guaranteed
thatPr,. (013¢[y isgood > 1 — 2. 2-k/6 holds. Furthermore, by using and¢’,
Lemma 9 implies that there is an oracle PP@Auch that for sufficiently largé’s and
for all goody’s, Q®PSPACE(y) = (NR)~1(y) holds for1 — /¢’ fraction of oracles
R € R. Recall that fory € {0,1}¢ andR € R such that(N?)~1(y) = (PR)~1(y)
and QR-PSPACE(1k oy = (NR)~1(y) = z, it holds thatPR(z) = y, i.e. Q succeeds
in calculating the preimage of y under the permutatioﬁR. Therefore, considering
sufficiently largek’s, we have

Pr[R ¢ Ryz < QFPSPAE(1F 1)) - NR(2) = PR(z) = yly is good
>1 Ve =1-27M0



Now, define an oracle PPTA adversafly which runs inE,X\Stg’If:KR,PSPACE’g(k), by
ARPSPACE 1k yx) — QR.PSPACE(1k 4*) Sincexz* is chosen uniformly fron{0, 1}/
in E)(\[;tﬂﬁl]jjukysp/.\cg?[(k) andP® is a permutationy* = PR (z*) is distributed uniformly
over {0, 1}*. Therefore, for sufficiently larg’s, we have:

——0wP
AdVﬁR’XR,PSPACE’[ (k)

=Pr[R <5 R; 2™ < {0, l}z;y* — ﬁR(I*), [ ./ZR’PSPACE(Ik,y*) cx = 2]
> Pr[R & R;y* + {0, l}e; R QR’PSPACE(lk, y*): NR(QT/) = ﬁR(a:/) =y
> Pr[R 5 Rz <5 QRPSPACE(1R 1) . NR(2') = PR(2') = y*|y* is good
x P *is goo
yw{gyl}[[y good

>(1—27F06) . (1-2.27K/6)>1-3.27k/6

Finally, by the property (2) oP in Lemma 7, for this4, there exist an oracle PPTA
—— OWP
adversaryA, which runs inExptpr sr.eseace 4(k), and a negligible functiop (k) such
that for sufficiently large:’s:

——0OWP ——0OWP

Ade'Jr7A'L‘,PSPACE(k) > AdV§R7jug,pspAcs7[(k) - ,u(k) >1-3- 27k/6 - ,LL(k)

What we have shown thus far is that there exists an oracle PRBuch that
ETHRT[AdVE%}'Dy areseace o(k)] = vaiﬁp rrseace (k) is overwhelming. The above can
be shown for all positive polynomial§k) and any PPTA such thaP” < Perm, for
all 7 € T. This completes the proof of Lemma 4. O

4 Towards More General Separations

Broader Class of Permutations and Permutation Famili&s.in the previous black-box
separation results of a OWP from other basic primitives [43, 26, 9, 33], our separation
results rule out a black-box construction of a OWP whické$ined over string§.e.

the domain is a set of strings of a fixed length determined by the security parameter).
However, we can consider a more general form of a permutation whose domain is not
just a set of strings but an arbitrary g8t and which has a corresponding sampling
algorithmSamp to sample an element from the domdn(although such formulation

of a OWP is not standard). Furthermore, as a more natural and closely related primitive
to a OWP, we can also consider a public-coin OWPF.

Therefore, a natural question regarding our result will &ari our impossibility
result be extended to also rule out a black-box construction of a OWP with such general
form of domain or of a public-coin OWPF?

We note that previously to our work, Hsiao and Reyzin [24] conjectured that there
is no black-box construction of a public-coin OWPF from a secret-coin OWPF. We can
partially answer to the above question in the positive due to the result by Goldreich et
al. [17], who showed that there is a (fully-)black-box construction of a OWP from a



public-coin OWPF with thesanonical domain samplingroperty (see Section 2.2 for
the definition and a brief review of the construction of [17]). This result, combined with
Theorem 1, yields the following corollary.

Corollary 2. There is no fully-black-box construction of a public-coin OWPF with
canonical domain sampling from an ideal TDP.

It seems to us that if we consider another restricted type of a constructed public-coin
permutation family such that the sampling algoritBamp of the constructed permuta-
tion family does not use the algorithms of a building block TDP, then we can rule out a
black-box construction of such public-coin OWPF from an ideal TDP, with essentially
the same approach used to show Theorem 1 (although we have not formally checked
this). This is because Bamp of the constructed public-coin permutation family does
not depend on the TDP used as a building block, then whenever we use a same evalu-
ation keyek, the domainD.;, of a permutatiorEval(ek, -) remains the same, and thus
slight modifications of Lemmas 7 to 9 seem to work accordingly.

Other than these observations, so far we do not know how to rule out the possibility
of constructing a public-coin OWPF from a TDP (or even from an ordinary secret-coin
OWPF) in general, and thus we would like to leave it as an interesting open problem.
Goldreich et al. [17] showed that under the standard RSA assumption or a discrete
logarithm assumption in the integer grotp (with some appropriate condition g,
we can construct a public-coin OWPF with the canonical domain sampling property,
and hence a OWP. However, they noted that how to construct a OWP or a public-coin
OWPF under the standard factoring assumption is still open. Tackling the above open
problem of clarifying whether there exists a black-box construction of a public-coin
OWPF from a secret-coin OWPF will also contribute to this problem: If it turns out
to be possible (which we think is unlikely), then we can use the Rabin TDP [40] as a
building block to construct a public-coin OWPF, while if it is not possible, one has to
essentially use some specific algebraic property to build a public-coin OWPF under the
factoring assumption.

Stronger SeparationSo far, all our results are impossibility of a fully-black-box con-
struction, which is the most restrictive type of black-box constructions. With a slight
modification, however, our separation results can be strengthened to show that there is
nosemiblack-box construction (in the taxonomy of Reingold et al. [41]) of a OWP (and

a public-coin OWPF with canonical domain sampling) from an ideal TDP. Specifically,

to show such a result, we need to show a “single” oracle which simultaneously imple-
ments an ideal TDP an@lSPACE. However, our TDP oraclé can be easily modified

to such an oracle by using the “embedding” technique due to Reingold et al. [41]. We
discuss more details in the full version.
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