
On the Impossibility of Basing Public-Coin One-Way
Permutations on Trapdoor Permutations

Takahiro Matsuda

Research Institute for Secure Systems (RISEC),
National Institute of Advanced Industrial Science and Technology (AIST), Japan

t-matsuda@aist.go.jp

Abstract. One of the fundamental research themes in cryptography is to clarify
what the minimal assumptions to realize various kinds of cryptographic primi-
tives are, and up to now, a number of relationships among primitives have been
investigated and established. Among others, it has been suggested (and some-
times explicitly claimed) that a family of one-way trapdoor permutations (TDP)
is sufficient for constructing almost all the basic primitives/protocols in both
“public-key” and “private-key” cryptography. In this paper, however, we show
strong evidence that this is not the case for the constructions of a one-way per-
mutation (OWP), one of the most fundamental primitives in private cryptography.
Specifically, we show that there is no black-box construction of a OWP from a
TDP, even if the TDP isideally secure, where, roughly speaking, ideal security of
a TDP corresponds to security satisfied by random permutations and thus captures
major security notions of TDPs such as one-wayness, claw-freeness, security un-
der correlated inputs, etc. Our negative result might at first sound unexpected
because both OWP and (ideally secure) TDP are primitives that implement a
“permutation” that is “one-way”. However, our result exploits the fact that a TDP
is a “secret-coin” family of permutations whose permutations become available
only after some sort of key generation is performed, while a OWP is a publicly
computable function which does not have such key generation process.

Keywords: black-box separation, trapdoor permutation, one-way permutation,
family of one-way permutations.

1 Introduction

1.1 Background and Motivation

One of the fundamental research themes in cryptography is to clarify what the minimal
assumptions to realize various kinds of cryptographic primitives are, and up to now,
a number of relationships among primitives have been investigated and established.
Clarifying these relationships gives us a lot of insights for how to construct and/or
prove the security of cryptographic primitives, enables us to understand the considered
primitives more deeply, and leads to systematizing the research area in cryptography.

In this paper, we focus on two central cryptographic primitives, a family of trap-
door permutations (TDP) and a one-way permutation (OWP). Among others, it has
been suggested, and sometimes explicitly claimed (see, e.g. [9]), that a TDP is suffi-
cient for constructing (almost) all basic primitives/protocols in both “public-key” and

“private-key” cryptography. In particular, it has been shown that a TDP can be used for
constructing a family of one-way trapdoor functions, public-key encryption schemes,
key agreement protocols, private information retrieval, oblivious transfer, etc. More-
over, it has also been shown that a OWP is sufficient to construct most of private-
key cryptographic primitives/protocols including symmetric key encryption schemes,
message authentication codes, digital signature schemes [37], pseudorandom genera-
tors/functions/permutations [7, 47, 16, 32], bit commitment schemes [35], etc. (Some
of them later turned out to be possible to construct from any one-way function, e.g. a
pseudorandom generator from any one-way function [22].) These primitives can also
be constructed from a TDP as well.

Somewhat surprisingly, however, the following simple but fundamental question
has not been answered yet: “Can we construct a OWP from a TDP?” The main motiva-
tion of this paper is to clarify the answer to this question, in order to fully establish the
relationships among these very basic and important primitives. One might think that the
answer is trivially yes (and that this is obvious), because a TDP is trivially a family of
one-way permutations if we keep trapdoors secret. However, we show strong evidence
that the answer to the above question isno by showing that there is noblack-box con-
structionof a OWP from a TDP. Roughly, a black-box construction of a target primitive
P from a building block primitiveQ requires that the construction ofP treats an in-
stance ofQ as a black-box (i.e. treats as an oracle) and furthermore that the reduction
algorithm for the security proof treats an adversary that breaks the security of the con-
struction ofP (and the instance ofQ) as a black-box. (The impossibility of the opposite
direction, i.e. constructing a TDP from a OWP in a black-box way, is due to [25].)

Actually, to tackle the above question, we have to be careful about the difference
between a “single” one-way permutation and a “family” of one-way permutations (one-
way permutation family, OWPF).1 Our black-box separation result mentioned above
separates a “single” one-way permutation from a TDP. Furthermore, for OWPFs, we
have to be also careful about the difference between thepublic-coincase and thesecret-
coincase. Informally, a OWPF is said to bepublic-coinif the randomness for choosing a
permutation from the family can be revealed together with the description of the permu-
tation. On the other hand, a OWPF is said to besecret-coinif the security (one-wayness)
is not guaranteed if the randomness is revealed. (The distinction between public-coin
primitives and secret-coin primitives is studied by Hsiao and Reyzin [24] for the case
of collision-resistant hash function families.) With these categorizations, it is straight-
forward to see that any one-way TDP can always be seen as a secret-coin OWPF by
regarding an evaluation-key (public-key) output from a key generation algorithm of the
TDP as an index specifying a permutation in the family. However, the same OWPF
derived from a TDP isnot secure as a public-coin OWPF, because the randomness
for choosing the evaluation-key (public-key) cannot be revealed: If revealed, then any-
one can compute the corresponding trapdoor, which makes the permutation invertible.
Furthermore, it is also straightforward to see that a single OWP is a special type of
a public-coin OWPF (by implementing the permutations in the family with the given

1 In order not to mix up with the difference between single function and function family of
one-way permutations, when we just write “OWP”, we always mean it is a “single” one-way
permutation (i.e. not a family), and when we mean a family of OWPs, we write “OWPF”.

single OWP). Here, what is not at all trivial is whether we can construct a public-coin
OWPFs from a TDP in general. We also partially answer to this question in the negative.

1.2 Our Contribution

In this paper, we show that there is no black-box construction of a OWP from a TDP,
even if the TDP isideally secure[11, 29], where, roughly speaking, ideal security of
a TDP corresponds to the security satisfied by random permutations (see Section 2.3
for the formal definition), and thus captures major security notions for a TDP such as
one-wayness, claw-freeness [19], security under correlated inputs [42], etc. Therefore,
our impossibility result rules out the black-box constructions of a OWP from TDP sat-
isfying these security notions, and is strictly stronger than the result by Chang et al.
[9] who showed the black-box separation of a OWP from a family of injective trap-
door functions. Our impossibility result might at first sound unexpected because both
OWP and (one-way) TDP are primitives that implement a “permutation” that is “one-
way”. However, our result is established by exploiting the essential difference between
a family of functions and a single function, that a TDP is a “secret-coin” family of per-
mutations whose permutations become available only after some sort of key generation
is performed, while a OWP is a publicly computable function which does not have such
key generation process. (We explain the overview of the proof in Section 1.3.)

The type of black-box constructions that our main result rules out is called afully-
black-box construction in the taxonomy of Reingold et al. [41]. (The formal definition
for a fully-black-box construction of a OWP from an ideal TDP is given in Section 3.)
In fact, our result can be easily strengthened to rule out asemi-black-box construction,
which is a less restrictive type than fully-black-box one, using the technique called “em-
bedding” by Reingold et al. [41]. (We discuss this extension in Section 4.) Although the
absence of (fully- and semi-)black-box constructions of a OWP from an ideal TDP does
not necessarily mean that constructing a OWP from an ideal TDP is generally impossi-
ble, it should be emphasized that most of the known primitive-to-primitive constructions
are fully-black-box, and thus the impossibility of black-box constructions is considered
as a very strong evidence that “natural” and “efficient” constructions are impossible.

Our result also sheds light on the difference between “public-coin” and “secret-
coin” OWPFs (their formal definitions can be found in Section 2.2). Whether a primitive
remains secure in the sense of public-coin is usually related to whether we need some
kind of trusted setup in a cryptographic protocol such as multi-party computation. Hsiao
and Reyzin [24] conjectured that there is no (fully-)black-box construction of a public-
coin OWPF from a secret-coin one. We partially answer to this conjecture: Specifically,
we show that there is no black-box construction of a public-coin OWPF that satisfies
a special property calledcanonical domain sampling(the formal definition is given in
Section 2.2) from an ideal TDP (and especially from a secret-coin OWPF). This result
is obtained as a corollary of our main result above by combining it with the result
by Goldreich et al. [17] who showed that a OWP can be constructed, in a black-box
manner, from a public-coin OWPF with the canonical domain sampling property. (See
Section 4 for more details.) We note that the techniques we use to prove the black-box
separation of a public-coin OWPF from a secret-coin one (and the black-box separation

of a OWP from an ideal TDP) are different from those used by Hsiao and Reyzin in
[24] (in fact, we use a part of the results in [24]).

Why Studying OWP vs. TDP?Historically, OWP and (public-coin/secret-coin) OWPF
have much more often been treated as assumptions rather than as target primitives that
are constructed from other primitives, and thus one may wonder why we should care
the (im)possibility of constructing a OWP from TDP (or from other primitives).

Our opinion is that firstly, OWP, OWPF, and TDP are very basic primitives, and thus
clarifying any of their properties as well as relations is important, and we believe that
our results contribute to correctly understanding and firmly establishing relationships
among these basic cryptographic primitives. Specifically, our results suggest that there
is no simple hierarchy of black-box constructions even among very basic cryptographic
primitives. Our results also clarify explicitly that there is a real difference among single
function, public-coin and secret-coin families of functions in the case of permutations,
which should be contrasted with the case of “functions” because the existence of a
single one-way function is equivalent to the existence of a family of one-way functions
(regardless of whether the family is secret-coin or public-coin). Furthermore, our results
also show that it is not always the case that “public-key”-type primitives are stronger
than “non-public-key”-type primitives (at least in the case of permutations). This should
be again contrasted with the case of “functions”, where there is a (trivial) black-box con-
struction of a one-way function from basically all known “public-key”-type primitives
(because key generation algorithms typically have to be a one-way function), but there
does not exist a black-box construction for the opposite direction [25].

Secondly, there might actually be a cryptographic primitive that can be constructed
from a OWP, but not from a TDP. One of such candidates may be a public-coin point
obfuscation (an obfuscator for a point function) [1, 45]. Wee [45] showed that a point
obfuscator can be constructed from a (very strong) OWP, while his point obfuscator
does not seem to be proved secure if we replace the OWP in his construction with a
permutation from a TDP together with its public-key (at least the “public-coin” property
will be lost unless we assume some additional property for the TDP). We believe that
there are much more (natural) examples of this sort, and that it is interesting to seek
for such examples. (In particular, the difference between public-coin and secret-coin
primitives will stand out more in the context of interactive protocols.)

1.3 Technical Overview

The main result of our paper builds on the results and techniques from several previous
work [43, 26, 15, 24, 9, 30, 23], and our technical contribution lies in coming up with
an appropriate combination of these results/techniques for achieving our purpose of
separating OWP from (ideal) TDP.

We will use the “two oracle separation” paradigm [15, 24] (which is an extension
of the one oracle separation [25, 41]) to show that there is no fully-black-box construc-
tion of a OWP from an ideal TDP. That is, we will use two oracles (more precisely, a
random instance picked from all possible instances of oracles): the first oracle models
a “building block” primitive (TDP in our case) and the second oracle is the “break-
ing” oracle that is useful for breaking all candidates of a target primitive (OWP in our

case) but useless for breaking the security of the building block oracle. As the “building
block” oracle, we use a random instance of aTDP oracleT that consists of suboracles
(G, E ,D) that essentially constitutes a (random) TDP, namely,G is the key generation,
E is the evaluation of permutations, andD is the inversion of permutations. As the
“breaking” oracle, we use thePSPACE oracle that has often been used in the literature
of black-box separations, e.g. [25, 15, 9], mainly in order to guarantee that any compu-
tational hardness comes only from the building block oracle. If we pickT randomly,
thenT can be shown to be “ideally secure” even against computationally unbounded
adversary that makes only polynomially many queries toT . Since such adversary can
simulate thePSPACE oracle by itself, it follows that an “ideally secure” TDP exists
relative toT andPSPACE.

The difficult part of the proof is to show that any permutationPT is inverted, and
thus a OWP does not exist relative toT andPSPACE. Here, we note that the evaluation-
key space ofT cannot bedense[20] (i.e. an inverse-polynomial fraction of strings are
in the range ofG), because in this case, an evaluation-keyek of permutations inE could
be picked without usingG, and thus implementing a permutationPT by the permuta-
tion (in E) made available by this pickedek might lead to a OWP (even in the presence
of thePSPACE oracle). To prevent this, we make the range ofG sparse, and makeE
useless unless it is invoked with an honestly generated evaluation-key that is generated
by making a query toG. This guarantees that when calculating the permutationPT ,
permutations inE become available only after making a query toG and obtaining an
evaluation-keyek, together with the corresponding trapdoortd. Put differently, from
the viewpoint of an entity computing the permutationPT , every permutation inE as-
sociated withek that becomes available during the computation ofPT can be seen as
an invertible permutation, because the entity must have knowntd corresponding toek.
This observation leads to the idea of simulating the TDP oracleT in PT with a block
cipheroracle, which is a family of invertible permutations. More specifically, we intro-
duce a new oracleB, which we callblock cipheroracle that models an ideally secure
block cipher, and show that for any permutationPT , there is another permutation̂PB

such that invertinĝPB is as hard as invertingPT . The idea and the technique of sim-
ulating a TDP oracleT (used in a constructed primitive) with a block cipher oracle
is previously used by Lindell and Zarosim [30] who showed the black-box separation
of an adaptively secure oblivious transfer protocol from a TDP. Furthermore, by using
the result by Holenstein et al. [23] who showed that a random invertible permutation is
simulatable by the fourteen-round Feistel-network construction of a permutation [32]
in which each round function is an independent random function,2 we can simulate
the block cipher oracleB in the permutation̂PB with another oracleR (which we call
round function oracle) that consists only of random functions (not permutations). More
specifically, we show that for any permutation̂PB, there is another permutatioñPR

such that inverting̃PR is as hard as invertinĝPB. Finally, using the previous results
by Rudich [43], Kahn et al. [26], and Chang et al. [9] on the black-box separations of

2 More precisely, [23] shows that the fourteen-round Feistel-network isindifferentialble[34]
from an (invertible) random permutation. The statement that a constant-round Feistel-network
was sufficient was originally suggested by Coron et al. [10]. However, it was pointed out in
[23] that the original proof in [10] for six rounds had a gap and was not completed.

a OWP from random (injective) functions, we can show that there is a good inverter
(which uses thePSPACE oracle) for any permutatioñPR.3 Then, this inverter can be
used to invert not onlỹPR but alsoPT , and thus any permutationPT is inverted using
thePSPACE oracle.

It is already known that a OWP is black-box separated from a one-way function
(OWF) [43, 26] and that there is a black-box construction of a pseudorandom permu-
tation, which is a standard security notion of a block cipher, from a OWF [22, 16, 32].
Therefore, one might wonder that if we give up the “ideal security” of a TDP and just
consider one-way TDPs, then we may be able to conclude that there is no black-box
construction of a OWP from a one-way TDP, as soon as we reduce a TDP-based permu-
tationPT to a block-cipher-based permutationP̂B. However, that a OWP is separated
from a OWF in a black-box manner does not immediately mean that our block-cipher-
based permutation̂PB cannot be proved one-way, because our block-cipher oracleB
contains random permutations which may helpP̂B to be one-way (with some clever use
of permutations inB). This is the main reason why we further reduce the block-cipher-
based permutation̂PB to a random function-based permutationP̃R by using the result
of [23], so that random permutations in the oracleB do not help achieving a OWP any
better than random “functions” in the oracleR do.

1.4 Related Work

Up to now, a number of black-box separations among various kinds of primitives have
been established. For an excellent survey of the literature and the techniques of black-
box separations, we refer the reader to [48]. Here, we review black-box separations
related to OWPs and TDPs.

Regarding the black-box separations of a OWP from other primitives, it is known
that it is separated from one-way functions [43, 26], from injective trapdoor functions
and a private information retrieval protocols [9], and from length-increasing injective
one-way functions (even if they are just1-bit-increasing) [33].

On the other hand, recently, several black-box separation results have shown the
limitations of a (one-way) TDP as a base primitive for constructing and/or proving the
security of several “highly functional” cryptographic primitives or basic primitives with
special functional/security properties. Those include the impossibility of constructing
identity-based encryption [8], a wide class of predicate encryption [27], lossy trap-
door functions [42], trapdoor functions secure under correlated inputs [44], encryption
schemes secure under key-dependent inputs [21], adaptively secure oblivious transfer
protocols [30], non-interactive or perfectly binding commitment schemes secure under
selective-opening attacks [2], verifiable random functions [12], a natural class of three-
move blind signature schemes [13], succinct non-interactive argument systems [14],
constant-round sequentially witness-hiding special-sound protocols for unique witness

3 We note that a random function (which is length preserving) is indistinguishable from a ran-
dom permutation for any (even computationally unbounded) algorithm that can make only
polynomially many queries to the random function (even in the presence of thePSPACE or-
acle), but this fact does not mean that we can construct a OWP from a random function in a
black-box way (in fact, it is not possible [43, 26, 9, 33]).

relations [39], and many of the cryptographic primitives that admit the so-called sim-
ulatable attacks [46]. We note that in fact, the results of [21, 2, 13, 14, 39, 46] rule out
the possibility of constructions (and/or, security proofs) of the target primitives based
not only on one-way TDP but also on much broader class of primitives or assumptions,
such as all falsifiable assumptions [36].

Black-box separations for a particular construction that uses a TDP as a building
block are also known. The unforgeability of the FDH signature scheme [4] cannot be
based on an ideal TDP, if the TDP is treated as a black-box [11]. [6] shows a similar
result for the PSS signature scheme, and [29] shows the impossibility of basing chosen
ciphertext security of padding-based encryption schemes which include many known
TDP-based encryption schemes such as the OAEP encryption scheme [3], on the (ideal)
security of the building block TDP.

1.5 Paper Organization

The rest of this paper is organized as follows. In Section 2 we review some basic defi-
nitions and terminology. In Section 3, we show our main result on the black-box sepa-
ration of a OWP from an ideal TDP, and we discuss further results, and the possibility
of more general separation results in Section 4.

2 Preliminaries

In this section, we review the basic notation and the definitions of primitives.

Basic Notation.N denotes the set of natural numbers. Forn ∈ N, we define[n] =
{1, . . . , n}. If x andy are strings, then “|x|” denotes the bit-length ofx, and “(x||y)”
denotes a concatenation ofx andy. “x ← y” denotes an assignment ofy to x. If S
is a set then “|S|” denotes its size, and “x ←R S” denotes thatx is chosen uniformly
at random fromS. “PPTA” denotesprobabilistic polynomial time algorithm. If A is a
probabilistic algorithm, then “z ←R A(x, y, . . .)” means thatA takesx, y, . . . as input
and outputsz, and “z ← A(x, y, . . . ; r)” means thatA takesx, y, . . . as input, usesr
as an internal randomness, and outputsz. For an oracle algorithmAO, we say thatAO
has query complexityq if A makes queries to the oracleO at mostq times. “Permn”
denotes the set of all permutations over{0, 1}n. If f is a function andD is its domain,
then we defineRange(f) = {f(x)|x ∈ D}.

A function f : N → [0, 1] is said to benegligibleif f(k) < 1/p(k) for all positive
polynomialsp(k) and all sufficiently largek ∈ N, and a functiong : N→ [0, 1] is said
to beoverwhelmingif the functionf(k) = 1− g(k) is negligible.

2.1 One-Way Permutations

Typically, security of a OWP is defined so that the security parameterk is its input
length. However, since later we consider constructions of a OWP from another primi-
tive, it will be convenient to consider the security parameter and the input length of the
constructed permutation separately, so that the one-wayness advantage of an adversary

and the input length of the constructed permutation are a function of the security pa-
rameter of the building block. Moreover, it is also convenient to identify a (one-way)
permutation with a PPTA that computes it. Therefore, we take these approaches for the
definition of a OWP.

Let ℓ = ℓ(k) be a positive polynomial andP be a PPTA such thatP is a permutation
over{0, 1}ℓ. We say that a PPTAP is aone-way permutation (OWP) for lengthℓ if the
following advantage functionAdvOWPP,A,ℓ(k) is negligible for any PPTA adversaryA (we
assume thatP is also given1k but omit to write it for simplicity):

AdvOWPP,A,ℓ(k) = Pr[x∗ ←R {0, 1}ℓ; y∗ ← P(x∗);x′ ←R A(1k, y∗) : x′ = x∗].

2.2 One-Way Permutation Families

A family of permutations (permutation family)PF consists of the following three PP-
TAs (Gen, Eval, Samp): Gen is the probabilistic evaluation-key generation algorithm
which takes1k as input and outputs an evaluation-keyek. (An evaluation-key is also
called an index.)Eval is the deterministic evaluation algorithm which takesek and an
elementx ∈ Dek as input, and outputsy ∈ Dek, whereDek is the domain ofEval(ek, ·)
that is determined byek. Samp is the probabilistic sampling algorithm which takesek
as input, and outputs a (random) elementx ∈ Dek. As a correctness requirement, we
require that for allk ∈ N and allek ←R Gen(1

k), (i) Samp(ek) is a uniform distribution
overDek, and (ii)Eval(ek, ·) is a permutation overDek.

We say thatPF = (Gen,Eval, Samp) is aone-way permutation family (OWPF)if
the following advantage functionAdvOWPFPF,A(k) is negligible for any PPTA adversaryA:

AdvOWPFPF,A(k) = Pr[ek ←R Gen(1
k);x∗ ←R Samp(ek); y∗ ← Eval(ek, x∗);

x′ ←R A(ek, y∗) : x′ = x∗].

If a permutation familyPF remains one-way even whenA is given the randomness
r that is used to generateek = Gen(1k; r), then we callPF a public-coin4 OWPF, and
in order to distinguish it from an ordinary one, we call an ordinary OWPF asecret-coin
OWPF.

Canonical Domain Sampling Property.We say that a OWPFPF has thecanonical
domain samplingproperty [17] if the following two conditions are satisfied:

1. (Recognizable domain)There exists a PPTA which, on inputek andx, tells if
x ∈ Dek or not.

2. (Dense domain)There exist a polynomial time computable functionℓ = ℓ(k) and
a positive polynomialp = p(k) so thatDek ⊆ {0, 1}ℓ and|Dek| > 2ℓ/p.

Goldreich et al. [17] showed that a OWP can be constructed in a black-box man-
ner from a public-coin OWPF with the above property, and we briefly review their
construction. Given a public-coin OWPF(Gen,Eval, Samp) with the canonical domain

4 Goldreich et al. [17] called this property “augmented one-wayness.” Here we use the name due
to Hsiao and Reyzin [24].

sampling property, whereGen(1k) uses aλ = λ(k)-bit randomness, we construct a
single permutationP for lengthλ + ℓ that works as follows: On input(rg∥z) such
that |rg| = λ and |z| = ℓ, P first calculatesek ← Gen(1k; rg), and then outputs
(rg∥Eval(ek, z)) if z ∈ Dek or (rg∥z) otherwise. ThisP is indeed a permutation, and
can be shown to be weakly one-way. Then, this weak one-wayness can be amplified by
a standard technique (e.g. [47]) to obtain a OWP (with ordinary one-wayness).

2.3 Trapdoor Permutations

A family of trapdoor permutations (TDP) is a special class of secret-coin permuta-
tion family (Gen, Eval, Samp) with the following additional properties: (1) The algo-
rithm Gen is a deterministic polynomial-time algorithm that takes1k and a trapdoor
td ∈ {0, 1}k as input, and outputs a corresponding evaluation-keyek.5 (This process is
denoted by “ek ← Gen(1k, td)”.) (2) There is a deterministicinversionalgorithmInv
which takestd ∈ {0, 1}k and an elementy ∈ Dek as input (whereek = Gen(1k, td)),
and outputsx ∈ Dek such thatEval(ek, x) = y.

Hard Games and Ideal Security.In this paper, we consider “ideal security” of a TDP,
following [11, 29]. Roughly, ideal security of a TDP corresponds to security satisfied
by random permutations.

Let G be a PPTA (called a challenger) that can exchange messages with another al-
gorithm (called an adversary)A by a shared communication tape. We say thatG defines
a game regarding random permutations if bothG andA have access tot independent
random permutationsπ1, . . . , πt over {0, 1}k, wheret = t(k) is a polynomial deter-
mined byG, G interacts withA, and finally outputs a decision bitd. This process is

denoted by “d←R Expt
Gπ1(·),...,πt(·)

RP,Aπ1(·),...,πt(·)(k).” (Here, “RP” stands for “random permuta-
tions.”) We say that the adversaryA wins the gameG if d = 1.

Informally, an oracle PPTAG defines aδ-hard game regarding random permuta-
tions, where0 ≤ δ < 1, if no oracle algorithmA can win the gameG regarding
random permutations with probability significantly better thanδ. Typically, δ = 0 for
“search games” (e.g. one-wayness experiment) orδ = 1/2 for “distinguishing games”
(e.g. security experiment for a pseudorandom generator). We define the advantage of an
adversaryA in a gameG as follows:

AdvGRP,A(k) = Pr[π1, . . . , πt ←R Permk; d←R Expt
Gπ1(·),...,πt(·)

RP,Aπ1(·),...,πt(·)(k) : d = 1].

Then, we define theδ-hardness of the gameG as follows.

Definition 1. We say that a gameG is δ-hard (for some0 ≤ δ ≤ 1) for adversaries with
polynomial query complexityif for any (even computationally unbounded) algorithmA
whose query complexity is at most polynomial, there is a negligible functionµ(k) such
thatAdvGRP,A(k) − δ ≤ µ(k). We call “δ(G)” the hardnessof the gameG and is the
smallest value such thatG is δ-hard for adversaries with polynomial query complexity.

5 It is usual to define theGen algorithm as a probabilistic algorithm so that it takes1k as input,
and outputs a pair(ek, td). However, in terms of existence, a TDP with such definition is
equivalent to one defined in this paper, because without loss of generality we can identify the
randomnessr for generating(ek, td)← Gen(1k; r) with the trapdoor of a TDP.

We stress that unlike [11, 29], our definition of the hardnessδ(G) of a gameG regard-
ing random permutations is with respect tocomputationally unboundedadversaries, and
the restriction on an adversary is only on its query complexity, rather than its running
time. Though this requirement for hard games is stronger than the ones used in [11,
29] (and thus potentially harder to achieve), most security games that areδ-hard for
all PPTAs remainδ-hard for computationally unbounded adversaries with polynomial
query complexity. Examples include one-wayness, claw-freeness [19], and security un-
der t(k)-correlated inputs [42] for any predetermined polynomialt(k). See also [29,
Table 1] for other types of security games that can be captured byδ-hard games. We
note that, sinceG does not have access to inversions of permutations, our definition of
hard games does not capture adaptive one-wayness [38, 28].

A game for a TDP is then defined by replacing the random permutations in aδ-hard
game with instantiations of permutations in the TDP. More specifically, we define the
advantage of an adversaryA in a gameG for a TDPTDP = (Gen,Eval, Samp, Inv) as
follows:

AdvGTDP,A(k) = Pr

[
td1, . . . , tdt ←R {0, 1}k; eki ← Gen(1k, tdi) for i ∈ [t]

d←R Expt
GEval(ek1,·),...,Eval(ekt,·)

TDP,A(ek1,...,ekt) (k)
: d = 1

]

Note that in the above experiment, the interface ofG is exactly the same as that of a
game defined for random permutations. However, the interface ofA is changed. Un-
like the games regarding random permutations, we do not provideA with oracle ac-
cess toEval(eki, ·)’s because it gets evaluation keys{eki} and thus can compute each
Eval(eki, ·) by itself.

Definition 2. We say thatTDP is secure for gameG if for all PPTAsA, there is a
negligible functionµ(k) such thatAdvGTDP,A(k) − δ(G) ≤ µ(k). Furthermore, we say
thatTDP is an ideal TDPif it is secure for all games.

Note that the definition of the hard games for a TDP considers only PPTA adversaries,
although the hardnessδ(G) is defined with respect to (computationally unbounded)
adversaries with polynomial query complexity.

It has been observed in [11] that ideal security is too strong to be satisfied by TDPs
implemented by PPTAs. However, we will show theimpossibilityof constructing a
OWP from an ideal TDP in a black-box manner, and thus ruling out a black-box con-
struction from a TDP with such strong security makes our resultstronger.

3 Black-box Separation of OWP from Ideal TDP

In this section, we show our main result: there is no black-box construction of a OWP
from an ideal TDP.

We first recall the formal definition of the type of black-box constructions that we
will rule out, which is called afully-black-box construction (reduction) in the taxonomy
of Reingold et al. [41]. (The definition can be easily adapted to other primitives.)

Definition 3. We say that there exists a fully-black-box construction of a OWP from
an ideal TDP, if there exist a positive polynomialℓ = ℓ(k), an oracle PPTAP (called

“ construction”), and an oracle PPTAR (called “reduction”) such that for all tuples
of algorithmsTDP = (Gen,Eval,Samp, Inv) that implement a TDP with security pa-
rameterk and all algorithmsA (where each algorithm inTDP andA are of arbitrary
complexity) the following two conditions hold:

(Correctness): PTDP is a permutation over{0, 1}ℓ.
(Security): If AdvOWPPTDP,A,ℓ(k) is non-negligible, then so isAdvGTDP,RA,TDP(k) − δ(G)

for some gameG.

The main result in this paper is the following.

Theorem 1. There is no fully-black-box construction of a OWP from an ideal TDP.

Recall that the security games for most of the security notions of a TDP, such as (or-
dinary) one-wayness, security undert(k)-correlated-inputs [42] for any predetermined
polynomial t = t(k), and claw-freeness [19], can be captured by theδ-hard games.
Since “a (fully-)black-construction of a primitive from another primitive” is a transitive
relation, we obtain the following as a corollary of Theorem 1.

Corollary 1. There is no fully-black-box construction of a OWP from a one-way TDP6,
a TDP secure undert-correlated-input for any predetermined polynomialt, or a claw-
free TDP.

To prove Theorem 1, we will use the following “two oracle separation” technique
[15, 24] (which is an extension from the “one oracle separation” by [25, 41]). Specifi-
cally, to prove Theorem 1, it is sufficient to show the following lemma.

Lemma 1. (adapted from [15, 24].) LetPSPACE be an oracle for aPSPACE-complete
problem. Assume there exist a setO of oracles and a tuple of oracle PPTAsTDP =
(Gen,Eval,Samp, Inv) that satisfy the following three conditions:

(1): TDPO = (GenO,EvalO, SampO, InvO) is correct as a TDP for allO ∈ O.
(2): For any gameG and for any oracle PPTAA, EO←RO[Adv

G
TDPO,AO,PSPACE(k)] −

δ(G) is negligible.
(3): For any positive polynomialℓ = ℓ(k) and for any oracle PPTAP, if PO is a

permutation over{0, 1}ℓ for all O ∈ O, then there exists an oracle PPTAA such
thatEO←RO[Adv

OWP
PO,AO,PSPACE,ℓ(k)] is overwhelming.

Then, there is no fully-black-box construction of a OWP from an ideal TDP.

In order to use Lemma 1 for showing our main result, we define the setT of “TDP”
oraclesT below, which will be used asO in the above lemma. Next, in Section 3.1, we
show Lemmas 2 and 3 which guarantee that there is a tuple of oracle PPTAsTDP =
(Gen,Eval,Samp, Inv) such thatT andTDP satisfy the conditions (1) and (2) of the
above lemma, respectively. Then, in Section 3.2, we show Lemma 4 which guarantees
that the setT satisfies the condition (3) of the above lemma. Theorem 1 follows by
combining these lemmas.

6 Actually, permutations in our TDP have a trivial domain{0, 1}k and thus the TDP satisfies
doubly enhanced one-wayness[18]. Furthermore, given a2k-bit string ek, whetherE(ek, ·)
defines a permutation can also be checked easily by checking the result ofE(ek, 0k), and thus
it also satisfies thecertifiedproperty [5]. Thus, our result also rules out constructions from a
one-way TDP with these properties.

TDP OracleT . TheTDP oracleT models an ideally secure TDP whose evaluation-
key space is sparse. Formally, a TDP oracleT consists of the following three suboracles
(G, E ,D):

G : {0, 1}k → {0, 1}2k: (Corresponding to the key generation for the TDP) This is an
injective function that takestd ∈ {0, 1}k as input, and returnsek ∈ {0, 1}2k.

E : {0, 1}2k×{0, 1}k → {0, 1}k∪{⊥}: (Corresponding to evaluation) For everyek ∈
Range(G), E(ek, ·) is a permutation over{0, 1}k, and for everyek /∈ Range(G) and
everyα ∈ {0, 1}k, E(ek, α) = ⊥.

D : {0, 1}k × {0, 1}k → {0, 1}k: (Corresponding to inversion) This function takes
td ∈ {0, 1}k andβ ∈ {0, 1}k as input, and returnsα ∈ {0, 1}k such thatE(G(td), α)
= β.

We denote byT the set consisting of all possible TDP oraclesT that satisfy the above
syntax.

3.1 Ideal Trapdoor Permutation Based onT

Here, we show that there exists an ideal TDP that uses a TDP oracleT = (G, E ,D) ∈ T.
Consider the following tupleTDPT = (GenT ,EvalT ,SampT , InvT) of oracle PPTAs,
which are constructed straightforwardly fromT :

– GenT (1k, td): Computeek ← G(td) and output the evaluation-keyek.
– EvalT (ek, x): Computey ← E(ek, x) and outputy. (We define the domainDek of
EvalT (ek, ·) to be{0, 1}k for all ek ∈ Range(G).)

– SampT (ek): Pick x ∈ {0, 1}k uniformly at random, and outputx. (Note that this
algorithm does not useT at all.)

– InvT (td, y): Computex← D(td, y) and outputx.

RegardingTDPT described above, the following two lemmas can be shown:

Lemma 2. For anyT ∈ T, TDPT is correct as a TDP.

Lemma 3. For all gamesG and any oracle PPTA adversaryA, there exists a negligible
functionµ(k) such thatET←RT[Adv

G
TDPT ,AT ,PSPACE(k)]− δ(G) ≤ µ(k).

Lemma 2 is immediate from the definition of the TDP oracleT . The formal proof of
Lemma 3 is given in the full version (but we will give a proof sketch below). Note that
if we pick T = (G, E ,D) uniformly fromT, thenG is a random injective function that
is length-doubling, and every permutationE(ek, ·) with ek ∈ Range(G) is an indepen-
dent random permutation. Kiltz and Pietrzak [29] showed that a similar construction of
a TDP oracle whose “key generation oracle” is also a random permutation is ideally se-
cure even against computationally unbounded adversary that makes only polynomially
many queries. Our proof of Lemma 3 is similar to theirs.

Proof Sketch of Lemma 3.Fix an arbitraryδ-hard gameG, and lett = t(k) be a
polynomial implicitly determined byG. Fix also an arbitrary PPTA adversaryA.

The expectation (over the choice ofT) of the advantage of the adversaryA attacking
TDPT = (GenT , EvalT , SampT , InvT) in the gameG (in the presence of thePSPACE
oracle) can be written as follows:

E
T←RT

[
AdvGTDPT ,AT ,PSPACE(k)

]
= E
T←RT

[
Pr

[
td∗1, . . . , td

∗
t ←R {0, 1}k; ek∗i ← GenT (1k, td∗i) for i ∈ [t];

d←R Expt
GEvalT (ek∗

1 ,·),...,EvalT (ek∗
t ,·)

TDPT ,AT ,PSPACE(ek∗
1 ,...,ek

∗
t)
(k)

: d = 1

]]

= Pr

[
T ←R T; td∗1, . . . , td∗t ←R {0, 1}k; ek∗i ← G(td∗i) for i ∈ [t];

d←R Expt
GE(ek∗

1 ,·),...,E(ek∗
t ,·)

TDPT ,AT ,PSPACE(ek∗
1 ,...,ek

∗
t)
(k)

: d = 1

]
.

Let us denote byẼxpt
G

TDPT,AT,PSPACE(k) the experiment in the probability in the last
equation.

Now, consider the following two games.

Game 1: This is the ordinaryδ-hard gameG for TDPT , in which sampling of the

oracleT fromT is also taken into account, i.e.̃Expt
G

TDPT,AT,PSPACE(k).
Game 2: Same as Game 1, except thatA’s queries of the following types are answered

with ⊥: (i) a G-query td∗i for somei ∈ [t], and (ii) aD-query(td∗i , ∗) for some
i ∈ [t].

For i ∈ {1, 2}, let Succi be the event thatA wins (i.e.d = 1 occurs) in Gamei. By
definition we haveET←RT[Adv

G
TDPT ,AT ,PSPACE(k)] = Pr[Succ1]. Furthermore, we have

E
T←RT

[AdvGTDPT ,AT ,PSPACE(k)]− δ(G) = Pr[Succ1]− δ(G)

≤ |Pr[Succ1]− Pr[Succ2]|+ Pr[Succ2]− δ(G). (1)

In the full version, we will show how to upperbound each term in the right hand side of
the inequality (1), which will prove Lemma 3. Below we explain the sketches for how
to show these.
|Pr[Succ1] − Pr[Succ2]| can be shown to be negligible, because the adversaryA,

who can make only polynomially many queries, cannot tell the difference between
Game 1 and Game 2 (except with negligible probability). More specifically, Game 1
and Game 2 differ only in the response toA’s G-queries andD-queries that contain
the preimages{td∗i }i∈[t] of the evaluation keys{ek∗i }i∈[t], and thus in order forA to
distinguish these games,A has to find one of{td∗i }i∈[t]. However, intuitively, finding
any of the preimages{td∗i }i∈[t] is hard because the TDP oracleT is chosen randomly
and especially the functionG is a random injective function, and we will formally show
that this intuition works.

Pr[Succ2] − δ(G) can be shown to be negligible, roughly because Game 2 can be
perfectly simulated by another computationally unbounded adversaryS with polyno-
mial query complexity that interacts with the PPTA (challenger)G for random permu-
tations(not for the TDPTDPT), in such a way thatAdvGRP,S(k) = Pr[Succ2]. But by

the assumption thatG is a δ-hard game,AdvGRP,S(k) − δ(G) = Pr[Succ2] − δ(G) is
negligible.

This completes the proof sketch of Lemma 3. ⊓⊔

3.2 Breaking Any Candidate of One-Way Permutation Based onT

Here, we show that any candidate of a OWPPT based on a TDP oracleT ∈ T can be
broken by some oracle PPTA almost perfectly (using thePSPACE oracle). Specifically,
this subsection is devoted to proving the following lemma.

Lemma 4. Let ℓ = ℓ(k) be a positive polynomial andP be an oracle PPTA such that
PT is a permutation over{0, 1}ℓ for all T ∈ T. Then there exists an oracle PPTAA
such thatET←RT[Adv

OWP
PT ,AT ,PSPACE,ℓ(k)] is overwhelming.

To prove Lemma 4, we need some further notations, two other oracles thanT , and
several intermediate lemmas. Thus, we first introduce them, and in the last of this sub-
section show the proof of Lemma 4. The intuitive explanation on how the above lemma
is proved can be found in Section 1.3.

Further Notations.For notational convenience, we introduce two notations. LetO be
a set of oraclesO, ℓ = ℓ(k) be a positive polynomial, andP andA be oracle PP-
TAs. If PO is a permutation over{0, 1}ℓ for all oraclesO ∈ O, then we denote by

Ẽxpt
OWP

PO,AO,PSPACE,ℓ(k) the following experiment:

[O ←R O; x∗ ←R {0, 1}ℓ; y∗ ← PO(x∗); x′ ←R AO,PSPACE(1k, y∗)].

Note thatẼxpt
OWP

PO,AO,PSPACE,ℓ(k) includes sampling an oracleO fromO.

Then, we definẽAdv
OWP

PO,AO,PSPACE,ℓ(k) := EO←RO[Adv
OWP
PO,AO,PSPACE,ℓ(k)], i.e.,

Ãdv
OWP

PO,AO,PSPACE,ℓ(k)

= Pr[O ←R O;x∗ ←R {0, 1}ℓ; y∗ ← PO(x∗);x′ ←R AO,PSPACE(1k, y∗) : x′ = x∗].

(Our goal in this subsection is to show that̃Adv
OWP

PT,AT,PSPACE,ℓ(k) is overwhelming.)

Block Cipher OracleB. Here we introduce a “block cipher” oracleB which models
an ideally secure block cipher (or, keyed invertible permutation) whose key space is
sparse. Formally, a block cipher oracleB consists of the following three suboracles
(Ĝ,P,P−1):

Ĝ : {0, 1}k → {0, 1}2k: (Corresponding to the key generation for the block cipher)
This is an injective function that takestd ∈ {0, 1}k as input, and returnsek ∈
{0, 1}2k.

P : {0, 1}2k×{0, 1}k → {0, 1}k∪{⊥}: (Corresponding to encryption) For everyek ∈
Range(Ĝ), P(ek, ·) is a permutation over{0, 1}k, and for everyek /∈ Range(Ĝ)
and everyα ∈ {0, 1}k, P(ek, α) = ⊥.

P−1 : {0, 1}2k × {0, 1}k → {0, 1}k ∪ {⊥}: (Corresponding to decryption) For ev-
ery ek ∈ Range(Ĝ), P−1(ek, ·) is the inversion ofP(ek, ·), and for everyek /∈
Range(Ĝ) and everyβ ∈ {0, 1}k, P−1(ek, β) = ⊥.

We denote byB the set consisting of all possible block cipher oraclesB that satisfy the
above syntax.

Relationship betweenT andB. We will use the following simple fact shown by Lindell
and Zarosim [30].

Lemma 5. ([30]) Let ϕ be the mapping that maps a block cipher oracleB = (Ĝ,P,
P−1) ∈ B to a tuple of oraclesϕ(B) = (G, E ,D), where the suboraclesG, E , andD
are defined in the following way: For alltd ∈ {0, 1}k, ek ∈ {0, 1}2k, α ∈ {0, 1}k and
β ∈ {0, 1}k, we let

G(td) := Ĝ(td), E(ek, α) := P(ek, α), and D(td, β) := P−1(Ĝ(td), β).

Then,ϕ is a bijection fromB toT.

Round Function OracleR. Here, we introduce a “round function” oracleR which
models a set of “round functions” in the Feistel-network construction of permutations
[32] (whose evaluation key space is sparse). Formally, a round function oracleR con-
sists of the following two suboracles(G̃,F):

G̃ : {0, 1}k → {0, 1}2k: (Corresponding to the key generation for each round func-
tion) This is an injective function that takestd ∈ {0, 1}k as input, and returns
ek ∈ {0, 1}2k.

F : [14] × {0, 1}2k × {0, 1}k/2 → {0, 1}k/2 ∪ {⊥}: (Corresponding to the round
functions in the Feistel-network). For every indexi ∈ [14] andek ∈ Range(G̃),
F(i, ek, ·) is a function fromk/2 bit to k/2 bit, and for everyek /∈ Range(G̃) and
every(i, γ) ∈ [14]× {0, 1}k/2, F(i, ek, γ) = ⊥.

We denote byR the set consisting of all possible round function oraclesR that satisfy
the above syntax.

Relationship betweenB andR. Holenstein et al. [23] showed that the random oracle
model and the ideal cipher model are equivalent. (The statement itself was posed by
Coron et al. [10].) More concretely, they proved that a random invertible permutation
can be simulated by the fourteen-round Feistel-network construction of a permutation in
which each round function is an independent random function. (Technically, this means
that the latter isindifferentiable[34] from the former.) Based on their result, we can also
construct oracle PPTAsC andS such that(CR,R) and(B, SB) are indistinguishable.

More formally, consider the following PPTAC that, given access toR = (G̃,F) ∈
R, tries to simulate a block cipher oracleCR = (Ĝ,P,P−1) as follows:

Ĝ(·): DefineĜ(·) = G̃(·).
P(·, ·): On input(ek, α) ∈ {0, 1}2k × {0, 1}k, check ifek ∈ Range(G̃) by making an
F-query(1, ek, 0k/2). If the answer fromF is⊥ (meaningek /∈ Range(G̃)), then
return⊥. Otherwise, regardα asα = (L0||R0) so that|L0| = |R0| = k/2. Then,
for eachi ∈ [14], computeLi ← Ri−1 andRi ← F(i, ek,Ri−1) ⊕ Li−1, and
finally outputβ ← (L14||R14).

P−1(·, ·): On input(ek, β) ∈ {0, 1}2k × {0, 1}k, check ifek ∈ Range(G̃) as above.
If ek /∈ Range(G̃), then return⊥. Otherwise, compute and output the inversion of
P(ek, ·) usingF .

Constructed as above, it is guaranteed thatCR ∈ B for all R ∈ R, because the Feistel-
network construction yields a permutation no matter what round functions are used.
Moreover, the result in [23] yields the following.

Lemma 6. (follows from [23].) LetC be the oracle PPTA as above. Then, for any
polynomialq = q(k), there exists an oracle PPTAS such that for all (computationally
unbounded) oracle algorithmsD making at mostq queries, the following difference is
negligible:

| Pr
R←RR

[DCR,R(1k) = 1]− Pr
B←RB

[DB,S
B
(1k) = 1]|.

TDP OracleT Can Be Simulated.Here, we show that if there exists a TDP-based
permutationPT , then so does a “random function”-based permutationP̃R such that
inverting P̃R is as hard as invertingPT . Furthermore, the latter is true even in the
presence ofPSPACE oracle.

Lemma 7. Let ℓ = ℓ(k) be a positive polynomial andP be an oracle PPTA such that
PT is a permutation over{0, 1}ℓ for all T ∈ T. Then, there exists another oracle PPTA
P̃ that satisfies the following two properties: (1) For allR ∈ R, P̃R ∈ Permℓ. (2) For
any oracle PPTAÃ, there exist another oracle PPTAA and a negligible functionµ(k)

such thatÃdv
OWP

PT,AT,PSPACE,ℓ(k) ≥ Ãdv
OWP

P̃R,ÃR,PSPACE,ℓ(k)− µ(k).

Proof of Lemma 7. (The intuitive explanation can be found in Section 1.3.) Letℓ and
P be as stated in the lemma. First, define the “intermediate” oracle PPTAP̂ by P̂B(·) =
Pϕ(B)(·), whereϕ is the bijection fromB to T due to Lemma 5. This construction
of P̂ also guarantees thatPT (·) = P̂ϕ−1(T)(·) whereϕ−1 is the inversion function
of ϕ (i.e. ϕ−1 is also a bijection fromT to B). Next, define the oracle PPTÃP by
P̃R(·) = P̂CR

(·), whereC is the oracle PPTA due to Lemma 6. Then, sincePT ∈ Permℓ

for all T ∈ T, we haveP̂B ∈ Permℓ for all B ∈ B. This in turn guarantees that
P̃R ∈ Permℓ for all R ∈ R, becauseCR ∈ B for all R ∈ R. Therefore,̃P satisfies the
property (1).

Next, we show that̃P satisfies the property (2). Let̃A be an arbitrary oracle PPTA

adversary that runs in the experiment̃Expt
OWP

P̃R,ÃR,PSPACE,ℓ(k) and makes in totalq = q(k)

oracle queries. Note that sincẽA is a PPTA,q is a polynomial. LetS be the simulator
corresponding to the polynomialq, which is guaranteed to exist by Lemma 6, and define
an oracle PPTAÂ(·),(·) (which expects to have access to an oracleB ∈ B and the
PSPACE oracle) byÃS(·),(·). That is, given access to anyB ∈ B and thePSPACE
oracle,ÂB,PSPACE andÃSB,PSPACE behave identically. Since both̃A andS are oracle
PPTAs,Â is also an oracle PPTA and thus makes at most polynomially many queries.

Then, consider the following sequence of games.

Game 1 This is the ordinary experiment̃Expt
OWP

P̃R,ÃR,PSPACE,ℓ(k) thatÃ runs in. That is:

[R←R R; x∗ ←R {0, 1}ℓ; y∗ ← P̃R(x∗); x′ ←R ÃR,PSPACE(1k, y∗)].
Game 2 This game is defined as follows:

[B ←R B; x∗ ←R {0, 1}ℓ; y∗ ← P̂B(x∗); x′ ←R ÂB,PSPACE(1k, y∗)].

Game 3 This game is defined as follows:
[T ←R T; x∗ ←R {0, 1}ℓ; y∗ ← PT (x∗); x′ ←R Âϕ−1(T),PSPACE(1k, y∗)].

Game 4 Same as Game 3, except that whenÂ makes aP-query (ek, α) or aP−1-
query(ek, β) such thatek is not an answer to some of̂A’s previousĜ-queries, the
query is answered with⊥.

For i ∈ [4], letSucci be the event thatx′ = x∗ occurs in Gamei. Then we have

ÃdvP̃R,ÃR,PSPACE,ℓ(k) = Pr[Succ1] ≤
∑
i∈[3]

|Pr[Succi]−Pr[Succi+1]|+Pr[Succ4]. (2)

To complete the proof, we upperbound each term in the above inequality.

Claim 1 |Pr[Succ1]− Pr[Succ2]| is negligible.

Proof of Claim 1. We show that we can construct acomputationally unboundedoracle
algorithm (distinguisher)D that, usingP̂ and Ã as its subroutines, makes at mostq
queries, and satisfies

| Pr
R←RR

[DCR,R(1k) = 1]− Pr
B←RB

[DB,S
B
(1k) = 1]| = |Pr[Succ1]− Pr[Succ2]|. (3)

D is given access to two oracles(O1,O2), which is either(CR,R) or (B,SB), and runs
as follows:

DO1,O2(1k): D picksx∗ ←R {0, 1}ℓ, computesy∗ ← P̂O1(x∗), and then simulates
ÃO2,PSPACE(1k, y∗). Note thatD is computationally unbounded, and thus can sim-
ulate thePSPACE oracle perfectly forÃ.
WhenÃ terminates with outputx′, D checks whetherx′ = x∗. If this is the case,
thenD outputs1, otherwise outputs0, and terminates.

The above completes the description ofD. Note that the number of queries thatD
makes is at most the number of queries made byÃ, and thus is at mostq.

Now, consider the case when(O1,O2) = (CR,R). Then it is clear thatD simu-
lates Game 1 perfectly for̃A. In particular, in this case we havêPO1(x∗) = P̂CR

(x∗) =

P̃R(x∗), andÃ is given access toO2 = R andPSPACE as in Game 1. Under this situ-
ation, the probability thatD outputs1 is exactly the same as the probability thatÃ suc-
ceeds in outputting the preimagex∗ underP̃R in Game 1, i.e.PrR←RR[DCR,R(1k) =
1] = Pr[Succ1].

Next, consider the case when(O1,O2) = (B,SB). Recall that we defined̂AB,PSPACE

by ÃSB,PSPACE, and thusÃO2,PSPACE = ÃSB,PSPACE = ÂB,PSPACE. Recall also thatD
can simulatePSPACE perfectly by its computationally unbounded power. Therefore,
in this caseD perfectly simulates Game 2 for̂A. In particular, in this case we have
P̂O1(x∗) = P̂B(x∗), andÂ’s oracle queries are perfectly answered as in Game 2, us-
ingO1 = B andD’s computationally unbounded power. Therefore the probability that
D outputs1 is exactly the same as the probability thatÂ outputsx∗ in Game 2, i.e.
PrB←RB[DB,S

B
(1k) = 1] = Pr[Succ2].

In summary, our distinguisherD makes in totalq queries and satisfies the equation
(3). Thus, Lemma 6 guarantees that|Pr[Succ1] − Pr[Succ2]| is upperbounded to be
negligible. This completes the proof of Claim 1. ⊓⊔

Claim 2 Pr[Succ2] = Pr[Succ3].

Proof of Claim 2. Recall that due to Lemma 5,ϕ (and thusϕ−1) is a bijection between
B andT. Therefore, the uniform distribution overB is equivalent to the distribution of
ϕ−1(T) whenT ←R T. Moreover,PT (·) = P̂ϕ−1(T)(·) for all T ∈ T by definition.
These imply that fromÂ’s view point, all values in Game 2 and those in Game 3 are
distributed identically, and thusPr[Succ2] = Pr[Succ3]. This completes the proof of
Claim 2. ⊓⊔

Claim 3 |Pr[Succ3]− Pr[Succ4]| is negligible.

Proof Sketch of Claim 3.For i ∈ {3, 4}, letFindi be the event that in Gamei, Âmakes
at least oneP- or P−1-query such thatek is not an answer to some of previouŝA’s
Ĝ-queries andek ∈ Range(G). Note that Game 3 and Game 4 proceed identically until
Find3 or Find4 occurs in the corresponding games. Therefore, we have

|Pr[Succ3]− Pr[Succ4]| ≤ Pr[Find3] = Pr[Find4].

Hence, to prove the claim it is sufficient to boundPr[Find4].
Recall that in Game 4 (and in Game 3) the oracleT ∈ T is picked uniformly,

and thusG oracle is a random injective function which is length-doubling. Therefore,
the probability thatFind4 occurs is exactly the same as the probability that an oracle
algorithm with polynomial query complexity, which is given access to a random length-
doubling injective function and the corresponding “membership” function for its range
(this membership function tells if a given value is in the range of the injective function),
finds a “fresh” element that is not obtained by actually making a query to the function
but belongs to its range. However, it is easy to prove that such a probability is negligible
(as long as the query complexity of the algorithm is at most polynomial), and this in turn
boundsPr[Find4] to be negligible. (The formal proof is provided in the full version.)
This completes the proof sketch of Claim 3. ⊓⊔

Claim 4 There exists an oracle PPTAA such thatPr[Succ4] = Ãdv
OWP

PT,AT,PSPACE,ℓ(k).

Proof of Claim 4. Using the oracle PPTAÂ as a building block, we construct an

oracle PPTAA that runs inẼxpt
OWP

PT,AT,PSPACE,ℓ(k): A is given(1k, y∗) as input, where
y∗ = PT (x∗) for a randomly chosenx∗ ∈ {0, 1}ℓ andT ∈ T, given access toT and
PSPACE, and runs as follows:

AT ,PSPACE(1k, y∗): A generates an empty listL used to store “known”G-query/answer
pairs, and then runŝA(1k, y∗).
A responds to the queries from̂A as follows:

– For aĜ-querytd,A forwards it toG, receivesek fromG, and returns thisek to
Â.A also stores the pair(td, ek) into the listL.

– For aP-query (ek, α), if there is no entry of the form(∗, ek) in L, thenA
responds with⊥. Otherwise,A makes aE-query(ek, α), receivesβ from E ,
and finally returns thisβ to Â.

– For aP−1-query (ek, β), if there is no entry of the form(∗, ek) in L, then
A responds with⊥. Otherwise,A retrievestd that corresponds toek from L,
makes aD-query(td, β), receivesα fromD, and finally returns thisα to Â.

– For aPSPACE-query,A answers to it by usingA’s ownPSPACE oracle.
WhenÂ terminates with outputx′,A also terminates with output thisx′.

It is easy to see thatA perfectly simulates Game 4 for̂A in which the oracles given
access toÂ areϕ−1(T) (that works as specified in Game 4) andPSPACE. Under this
situation, whenÂ succeeds in outputting the valuex∗ such that̂Pϕ−1(T)(x∗) = y∗,
sincePT (·) = P̂ϕ−1(T)(·) for all T ∈ T by definition,A also succeeds in outputting

the preimage underPT . Therefore, we havẽAdv
OWP

PT,AT,PSPACE(k) = Pr[Succ4]. This com-
pletes the proof of Claim 4. ⊓⊔

Claims 1 to 4 imply that for any oracle PPTÃA, there exist an oracle PPTAA and a

negligible functionµ(k) such that̃Adv
OWP

PT,AT,PSPACE,ℓ(k) ≥ Ãdv
OWP

P̃R,ÃR,PSPACE,ℓ(k) − µ(k),
and thus the property (2) is satisfied as well. This completes the proof of Lemma 7.⊓⊔

“Mimicking” Algorithm N and Good InverterQ for N. The combination of the results
by Rudich [43] and Kahn et al. [26] shows that any permutation which has oracle ac-
cess to a set of random functions can be inverted using thePSPACE oracle. On the
other hand, Lemma 7 shows that for any TDP-based permutationPT , there is another
“random function”-based permutatioñPR such that ifP̃R can be inverted using the
PSPACE oracle, then so can bePT . Here, it seems that by combining the results [43,
26] and Lemma 7 we can invert the “random function”-based permutationP̃R using
thePSPACE oracle. However, there is a subtle issue here: The suboracleF in a round
function oracleR is not a pure random function, even ifR is sampled randomly from
the setR. Specifically,F returns an “invalid” symbol⊥ for some inputs, and thus we
cannot directly use the results [43, 26].

For convenience, let us refer to a query to the suboracleF in a round function oracle
R ∈ R asinvalid if the answer to the query is⊥, and an oracle algorithmN that expects
to access to an oracleR ∈ R aslegal if NR never makes an invalid query for allR ∈ R
and for all inputs.

To resolve the subtlety on invalid queries, we will use the approach by Chang et al.
[9]: we show two lemmas that enable us to finally show that a TDP-based permutation
can be inverted almost perfectly. The first lemma below (Lemma 8) roughly states that
for a permutatioñPR based on a round function oracleR, there is a “mimicking” algo-
rithm NR which is legal and, for most inputs, computes almost the same result asP̃R

for most oraclesR ∈ R.

Lemma 8. Let ℓ = ℓ(k) > 0 be a polynomial and̃P be an oracle PPTA such that̃PR

is a permutation over{0, 1}ℓ for all R ∈ R. Then, there exists an oracle PPTAN (that
expects to access to an oracle fromR) with the following properties: (i)N is legal, and
(ii) For sufficiently largek’s, for at least1 − 2 · 2−k/6 fraction of stringsy ∈ {0, 1}ℓ,
(NR)−1(y) = (P̃R)−1(y) holds for at least1− 2−k/3 fraction of oraclesR ∈ R.

The formal proof proceeds closely to that of [9, Claim 3 and Lemma 3], and is given in
the full version. We give a proof sketch.

Proof Sketch of Lemma 8.Let ℓ andP̃ be as stated in the lemma. UsingP̃ as a subrou-
tine, we construct the oracle PPTAN that satisfies the properties (i) and (ii).N takes a
stringx ∈ {0, 1}ℓ as input, has access to an oracleR ∈ R, and runs as follows:

NR(x): N firstly generates an empty listL into which “known” evaluation-keysek ∈
Range(G̃) will be stored, and then runs̃P(x). N responds to queries from̃P as
follows:

– WhenP̃ makes ãG-querytd ∈ {0, 1}k, N forwards it toG̃, receives a resultek
from G̃, and returns thisek to P̃. N also storesek into the listL.

– WhenP̃ makes aF-query(i, ek, γ) ∈ [14]×{0, 1}2k ×{0, 1}k/2, N responds
with ⊥ if ek /∈ L. Otherwise,N forwards(i, ek, γ) to F , receives an answer
δ ∈ {0, 1}k/2 fromF , and returnsδ to P̃.

WhenP̃ terminates with outputy, N also terminates with outputy.

The above completes the description ofN. Note thatN is legal, becauseN’s F-queries
always satisfyek ∈ Range(G̃). Hence, the property (i) is satisfied.

To show that the aboveN satisfies the property (ii), we will show the following
two claims that together imply what we want (the formal proofs are given in the full
version), and hence enable us to complete the proof of Lemma 8:

Claim 5 For any stringx ∈ {0, 1}ℓ, PrR←RR[N
R(x) ̸= P̃R(x)] ≤ 2−k/2 holds for

sufficiently largek’s.

Claim 6 For sufficiently largek’s, the following holds. There are at least1− 2 · 2−k/6
fraction of stringsy ∈ {0, 1}ℓ such that(NR)−1(y) = (P̃R)−1(y) holds for at least
1− 2−k/3 fraction of oraclesR ∈ R.

Claim 5 can be shown in a similar manner to the negligible upperbound ofPr[Find4] in
the proof of Claim 3. Specifically, it is clear from the description ofN that for any input
x ∈ {0, 1}ℓ, the output ofN and that of̃P agree unless̃P makes aF-query(∗, ek, ∗)
such thatek is not an answer tõP’s previousG̃-queries. Therefore, “NR(x) ̸= P̃R(x)”
must mean that̃P makes such aF-query. However, ifR is chosen uniformly,G̃ is
a random length-doubling injective function, and thus the probability ofP̃ finding a
“fresh” element that belongs toRange(G̃) is exponentially small. (Here,F works as the
“membership” oracle regarding the range ofG̃, but it does not help much.)

For showing Claim 6, consider the Boolean matrixM =
(
M(y,R)

)
whose rows are

indexed byy ∈ {0, 1}ℓ and whose columns are indexed byR ∈ R, so thatM(y,R) = 1

if and only if (NR)−1(y) ̸= (P̃R)−1(y). By Claim 5, we know that for sufficiently
largek’s, we have that for eachx ∈ {0, 1}ℓ, NR(x) ̸= P̃R(x) holds for at most2−k/2

fraction of oraclesR ∈ R. Since any such pair(x,R) contributes at most two1’s to the
matrixM (namely, to the entriesM(NR(x),R) andM(P̃R(x),R)), the total fraction of1’s

in M is at most2 · 2−k/2. That is,Pry←R{0,1}ℓ,R←RR[M(y,R) = 1] ≤ 2 · 2−k/2. Then,
a simple counting argument yields Claim 6.

This completes the proof sketch of Lemma 8. ⊓⊔

We note that even if̃PR is a permutation,NR in Lemma 8 is not guaranteed to
be a permutation (althoughNR is very close to a permutation), and this is the main
reason why we cannot directly use the results from [43, 26]. A similar situation was
encountered in [9] where the authors could not directly apply the results from [43, 26]
to show the separation of a OWP from a trapdoor function.

Fortunately, we can use the next lemma, which is implied by the one shown and used
in [9, Section 3.2] (which is in turn based on [43, 26]). The following lemma roughly
says that if most of the images under a legal oracle algorithmNR have a unique preim-
age, (and in particular these properties are satisfied by the algorithmNR in Lemma 8),
then there is an oracle algorithmQR,PSPACE that can invertNR almost always, using
thePSPACE oracle.

Lemma 9. (follows from [9, Lemma 4].) Letℓ = ℓ(k) be a positive polynomial. There
exists a constantλ > 0 such that for every legal oracle PPTAN(·) : {0, 1}ℓ → {0, 1}ℓ
(that expects to access to an oracle fromR), there is another oracle PPTAQ with
the following property: For anyϵ < λ and anyy ∈ {0, 1}ℓ, if the size of the set
(NR)−1(y) = {x ∈ {0, 1}ℓ|NR(x) = y} is one for1 − ϵ fraction of oraclesR ∈ R,
thenQR,PSPACE(1k, y) = (NR)−1(y) holds for1−

√
ϵ fraction of oraclesR ∈ R.

Inverting Any Permutation Based onT : Proof of Lemma 4.Now, we are ready to prove
Lemma 4. Letℓ andP be as stated in the lemma. By lemma 7, for thisP, there is an
oracle PPTÃP such that̃PR ∈ Permℓ for all R ∈ R. Then, Lemma 8 tells us that for
this P̃, there exists an oracle PPTAN that satisfies the properties (i) and (ii). SinceP̃R is
a permutation for allR ∈ R, the size of the set(P̃R)−1(y) = {x ∈ {0, 1}ℓ|P̃R(x) = y}
is one for ally ∈ {0, 1}ℓ and allR ∈ R. Thus, if(NR)−1(y) = (P̃R)−1(y), the size of
the set(NR)−1(y) = {x ∈ {0, 1}ℓ|NR(x) = y} must also be one. By the property (ii)
of N in Lemma 8, for at least1 − 2 · 2−k/6 fraction of stringsy ∈ {0, 1}ℓ, the size of
the set(NR)−1(y) = {x ∈ {0, 1}ℓ|NR(x) = y} is one for at least1 − 2−k/3 fraction
of oraclesR ∈ R.

Setϵ′ = 2−k/3. For any constantλ > 0, ϵ′ < λ holds for all sufficiently largek’s,
and thus thisϵ′ can be used as theϵ in Lemma 9. Cally ∈ {0, 1}ℓ goodif (NR)−1(y) =
(P̃R)−1(y) holds for1 − 2−k/3 fraction of oraclesR ∈ R. By definition, if y is good,
then it is guaranteed that the size of the set(NR)−1(y) = {x ∈ {0, 1}ℓ|NR(x) = y} is
one for at least1− ϵ′ = 1− 2−k/3 fraction of oraclesR ∈ R, and it is also guaranteed
thatPry←R{0,1}ℓ [y is good] ≥ 1 − 2 · 2−k/6 holds. Furthermore, by usingN andϵ′,
Lemma 9 implies that there is an oracle PPTAQ such that for sufficiently largek’s and
for all goody’s, QR,PSPACE(y) = (NR)−1(y) holds for1 −

√
ϵ′ fraction of oracles

R ∈ R. Recall that fory ∈ {0, 1}ℓ andR ∈ R such that(NR)−1(y) = (P̃R)−1(y)

andQR,PSPACE(1k, y) = (NR)−1(y) = x, it holds thatP̃R(x) = y, i.e.Q succeeds
in calculating the preimagex of y under the permutatioñPR. Therefore, considering
sufficiently largek’s, we have

Pr[R←R R;x←R Q
R,PSPACE(1k, y) : NR(x) = P̃R(x) = y|y is good]

≥ 1−
√
ϵ′ = 1− 2−k/6.

Now, define an oracle PPTA adversarỹA, which runs inẼxpt
OWP

P̃R,ÃR,PSPACE,ℓ(k), by

ÃR,PSPACE(1k, y∗) = QR,PSPACE(1k, y∗). Sincex∗ is chosen uniformly from{0, 1}ℓ

in Ẽxpt
OWP

P̃R,ÃR,PSPACE,ℓ(k) andP̃R is a permutation,y∗ = P̃R(x∗) is distributed uniformly
over{0, 1}ℓ. Therefore, for sufficiently largek’s, we have:

Ãdv
OWP

P̃R,ÃR,PSPACE,ℓ(k)

= Pr[R←R R;x∗ ←R {0, 1}ℓ; y∗ ← P̃R(x∗);x′ ←R ÃR,PSPACE(1k, y∗) : x′ = x∗]

≥ Pr[R←R R; y∗ ←R {0, 1}ℓ;x′ ←R Q
R,PSPACE(1k, y∗) : NR(x′) = P̃R(x′) = y∗]

≥ Pr[R←R R;x′ ←R Q
R,PSPACE(1k, y∗) : NR(x′) = P̃R(x′) = y∗|y∗ is good]

× Pr
y∗←{0,1}ℓ

[y∗ is good]

≥ (1− 2−k/6) · (1− 2 · 2−k/6) ≥ 1− 3 · 2−k/6.

Finally, by the property (2) ofP in Lemma 7, for thisÃ, there exist an oracle PPTA

adversaryA, which runs inẼxpt
OWP

PT,AT,PSPACE,ℓ(k), and a negligible functionµ(k) such
that for sufficiently largek’s:

Ãdv
OWP

PT,AT,PSPACE(k) ≥ Ãdv
OWP

P̃R,ÃR,PSPACE,ℓ(k)− µ(k) ≥ 1− 3 · 2−k/6 − µ(k).

What we have shown thus far is that there exists an oracle PPTAA such that
ET←RT[Adv

OWP
PT ,AT ,PSPACE,ℓ(k)] = Ãdv

OWP

PT,AT,PSPACE(k) is overwhelming. The above can
be shown for all positive polynomialsℓ(k) and any PPTAP such thatPT ∈ Permℓ for
all T ∈ T. This completes the proof of Lemma 4. ⊓⊔

4 Towards More General Separations

Broader Class of Permutations and Permutation Families.As in the previous black-box
separation results of a OWP from other basic primitives [43, 26, 9, 33], our separation
results rule out a black-box construction of a OWP which isdefined over strings(i.e.
the domain is a set of strings of a fixed length determined by the security parameter).
However, we can consider a more general form of a permutation whose domain is not
just a set of strings but an arbitrary setD, and which has a corresponding sampling
algorithmSamp to sample an element from the domainD (although such formulation
of a OWP is not standard). Furthermore, as a more natural and closely related primitive
to a OWP, we can also consider a public-coin OWPF.

Therefore, a natural question regarding our result will be: “Can our impossibility
result be extended to also rule out a black-box construction of a OWP with such general
form of domain or of a public-coin OWPF?”

We note that previously to our work, Hsiao and Reyzin [24] conjectured that there
is no black-box construction of a public-coin OWPF from a secret-coin OWPF. We can
partially answer to the above question in the positive due to the result by Goldreich et
al. [17], who showed that there is a (fully-)black-box construction of a OWP from a

public-coin OWPF with thecanonical domain samplingproperty (see Section 2.2 for
the definition and a brief review of the construction of [17]). This result, combined with
Theorem 1, yields the following corollary.

Corollary 2. There is no fully-black-box construction of a public-coin OWPF with
canonical domain sampling from an ideal TDP.

It seems to us that if we consider another restricted type of a constructed public-coin
permutation family such that the sampling algorithmSamp of the constructed permuta-
tion family does not use the algorithms of a building block TDP, then we can rule out a
black-box construction of such public-coin OWPF from an ideal TDP, with essentially
the same approach used to show Theorem 1 (although we have not formally checked
this). This is because ifSamp of the constructed public-coin permutation family does
not depend on the TDP used as a building block, then whenever we use a same evalu-
ation keyek, the domainDek of a permutationEval(ek, ·) remains the same, and thus
slight modifications of Lemmas 7 to 9 seem to work accordingly.

Other than these observations, so far we do not know how to rule out the possibility
of constructing a public-coin OWPF from a TDP (or even from an ordinary secret-coin
OWPF) in general, and thus we would like to leave it as an interesting open problem.
Goldreich et al. [17] showed that under the standard RSA assumption or a discrete
logarithm assumption in the integer groupZ∗p (with some appropriate condition onp),
we can construct a public-coin OWPF with the canonical domain sampling property,
and hence a OWP. However, they noted that how to construct a OWP or a public-coin
OWPF under the standard factoring assumption is still open. Tackling the above open
problem of clarifying whether there exists a black-box construction of a public-coin
OWPF from a secret-coin OWPF will also contribute to this problem: If it turns out
to be possible (which we think is unlikely), then we can use the Rabin TDP [40] as a
building block to construct a public-coin OWPF, while if it is not possible, one has to
essentially use some specific algebraic property to build a public-coin OWPF under the
factoring assumption.

Stronger Separation.So far, all our results are impossibility of a fully-black-box con-
struction, which is the most restrictive type of black-box constructions. With a slight
modification, however, our separation results can be strengthened to show that there is
nosemi-black-box construction (in the taxonomy of Reingold et al. [41]) of a OWP (and
a public-coin OWPF with canonical domain sampling) from an ideal TDP. Specifically,
to show such a result, we need to show a “single” oracle which simultaneously imple-
ments an ideal TDP andPSPACE. However, our TDP oracleT can be easily modified
to such an oracle by using the “embedding” technique due to Reingold et al. [41]. We
discuss more details in the full version.

AcknowledgementThe author would like to thank Jacob Schuldt for many insightful
comments and discussions on several drafts of this paper. The author would also like
to thank the members of the study group “Shin-Akarui-Angou-Benkyou-Kai” and the
anonymous reviewers for their helpful comments and suggestions.

References

1. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S.P. Vadhan, and K. Yang. On
the (im)possibility of obfuscating programs. InCRYPTO 2001, LNCS 2139, pp. 1-18, 2001.

2. M. Bellare, D. Hofheinz, and S. Yilek. Possibility and impossibility results for encryption
and commitment secure under selective opening. InEUROCRYPT 2009, LNCS 5479, pp.
1-35, 2009.

3. M. Bellare and P. Rogaway. Optimal asymmetric encryption. InEUROCRYPT 1994, LNCS
950, pp. 92-111, 1995.

4. M. Bellare and P. Rogaway. The exact security of digital signatures – how to sign with RSA
and Rabin. InEUROCRYPT 1996, LNCS 1070, pp. 399-416, 1996.

5. M. Bellare and M. Yung. Certifying permutations: Noninteractive zero-knowledge based on
any trapdoor permutation.J. of Cryptology, 9(3):149-166, 1996.

6. R. Bhattacharyya and A. Mandal. On the impossibility of instantiating PSS in the standard
model. InPKC 2011, LNCS 6571, pp. 351-368, 2011.

7. M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-
random bits.SIAM J. Computing, 13(4):850-864, 1984.

8. D. Boneh, P.A. Papakonstantinou, C. Rackoff, Y. Vahlis, and B. Waters. On the impossibility
of basing identity based encryption on trapdoor permutations. InFOCS 2008, pp. 283-292,
2008.

9. Y.-C. Chang, C.-Y. Hsiao, and C.-J. Lu. The impossibility of basing one-way permutations
on central cryptographic primitives.J. of Cryptology, 19(1):97-114, 2006.

10. J.-S. Coron, J. Patarin, and Y. Seurin. The random oracle model and the ideal cipher model
are equivalent. InCRYPTO 2008, LNCS 5157, pp. 1-20, 2008.

11. Y. Dodis, R. Oliveira, and K. Pietrzak. On the generic insecurity of the full domain hash. In
CRYPTO 2005, LNCS 3621, pp. 449-466, 2005.

12. D. Fiore and D. Schröder. Uniqueness is a different story: Impossibility of verifiable random
functions from trapdoor permutations. InTCC 2012, LNCS 7194, pp. 636-653, 2012.

13. M. Fischlin and D. Schröder. On the impossibility of three-move blind signature schemes.
In EUROCRYPT 2010, LNCS 6110, pp. 197-215, 2010.

14. C. Gentry and D. Wichs. Separating succinct non-interactive arguments from all falsifiable
assumptions. InSTOC 2011, pp. 99-108, 2011.

15. Y. Gertner, T. Malkin, and O. Reingold. On the impossibility of basing trapdoor functions
on trapdoor predicates. InFOCS 2001, pp. 126-135, 2001.

16. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.J. ACM,
33(4):792-807, 1986.

17. O. Goldreich, L.A. Levin, and N. Nisan. On constructing 1-1 one-way functions. InStudies
in Complexity and Cryptography, LNCS 6650, pp. 12-25, 2011.

18. O. Goldreich and R.D. Rothblum. Enhancements of trapdoor permutations.J. of Cryptology,
26(3):484-512, 2013.

19. S. Goldwasser, S. Micali, and R. Rivest. A digital signature schemes secure against adaptive
chosen-message attacks.SIAM J. Computing, 17(2):281-308, 1988.

20. I. Haitner. Implementing oblivious transfer using collection of dense trapdoor permutations.
In TCC 2004, LNCS 2951, pp. 394-409, 2004.

21. I. Haitner and T. Holenstein. On the (im)possibility of key dependent encryption. InTCC
2009, LNCS 5444, pp. 202-219, 2009.

22. J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby. Construction of a pseudorandom generator
from any one-way function.SIAM J. Computing, 28(4):1364-1396, 1999.

23. T. Holenstein, R. K̈unzler, and S. Tessaro. The equivalence of the random oracle model and
the ideal cipher model, revisited. InSTOC 2011, pp. 89-98, 2011.

24. C.-Y. Hsiao and L. Reyzin. Finding collisions on a public road, or do secure hash functions
need secret coins? InCRYPTO 2004, LNCS 3152, pp. 92-105, 2004.

25. R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way permuta-
tions. InSTOC 1989, pp. 44-61, 1989.

26. J. Kahn, M. Saks, and C. Smyth. A dual version of Reimer’s inequality and a proof of
Rudich’s conjecture. InCoCo 2000, pp. 98-103, 2000.

27. J. Katz and A. Yerukhimovich. On black-box constructions of predicate encryption from
trapdoor permutations. InASIACRYPT 2009, LNCS 5912, pp. 197-213, 2009.

28. E. Kiltz, P. Mohassel, and A. O’Neill. Adaptive trapdoor functions and chosen-ciphertext
security. InEUROCRYPT 2010, LNCS 6110, pp. 673-692, 2010.

29. E. Kiltz and K. Pietrzak. On the security of padding-based encryption schemes - or - why
we cannot prove OAEP secure in the standard model. InEUROCRYPT 2009, LNCS 5479,
pp. 389-406, 2009.

30. Y. Lindell and H. Zarosim. Adaptive zero-knowledge proofs and adaptively secure oblivious
transfer, 2009. Full version of [31]. Available at u.cs.biu.ac.il/˜zarosih/papers/adaptive-full
version.pdf.

31. Y. Lindell and H. Zarosim. Adaptive zero-knowledge proofs and adaptively secure oblivious
transfer. InTCC 2009, LNCS 5444, pp. 183-201, 2009.

32. M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseudorandom
functions.SIAM J. Computing, 17(2):373-386, 1988.

33. T. Matsuda and K. Matsuura. On black-box separations among injective one-way functions.
In TCC 2011, LNCS 6597, pp. 597-614, 2011.

34. U. Maurer, R. Renner, and C. Holenstein. Indifferentiability, impossibility results on reduc-
tions and applications to the random oracle methodology. InTCC 2004, LNCS 2951, pp.
21-39, 2004.

35. M. Naor. Bit commitment using pseudorandomness.J. of Cryptology, 4(2):151-158, 1991.
36. M. Naor. On cryptographic assumptions and challenges. InCRYPTO 2003, LNCS 2729, pp.

96-109, 2003.
37. M. Naor and M. Yung. Universal one-way hash functions and their cryptographic applica-

tions. InSTOC 1989, pp. 33-43, 1989.
38. O. Pandey, R. Pass, and V. Vaikuntanathan. Adaptive one-way functions and applications. In

CRYPTO 2008, LNCS 5157, pp. 57-74, 2008.
39. R. Pass. Limits of provable security from standard assumptions. InSTOC 2011, pp. 109-118,

2011.
40. M.O. Rabin. Digitalized signatures as intractable as factorization. Technical Report

MIT/LCS/TR-212, MIT Laboratory for Computer Science, January 1979.
41. O. Reingold, L. Trevisan, and S. Vadhan. Notions of reducibility between cryptographic

primitives. InTCC 2004, LNCS 2951, pp. 1-20, 2004.
42. A. Rosen and G. Segev. Chosen-ciphertext security via correlated products. InTCC 2009,

LNCS 5444, pp. 419-436, 2009.
43. S. Rudich. Limits on the provable consequences of one-way functions, 1988. PhD thesis,

University of California at Berkeley.
44. Y. Vahlis. Two is a crowd? a black-box separation of one-wayness and security under corre-

lated inputs. InTCC 2010, LNCS 5978, pp. 165-182, 2010.
45. H. Wee. On obfuscating point functions. InSTOC 2005, pp. 523-532, 2005.
46. D. Wichs. Barriers in cryptography with weak, correlated and leaky sources. InProc of ITCS

2013, pp. 111-126, 2013.
47. A.C.-C. Yao. Theory and application of trapdoor functions. InFOCS 1982, pp. 80-91, 1982.
48. A. Yerukhimovich. A study of separation in cryptography: New results and

new models, 2011. PhD thesis, the University of Maryland. Available at
www.cs.umd.edu/˜arkady/thesis/thesis.pdf.

