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Abstract. We present the first general MPC protocol that satisfies the
following: (1) the construction is black-box, (2) the protocol is univer-
sally composable in the plain model, and (3) the number of rounds is
constant. The security of our protocol is proven in angel-based UC se-
curity under the assumption of the existence of one-way functions that
are secure against sub-exponential-time adversaries and constant-round
semi-honest oblivious transfer protocols that are secure against quasi-
polynomial-time adversaries. We obtain the MPC protocol by construct-
ing a constant-round CCA-secure commitment scheme in a black-box
way under the assumption of the existence of one-way functions that
are secure against sub-exponential-time adversaries. To justify the use of
such a sub-exponential hardness assumption in obtaining our constant-
round CCA-secure commitment scheme, we show that if black-box re-
ductions are used, there does not exist any constant-round CCA-secure
commitment scheme under any falsifiable polynomial-time hardness as-
sumptions.

1 Introduction

Protocols for secure multi-party computation (MPC) enable mutually distrustful
parties to compute a functionality without compromising the correctness of the
outputs and the privacy of the inputs. In the seminal work of Goldreich et al. [14],
a general MPC protocol was constructed in a model with malicious adversaries
and a dishonest majority.3 (By “a general MPC protocol,” we mean a protocol
that can be used to securely compute any functionality.)

Black-box constructions. A construction of a protocol is black-box if it uses
the underlying cryptographic primitives only in a black-box way (that is, only
through their input/output interfaces). In contrast, if a construction uses the
codes of the underlying primitives, it is non-black-box.

Obtaining black-box constructions is an important step toward obtaining
practical MPC protocols. This is because black-box constructions are typically

3 In the following, we consider only such a model.



more efficient than non-black-box ones. (Typical non-black-box constructions,
such as that of [14], use the codes of the primitives to compute NP reductions
in general zero-knowledge proofs. Thus, they should be viewed as feasibility
results.) Black-box constructions are also theoretically interesting, since under-
standing whether non-black-box use of primitives is necessary for a cryptographic
task is of great theoretical interest.

Recently, a series of works showed black-box constructions of general MPC
protocols. Ishai et al. [20] showed the first construction of a general MPC proto-
col that uses the underlying low-level primitives in a black-box way. Combined
with the subsequent work of Haitner [18], their work showed a black-box con-
struction of a general MPC protocol based on a semi-honest oblivious transfer
protocol [19]. Subsequently, Wee [37] showed an O(log∗ n)-round protocol un-
der polynomial-time hardness assumptions and a constant-round protocol under
sub-exponential-time hardness assumptions, and Goyal [15] showed a constant-
round protocol under polynomial-time hardness assumptions.

The security of these black-box protocols is considered in the stand-alone
setting. That is, the protocols of [15,20,37] are secure in the setting where only
a single instance of the protocol is executed at a time.

Composable security. The concurrent setting, in which many instances of
protocols are executed concurrently in an arbitrary schedule, is a more general
and realistic setting than the stand-alone one. In the concurrent setting, an
adversary can perform a coordinated attack in which he chooses his messages in
an instance based on the executions of the other instances.

As a strong and realistic security notion in the concurrent setting, Canetti
[2] proposed universally composable (UC) security. The main advantage of UC
security is composability, which guarantees that when we compose many UC-
secure protocols, we can prove the security of the resultant protocol using the
security of its components. Thus, UC security enables us to construct protocols
in a modular way. Composability also guarantees that a protocol remains secure
even when it is concurrently executed with any other protocols in any schedule.
Canetti et al. [8] constructed a UC-secure general MPC protocol in the common
reference string (CRS) model (i.e., in a model in which all parties are given a
common public string that is chosen by a trusted third party).

UC security, however, turned out to be too strong to achieve in the plain
model (i.e., in a model without any trusted setup except for authenticated com-
munication channels). That is, we cannot construct UC-secure general MPC
protocols in the plain model [3, 6].

To achieve composable security in the plain model, Prabhakaran and Sahai
[36] proposed a variant of UC security called angel-based UC security. Roughly
speaking, angel-based UC security is the same as UC security except that the
adversary and the simulator have access to an additional entity—the angel—
that allows some judicious use of super-polynomial-time resources. It was proven
that, like UC security, angel-based UC security guarantees composability. Fur-
thermore, as argued in [36], angel-based UC security guarantees meaningful



security in many cases. (For example, angel-based UC security implies super-
polynomial-time simulation (SPS) security [1, 12, 29, 31]. In SPS security, we
allow the simulator to run in super-polynomial time. Thus, SPS security guar-
antees that whatever an adversary can do in the real world can also be done in
the ideal world in super-polynomial time.) Then, Prabhakaran and Sahai [36]
presented a general MPC protocol that satisfies this security notion in the plain
model, based on new (unstudied and non-standard) assumptions. Subsequently,
Malkin et al. [25] constructed another general MPC protocol that satisfies this
security notion in the plain model based on new number-theoretic assumption.
In [1], Barak and Sahai remarked that their protocol (which is SPS secure un-
der subexponential-time hardness assumptions) can be shown to be secure in
angel-based UC security.

Recently, Canetti et al. constructed a polynomial-round general MPC pro-
tocol in angel-based UC security based on a standard assumption (the exis-
tence of enhanced trapdoor permutations). Subsequently, Lin [21] and Goyal et

al. [17] reduced the round complexity to Õ(log n) under the same assumption.
They also proposed constant-round protocols, where the security is based on a
super-polynomial-time hardness assumption (the existence of enhanced trapdoor
permutations that are secure against quasi-polynomial-time adversaries). These
constructions, however, use the underlying primitives in a non-black-box way.

Black-box constructions of composable protocols. Lin and Pass [23]
showed the first black-box construction of a general MPC protocol that guar-
antees composable security in the plain model. The security of their protocol is
proven under angel-based UC security, and based on the minimum assumption
of the existence of semi-honest oblivious transfer (OT) protocols.

The round complexity of their protocol is O(nε), where ε > 0 is an arbitrary
constant. In contrast, for non-black-box constructions of composable protocols,
we have constant-round protocols in the plain model (under non-standard as-
sumptions or super-polynomial-time hardness assumptions) [17,21,25,36]. Thus,
a natural question is the following.

Does there exist a constant-round black-box construction of a general
MPC protocol that guarantees composability in the plain model (possibly
under super-polynomial-time hardness assumptions)?

1.1 Our Result

In this paper, we answer the above question affirmatively.

Theorem (Informal). Assume the existence of one-way functions that are se-
cure against sub-exponential-time adversaries and constant-round semi-honest
oblivious transfer protocols that are secure against quasi-polynomial-time adver-
saries. Then, there exists a constant-round black-box construction of a general
MPC protocol that satisfies angel-based UC security in the plain model.

The formal statement of this theorem is given in Section 7.



CCA-secure commitment schemes. We prove the above theorem by con-
structing a constant-round CCA-secure commitment scheme [7, 23] in a black-
box way. Once we obtain a CCA-secure commitment scheme, we can construct
a general MPC protocol in essentially the same way as Lin and Pass do in [23].

Roughly speaking, a CCA-secure commitment scheme is a tag-based com-
mitment scheme (i.e., a commitment scheme that takes an n-bit string, or tag,
as an additional input) such that the committed value of a commitment with
tag id remains hidden even if the receiver has access to a super-polynomial-time
oracle—the committed-value oracle—that returns the committed value of any
commitment with tag id′ 6= id. Lin and Pass [23] showed an O(nε)-round black-
box construction of a CCA-secure commitment scheme for arbitrary ε > 0 by
assuming the minimum assumption of the existence of one-way functions.

Our main technical result is the following.

Theorem (Informal). Assume the existence of one-way functions that are se-
cure against sub-exponential-time adversaries. Then, there exists a constant-
round black-box construction of a CCA-secure commitment scheme.

The formal statement of this theorem is given in Section 7.
To obtain our CCA-secure commitment scheme, we use the idea of non-

malleability amplification that was used in previous works on concurrent non-
malleable (NM) commitment schemes [22, 34]. That is, we construct a CCA
commitment scheme in the following steps.

Step 1. We say that a commitment scheme is one-one CCA secure if it is CCA
secure with respect to restricted classes of adversaries that receive only a
single answer from the oracle. Then, we construct a constant-round one-one
CCA-secure commitment for tags of length O(log log log n).

Step 2. We construct a transformation from the commitment scheme constructed
in Step 1 to a CCA-secure commitment for tags of length O(n) with a con-
stant additive increase in round complexity. Toward this end, we construct
the following two transformations:
– A transformation from any one-one CCA-secure commitment scheme

for tags of length t(n) to a CCA-secure commitment scheme for tags of
length t(n) with a constant additive increase in round complexity

– A transformation from any CCA-secure commitment scheme for tags of
length t(n) to a one-one CCA-secure commitment scheme for tags of
length 2t(n)−1 with no increase in round complexity

(The latter transformation is essentially the same as the “DDN log n trick”
[11,24].) By repeatedly composing these two transformations, we obtain the
desired transformation.

On the use of super-polynomial-time hardness assumption. Although
the round complexity of our CCA-secure commitment scheme is constant, it relies
on a super-polynomial-time hardness assumption. (Recall that the O(nε)-round
CCA-secure commitment scheme of [23] relies on a polynomial-time hardness
assumption.)



We show that the use of such a strong assumption is inevitable, as long as the
security of a constant-round CCA-secure commitment scheme is proven under
falsifiable assumptions [13, 28] by using a black-box reduction. Roughly speak-
ing, a falsifiable assumption is an assumption that is modeled as an interactive
game between a challenger and an adversary such that the challenger can decide
whether the adversary won the game in polynomial time. Then, we say that the
CCA security of a commitment scheme 〈C,R〉 is proven under a falsifiable as-
sumption by using a black-box reduction if the CCA security of 〈C,R〉 is proven
by constructing a ppt Turing machine R such that for any adversary A that
breaks the CCA security of 〈C,R〉, R can break the assumption by using A only
in a black-box way. Then, we show the following theorem.

Theorem (Informal). Let 〈C,R〉 be any constant-round commitment scheme.
Then, the CCA security of 〈C,R〉 cannot be proven by using black-box reductions
under any falsifiable polynomial-time hardness assumption.

(Due to lack of space, we defer the formal statement of this theorem and its
proof to the full version. Roughly speaking, we obtain this theorem by using
techniques of the negative result on concurrent zero-knowledge protocols [5].)
Since all standard cryptographic assumptions are falsifiable, this theorem says
that if we want to construct a constant-round CCA-secure commitment scheme
based on standard assumptions, we must use either super-polynomial-time hard-
ness assumptions (as this paper does) or non-black-box reductions.4

We note that this negative result holds even for non-black-box constructions.
That is, we cannot construct constant-round CCA-secure commitment schemes
even when we use primitives in a non-black-box way, as long as we use black-box
reductions and polynomial-time hardness assumptions.

2 Overview of the Protocols

In this section, we give overviews of our main technical results: a one-one CCA-
secure commitment scheme for short tags and a transformation from one-one
CCA security to CCA security.

2.1 One-One CCA-Security for Short Tags

We obtain our one-one CCA-secure commitment scheme by observing that the
non-black-box construction of a NM commitment scheme of [34] is one-one CCA
secure and converting it into a black-box one.

First, we recall the scheme of [34].5 The starting point of the scheme is “two-
slot message length” technique [30]. The basic idea of the technique is to let the
receiver sequentially send two challenges—one “long” and one “short”—where

4 We note that, although very recently Goyal [16] showed how to use non-black-box
techniques in the fully concurrent setting, Goyal’s technique requires polynomially
many rounds.

5 In the following, some of the text is taken from [34].



the length of the challenges are determined by the tag of the commitment. The
protocol is designed so that the response to a shorter challenge does not help a
man-in-the-middle adversary to provide a response to a longer challenge. A key
conceptual insight of [34] is to rely on the complexity leveraging technique [4] to
construct these challenges: For one-way functions with sub-exponential hardness,
an oracle for inverting challenges of length no(1) (the “short” challenge) does not
help invert random challenges of length n (the “long” challenge), since we can

simulate such an oracle by brute force in time 2n
o(1)

.
More precisely, the scheme of [34] is as follows. Let d = O(log log n) be the

number of tags, and let nω(1) = T0(n)� T1(n)� · · · � Td+2(n) be a hierarchy
of running times. Then, to commit to v ∈ {0, 1}n with tag id ∈ {0, 1, . . . , d− 1},
the committer C does the following with the receiver R.

1. C commits to v by using a statistically binding commitment Com that is
hiding against Td+1(n)-time adversaries but is completely broken in time
Td+2(n).

2. (Slot 1) C proves knowledge of v by using a zero-knowledge argument of
knowledge that is computationally sound against Tid+1(n)-time adversaries
and can be simulated in straight line in time o(Tid+2(n)), where the simulated
view is indistinguishable from the real one in time Td+2(n).

3. (Slot 2) C proves knowledge of v by using a zero-knowledge argument of
knowledge that is computationally sound against Td−id(n)-time adversaries
and can be simulated in straight line in time o(Td−id+1(n)), where the sim-
ulated view is indistinguishable from the real one in time Td+2(n).

We can show that the scheme of [34] is one-one CCA secure as follows (by using
essentially the same proof as the proof of its non-malleability). Recall that a
commitment scheme is one-one CCA secure if it is hiding against adversaries
that give a single query to the committed-value oracle O. Let id be the tag used
in the left session (a commitment from the committer to the adversary A) and

ĩd be the tag used in the right session (a commitment from A to O). Then, let
us consider a hybrid experiment in which the proofs in the second and third
steps are replaced with the straight-line simulations in the left session. Since the
running time of O is at most Td+2(n), the zero-knowledge property guarantees
that the view of A in the hybrid experiment is indistinguishable from that of
A in the real experiment even when A interacts with O. Furthermore, in the
right session of the hybrid experiment, the soundness of the zero-knowledge ar-
gument still holds either in the second step or in the third step. This follows from
the following reasons. For simplicity, let us consider a synchronized adversary.6

Then, since the simulation of the second step takes at most time o(Tid+2(n))
and the soundness of the second step holds against Tĩd+1(n)-time adversaries,

the soundness of the second step holds if id < ĩd; similarly, the soundness of
the third step holds if id > ĩd. In the hybrid experiment, therefore, the com-
mitted value v can be extracted by using the knowledge extractor either in the

6 An synchronized adversary sends the i-th round message to O immediately after
receiving the i-th round messages from the committer, and vise verse.



second step or in the third step, and thus the committed value oracle O can
be simulated in time o(max(Tid+2(n), Td−id+1(n))) · poly(n) � Td+1(n). Then,
from the hiding property of Com in the first step, the view of A in the hybrid
experiment is computationally independent of the value v. Thus, one-one CCA
security follows.

To convert the scheme of [34] into a black-box protocol, we use a black-box
trapdoor commitment scheme TrapCom of [33]. We observe that TrapCom has
similar properties to the zero-knowledge argument used in the scheme of [34]:
TrapCom is extractable and a TrapCom commitment can be simulated in straight
line in super-polynomial time. Then, we modify the scheme of [34] and let the
committer commit to v instead of proving the knowledge of v. To ensure the
“soundness,” that is, to ensure that the committed value of TrapCom is v, we
use the cut-and-choose technique and Shamir’s secret sharing scheme in a similar
manner to previous works on black-box protocols [9, 10, 23, 37]. That is, we let
the committer commit to Shamir’s secret sharing s = (s1, . . . , s10n) of value v
in all steps, let the receiver choose a random subset Γ ⊂ [10n] of size n, and
let the committer reveal sj and decommit the corresponding commitments for
every j ∈ Γ . The resultant scheme uses the underlying primitives only in a
black-box way, and can be proven to be one-one CCA secure from a similar
argument to the scheme of [34]. (We note that the actual scheme is a little more
complicated. For details, see Section 4.) We note that Lin and Pass [23] also
use TrapCom to convert a non-black-box protocol into a black-box one. Unlike
them, who mainly use the fact that TrapCom is extractable and is secure against
selective opening attacks, we also use the fact that TrapCom commitments are
straight-line simulatable.

2.2 CCA Security from One-one CCA Security

We give an overview of the transformation from any one-one CCA-secure com-
mitment scheme to a CCA-secure commitment scheme. Let nω(1) = T0(n) �
T1(n) � T2(n) � T3(n) be a hierarchy of running times. Then, we construct
a CCA-secure commitment scheme CCACom0 that is secure against T0(n)-time
adversaries from a one-one CCA-secure commitment scheme CCACom1:1

3 that
is secure against T3(n)-time adversaries. Let Com1 be a 2-round statistically
binding commitment scheme that is secure against T1(n)-time adversaries but is
completely broken in time o(T2(n)), and CECom2 be a constant-round commit-
ment scheme that is hiding against T2(n)-time adversaries and is concurrently
extractable by rewinding the committer poly(nlogn) times [26,32]. Then, to com-
mit to value v, the committer C does the following with the receiver R.

1. R commits to a random subset Γ ⊂ [10n] of size n by using CCACom1:1
3 .

2. C computes an (n+ 1)-out-of-10n Shamir’s secret sharing s = (s1, . . . , s10n)
of value v and commits to sj for each j ∈ [10n] in parallel by using Com1.

3. C commits to sj for each j ∈ [10n] in parallel by using CECom2.
4. R decommits the commitment of the first step and reveal Γ .
5. For each j ∈ Γ , C decommits the Com1 and CECom2 commitments whose

committed values are sj .



The committed value of CCACom0 is determined by the committed values of
Com1. Thus, the running time of O is at most o(T2(n)) · poly(n)� T2(n).

To prove the CCA security of the scheme, we consider a series of hybrid
experiments.

In the first hybrid, in the left interaction the committed value Γ of CCACom1:1
3

is extracted by brute force and the committed value of CECom2 is switched from
sj to 0 for every j 6∈ Γ . Note that, during the CECom2 commitments of the left,
the combined running time of A and O is at most T2(n). Thus, from the hiding
property of CECom2, the view of A in the first hybrid is indistinguishable from
that of A in the honest experiment.

The second hybrid is the same as the first one except for the following: in
every right session of which the second step ends after the start of the second
step of the left session, the committed values of the CECom commitments are
extracted; then, the answer ofO are computed from the extracted values (instead
of the committed values of Com1). We note that, since the second hybrid differs
from the first one only in how the answers of O are computed, to show the
indistinguishability it suffices to show that in the first hybrid the committed
values of CECom2 agree with those of Com1 in “most” indexes in every right
session. We first note that if we ignore the messages that A receives in the left
session, we can prove that the committed values of CECom2 agree with those of
Com1 in most indexes by using the property of the cut-and-choose technique.
In the hybrid, however, A receives messages in the left session, in which Γ is
extracted by brute force and the committed values of CECom2 disagree with
those of Com1 in 90% of indexes. Thus, A may be able to use the messages in
the left to break the hiding property of CCACom1:1 in the right. (Note that, if A
can break the hiding property of CCACom1:1, we cannot use the property of the
cut-and-choose technique.) We show that A cannot break the hiding property
of CCACom1:1 even with the messages of the left session. A key is that given
Γ , the left session can be simulated in polynomial time. Hence, one-one CCA
security of CCACom1:1 guarantees that the messages of the left session are useless
for breaking the hiding property of CCACom1:1. Thus, even with messages of the
left session, the cut-and-choose guarantees that the committed values of CECom2

agree with those of Com1 in most indexes. The view of A in the second hybrid
is therefore indistinguishable from that of A in the first one.

The third hybrid is the same as the first one except that in the left session,
the committed value of Com1 is switched from sj to 0 for every j 6∈ Γ . Note that
during the Com1 commitments of the left, the combined running time of A and
O is at most T0(n) · poly(nlogn)� T1(n). This is because

– for every right session in which A completes the second step before the start
of the second step of the left session, the answer of O (i.e., the committed
value of CCACom0) can be computed before the start of Com1 commitments
of the left session, and

– for every right session in which A completes the second step after the start
of the second step of the left session, the answer of O is computed by ex-



tracting the committed values of CECom2, which requires rewinding A at
most poly(nlogn) times.

Thus, from the hiding property of Com1, the view of A in the third hybrid is
indistinguishable from that of A in the second one.

Note that, since s is (n + 1)-out-of-10n secret sharing, A receives no infor-
mation of v in the third hybrid. Thus, the view of A in the third hybrid is
independent of v, and thus the CCA security follows.

3 Preliminaries

In this section, we explain the assumptions and the definitions that we use in
this paper.

3.1 Assumptions

For our CCA-secure commitment scheme, we use a one-way function f that is
secure against 2n

ε

-time adversaries, where ε < 1 is a positive constant. Without

loss of generality, we assume that f can be inverted in time 2n. Let Ti(n)
def
=

2(logn)
(2/ε)10i+1

for i ∈ N. Then, by setting the security parameter of f to `i(n) =

(log n)(2/ε)
10i+2

, we obtain a one-way function fi that is secure against Ti(n)-
time adversaries but can be inverted in time less than Ti+0.5(n). We note that
when i ≤ O(log log n), we have `i(n) ≤ poly(n).

For our composable MPC protocol, we additionally use semi-honest oblivious
transfer protocols that are secure against 2poly(logn)-time adversaries.

3.2 Shamir’s Secret Sharing Scheme

In this paper, we use Shamir’s (n+ 1)-out-of-10n secret sharing scheme. For any
positive real number x ≤ 1 and any s = (s1, . . . , s10n) and s′ = (s′1, . . . , s

′
10n),

we say that s and s′ are x-close if |{i | si = s′i}| ≥ x · 10n. We note that
Shamir’s secret sharing is a codeword of Reed-Solomon code with minimum
relative distance 0.9. Thus, for any x > 0.55 and any s that is x-close to a valid
codeword w, we can compute w from s.

3.3 Commitment Schemes

Recall that commitment schemes are two-party protocols between the committer
C and the receiver R. A transcript of the commit phase is accepted if R does not
abort in the commit phase. A transcript of the commit phase is valid if there
exists a valid decommitment of this transcript. We use a 2-round statistically
binding commitment scheme Com based on one-way functions [27].



Strong computational binding property. We say that a commitment scheme
〈C,R〉 satisfies a strong computational binding property if for any ppt committer
C∗ interacting with the honest receiver R, the probability that C∗ generates a
commitment that has more than one committed value is negligible.7

3.4 Extractable Commitments

Roughly speaking, a commitment scheme is extractable if there exists an expected
polynomial-time oracle machine (or extractor) E such that for any committer
C∗, EC∗ extracts the value that C∗ commits to whenever the commitment is
valid. We note that when the commitment is invalid, E may output a garbage
value. (This is called over-extraction.)

There exists a 4-round extractable commitment scheme ExtCom based on
one-way functions [33]. The commit phase of ExtCom consists of three stages—
commit, challenge, and reply—and given two accepted transcripts that have
the same commit message but have different challenge messages, we can extract
the committed value. Thus, we can extract the committed value by rewinding
the committer and obtaining two such transcripts. In the following, we use slot to
denote a pair of the challenge and reply messages in ExtCom. As shown in [33],
ExtCom is in fact parallel extractable. Thus, even when a committer commits to
many values in parallel, we can extract all committed values.

3.5 Concurrently Extractable Commitments

Roughly speaking, a commitment scheme is concurrently extractable if there
exists an expected polynomial-time extractor E such that for any committer C∗
that concurrently commits to many values, EC

∗
extracts the committed value of

each commitment immediately after C∗ generates each commitment.
Micciancio et al. [26] showed a concurrently extractable commitment CECom,

which consists of r executions of ExtCom, where r is a parameter (see Figure 1).
Note that CECom has r sequential slots. Then, by using the rewinding strategy
of [35], the committed values of CECom are concurrently extractable when r =
ω(log n).

Concurrently T (n)-Extractable Commitments

For any function T (n), we consider a relaxed notion of concurrent extractabil-
ity called concurrent T (n)-extractability, which is the same as concurrent ex-
tractability except that the expected running time of the extractor is T (n).

By using the rewinding strategy of [32], we can show that CECom is concur-
rently poly(nlogn)-extractable when r ≥ 3. Note that in the stand-alone setting,
we can extract the committed value of CECom by rewinding any single slot.

7 The standard computational binding property guarantees only that for any ppt
committer C∗, the commitment that C∗ generates cannot be decommitted to more
than one value in polynomial time. Thus, this commitment may have more than one
committed value.



Commit phase. The committer C and the receiver R receive common
inputs 1n and parameter r. To commit to v ∈ {0, 1}n, the committer C does
the following.
Step 1. C and R execute commit stage of ExtCom r times in parallel.
Step 2i (i ∈ [r]). R sends the challenge message of ExtCom for the i-th

session.
Step 2i+ 1 (i ∈ [r]). C sends the reply message of ExtCom for the i-th

session.

Decommit phase. C sends v to R and decommits all the ExtCom commit-
ments in the commit phase.

Fig. 1. Concurrently extractable commitment CECom [26].

3.6 Trapdoor Commitments

Roughly speaking, trapdoor commitments are ones such that there exists a sim-
ulator that can generate a simulated commitment and can later decommit it to
any value.

Pass and Wee [33] showed that the black-box protocol TrapCom in Figure
2 is a trapdoor bit commitment scheme. In fact, given the receiver’s challenge
e in advance, we can generate a simulated commitment and decommit it to
both 0 and 1 in a straight-line manner (i.e., without rewinding the receiver) as
follows. To generate a simulated commitment, the simulator internally simulates
an interaction between C and R∗ honestly except that in Step 2, the simulator
chooses random γ ∈ {0, 1} and lets each vi be a matrix such that the ei-th
row of vi is (ηi, ηi) and the (1 − ei)-th row of vi is (γ ⊕ ηi, (1 − γ) ⊕ ηi). To
decommit the simulated commitment to σ ∈ {0, 1}, the simulator decommits all
the commitments in the (σ ⊕ γ)-th column of each vi.

From the extractability of ExtCom, we can show that TrapCom is extractable.
In addition, by using the hiding property of Com, we can show that TrapCom
satisfies the strong computational binding property. (Roughly speaking, if C∗
generates a commitment that has more than one committed value, we can com-
pute the committed value e of Com by extracting v1, . . . , vn.)

Pass and Wee [33] showed that by running TrapCom in parallel, we obtain
a black-box trapdoor commitment PTrapCom for multiple bits. PTrapCom also
satisfies the strong computational binding property and extractability.

3.7 CCA-Secure Commitments

We recall the definition of CCA security and κ-robustness [7, 23]. Tag-based
commitment schemes are ones such that both the committer and the receiver
receive a string, or tag, as an additional input.



Commit phase. To commit to σ ∈ {0, 1} on common input 1n, the com-
mitter C does the following with the receiver R:
Step 1. R chooses a random n-bit string e = (e1, . . . , en) and commits to e

by using Com.
Step 2. For each i ∈ [n], the committer C chooses a random ηi ∈ {0, 1}

and sets

vi :=

(
v00i v01i
v10i v11i

)
=

(
ηi ηi

σ ⊕ ηi σ ⊕ ηi

)
.

Then, for each i ∈ [n], α ∈ {0, 1}, and β ∈ {0, 1} in parallel, C commits

to vαβi by using ExtCom; let (vαβi , dαβi ) be the corresponding decommit-
ment.

Step 3. R decommits the Step 1 commitment to e.
Step 4. For each i ∈ [n], C sends (vei0i , dei0i ) and (vei1i , dei1i ) to R. Then, R

checks whether these are valid decommitments and whether vei0i = vei1i .

Decommit phase. C sends σ and random γ ∈ {0, 1} to R. In addition,
for every i ∈ [n], C sends (v0γi , d0γi ) and (v1γi , d1γi ) to R. Then, R checks

whether (v0γi , d0γi ) and (v1γi , d1γi ) are valid decommitments for every i ∈ [n]

and whether v0γ0 ⊕ v
1γ
0 = · · · = v0γn ⊕ v1γn = σ.

Fig. 2. Black-box trapdoor bit commitment TrapCom.

CCA security (w.r.t. the committed-value oracle). Roughly speaking, a
tag-based commitment scheme 〈C,R〉 is CCA-secure if the hiding property of
〈C,R〉 holds even against adversary A that interacts with the committed-value
oracle during the interaction with the committer. The committed-value oracle
O interacts with A as an honest receiver in many concurrent sessions of the
commit phase of 〈C,R〉 using tags chosen adaptively by A. At the end of each
session, if the commitment of this session is invalid or has multiple committed
values, O returns ⊥ to A. Otherwise, O returns the unique committed value to
A.

More precisely, let us consider the following probabilistic experiment indb(〈C,R〉,
A, n, z) for each b ∈ {0, 1}. On input 1n and auxiliary input z, adversary AO
adaptively chooses a pair of challenge values v0, v1 ∈ {0, 1}n and an n-bit tag
id ∈ {0, 1}n. Then, AO receives a commitment to vb with tag id, and A outputs
y. The output of the experiment is ⊥ if during the experiment, A sends O any
commitment using tag id. Otherwise, the output of the experiment is y. Let
INDb(〈C,R〉,A, n, z) denote the output of experiment indb(〈C,R〉,A, n, z).

Then, the CCA security of 〈C,R〉 is defined as follows.

Definition 1. Let 〈C,R〉 be a tag-based commitment scheme and O be the
committed-value oracle of 〈C,R〉. Then, 〈C,R〉 is CCA-secure (w.r.t the committed-



value oracle) if for any ppt adversary A, the following are computationally in-
distinguishable:

– {IND0(〈C,R〉,A, n, z)}n∈N,z∈{0,1}∗
– {IND1(〈C,R〉,A, n, z)}n∈N,z∈{0,1}∗

If the length of the tags chosen by A is t(n) instead of n, 〈C,R〉 is CCA-secure
for tags of length t(n). ♦

We also consider a relaxed notion of CCA security called one-one CCA se-
curity. In the definition of one-one CCA security, we consider adversaries that
interact with O only in a single session of the commit phase.

In the following, we use left session to denote the session of the commit phase
between the committer and A, and use right sessions to denote the sessions
between A and O.

κ-robustness (w.r.t. the committed-value oracle). Roughly speaking, a
tag-based commitment scheme is κ-robust if for any adversary A and any ITM
B, the joint output of a κ-round interaction between AO and B can be simu-
lated without O by a ppt simulator. Thus, the κ-robustness guarantees that the
committed-value oracle is useless in attacking any κ-round protocol.

Formally, let 〈C,R〉 be a tag-based commitment scheme andO be the committed-
value oracle of 〈C,R〉. For any constant κ ∈ N, we say that 〈C,R〉 is κ-robust
(w.r.t. the committed value oracle) if there exists a ppt oracle machine (or sim-
ulator) S such that for any ppt adversary A and any κ-round ppt ITM B, the
following are computationally indistinguishable:

– {outputB,AO [〈B(y),AO(z)〉(1n, x)]}n∈N,x,y,z∈{0,1}n
– {outputB,SA [〈B(y),SA(z)〉(1n, x)]}n∈N,x,y,z∈{0,1}n

Here, for any ITM A and B, we use outputA,B [〈A(y), B(z)〉(x)] to denote the
joint output of A and B in an interaction between them on inputs x, y to A and
x, z to B respectively.

We also consider a relaxed notion of κ-robustness called κ-pqt-robustness.
In the definition of κ-pqt-robustness, we allow the simulator to run in quasi-
polynomial time.

4 One-One CCA Security for Short Tags

In this section, we construct a one-one CCA-secure commitment for tags of
length O(log log log n). (Due to lack of space, the full proof is deferred to the full
version.) Since the length of the tags is O(log log log n), we can view each tag as
a value in {0, 1 . . . , d− 1 = O(log log n)}.



4.1 Building Blocks

Let Ti(n)
def
= 2(logn)

(2/ε)10i+1

for i ∈ N. Then, for constants a, b ∈ N, PTrapComb
a

is a commitment scheme such that

– the hiding property holds against any Ta(n)-time adversary but is completely
broken in time Ta+0.5(n),

– the strong computational binding property holds against any Tb(n)-time
adversary, and

– there exists a Tb+0.5(n)-time straight-line simulator (of the trapdoor prop-
erty) such that the simulated commitment is indistinguishable from the ac-
tual commitment in time Ta(n). (This holds even when Tb+0.5(n)� Ta(n).)

We can construct PTrapComb
a by appropriately setting the security parameters

of Com and ExtCom in PTrapCom.
PCETrapComb

a is the same as PTrapComb
a except that we use CECom in Step

2 instead of ExtCom.

4.2 One-One CCA Security for Tags of Length O(log log logn)

Lemma 1. Let ε < 1 be a positive constant, and for any i ∈ N, let Ti(n)
def
=

2(logn)
(2/ε)10i+1

. Assume the existence of one-way functions that are secure against
2n

ε

-time adversaries. Then, for any i ∈ N, there exists a constant-round com-
mitment scheme CCACom1:1

i that satisfies the following for any Ti(n)-time ad-
versary.

– Strong computational binding property, and
– One-one CCA security for tags of length O(log log log n).

Furthermore, CCACom1:1
i uses the underlying one-way function only in a black-

box way.

Proof. CCACom1:1
i is shown in Figure 3. The binding property follows from that

of PTrapComi+d+1
i+d+1. Thus, it remains to show that CCACom1:1

i is one-one CCA
secure for tags of length O(log log log n).

To show that CCACom1:1
1 is one-one CCA secure, we show that for any Ti(n)-

time adversary A that interacts with O only in a single session, the following
are computationally indistinguishable:

– {IND0(CCACom1:1
i ,A, n, z)}n∈N,z∈{0,1}∗

– {IND1(CCACom1:1
i ,A, n, z)}n∈N,z∈{0,1}∗

At the end of the right session, the committed-value oracle O does the following.
First, O computes the committed values s = (s1, . . . , s10n) of the Stage 1 com-
mitments by brute force. (If the committed value of the j-th commitment is not
uniquely determined, sj is defined to be ⊥.) Then, O checks whether the follow-
ing conditions hold: (1) s is 0.9-close to a valid codeword w = (w1, . . . , w10n)
and (2) for every j ∈ Γ (where Γ is the subset that O sends to A in Stage 4),



Commit phase. The committer C and the receiver R receive common
inputs 1n and id ∈ {0, 1, . . . , d−1 = O(log log n)}. To commit to v ∈ {0, 1}n,
the committer C does the following with the receiver R.
Stage 1. C computes an (n + 1)-out-of-10n Shamir’s secret sharing s =

(s1, . . . , s10n) of value v. Then, for each j ∈ [10n] in parallel, C commits
to sj by using PTrapComi+d+1

i+d+1. Let (sj , dj) be the decommitment of the
j-th commitment.

Stage 2. For each j ∈ [10n] in parallel, C commits to (sj , dj) by using

PCETrapComi+id+1
i+d+2 . Here, the number of slots in PCETrapComi+id+1

i+d+2 is

max(3, r + 1), where r is the round complexity of PTrapComi+d+1
i+d+1 in

Stage 1.
Stage 3. For each j ∈ [10n] in parallel, C commits to (sj , dj) by using

PCETrapComi+d−id
i+d+2 . Here, the number of slots in PCETrapComi+d−id

i+d+2 is
max(3, r + 1).

Stage 4. R sends a random subset Γ ⊆ [10n] of size n to C.
Stage 5. For each j ∈ Γ , C decommits the j-th Stage 2 commitment and

the j-th Stage 3 commitment to (sj , dj). Then, R checks whether (sj , dj)
is a valid decommitment of the j-th Stage 1 commitment.

Decommit phase. C sends v, s = (s1, . . . , s10n), and d = (d1, . . . , d10n)
to R. Then, R checks whether (sj , dj) is a valid decommitment of the j-th
Stage 1 commitment for every j ∈ [10n]. Furthermore, R checks whether
(1) s is 0.9-close to a valid codeword w = (w1, . . . , w10n) and (2) for each
j ∈ Γ , wj is equal to the share that was revealed in Stage 5. Finally, R
checks whether w is a codeword corresponding to v.

Fig. 3. One-one CCA-secure commitment CCACom1:1
i .

wj is equal to the share that was revealed in Stage 5. If both conditions hold, O
recovers v from w and returns v to A. Otherwise, O returns v := ⊥ to A. We
note that the running time of O is at most poly(n) · Ti+d+1.5(n).

To show the indistinguishability, we consider hybrid experiments Gba(n, z) for
a ∈ {0, 1, 2, 3} and b ∈ {0, 1}.

Hybrid Gb0(n, z) is the same as experiment indb(CCACom
1:1
i ,A, n, z).

Hybrid Gb1(n, z) is the same as Gb0(n, z) except for the following:
– In Stage 2 (resp., Stage 3) on the left, the left committer simulates the

10n commitments of PCETrapComi+id+1
i+d+2 (resp., PCETrapComi+d−id

i+d+2 ) by
using the straight-line simulator.

– In Stage 5 on the left, for each j ∈ Γ , the left committer decommits the
simulated commitment of PCETrapComi+id+1

i+d+2 (resp., PCETrapComi+d−id
i+d+2 )

to (sj , dj) by using the simulator.
We note that the running time of Gb1(n, z) is at most poly(n) · Ti+d+1.5(n).

Hybrid Gb2(n, z) is the same as Gb1(n, z) except for the following:



– Let ĩd be the tag of the right session. In Stage 2 (resp., Stage 3) of

the right session, the committed values of the PCETrapComi+ĩd+1
i+d+2 (resp.,

PCETrapComi+d−ĩd
i+d+2 ) commitments are extracted without rewinding Stage

1 on the left by using the technique of [7,22]. (That is, in Step 2 of each

PCETrapComi+ĩd+1
i+d+2 (resp. PCETrapComi+d−ĩd

i+d+2 ) commitment, the com-
mitted values of CECom are extracted by rewinding a single slot that
does not contain any Stage 1 messages of the left session. Such a slot
must exist, since the number of slots in CECom is max(3, r + 1).) Then,
ŝ = (ŝ1, . . . , ŝ10n) is defined as follows: if there exists a ∈ {2, 3} such that

the extracted value (ŝ
(a)
j , d̂

(a)
j ) of the j-th commitment in Stage a is a

valid decommitment of the j-th commitment in Stage 1, let ŝj
def
= ŝ

(a)
j (if

both (ŝ
(2)
j , d̂

(2)
j ) and (ŝ

(3)
j , d̂

(3)
j ) are valid decommitments but ŝ

(2)
j 6= ŝ

(3)
j ,

let ŝj
def
= ⊥); otherwise, let ŝj

def
= ⊥.

– At the end of the right session, O checks whether the following conditions
hold: (1) ŝ is 0.8-close to a valid codeword ŵ = (ŵ1, . . . , ŵ10n) and (2)
for every j ∈ Γ , ŵj is equal to the share that was revealed in Stage
5. If both conditions hold, O recovers v̂ from ŵ and returns v̂ to A.
Otherwise, O returns v̂ := ⊥ to A. We note that O does not extract the
committed values of the Stage 1 commitments.

We note that the expected running time of Gb2(n, z) is poly(n) · Ti+d+0.5(n).
Hybrid Gb3(n, z) is the same as Gb2(n, z) except that on the left, the Stage 1

commitments are simulated by the straight-line simulator of PTrapComi+d+1
i+d+1.

Since A receives no information about {sj}j 6∈Γ in G0
3(n, z) and G1

3(n, z), the
output of G0

3(n, z) and that of G1
3(n, z) are identically distributed. Then, we

consider the following claims. In what follows, we use Gbi (n, z) to denote the
output of experiment Gbi (n, z).

Claim 1. For each b ∈ {0, 1}, {Gb0(n, z)}n∈N,z∈{0,1}∗ and {Gb1(n, z)}n∈N,z∈{0,1}∗
are computationally indistinguishable.

Claim 2. For each b ∈ {0, 1}, {Gb1(n, z)}n∈N,z∈{0,1}∗ and {Gb2(n, z)}n∈N,z∈{0,1}∗
are statistically indistinguishable.

Claim 3. For each b ∈ {0, 1}, {Gb2(n, z)}n∈N,z∈{0,1}∗ and {Gb3(n, z)}n∈N,z∈{0,1}∗
are computationally indistinguishable.

The lemma follows from these claims. ut

Proof (of Claim 1). Gb1(n, z) differs from Gb0(n, z) only in that the Stage 2 com-
mitments and the Stage 3 commitments on the left are simulated by the simula-
tor of PCETrapComi+id+1

i+d+2 and that of PCETrapComi+d−id
i+d+2 . Then, since the run-

ning time of Gb0(n, z) and that of Gb1(n, z) are at most poly(n) · Ti+d+1.5(n) �
Ti+d+2(n), the claim follows from the trapdoor property of PCETrapComi+id+1

i+d+2

and that of PCETrapComi+d−id
i+d+2 . ut



Next, we consider Claim 2. Note that Gb2(n, z) differs from Gb1(n, z) in that
O computes the committed value of the right session from the extracted values
of the Stage 2 commitments and those of the Stage 3 commitments instead of
from those of Stage 1 commitments. We prove Claim 2 by showing that in the
right session of Gb2(n, z), the value v̂ that O computes is the same as the value
v that O computes in Gb1(n, z). Toward this end, we first show that in the right
session of Gb1(n, z), the strong computational binding property holds in Stage 1
and either in Stage 2 or in Stage 3. (Note that from the property of the cut-
and-choose technique, this implies that the committed values of either the Stage
2 commitments or the Sage 3 commitments are 0.9-close to those of the Stage
1 commitments except with negligible probability.) Let us say that A cheats in
Stage 1 if at least one of 10n PTrapCom commitments in Stage 1 on the right
has more than one committed value. We define cheating in Stage 2 and cheating
in Stage 3 similarly. Then, we prove two subclaims.

Subclaim 1. In Gb1(n, z), the probability that A cheats in Stage 1 is negligible.

Proof (sketch). This subclaim follows directly from the strong computational
binding property of PTrapComi+d+1

i+d+1, since the running time of Gb1(n, z) is at
most poly(n) · Ti+d+0.5(n)� Ti+d+1(n) when A completes Stage 1 on the right.

ut

Subclaim 2. In Gb1(n, z), the probability that A cheats in Stage 2 and Stage 3
simultaneously is negligible.

Proof (sketch). To prove this subclaim, we need to show that even though the
left committer “cheats,” A cannot use the messages received on the left to cheat
on the right. This can be proven by following the proof of the scheme of [34].
Roughly speaking, we show that there always exists a∗ ∈ {2, 3} such that during
Stage a∗ on the right, the left session can be simulated in “short” time (i.e.,
the left session can be simulated without breaking the strong computational
binding property of PCETrapCom in Stage a∗). A little more precisely, we show
the following. Recall that the commitment of PCETrapCom can be simulated
in polynomial time if we know the committed value of the Step 1 commitment
of PCETrapCom. Then, we show that in the left session, either this committed
value can be extracted in “short” time (during Stage a∗ of the right session)
or it can be extracted before A starts Stage a∗ on the right (and thus can be
considered as an auxiliary input). Once we show that A cannot use the messages
received on the left to cheat on the right, the subclaim follows from the strong
computational binding property of PCETrapCom on the right. ut

Now, we are ready to prove Claim 2.

Proof (sketch of Claim 2). As noted above, we prove Claim 2 by showing that
in the right session, the value computed by O in Gb2(n, z) is equal to the value
computed by O in Gb1(n, z). From Subclaim 2, there exists a ∈ {2, 3} such that
the committed values of the Stage a commitments are uniquely determined.
Then, since the committed values of the Stage 1 commitments and those of



Stage a commitments are uniquely determined before Γ is chosen, the committed
values of the Stage 1 commitments and those of Stage a commitments are 0.9-
close except with negligible probability. Then, since we have carefully defined
the behavior of O in Gb2(n, z) (in particular, since O checks whether the share is
0.8-close to a valid codeword in Gb2(n, z)), we can show that the value computed
by O from the extracted values of Stage 2 and 3 is the same as the one computed
from the committed values of Stage 1 in a similar manner to the previous works
on black-box constructions [9, 10,23,37]. ut

Finally, we prove Claim 3.

Proof (of Claim 3). Gb3(n, z) differs from Gb2(n, z) only in that on the left, the
Stage 1 commitments and their decommitments are generated by the simulator
of PTrapComi+d+1

i+d+1. Then, since the running time of Gb2(n, z) and that of Gb3(n, z)
are at most poly(n) ·Ti+d+0.5(n)� Ti+d+1(n) except for Stage 1 on the left, and
since Stage 1 on the left is not rewound in Gb2(n, z) and in Gb3(n, z), the claim
follows from the trapdoor property of PTrapComi+d+1

i+d+1. ut

5 CCA Security from One-One CCA Security

In this section, we show a transformation from any one-one CCA-secure commit-
ment scheme to a CCA-secure commitment scheme. To use this transformation
to obtain a general MPC protocol, we also show that the resultant CCA-secure
commitment satisfies κ-pqt-robustness for any κ ∈ N. (Due to lack of space, the
full proof is deferred to the full version.)

Lemma 2. Let ε < 1 be a positive constant, and assume the existence of one-
way functions that are secure against 2n

ε

-time adversaries. Let r(·) and t(·) be ar-

bitrary functions, let Ti(n)
def
= 2(logn)

(2/ε)10i+1

for any i ∈ N, and let CCACom1:1
i+3

be an r(n)-round commitment scheme that satisfies the following for any Ti+3(n)-
time adversary.

– Strong computational binding property, and
– One-one CCA security for tags of length t(n).

Then, for any κ ∈ N, there exists an (r(n) + O(1))-round commitment scheme
CCAComi that satisfies the following for any Ti(n)-time adversary.

– Statistical binding property,
– CCA security for tags of length t(n), and
– κ-pqt-robustness.

If CCACom1:1
i+3 uses the underlying one-way function only in a black-box way,

then CCAComi uses the underlying one-way function only in a black-box way.

In the proof of Lemma 2, we use the following building blocks, which we
can obtain by appropriately setting the security parameters of known protocols
[26,27,32].



Commit phase. The committer C and the receiver R receive common
inputs 1n and id ∈ {0, 1}t(n). To commit to v ∈ {0, 1}n, the committer C
does the following with the receiver R.
Stage 1. R chooses a random subset Γ ⊆ [10n] of size n. Then, R commits

to Γ by using CCACom1:1
i+3 with tag id.

Stage 2. C computes an (n + 1)-out-of-10n Shamir’s secret sharing s =
(s1, . . . , s10n) of value v. Then, for each j ∈ [10n] in parallel, C commits
to sj by using Comi+1.

Stage 3. For each j ∈ [10n] in parallel, C commits to sj by using CEComi+2.
Stage 4. R decommits the Stage 1 commitment to Γ .
Stage 5. For every j ∈ [10n], let the j-th column denote the j-th commit-

ment in Stage 2 and the j-th one in Stage 3 (that is, the commitments
whose committed value is sj). Then, for each j ∈ Γ , C decommits the
commitments of the j-th column to sj .

Decommit phase. C sends v to R and decommits the Stage 2 com-
mitments to s. Then, R checks whether all of these decommitments are
valid. Furthermore, R checks whether (1) s is 0.9-close to a valid codeword
w = (w1, . . . , w10n) and (2) for every j ∈ Γ , wj is equal to the share that
was revealed in Stage 5. Finally, R checks whether w is a codeword corre-
sponding to v.

Fig. 4. CCA-secure commitment CCAComi.

– A 2-round statistically binding commitment Comi+1 that is secure against
Ti+1(n)-time adversaries but is completely broken in time Ti+1.5(n).

– A constant-round concurrently poly(nlogn)-extractable commitment CEComi+2

that is secure against Ti+2(n)-time adversaries but is completely broken in
time Ti+2.5(n). The number of slots in CEComi+2 is κ+ 3.

We note that both Comi+1 and CEComi+2 use the underlying one-way function
in a black-box way.

Proof (of Lemma 2). CCAComi is shown in Figure 4. The statistical binding
property of CCAComi follows from that of Comi+1. Then, we consider the fol-
lowing propositions.

Proposition 1. For any Ti(n)-time adversary, CCAComi is CCA secure for
tags of length t(n).

Proposition 2. For any Ti(n)-time adversary, CCAComi is κ-pqt-robust.

The lemma follows from these propositions. ut

Below, we prove Proposition 1. The proof of Proposition 2 is given in the full
version. (Proposition 2 can be proven by extending the proof of Proposition 1.)



Proof (of Proposition 1). We show that for any Ti(n)-time adversary A, the
following are computationally indistinguishable:

– {IND0(CCAComi,A, n, z)}n∈N,z∈{0,1}∗
– {IND1(CCAComi,A, n, z)}n∈N,z∈{0,1}∗

Note that O does the following in each right session. First, O extracts the com-
mitted values s = (s1, . . . , s10n) of the Stage 2 commitments by brute force. (If
the committed value of the j-th commitment is not uniquely determined, sj is
defined to be ⊥.) Then, at the end of the session, O checks whether the following
conditions hold: (1) s is 0.9-close to a valid codeword w = (w1, . . . , w10n), and
(2) for every j ∈ Γ (where Γ is the value that O sends to A in Stage 4), wj
is equal to the share that was revealed in Stage 5. If both conditions hold, O
recovers v from w and returns v to A. Otherwise, O returns v := ⊥ to A. We
note that the running time of O is at most poly(n) · Ti+1.5(n).

To show the indistinguishability, we consider hybrid experiments Hb
a(n, z) for

a ∈ {0, 1, 2, 3} and b ∈ {0, 1}.

Hybrid Hb
0(n, z) is the same as experiment indb(CCAComi,A, n, z).

Hybrid Hb
1(n, z) is the same as Hb

0(n, z) except for the following:
– In Stage 1 of the left session, the committed value Γ is extracted by brute

force. If the commitment is invalid or has multiple committed values, Γ
is defined to be a random subset.8

– In Stage 3 of the left session, the left committer commits to 0 instead of
sj for each j 6∈ Γ .

The running time of Hb
1(n, z) is at most poly(n) · Ti+1.5(n) except for the

brute-force extraction of the Stage 1 commitment on the left.
Hybrid Hb

2(n, z) is the same as Hb
1(n, z) except for the following:

– In every right session of which Stage 2 ends after A starts Stage 2 on
the left, the committed values of the Stage 3 commitments are extracted
by using the concurrent poly(nlogn)-extractability of CEComi+2. Let ŝ =
(ŝ1, . . . , ŝ10n) be the extracted values, where ŝj is defined to be ⊥ if the
extraction of the j-th commitment fails.

– At the end of each right session in which ŝ = (ŝ1, . . . , ŝ10n) is extracted,
O does the following. First, O checks whether the following conditions
hold: (1) ŝ is 0.8-close to a valid codeword ŵ = (ŵ1, . . . , ŵ10n) and (2)

for every j ∈ Γ̃ (where Γ̃ is the value that O sends to A in this session),
ŵj is equal to the share that was revealed in Stage 5. If both conditions
hold, O recovers v̂ from ŵ and returns v̂ to A. Otherwise, O returns
v̂ := ⊥ to A. We note that O does not extract the committed values of
the Stage 2 commitments in such right sessions.

The expected running time of Hb
2(n, z) is at most poly(nlogn) · Ti(n) after

the start of Stage 2 on the left.

8 Since the running time of A and O is at most poly(n) · Ti+1.5(n) � Ti+2(n), the
strong computational binding property of CCACom1:1

i+3 guarantees that the Stage 1
commitment has at most one committed value except with negligible probability.



Hybrid Hb
3(n, z) is the same as Hb

2(n, z) except that in Stage 2 on the left, the
left committer commits to 0 instead of sj for each j 6∈ Γ .

Since A receives no information about {sj}j 6∈Γ on the left in H0
3 (n, z) and

H1
3 (n, z), and since s is (n+1)-out-of-10n secret sharing, the output of H0

3 (n, z)
and that of H1

3 (n, z) are identically distributed. Then, we consider the follow-
ing claims. In what follows, we use Hbi (n, z) to denote the output of experiment
Hb
i (n, z).

Claim 4. For each b ∈ {0, 1}, {Hb0(n, z)}n∈N,z∈{0,1}∗ and {Hb1(n, z)}n∈N,z∈{0,1}∗
are computationally indistinguishable.

Claim 5. For each b ∈ {0, 1}, {Hb1(n, z)}n∈N,z∈{0,1}∗ and {Hb2(n, z)}n∈N,z∈{0,1}∗
are statistically indistinguishable.

Claim 6. For each b ∈ {0, 1}, {Hb2(n, z)}n∈N,z∈{0,1}∗ and {Hb3(n, z)}n∈N,z∈{0,1}∗
are computationally indistinguishable.

The proposition follows from these claims. ut

Proof (sketch of Claim 4). The view of A in Hb
0(n, z) and that of A in Hb

1(n, z)
differ only in the committed values of CEComi+2 on the left. In addition, the
running time of Hb

0(n, z) and that of Hb
1(n, z) are poly(n) · Ti+1.5(n)� Ti+2(n)

(except for the brute force extraction of the Stage 1 commitment on the left in
Hb

1(n, z)). Thus, by considering Γ as non-uniform advice, we can prove indistin-
guishability from the hiding property of CEComi+2. ut

Next, we consider Claim 5. As in Section 4.2, we first show that in every
right session of Hb

1(n, z), the committed values of the Stage 2 commitments and
those of Stage 3 commitments are 0.9-close. Formally, for any right session, let

s(2) = (s
(2)
1 , . . . , s

(2)
10n) be the committed values of the Stage 2 commitments (if

the committed value of the j-th commitment is not uniquely determined, s
(2)
j is

defined to be ⊥) and let s(3) = (s
(3)
1 , . . . , s

(3)
10n) be the committed values of the

Stage 3 commitments. Then, for every j ∈ [10n], we say that the j-th column

of this session is bad if s
(2)
j = ⊥, s

(3)
j = ⊥, or s

(2)
j 6= s

(3)
j . In addition, we say

that A cheats in this session if the session is accepted and the number of bad
columns is at least n. Then, we prove the following subclaim.

Subclaim 3. In any right session of Hb
1(n, z), A cheats with at most negligible

probability.

Proof (sketch). At first sight, it seems that we can prove this subclaim by sim-
ply using the hiding property of CCACom1:1

i+3 and the property of cut-and-choose
technique (i.e., it seems that, since the committed value Γ of the Stage 1 com-
mitment on the right is hidden from A, the probability that there are at least
n bad columns but the session is accepted is negligible). However, A interacts
with the left committer as well as with O, and the left committer “cheats” in



the left session (i.e., on the left, the committed values of the Stage 2 commit-
ments and those of the Stage 3 commitments are not 0.9-close). Thus, A may
be able to cheat in a right session by using the messages received on the left.
A key to prove this subclaim is that the left session can be simulated by using
the committed-value oracle of CCACom1:1

i+3 (i.e., if we know the committed value
Γ of the Stage 1 commitment on the left, we can simulate the later stages in
polynomial time). Thus, the one-one CCA security of CCACom1:1

i+3 guarantees

that A cannot break the hiding property of CCACom1:1
i+3 even with the messages

of the left session. We can therefore use the cut-and-choose technique to prove
the subclaim. ut

Given Subclaim 3, we can prove Claim 5 in a similar manner to Claim 2 in
Section 4.2.

Finally, we prove Claim 6.

Proof (sketch of Claim 6). Hb
2(n, z) and Hb

3(n, z) differ only in the committed
values of Comi+1. Since the running time of Hb

2(n, z) and that of Hb
3(n, z) are

poly(nlogn) · Ti(n)� Ti+1(n) after the start of Stage 2 on the left, we can prove
Claim 6 from the hiding property of Comi+1 (by considering Γ of the left session
and the answers of O for some right sessions as non-uniform advice). Here, we
use the fact that Comi+1 is a 2-round commitment scheme. This fact enables
us to rewind A in the right sessions of Hb

2(n, z) without breaking the hiding
property of Comi+1. ut

6 One-One CCA Security for Long Tags from CCA
Security for Short Tags

In this section, we consider a transformation from any CCA-secure commitment
scheme for tags of length t(n) to a one-one CCA-secure commitment scheme
for tags of length 2t(n)−1. The transformation are essentially the same as those
in [24], which shows a transformation from any concurrent NM commitment
scheme for short tags to a NM commitment scheme for long tags.

Lemma 3. Let ε < 1 be a positive constant, and assume the existence of one-
way functions that are secure against 2n

ε

-time adversaries. Let r(·) and t(·) be

arbitrary functions such that t(n) ≤ O(log n), let Ti(n)
def
= 2(logn)

(2/ε)10i+1

for
i ∈ N, and let CCAComi+1 be an r(n)-round commitment scheme that satisfies
the following for any Ti+1(n)-time adversary.

– Statistical binding property, and
– CCA security for tags of length t(n).

Then, there exists an r(n)-round commitment scheme CCACom1:1
i that satisfies

the following for any Ti(n)-time adversary.

– Statistical binding property, and
– One-one CCA security for tags of length 2t(n)−1.



If CCAComi+1 uses the underlying one-way function only in a black-box way,
then CCACom1:1

i uses the underlying one-way function only in a black-box way.

Due to lack of space, the proof is deferred to the full version.

7 Constant-Round Black-Box Composable Protocol

In this section, we show a constant-round black-box construction of a general
MPC protocol that satisfies angel-based UC security. Roughly speaking, the
framework of angel-based UC security (called H-EUC framework) is the same
as the UC framework except that both the adversary and the environment in
the real and the ideal worlds have access to a super-polynomial-time angel H.

To construct our protocol, we use the following theorem, which we obtain by
combining Lemmas 1, 2, and 3.

Theorem 1. Assume the existence of one-way functions that are secure against
sub-exponential-time adversaries. Then, for any constant κ ∈ N, there exists a
constant-round commitment scheme that is CCA secure and κ-pqt-robust. This
commitment scheme uses the underlying one-way functions only in a black-box
way.

We additionally use the following results of [7] and [23].
Let 〈C,R〉 be any rcca(n)-round commitment scheme that is CCA secure

and κ-robust for any constant κ, 〈S,R〉 be any rot(n)-round semi-honest OT
protocol, and H be an angel that breaks 〈C,R〉 essentially in the same way as the
committed-value oracle of 〈C,R〉 does. Then, Lin and Pass [23] showed that there
exists a black-box O(max(rot(n), rcca(n)))-round protocol that securely realizes
the ideal OT functionality FOT in the H-EUC framework. By using essentially
the same security proof as that of [23], we can show that even when 〈C,R〉 is
CCA secure and only κ-pqt-robust for a sufficiently large κ, the protocol of [23]
is still secure if 〈S,R〉 is secure against any pqt adversary.9 Thus, we have the
following theorem from [23].

Theorem 2. Assume the existence of an rcca(n)-round commitment scheme
〈C,R〉 that is CCA secure and κ-pqt-robust for a sufficiently large κ, and assume
the existence of an rot(n)-round semi-honest oblivious transfer protocol 〈S,R〉
that is secure against any pqt adversary. Then, there exists an O(max(rcca(n), rot(n)))-
round protocol that H-EUC-realizes FOT . This protocol uses 〈C,R〉 and 〈S,R〉
only in a black-box way.

In [7], Canetti et al. showed the following.

Theorem 3 ( [7]). For every well-formed functionality F , there exists a constant-
round FOT -hybrid protocol that H-EUC-realizes F .

Then, by combining Theorems 1, 2, and 3, we obtain the following theorem.

9 This is because κ-pqt-robustness guarantees that the committed-value oracle is use-
less in attacking any κ-round protocol if the protocol is pqt-secure.



Theorem 4. Assume the existence of one-way functions that are secure against
sub-exponential-time adversaries and constant-round semi-honest oblivious trans-
fer protocols that are secure against quasi-polynomial-time adversaries. Then,
there exists an angel H such that for every well-formed functionality F , there
exists a constant-round protocol that H-EUC-realizes F . This protocol uses the
underlying one-way functions and oblivious transfer protocols only in a black-box
way.
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