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Abstract. The well known impossibility result of Cleve (STOC 1986)
implies that in general it is impossible to securely compute a function
with complete fairness without an honest majority. Since then, the ac-
cepted belief has been that nothing non-trivial can be computed with
complete fairness in the two party setting. The surprising work of Gor-
don, Hazay, Katz and Lindell (STOC 2008) shows that this belief is
false, and that there exist some non-trivial (deterministic, finite-domain)
boolean functions that can be computed fairly. This raises the funda-
mental question of characterizing complete fairness in secure two-party
computation.
In this work we show that not only that some or few functions can be
computed fairly, but rather an enormous amount of functions can be
computed with complete fairness. In fact, almost all boolean functions
with distinct domain sizes can be computed with complete fairness (for
instance, more than 99.999% of the boolean functions with domain sizes
31×30). The class of functions that is shown to be possible includes also
rather involved and highly non-trivial tasks, such as set-membership,
evaluation of a private (Boolean) function and private matchmaking.
In addition, we demonstrate that fairness is not restricted to the class
of symmetric boolean functions where both parties get the same output,
which is the only known feasibility result. Specifically, we show that fair-
ness is also possible for asymmetric boolean functions where the output
of the parties is not necessarily the same. Moreover, we consider the class
of functions with non-binary output, and show that fairness is possible
for any finite range.
The constructions are based on the protocol of Gordon et. al, and the
analysis uses tools from convex geometry.
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1 Introduction

In the setting of secure multiparty computation, some mutually distrusting par-
ties wish to compute some function of their inputs in the presence of adversarial
behavior. The security requirements of such a computation are that nothing is
learned from the protocol other than the output (privacy), that the outputs are
distributed according to the prescribed functionality (correctness) and that the
parties cannot choose their inputs as a function of the others’ inputs (indepen-
dence of inputs). Another important security property is that of fairness, which
intuitively means that the adversary learns the output if and only if, the honest
parties learn their output.

In the multiparty case, where a majority of the parties are honest, it is pos-
sible to compute any functionality while guaranteeing all the security properties
mentioned above [14,6,8,25,13]. In the multiparty case when honest majority is
not guaranteed, including the important case of the two-party settings where
one may be corrupted, it is possible to compute any function while satisfying
all security properties mentioned above except for fairness [29,14,13]. The defi-
ciency of fairness is not just an imperfection of theses constructions, but rather
a result of inherent limitation. The well-known impossibility result of Cleve [9]
shows that there exist functions that cannot be computed by two parties with
complete fairness, and thus, fairness cannot be achieved in general. Specifically,
Cleve showed that the coin-tossing functionality, where two parties toss an un-
biased fair coin, cannot be computed with complete fairness. This implies that
any function that can be used to toss a fair coin (like, for instance, the boolean
XOR function) cannot be computed fairly as well.

Since Cleve’s result, the accepted belief has been that only trivial functions1

can be computed with complete fairness. This belief is based on a solid and
substantiate intuition: In any protocol computing any interesting function, the
parties move from a state of no knowledge about the output to full knowledge
about it. Protocols proceed in rounds and the parties cannot exchange informa-
tion simultaneously, therefore, apparently, there must be a point in the execution
where one party knows more about the output than the other party. Aborting
at that round yields the unfair situation where one party can guess better the
output, and learn the output alone.

Our understanding regarding fairness has been changed recently by the sur-
prising work of Gordon, Hazay, Katz and Lindell [17]. This work shows that there
exist some non-trivial (deterministic, finite-domain) boolean functions that can
be computed in the malicious settings with complete fairness, and re-opens the
research on this subject. The fact that some functions can be computed fairly,
while some other were proven to be impossible to compute fairly, raises the
following fundamental question:

Which functions can be computed with complete fairness?

1 In our context, the term “trivial functions” refers to constant functions, functions
that depend on only one party’s input and functions where only one party receives
output. It is easy to see that these functions can be computed fairly.



Recently, [3] provided a full characterization for the class of functions that
imply fair coin-tossing and thus are ruled out by Cleve’s impossibility. This
extends our knowledge on what functions cannot be computed with complete
fairness. However, there have been no other works that further our understanding
regarding which (boolean) functions can be computed fairly, and the class of
functions for which [17] shows possibility are the only known possible functions.
There is therefore a large class of functions for which we have no idea as to
whether or not they can be securely computed with complete fairness.

To elaborate further, the work of [17] show that any function that does
not contain an embedded XOR (i.e., inputs x1, x2, y1, y2 such that f(x1, y1) =

f(x2, y2) ̸= f(x1, y2) = f(x2, y1)) can be computed fairly. Examples of functions
without an embedded XOR include the boolean OR / AND functions and the
greater-than function. Given the fact that Cleve’s impossibility result rules out
completely fair computation of boolean XOR, a natural conjuncture is that any
function that does contain an embedded XOR is impossible to compute fairly.
However, the work shows that this conclusion is incorrect. Namely, it considers
a specific function that does contain an embedded XOR, and constructs a proto-
col that securely computes this function with complete fairness. Furthermore, it
presents a generalization of this protocol that may potentially compute a large
class of functions. It also shows how to construct a (rather involved) set of equa-
tions for a given function, that indicates whether the function can be computed
fairly using this protocol.

These results are ground-breaking and completely change our perception re-
garding fairness. The fact that something non-trivial can be computed fairly is
very surprising, it contradicts the aforementioned natural intuition and com-
mon belief and raises many interesting questions. For instance, are there many
functions that can be computed fairly, or only a few? Which functions can be
computed fairly? Which functions can be computed using the generalized GHKL
protocol? What property distinguishes these functions from the functions that
are impossible to compute fairly? Furthermore, the protocol of GHKL is espe-
cially designed for deterministic symmetric boolean functions with finite domain,
where both parties receive the same output. Is fairness possible in any other class
of functions, over larger ranges, or for asymmetric functions? Overall, our un-
derstanding of what can be computed fairly is very vague.

1.1 Our Work

In this paper, we study the fundamental question of characterizing which func-
tions can be computed with complete fairness. We show that any function that
defines a full-dimensional geometric object, can be computed with complete fair-
ness. That is, we present a simple property on the truth table of the function,
and show that every function that satisfies this property, the function can be
computed fairly. This extends our knowledge of what can be computed fairly,
and is an important step towards a full characterization for fairness.

Our results deepen out understanding of fairness and show that many more
functions can be computed fairly than what has been thought previously. Using



results of combinatorics, we show that a random function with distinct domain
sizes (i.e., functions f : X×Y → {0, 1} where |X| ̸= |Y |) defines a full-dimensional
geometric object with overwhelming probability. Therefore, surprisingly, almost
all functions with distinct domain sizes can be computed with complete fairness.

Although only one bit of information is revealed by output, the class of
boolean functions that define full-dimensional geometric object is very rich, and
includes fortune of interesting and non-trivial tasks. For instance, the task of
set-membership, where P1 holds some set S ⊆ Ω, P2 holds an element x ∈ Ω, and
the parties wish to find (privately) whether x ∈ S, is a part of this class. Other
examples are tasks like private matchmaking and secure evaluation of a private
(boolean) function, where the latter task is very general and can be applied in
many practical situations. Unexpectedly, it turns out that all of these tasks can
be computed with complete fairness.

In addition to the above, we provide an additional property that indicates
that a function cannot be computed using the protocol of GHKL. This property
is almost always satisfied in the case where |X| = |Y |. Thus, at least at the intu-
itive level, almost all functions with |X| ≠ |Y | can be computed fairly, whereas
almost all functions with |X| = |Y | cannot be computed using the protocol of
GHKL. This negative result does not rule out the possibility of these functions
using some other protocols, however, it shows that the only known possibility
result does not apply to this class of functions. Combining this result with [3]
(i.e., characterization of coin-tossing), there exists a large class of functions for
which the only known possibility result does not apply, the only known impossi-
bility result does not apply either, and so fairness for this set of functions is left
as an interesting open problem.

Furthermore, we also consider larger families of functions rather than the
symmetric boolean functions with finite domain, and show that fairness is also
possible in these classes. We consider the class of asymmetric functions where the
parties do not necessarily get the same output, as well as the class of functions
with non-binary outputs. This is the first time that fairness is shown to be
possible in both families of functions, and it shows that fairness can be achieved
in a much larger and wider class of functions than previously known.

Intuition. We present some intuition before proceeding to our results in more
detail. The most important and acute point is to understand what distinguishes
functions that can be computed fairly from functions that cannot. Towards this
goal, let us reconsider the impossibility result of Cleve. This result shows that
fair coin-tossing is impossible by constructing concrete adversaries that bias and
influence the output of the honest party in any protocol implementing coin-
tossing. We believe that such adversaries can be constructed for any protocol
computing any function, and not specific to coin-tossing. In any protocol, one
party can better predict the outcome than the other, and abort the execution
if it is not satisfied with the result. Consequently, it has a concrete ability to
influence the output of the honest party by aborting prematurely. Of course, a
fair protocol should limit and decrease this ability to the least possible, but in
general, this phenomenon cannot be totally eliminated and cannot be prevented.



So if this is the case, how do fair protocols exist? The answer to this question
does not lie in the real execution but rather in the ideal process: the simulator can
simulate this influence in the ideal execution. In some sense, for some functions,
the simulator has the ability to significantly influence the output of the honest
party in the ideal execution and therefore the bias in the real execution is not
considered a breach of security. This is due to the fact that in the malicious
setting the simulator has an ability that is crucial in the context of fairness:
it can choose what input it sends to the trusted party. Indeed, the protocol of
GHKL uses this switching-input ability in the simulation, and as pointed out
by [3], once we take off this advantage from the simulator – every function that
contains an embedded XOR cannot be computed fairly, and fairness is almost
always impossible.

Therefore, the algebraic structure of the function plays an essential role in
the question of whether a function can be computed fairly or not. This is because
this structure reflects the “power” and the “freedom” that the simulator has in
the ideal world and how it can influence the output of the honest party. The
question of whether a function can be computed fairly is related to the amount
of “power” the simulator has in the ideal execution. Intuitively, the more freedom
that the simulator has, it is more likely that the function can be computed fairly.

A concrete example. We demonstrate this “power of the simulator” on two
functions. The first is the XOR function, which is impossible to compute by
a simple implication of Cleve’s result. The second is the specific function for
which GHKL has proved to be possible (which we call “the GHKL function”).
The truth tables of the functions are as follows:

(a)
y1 y2

x1 0 1
x2 1 0

(b)

y1 y2
x1 0 1
x2 1 0
x3 1 1

Fig. 1: (a) The XOR function – impossible, (b) The GHKL function – possible

What is the freedom of the simulator in each case? Consider the case where
P1 is corrupted (that is, we can assume that P1 is the first to receive an output,
and thus it is “harder” to simulate). In the XOR function, let p be the probability
that the simulator sends the input x1 to the trusted party, and let (1−p) be the
probability that it sends x2. Therefore, the output of P2 in the ideal execution
can be represented as (q1, q2) = p ·(0, 1)+(1−p) ·(1, 0) = (1−p, p), which means that
if P2 inputs y1, then it receives 1 with probability 1−p, and if it uses input y2,
then it receives 1 with probability p. We call this vector “the output distribution
vector” for P2, and the set of all possible output distribution vectors reflects
the freedom that the simulator has in the ideal execution. In the XOR function,
this set is simply {(1−p, p) | 0 ≤ p ≤ 1}, which gives the simulator one degree
of freedom. Any increment of the probability in the first coordinate, must be
balanced with an equivalent decrement in the second coordinate, and vice versa.



On the other hand, consider the case of the GHKL function. Assume that
the simulator chooses x1 with probability p1, x2 with probability p2 and x3 with
probability 1−p1−p2. Then, all the output vector distributions are of the form:

(q1, q2) = p1 · (0, 1) + p2 · (1, 0) + (1− p1 − p2) · (1, 1) = (1− p1, 1− p2) .

This gives the simulator two degrees of freedom, which is significantly more
power.

Geometrically, we can refer to the rows of the truth table as points in R2, and
so in the XOR function we have the two points (0, 1) and (1, 0). All the output
distribution vectors are of the form p · (0, 1) + (1−p) · (1, 0) which is exactly the
line segment between these two points (geometric object of dimension 1). In the
GHKL function, all the output distribution vectors are the triangle between the
points (0, 1), (1, 0) and (1, 1), which is a geometric object of dimension 2 (a full
dimensional object in R2).

The difference between these two geometric objects already gives a perception
for the reason why the XOR function is impossible to compute, whereas the
GHKL function is possible, as the simulator has significantly more options in
the latter case. However, we provide an additional refinement. At least in the
intuitive level, fix some output distribution vector of the honest party (q1, q2).
Assume that there exists a real-world adversary that succeeds to bias the output
and obtain output distribution vector (q′1, q

′
2) that is at most ϵ-far from (q1, q2).

In the case of the XOR function, this results in points that are not on the line,
and therefore this adversary cannot be simulated. On the contrary, in case of the
GHKL function, these points are still in the triangle, and therefore this adversary
can be simulated.

In Figure 2, we show the geometric objects defined by the XOR and the
GHKL functions. The centers of the circuits are the output distribution of honest
executions, and the circuits represent the possible biases in the real execution.
In (a) there exist small biases that are invalid points, whereas in (b) all small
biases are valid points that can be simulated.

(a) The potential output distribution vectors of
the XOR function: a line segment between (0, 1)

and (1, 0).

(b) The potential output distribution vectors of
the GHKL function: the triangle between (0, 1),

(1, 0) and (1, 1).

Fig. 2: The geometric objects defined by the XOR (a) and the GHKL (b) functions.



1.2 Our Results

For a given function f : {x1, . . . , xℓ} × {y1, . . . , ym} → {0, 1}, we consider its geo-
metric representation as ℓ points over Rm, where the jth coordinate of the ith
point is simply f(xi, yj). We then prove that any function that its geometric
representation is of full dimension can be computed with complete fairness. We
prove the following theorem:

Theorem 1.1 (informal) Let f : X × Y → {0, 1} be a function. Under suit-
able cryptographic assumptions, if the geometric object defined by f is of full-
dimension, then the function can be computed with complete fairness.

For the proof, we simply use the extended GHKL protocol. Moreover, the proof
uses tools from convex geometry. We find the connection between the problem
of fairness and convex geometry very appealing.

On the other hand, we show that if the function is not full dimensional,
and satisfies some additional requirements (that are almost always satisfied in
functions with |X| = |Y |), then the function cannot be computed using the
protocol of [17].

We then proceed to the class of asymmetric functions where the parties do not
necessarily get the same output, and the class of non-binary output. Interestingly,
the GHKL protocol can be extended to these classes of functions. We show:

Theorem 1.2 (informal) Under suitable cryptographic assumptions,

1. There exists a large class of asymmetric boolean functions that can be com-
puted with complete fairness.

2. For any finite range Σ, there exists a large class of functions f : X ×Y → Σ

that can be computed with complete-fairness.

For the non-binary case, we provide a general criteria that holds only for func-
tions for which |X| > (|Σ| − 1) · |Y |, that is, when the ratio between the domain
sizes is greater than |Σ| − 1. This, together with the results in the binary case,
may refer to an interesting relationship between the size of the domains and
possibility of fairness. This is the first time that a fair protocol is constructed
for both non-binary output, and asymmetric boolean functions. This shows that
fairness is not restricted to a very specific and particular type of functions, but
rather a property that under certain circumstances can be achieved. Moreover,
it shows the power that is concealed in the GHKL protocol alone.

Related work. Several other impossibility results regarding fairness, rather
than the result of Cleve, have been published [12,1]. However, it seems that only
Cleve’s impossibility can be reduced into the family of boolean functions with
finite domain. The work of [3] identifies which function imply fair coin-tossing
and are ruled out by the impossibility result of Cleve. Interestingly, the class of
functions that imply fair coin-tossing shares a similar (but yet distinct) algebraic
structure with the class of functions that we show that cannot be computed using
the GHKL protocol. We link between the two criterions in the body of our work.

For decades fairness was believed to be impossible, and so researchers have
simply resigned themselves to being unable to achieve this goal. Therefore, a
huge amount of works consider several relaxations like gradual release, partial



fairness and rational adversaries ([10,15,5,19,4,21] to state a few. See [16] for a
survey of fairness in secure computation).

Open problems. Our work is an important step towards a full characterization
of fairness of finite domain functions. The main open question is to finalize this
characterization. In addition, it seems appealing to generalize our results to
functions with infinite domains (domains with sizes that depend on the security
parameter). Finally, in the non-binary case, we have a positive result only when
the ratio between the domain sizes is greater than |Σ| − 1. A natural question is
whether fairness be achieved in any other case, or for any other ratio.

2 Definitions and Preliminaries

We assume that the reader is familiar with the definitions of secure computation,
and with the ideal-real paradigm. We distinguish between security-with-abort,
for which the adversary may receive output while the honest party does not
(security without fairness), and security with fairness, where all parties receive
output (this is similar to security with respect to honest majority as in [7],
although we do not have honest majority). In the following, we present the
necessary notations, and we cover the mathematical background that is needed
for our results.

Notations.We let κ denote the security parameter. We use standard O notation,
and let poly denote a polynomial function. A function µ(·) is negligible if for
every positive polynomial poly(·) and all sufficiently large κ’s it holds that µ(κ) <
1/poly(κ). In most of the paper, we consider binary deterministic functions over
a finite domain; i.e., functions f : X × Y → {0, 1} where X,Y ⊂ {0, 1}∗ are finite
sets. Throughout the paper, we denote X = {x1, . . . , xℓ} and Y = {y1, . . . , ym},
for constants ℓ,m ∈ N. Let Mf be the ℓ×m matrix that represents the function,
i.e., a matrix whose entry position (i, j) is f(xi, yj). For 1 ≤ i ≤ ℓ, let Xi denote
the ith row of Mf , and for 1 ≤ j ≤ m let Yj denote the jth column of Mf . A
vector p = (p1, . . . , pℓ) is a probability vector if pi ≥ 0 for every 1 ≤ i ≤ ℓ and∑ℓ

i=1 pi = 1. As a convention, we use bold-case letters to represent a vector
(e.g., p, q), and sometimes we use upper-case letters (e.g., Xi, as above). All
vectors will be assumed to be row vectors. We denote by 1k (resp. 0k) the all
one (resp. all zero) vector of size k. We work in the Euclidian space Rm, and use
the Euclidian norm ||x|| =

√
⟨x, x⟩ and the distance function as d(x, y) = ||x− y||.

2.1 Mathematical Background

Our characterization is based on the geometric representation of the function
f . In the following, we provide the necessary mathematical background, and
link it to the context of cryptography whenever possible. Most of the following
Mathematical definitions are taken from [26,20].

Output vector distribution and convex combination. We now analyze
the “power of the simulator” in the ideal execution. The following is an inherent
property of the concrete function and the ideal execution, and is correct for any
protocol computing the function. Let A be an adversary that corrupts the party



P1, and assume that the simulator S chooses its input according to some distri-
bution p = (p1, . . . , pℓ). That is, the simulator sends an input xi with probability

pi, for 1 ≤ i ≤ ℓ. Then, the length m vector q = (qy1 , . . . , qym)
def
= p ·Mf represents

the output distribution vector of the honest party P2. That is, in case the input
of P2 is yj for some 1 ≤ j ≤ m, then it gets 1 with probability qyj .

Convex combination. The output distribution vector is in fact a convex com-
bination of the rows {X1, . . . , Xℓ} of the matrix Mf . That is, when the simulator
uses p, the output vector distribution of P2 is:

p ·Mf = (p1, . . . , pℓ) ·Mf = p1 ·X1 + . . .+ pℓ ·Xℓ .

A convex combination of points X1, . . . , Xℓ in Rm is a linear combination of the
points, where all the coefficients (i.e., (p1, . . . , pℓ)) are non-negative and sum up
to 1.

Convex hull. The set of all possible output distributions vectors that the sim-
ulator can produce in the ideal execution is:

{p ·Mf | p is a probability vector} .

In particular, this set reflects the “freedom” that the simulator has in the ideal
execution. This set is in fact, the convex hull of the row vectors X1, . . . , Xℓ, and
is denoted as conv({X1, . . . , Xℓ}). That is, for a set S = {X1, . . . , Xℓ}, conv(S) ={∑ℓ

i=1 pi ·Xi | 0 ≤ pi ≤ 1,
∑m

i=1 pi = 1
}
. The convex-hull of a set of points is a

convex set, which means that for every X,Y ∈ conv(S), the line segment between
X and Y also lies in conv(S), that is, for every X,Y ∈ conv(S) and for every
0 ≤ λ ≤ 1, it holds that λ ·X + (1− λ) · Y ∈ conv(S).

Geometrically, the convex-hull of two (distinct) points in R2, is the line-
segment that connects them. The convex-hull of three points in R2 may be a line
(in case all the points lie on a single line), or a triangle (in case where all the
points are collinear). The convex-hull of 4 points may be a line, a triangle, or a
parallelogram. In general, the convex-hull of k points in R2 may define a convex
polygon of at most k vertices. In R3, the convex-hull of k points can be either a
line, a triangle, a tetrahedron, a parallelepiped, etc.

Affine-hull and affine independence. A subset B of Rm is an affine sub-
space if λ · a + µ · b ∈ B for every a,b ∈ B and λ, µ ∈ R such that λ + µ = 1.
For a set of points S = {X1, . . . , Xℓ}, its affine hull is defined as: aff(S) ={∑ℓ

i=1 λi ·Xi |
∑ℓ

i=1 λi = 1
}
, which is similar to convex hull, but without the

additional requirement for non-negative coefficients. The set of points X1, . . . , Xℓ

in Rm is affinely independent if
∑ℓ

i=1 λiXi = 0m holds with
∑ℓ

i=1 λi = 0 only if
λ1 = . . . = λℓ = 0. In particular, it means that one of the points is in the affine
hull of the other points. It is easy to see that the set of points {X1, . . . , Xℓ} is
affinely independent if and only if the set {X2 − X1, . . . , Xℓ − X1} is a linearly
independent set. As a result, any m+ 2 points in Rm are affine dependent, since
any m+1 points in Rm are linearly dependent. In addition, it is easy to see that
the points {X1, . . . , Xℓ} over Rm is affinely independent if and only if the set of
points {(X1, 1), . . . , (Xℓ, 1)} over Rm+1 is linearly independent.



If the set S = {X1, . . . , Xℓ} over Rm is affinely independent, then aff(S) has
dimension ℓ − 1, and we write dim(aff(S)) = ℓ − 1. In this case, S is the affine
basis for aff(S). Note that an affine basis for an m-dimensional affine space has
m+ 1 elements.

Linear hyperplane. A linear hyperplane in Rm is a (m−1)-dimensional affine-
subspace of Rm. The linear hyperplane can be defined as all the points X =

(x1, . . . , xm) which are the solutions of a linear equation:

a1x1 + . . . amxm = b ,

for some constants a = (a1, . . . , am) ∈ Rm and b ∈ R. We denote this hyperplane
by:

H(a, b)
def
= {X ∈ Rm | ⟨X,a⟩ = b} .

Throughout the paper, for short, we will use the term hyperplane instead of
linear hyperplane. It is easy to see that indeed this is an affine-subspace. In R1,
an hyperplane is a single point, in R2 it is a line, in R3 it is a plane and so on. We
remark that for any m affinely independent points in Rm there exists a unique
hyperplane that contains all of them (and infinitely many in case they are not
affinely independent). This is a simple generalization of the fact that for any
distinct 2 points there exists a single line that passes through them, for any 3

(collinear) points there exists a single plane that contains all of them and etc.

Convex polytopes. Geometrically, a full dimensional convex polytope in Rm is
the convex-hull of a finite set S where dim(aff(S)) = m. Polytopes are familiar
objects: in R2 we get convex polygons (a triangle, a parallelogram etc.). In R3

we get convex polyhedra (a tetrahedron, a parallelepiped etc.). Convex polytopes
play an important role in solutions of linear programming.

In addition, a special case of polytope is simplex. If the set S is affinely
independent of cardinality m+1, then conv(S) is an m-dimensional simplex (or,
m-simplex). For m = 2, this is simply a triangle, whereas in m = 3 we get a
tetrahedron. A simplex in Rm consists of m + 1 facets, which are themselves
simplices of lower dimensions. For instance, a tetrahedron (which is a 3-simplex)
consists of 4 facets, which are themselves triangles (2-simplex).

3 The Protocol of Gordon, Hazay, Katz and Lindell [17]

In the following, we give a high level overview of the protocol of [17]. We also
present its simulation strategy, and the set of equations that indicates whether a
given function can be computed with this protocol, which is the important part
for our discussion.

The protocol. Assume the existence of an online dealer (a reactive functionality
that can be replaced using standard secure computation that is secure-with-
abort). The parties invoke this online-dealer and send it their respective inputs
(x, y) ∈ X × Y . The online dealer computes values a1, . . . , aR and b1, . . . , bR (we
will see later how they are defined). In round i the dealer sends party P1 the
value ai and afterward it sends bi to P2. At each point of the execution, each



party can abort the online-dealer, preventing the other party from receiving its
value at that round. In such a case, the other party is instructed to halt and
output the last value it has received from the dealer. For instance, if P1 aborts at
round i after it learns ai and prevents from P2 to learn bi, P2 halts and outputs
bi−1.

The values (a1, . . . , aR), (b1, . . . , bR) are generated by the dealer in the following
way: The dealer first chooses a round i∗ according to some geometric distribution
with parameter α. In each round i < i∗, the parties receive bits (ai, bi), that
depend on their respective inputs solely and uncorrelated to the input of the
other party. In particular, for party P1 the dealer computes ai = f(x, ŷ) for some
random ŷ, and for P2 it computes bi = f(x̂, y) for some random x̂. For every
round i ≥ i∗, the parties receive the correct output ai = bi = f(x, y). In case
one of the party initially aborts (i.e., does not invoke the online-dealer in the
first round and the parties do not receive a1, b1), each party can locally compute
initial outputs a0, b0 similarly to the way the values ai, bi are computed by the
online-dealer for i < i∗. Note that if we set R = α−1 · ω(lnκ), then i∗ < R with
overwhelming probability, and so correctness holds.

Security. Since P2 is the second to receive an output, it is easy to simulate
an adversary that corrupts P2. If the adversary aborts before i∗, then it has
not obtained any information about the input of P1. If the adversary aborts at
or after i∗, then in the real execution the honest party P1 already receives the
correct output f(x, y), and fairness is obtained. Therefore, the protocol is secure
with respect to corrupted P2, for any function f .

The case of corrupted P1 is more delicate, and defines some requirements
from f . Intuitively, if the adversary aborts before i∗, then the outputs of both
parties are uncorrelated, and no one gets any advantage. If the adversary aborts
after i∗, then both parties receive the correct output and fairness is obtained.
The worst case, then, occurs when P1 aborts exactly in iteration i∗, as P1 has
then learned the correct value of f(x, y) while P2 has not. Since the simulator
has to give P1 the true output if it aborts at i∗, it sends the trusted party the
true input xi in round i∗. As a result, P2 in the ideal execution learns the correct
output f(x, y) at round i∗, unlike the real execution where it outputs a random
value f(x̂, y). [17] overcomes this problem in a very elegant way: in order to
balance this advantage of the honest party in the ideal execution in case the
adversary aborts at i∗, the simulator chooses a random value x̂ different from
the way it is chosen in the real execution in case the adversary abort before i∗

(that is, according to a different distribution than the one the dealer uses in the
real execution). The calculations show that overall, the output distribution of
the honest party is distributed identically in the real and ideal executions. This
balancing is possible only sometimes, and depends on the actual function f that
is being evaluated.

In more detail, in the real execution the dealer before i∗ chooses bi as f(x̂, y),
where x̂ is chosen according to some distribution Xreal. In the ideal execution,
in case the adversary sends x to the simulated online-dealer, aborts at round
i < i∗ upon viewing some ai, the simulator chooses the input x̃ it sends to the
trusted party according to distribution Xx,ai

ideal. Then, define Qx,ai = Xx,ai
ideal · Mf ,



the output distribution vector of the honest party P2 in this case. In fact, the
protocol and the simulation define the output distribution vectors Qx,ai , and
simulation is possible only if the corresponding Xx,ai

ideal distribution exists, which
depends on the function f being computed. Due to lack of space, we now show
the definitions of the desired output distribution vectors Qx,ai without getting
into the calculations for why these are defined like that. We refer the reader
to [17] or the full version of this paper [2] to see how the protocol defines these
requirements.

The output distributions vectors Qx,a. Let f : {x1, . . . , xℓ} × {y1, . . . , ym} →
{0, 1}. Fix Xreal, and let UY denote the uniform distribution over Y . For every x ∈
X, denote by px the probability that ai = 1 before i∗. Similarly, for every yj ∈ Y ,

let pyj denote the probability bi = 1 before i∗. That is: px
def
= Prŷ←UY [f(x, ŷ) = 1],

and pyj
def
= Prx̂←Xreal [f(x̂, yj) = 1]. For every x ∈ X, a ∈ {0, 1}, define the row

vectors Qx,a = (qx,ay1 , . . . , qx,aym ) indexed by yj ∈ Y as follows:

qx,0yj

def
=

{
pyj if f(x, yj) = 1

pyj +
α·pyj

(1−α)·(1−px)
if f(x, yj) = 0

qx,1yj

def
=

{
pyj +

α·(pyj−1)

(1−α)·px if f(x, yj) = 1

pyj if f(x, yj) = 0
(1)

In case for every x ∈ X, a ∈ {0, 1} there exists a probability vector Xx,a
ideal such

that Xx,a
ideal ·Mf = Qx,a, then the simulator succeeds to simulate the protocol. We

therefore have the following theorem:

Theorem 3.1 Let f : {x1, . . . , xℓ}×{y1, . . . , ym} → {0, 1} and let Mf be as above.
If there exist probability vector Xreal and a parameter 0 < α < 1 (where α−1 ∈
O(poly(κ))), such that for every x ∈ X, a ∈ {0, 1}, there exists a probability vector
Xx,a

ideal for which:
Xx,a

ideal ·Mf = Qx,a ,

then the protocol securely computes f with complete fairness.

An alternative formulation of the above, is to require that for every x, a, the
points Qx,a are in conv({X1, . . . , Xℓ}), where Xi is the ith row of Mf . Moreover,
observe that in order to decide whether a function can be computed using the
protocol, there are 2ℓ linear systems that should be satisfied, with m constraints
each, and with 2ℓ2 variables overall. This criterion depends heavily on some
parameters of the protocols (like px, pyj ) rather than properties of the function.
We are interested in a simpler and easier way to validate criteria.

4 Our Criteria

4.1 Possibility of Full-Dimensional Functions

In this section, we show that any function that defines a full-dimensional geo-
metric object, can be computed using the protocol of [17]. A full dimensional
function is defined as follows:



Definition 4.1 (full-dimensional function) Let f : X×Y → {0, 1} be a func-
tion, and let X1, . . . , Xℓ be the ℓ rows of Mf over Rm. We say that f is a full-
dimensional function if dim(aff({X1, . . . , Xℓ})) = m.

Recall that for a set of points S = {X1, . . . , Xℓ} ∈ Rm, if dim(aff(S)) = m then
the convex-hull of the points defines a full-dimensional convex polytope. Thus,
intuitively, the simulator has enough power to simulate the protocol. Recall that
a basis for an affine space of dimension m has cardinality m+1, and thus we must
have that ℓ > m. Therefore, we assume without loss of generality that ℓ > m (and
consider the transposed function fT : {y1, . . . , ym}× {x1, . . . , xℓ} → {0, 1}, defined
as fT (y, x) = f(x, y), otherwise). Overall, our property inherently holds only if
ℓ ̸= m.

Alternative representation. Before we prove that any full-dimensional func-
tion can be computed fairly, we give a different representation for this definition.
This strengthens our understanding of this property, and is also related to the
balanced property defined in [3] (we will elaborate more about these two crite-
rions in Subsection 4.3). The proof for the following claim appears in the full
version [2]:

Claim 4.2 Let f : {x1, . . . , xℓ}×{y1, . . . , ym} → {0, 1} be a function, let Mf be as
above and let S = {X1, . . . , Xℓ} be the rows of Mf (ℓ points in Rm). The following
are equivalent:

1. The function is right-unbalanced with respect to arbitrary vectors.
That is, for every non-zero q ∈ Rm and any δ ∈ R it holds that: Mf ·qT ̸= δ·1ℓ.

2. The rows of the matrix do not lie on the same hyperplane.
That is, for every non-zero q ∈ Rm and any δ ∈ R, there exists a point Xi

such that Xi ̸∈ H(q, δ). Alteratively, conv({X1, . . . , Xℓ}) ̸⊆ H(q, δ).
3. The function is full-dimensional.

There exists a subset of {X1, . . . , Xℓ} of cardinality m + 1, that is affinely
independent. Thus, dim(aff({X1, . . . , Xℓ})) = m.

From Alternative 1, checking whether a function is full-dimensional can be
done efficiently. Giving that ℓ > m, all we have to do is to verify that the only
possible solution q for the linear system Mf · qT = 0T

ℓ is the trivial one (i.e.,
q = 0), and that there is no solution q for the linear system Mf · qT = 1T

ℓ . This
implies that the function is unbalanced for every δ ∈ R.

The proof of possibility. We now show that any function that is full dimen-
sional can be computed with complete fairness, using the protocol of [17]. The
proof for this Theorem is geometrical. Recall that by Theorem 3.1, we need to
show that there exists a solution for some set of equations. In our proof here,
we show that such a solution exists without solving the equations explicitly. We
show that all the points Qx,a that the simulator needs (by Theorem 3.1) are
in the convex-hull of the rows {X1, . . . , Xℓ}, and therefore there exist probabil-
ity vectors Xx,a

ideal as required. We show this in two steps. First, we show that
all the points are very “close” to some point c, and therefore, all the points



are inside the Euclidian ball centered at c for some small radius ϵ (defined as

B(c, ϵ)
def
= {Z ∈ Rm | d(Z, c) ≤ ϵ}). Second, we show that this whole ball is em-

bedded inside the convex-polytope that is defined by the rows of the function,
which implies that all the points Qx,a are in the convex-hull and simulation is
possible.

In more detail, fix some distributionXreal for which the point c=(py1 , . . . , pym)

= Xreal · Mf is inside the convex-hull of the matrix. Then, we observe that by
adjusting α, all the points Qx,a that we need are very “close” to this point c. This
is because each coordinate qx,ayj is exactly pyj plus some term that is multiplied
by α/(1 − α), and therefore we can control its distance from pyj (see Eq. (1)).
In particular, if we choose α = 1/ lnκ, then for all sufficiently large κ’s the dis-
tance between Qx,a and c is smaller than any constant. Still, for α = 1/ lnκ, the
number of rounds of the protocol is R = α−1 · ω(lnκ) = lnκ · ω(lnκ), and thus
asymptotically remains unchanged.

All the points Qx,a are close to the point c. This implies that they all lie in
the m-dimensional Euclidian ball of some constant radius ϵ > 0 centered at c.
Moreover, since the function is of full-dimension, the convex-hull of the function
defines a full-dimensional convex polytope, and therefore this ball is embedded
in this polytope. We prove this by showing that the center of the ball c is “far”
from each facet of the polytope, using the separation theorems of closed convex
sets. As a result, all the points that are “close” to c (i.e., our ball) are still “far”
from each facet of the polytope, and thus they are inside it. As an illustration,
consider again the case of the GHKL function in Figure 2 (in Section 1). We
conclude that all the points that the simulator needs are in the convex-hull of
the function, and therefore the protocol can be simulated.

Before we proceed to the full proof formally, we give an additional definition
and an important Claim. For a set F ⊆ Rm and a point p ∈ Rm, we define the
distance between p and F to be the minimal distance between p and a point
in F , that is: d(p, F ) = min{d(p, f) | f ∈ F}. The following claim shows that
if a point is not on a closed convex set, then there exists a constant distance
between the point and the convex set. We use this claim to show that the point c
is far enough from each one of the facets of the polytope (and therefore the ball
centered in c is in the convex). The proof for this claim is a simple implication
of the separation theorems for convex sets, see [26]. We have:

Claim 4.3 Let C be a closed convex subset of Rm, and let a ∈ Rm such that
a ̸∈ C. Then, there exists a constant ϵ > 0 such that d(a, C) > ϵ (that is, for every
Z ∈ C it holds that d(a, Z) > ϵ).

We now ready for our main theorem of this section:

Theorem 4.4 Let f : {x1, . . . , xℓ} × {y1, . . . , ym} → {0, 1} be a boolean function.
If f is of full-dimension, then f can be computed with complete fairness.

Proof: Since f is full-dimensional, there exists a subset of m+ 1 rows that are
affinely independent. Let S′ = {X1, . . . , Xm+1} be this subset of rows. We now
locate c to be inside the simplex that is defined by S′, by choosing Xreal to be
the uniform distribution over S′ (i.e., the ith position of Xreal is 0 if Xi ̸∈ S′,



and 1/(m+ 1) if Xi ∈ S′). We then let c = (py1 , . . . , pym) = Xreal ·Mf . Finally, we
set α = 1/ lnκ. We consider the GHKL protocol with the above parameters, and
consider the set of points {Qx,a}x∈X,a∈{0,1}. The next claim shows that all these
points are close to c, and in the m-dimensional ball B(c, ϵ) for some small ϵ > 0.
That is:

Claim 4.5 For every constant ϵ > 0, for every x ∈ X, a ∈ {0, 1} , and for all
sufficiently large κ’s it holds that:

Qx,a ∈ B(c, ϵ)

Proof: Fix ϵ. Since α = 1/ lnκ, for every constant δ > 0 and for all sufficiently
large κ’s it holds that: α/(1 − α) < δ. We show that for every x, a, it holds that
d(Qx,a, c) ≤ ϵ, and thus Qx,a ∈ B(c, ϵ).

Recall the definition of Qx,0 as in Eq. (1): If f(x, yj) = 1 then q0yj = pyj and
thus |pyj −q0yj | = 0. In case f(x, yj) = 1, for δ = ϵ(1−px)/

√
m and for all sufficiently

large κ’s it holds that:∣∣∣pyj − qx,0yj

∣∣∣ = ∣∣∣∣pyj − pyj − α

1− α
·

pyj
(1− px)

∣∣∣∣ ≤ α

1− α
· 1

(1− px)
≤ δ

(1− px)
=

ϵ√
m

.

Therefore, for all sufficiently large κ’s,
∣∣∣pyj − qx,0yj

∣∣∣ ≤ ϵ/
√
m irrespectively to

whether f(x, yj) is 1 or 0. In a similar way, for all sufficiently large κ’s it holds

that:
∣∣∣pyj − qx,1yj

∣∣∣ ≤ ϵ/
√
m. Overall, for every x ∈ X, a ∈ {0, 1} we have that the

distance between the points Qx,a and c is:

d(Qx,a, c) =

√√√√ m∑
j=1

(
qx,byj − pyj

)2

≤

√√√√ m∑
j=1

(
ϵ√
m

)2

≤ ϵ

and therefore Qx,a ∈ B(c, ϵ).

We now show that this ball is embedded inside the simplex of S′. That is:

Claim 4.6 There exists a constant ϵ > 0 for which B(c, ϵ) ⊂ conv(S′).

Proof: Since S′ = {X1, . . . , Xm+1} is affinely independent set of cardinality
m + 1, conv(S′) is a simplex. Recall that c is a point in the simplex (since it
assigns 0 to any row that is not in S′), and so c ∈ conv(S′). We now show that
for every facet of the simplex, there exists a constant distance between the point
c and the facet. Therefore, there exists a small ball around c that is “far” from
each facet of the simplex, and inside the simplex.

For every 1 ≤ i ≤ m+ 1, the ith facet of the simplex is the set Fi = conv(S′ \
{Xi}), i.e., the convex set of the vertices of the simplex without the vertex Xi.
We now show that c ̸∈ Fi, and therefore, using Claim 4.3, c is ϵ-far from Fi, for
some small ϵ > 0.

In order to show that c ̸∈ Fi, we show that c ̸∈ H(q, δ), where H(q, δ) is an
hyperplane that contains Fi. That is, let H(q, δ) be the unique hyperplane that



contains all the points S′ \ {Xi} (these are m affinely independent points and
therefore there is a unique hyperplane that contains all of them). Recall that
Xi ̸∈ H(q, δ) (otherwise, S′ is affinely dependent). Observe that Fi = conv(S′ \
{Xi}) ⊂ H(q, δ), since each point Xi is in the hyperplane, and the hyperplane is
an affine set. We now show that since Xi ̸∈ H(q, δ), then c ̸∈ H(q, δ) and therefore
c ̸∈ Fi.

Assume by contradiction that c ∈ H(q, δ). We can write:

δ = ⟨c,q⟩ =
⟨m+1∑

j=1

1

m+ 1
·Xj ,q

⟩
=

1

m+ 1
⟨Xi,q⟩+

1

m+ 1

∑
j ̸=i

⟨Xj ,q⟩

=
1

m+ 1
⟨Xi,q⟩+

m

m+ 1
· δ

and so, ⟨Xi,q⟩ = δ, which implies that Xi ∈ H(q, δ) in contradiction.
Since c ̸∈ Fi, and since Fi is a closed2 convex, we can apply Claim 4.3 to get

the existence of a constant ϵi > 0 such that d(c, Fi) > ϵi.
Now, let F1, . . . , Fm+1 be the facets of the simplex. We get the existence of

ϵ1, . . . , ϵm+1 for each facet as above. Let ϵ = min{ϵ1, . . . , ϵm+1}/2, and so for every
i, we have: d(c, Fi) > 2ϵ.

Consider the ball B(c, ϵ). We show that any point in this ball is of distance
at least ϵ from each facet Fi. Formally, for every b ∈ B(c, ϵ), for every facet Fi it
holds that: d(b, Fi) > ϵ. This can be easily derived from the triangle inequality,
where for every b ∈ B(c, ϵ/2):

d(c,b) + d(b, Fi) ≥ d(c, Fi) > 2ϵ ,

and so d(b, Fi) > ϵ since d(b, c) ≤ ϵ.
Overall, all the points b ∈ B(c, ϵ) are of distance at least ϵ from each facet of

the simplex, and inside the simplex. This shows that B(c, ϵ) ⊂ conv(S′).

For conclusion, there exists a constant ϵ > 0 for which B(c, ϵ) ⊂ conv(S′) ⊆
conv({X1, . . . , Xℓ}). Moreover, for all x ∈ X, a ∈ {0, 1} and for all sufficiently large
κ’s, it holds that Qx,a ∈ B(c, ϵ). Therefore, the requirements of Theorem 3.1 are
satisfied, and the protocol securely computes f with complete fairness.

On the number of full-dimensional functions. We count the number of
functions that are full dimensional. Recall that a function with |X| = |Y | can-
not be full-dimensional, and we consider only functions where |X| ̸= |Y |. Inter-
estingly, the probability that a random function with distinct domain sizes is
full-dimensional tends to 1 when |X|, |Y | grow. Thus, almost always, a random
function with distinct domain sizes can be computed with complete fairness(!).
The answer for the frequency of full-dimensional functions within the class of
boolean functions with distinct sizes relates to a beautiful problem in combi-
natorics and linear algebra, that has received careful attention: Estimating the
probability that a random boolean matrix of size m×m is singular. Denote this

2 The convex-hull of a finite set S of vectors in Rm is a compact set, and therefore is
closed (See [26, Theorem 15.4]).



probability by Pm. The answer for our question is simply 1 − Pm, and is even
larger when the difference between |X| and |Y | increases (see Claim 4.7 below).

The value of Pm is conjectured to be (1/2+o(1))m, and recent results [23,22,28]
are getting closer to this conjuncture, by showing that Pm ≤ (1/

√
2 + o(1))m,

which is roughly the probability to have two identical or compliments rows or
columns. Since our results hold only for the case of finite domain, it is remarkable
to address that Pm is small already for very small dimensions m. For instance,
P10<0.29, P15<0.047 and P30<1.6·10−6 (and so > 99.999% of the 31×30 functions
can be computed fairly). See more experimental results in [27]. The following
Claim is based on [30, Corollary 14]:

Claim 4.7 With a probability that tends to 1 when |X|, |Y | grow, a random func-
tion with |X| ̸= |Y | is full-dimensional.

Proof: An alternative question for the first item is the following: What is the
probability that the convex-hull of m + 1 (or even more) random 0/1-points in
Rm is an m-dimensional simplex?

Recall that Pm denotes the probability that a random m vectors of size m

are linearly dependent. Then, the probability for our first question is simply
1 − Pm. This is because with very high probability our m + 1 points will be
distinct, we can choose the first point X1 arbitrarily, and the rest of the points
S = {X2, . . . , Xm+1} uniformly at random. With probability 1 − Pm, the set S

is linearly independent, and so it linearly spans X1. It is easy to see that this
implies that {X2 − X1, . . . , Xm+1 − X1} is a linearly independent set, and thus
{X1, . . . , Xm+1} is affinely-independent set. Overall, a random set {X1, . . . , Xm+1}
is affinely independent with probability 1− Pm.

4.2 Functions that Are not Full-Dimensional

A negative result. We now consider the case where the functions are not full-
dimensional. This includes the limited number of functions for which |X| ̸= |Y |,
and all functions with |X| = |Y |. In particular, for a function that is not full-
dimensional, all the rows of the function lie in some hyperplane (a (m− 1)-
dimensional subspace of Rm), and all the columns of the matrix lie in a different
hyperplane (in Rℓ). We show that under some additional requirements, the pro-
tocol of [17] cannot be simulated for any choice of parameters, with respect to
the specific simulation strategy defined in the proof of Theorem 3.1. We have
the following Theorem:

Theorem 4.8 Let f,Mf , {X1, . . . , Xℓ} be as above, and let {Y1, . . . , Ym} be the
columns of Mf . Assume that the function is not full-dimensional, that is, there
exist non-zero p ∈ Rℓ, q ∈ Rm and some δ1, δ2 ∈ R such that:

X1, . . . , Xℓ ∈ H(q, δ2) and Y1, . . . , Ym ∈ H(p, δ1) .

Assume that in addition, 0ℓ,1ℓ ̸∈ H(p, δ1) and 0m,1m ̸∈ H(q, δ2). Then, the func-
tion f cannot be computed using the GHKL protocol, for any choice of parameters
(α,Xreal), with respect to the specific simulation strategy used in Theorem 3.1.



Proof: We first consider the protocol where P1 plays the party that inputs
x ∈ X and P2 inputs y ∈ Y (that is, P2 is the second to receive output, exactly
as GHKL protocol is described in Section 3). Fix any Xreal, α, and let c =

(py1 , . . . , pym) = Xreal · Mf . First, observe that conv({X1, . . . , Xℓ}) ⊆ H(q, δ2),
since for any point Z ∈ conv({X1, . . . , Xℓ}), we can represent Z as a ·Mf for some
probability vector a. Then, we have that ⟨Z,q⟩ = ⟨a · Mf ,q⟩ = a · δ2 · 1ℓ = δ2
and so Z ∈ H(q, δ2). Now, assume by contradiction that the set of equations
is satisfied. This implies that Qx,a ∈ H(q, δ2) for every x ∈ X, a ∈ {0, 1}, since
Qx,a ∈ conv({X1, . . . , Xℓ}) ⊆ H(q, δ2).

Let ◦ denote the entrywise product over Rm, that is for Z = (z1, . . . , zm),
W = (w1, . . . , wm), the point Z ◦ W is defined as (z1 · w1, . . . , zm · wm). Recall
that c = (py1 , . . . , pym). We claim that for every Xi, the point c ◦ Xi is also in
the hyperplane H(q, δ2). This trivially holds if Xi = 1m. Otherwise, recall the
definition of Qxi,0 (Eq. (1)):

qxi,0
yj

def
=

{
pyj if f(xi, yj) = 1

pyj +
α·pyj

(1−α)·(1−pxi
)
if f(xi, yj) = 0

,

Since Xi ̸= 1m, it holds that pxi ̸= 1. Let γ = α
(1−α)·(1−pxi

)
. We can write Qx,0 as

follows:
Qx,0 = (1 + γ) · c− γ · (c ◦Xi) .

Since for every i, the point Qxi,0 is in the hyperplane H(q, δ2), we have:

δ2 = ⟨Qx,0,q⟩ = ⟨(1 + γ) · c− γ · (c ◦Xi),q⟩ = (1 + γ) · ⟨c,q⟩ − γ · ⟨c ◦Xi,q⟩
= (1 + γ) · δ2 − γ · ⟨c ◦Xi,q⟩

and thus, ⟨c ◦Xi,q⟩ = δ2 which implies that c ◦Xi ∈ H(q, δ2).
We conclude that all the points (c ◦ X1), . . . , (c ◦ Xℓ) are in the hyperplane

H(q, δ2). Since all the points Y1, . . . , Ym are inH(p, δ1), it holds that p·Mf = δ1·1m.
Thus,

∑ℓ
i=1 pi ·Xi = δ1 · 1m, which implies that:

ℓ∑
i=1

pi · δ2 =

ℓ∑
i=1

pi ·
⟨
c ◦Xi,q

⟩
=

⟨ ℓ∑
i=1

pi · (c ◦Xi),q

⟩
=

⟨
c ◦ (

ℓ∑
i=1

pi ·Xi),q

⟩
= ⟨c ◦ (δ1 · 1m),q⟩ = δ1 · ⟨c,q⟩ = δ1 · δ2

and thus it must hold that either
∑ℓ

i=1 pi = δ1 or δ2 = 0, which implies that
1 ∈ H(p, δ1) or 0 ∈ H(q, δ2), in contradiction to the additional requirements.

The above shows that the protocol does not hold when the P1 party is the first
to receive output. We can change the roles and let P2 to be the first to receive
an output (that is, we can use the protocol to compute fT ). In such a case, we
will get that it must hold that

∑m
i=1 qi = δ2 or δ1 = 0, again, in contradiction to

the assumptions that 1 ̸∈ H(q, δ2) and 0 ̸∈ H(p, δ1).

This negative result does not rule out the possibility of these functions us-
ing some other protocol. However, it rules out the only known possibility result
that we have in fairness. Moreover, incorporating this with the characteriza-
tion of coin-tossing [3], there exists a large set of functions for which the only



possibility result does not hold, and the only impossibility result does not hold
either. Moreover, this class of functions shares similar (but yet distinct) algebraic
structure with the class of functions that imply fair coin-tossing. See more in
Subsection 4.3.

Our theorem does not hold in cases where either 0ℓ ∈ H(p, δ1) or 1ℓ ∈ H(p, δ1)

(likewise, forH(q, δ2)). These two requirements are in some sense equivalent. This
is because the alphabet is not significant, and we can switch between the two
symbols 0 and 1. Thus, if for some function f the hyperplane H(p, δ1) passes
through the origin 0, the corresponding hyperplane for the function f̄(x, y) =

1−f(x, y) passes through 1 and vice versa. Feasibility of fairness for f and f̄ is
equivalent.

On the number of functions that satisfy the additional requirements.
We now count on the number of functions with |X| = |Y | that satisfy these ad-
ditional requirements, that is, define hyperplanes that do not pass through the
origin 0 and the point 1. As we have seen in Theorem 4.8, these functions cannot
be computed with complete fairness using the protocol of [17]. As we will see,
only negligible amount of functions with |X| = |Y | do not satisfy these additional
requirements. Thus, our characterization of [17] is almost tight: Almost all func-
tions with |X| ̸= |Y | can be computed fairly, whereas almost all functions with
|X| = |Y | cannot be computed using the protocol of [17]. We have the following
Claim:

Claim 4.9 With a probability that tends to 0 when |X|, |Y | grow, a random func-
tion with |X| = |Y | define hyperplanes that pass through the points 0 or 1.

Proof: Let m = |X| = |Y |. Recall that Pm denotes the probability that a
random m vectors of size m are linearly dependent. Moreover, by Claim 4.7,
the probability that a random set {X1, . . . , Xm+1} is affinely independent with
probability 1− Pm, even when one of the points is chosen arbitrarily.

Thus, with probability Pm, the set {X1, . . . , Xm,1} where X1, . . . , Xm are cho-
sen at random is affinely dependent. In this case, the hyperplane defined by
{X1, . . . , Xm} contains the point 1. Similarly, the set {X1, . . . , Xm,0} is affienely
dependent with the same probability Pm. Overall, using union-bound, the prob-
ability that the hyperplane of random points X1, . . . , Xm contains the points 1 or
0 is negligible. From similar arguments, the probability that the hyperplane that
is defined by the columns of the matrix contains either 1 or 0 is also negligible.

Functions with monochromatic input. We consider a limited case where the
above requirements do not satisfy, that is, functions that are not full-dimensional
but define hyperplanes that pass through 0 or 1. For this set of functions, the
negative result does not apply. We now show that for some subset in this class,
fairness is possible. Our result here does not cover all functions in this subclass.

Assume that a function contains a “monochromatic input”, that is, one party
has an input that causes the same output irrespectively to the input of the other
party. For instance, P2 has input yj such that for every x ∈ X: f(x, yj) = 1. In



this case, the point 1ℓ is one of the columns of the matrix, and therefore, the
hyperplaneH(p, δ1)must pass through it. We show that in this case we can ignore
this input and consider the “projected” m× (m−1) function f ′ where we remove
the input yj . This latter function may now be full-dimensional, and the existence
of a protocol for f ′ implies the existence of a protocol for f . Intuitively, this is
because when P2 uses yj , the real-world adversary P1 cannot bias its output since
it is always 1. We have:

Claim 4.10 Let f : X × Y → {0, 1}, and assume that Mf contains the all-one
(resp. all-zero) column. That is, there exists y ∈ Y such that for every x̂ ∈ X,
f(x̂, y) = 1 (resp. f(x̂, y) = 0).

If the function f ′ : X × Y ′ → {0, 1}, where Y ′ = Y \ {y} is full-dimensional,
then f can be computed with complete-fairness.

Proof: Assume that the function contains the all one column, and that it is ob-
tained by input ym (i.e., the mth column is the all-one column). Let X1, . . . , Xm

be the rows of Mf , and let X ′i be the rows over Rm−1 without the last coordi-
nate, that is, Xi = (X ′i, 1). Consider the “projected” function f ′ : {x1, . . . , xm} ×
{y1, . . . , ym−1} → {0, 1} be defined as f ′(x, y) = f(x, y), for every x, y in the
range (we just remove ym from the possible inputs of P2). The rows of Mf ′

are X ′1, . . . , X
′
m.

Now, since f ′ is of full-dimensional, the function f ′ can be computed using
the GHKL protocol. Let Xx,a

ideal be the solutions for equations of Theorem 3.1 for
the function f ′. It can be easily verified that Xx,a

ideal are the solutions for equations
for the f function as well, since for every x, a, the first m− 1 coordinates of Qx,a

are the same as f ′, and the last coordinate of Qx,a is always 1. For Qx,0 it holds
immediately, for Qx,1 observe that pym = 1 no matter what Xreal is, and thus

pyj +
α·(pyj−1)

(1−α)·px = 1 + 0 = 1). Therefore, Xx,a
ideal are the solutions for f as well, and

Theorem 3.1 follows for f as well.

The above implies an interesting and easy to verify criterion:

Proposition 4.11 Let f : {x1, . . . , xm} × {y1, . . . , ym} → {0, 1} be a function.
Assume that f contains the all-one column, and that Mf is of full rank. Then,
the function f can be computed with complete fairness.

Proof: Let X1, . . . , Xm be the rows of Mf , and assume that the all-one column
is the last one (i.e., input ym). Consider the points X ′1, . . . , X

′
m in Rm−1, where

for every i, Xi = (X ′i, 1) (i.e., X
′
i is the first m − 1 coordinates of Xi). Since Mf

is of full-rank, the rows X1, . . . , Xm are linearly independent, which implies that
m points X ′1, . . . , X

′
m in Rm−1 are affinely independent. We therefore can apply

Claim 4.10 and fairness in f is possible.

Finally, from simple symmetric properties, almost always a random matrix
that contains the all one row / vector is of full rank, in the sense that we have
seen in Claims 4.7 and 4.9. Therefore, almost always a random function that
contains a monochromatic input can be computed with complete fairness.



4.3 Conclusion: Symmetric Boolean Functions with Finite Domain

We summarize all the known results in complete fairness for symmetric boolean
functions with finite domain, and we link our results to the balanced property
of [3].

Characterization of coin-tossing [3]. The work of Asharov, Lindell and Ra-
bin [3] considers the task of coin-tossing, which was shown to be impossible to
compute fairly [9]. The work provides a simple property that indicates whether
a function implies fair coin-tossing or not. If the function satisfies the property,
then the function implies fair coin tossing, in the sense that a fair protocol for the
function implies the existence of a fair protocol for coin-tossing, and therefore
it cannot be computed fairly by Cleve’s impossibility. On the other hand, if a
function f does not satisfy the property, then for any protocol for coin-tossing in
the f-hybrid model there exists an (inefficient) adversary that biases the output
of the honest party. Thus, the function does not imply fair coin-tossing, and
may potentially be computed with complete fairness. The results hold also for
the case where the parties have an ideal access to Oblivious Transfer [24,11].
The property that [3] has defined is as follows:

Definition 4.12 (strictly-balanced property [3]) Let f : {x1, . . . , xℓ} ×
{y1, . . . , ym} → {0, 1} be a function. We say that the function is balanced with
respect to probability vectors if there exist probability vectors p = (p1, . . . , pℓ),
q = (q1, . . . , qm) and a constant 0 < δ < 1 such that:

p ·Mf = δ · 1m and Mf · qT = δ · 1T
ℓ .

Intuitively, if such probability vectors exist, then in a single execution of the
function f , party P1 can choose its input according to distribution p which fixes
the output distribution vector of P2 to be δ ·1m. This means that no matter what
input (malicious) P2 uses, the output is 1 with probability δ. Likewise, honest
P2 can choose its input according to distribution q, and malicious P1 cannot
bias the result. We therefore obtain a fair coin-tossing protocol. On the other
hand, [3] shows that if the function does not satisfy the condition above, then
there always exists a party that can bias the result of any coin-tossing protocol
that can be constructed using f .

The characterization. A full-dimensional function is an important special
case of this unbalanced property, as was pointed out in Claim 4.2. Combining
the above characterization of [3] with ours, we get the following Theorem:

Theorem 4.13 Let f : {x1, . . . , xℓ} × {y1, . . . , ym} → {0, 1}, and let Mf be the
corresponding matrix representing f as above. Then:

1. Balanced with respect to probability vectors [3]:
If there exist probability vectors p = (p1, . . . , pℓ),q = (q1, . . . , qm) and a con-
stant 0 < δ < 1 such that:

p ·Mf = δ · 1m and Mf · qT = δ · 1T
ℓ .

Then, the function f implies fair coin-tossing, and is impossible to compute
fairly.



2. Balanced with respect to arbitrary vectors, but not balanced with
respect to probability vectors:
If there exist two non-zero vectors p = (p1, . . . , pℓ) ∈ Rℓ, q = (q1, . . . , qm) ∈ Rm,
δ1, δ2 ∈ R, such that:

p ·Mf = δ1 · 1m and Mf · qT = δ2 · 1T
ℓ

then we say that the function is balanced with respect to arbitrary vectors.
Then, the function does not (information-theoretically) imply fair-coin toss-
ing [3]. Moreover:
(a) If δ1 and δ2 are non-zero,

∑ℓ
i=1 pi ̸= δ1 and

∑m
i=1 qi ̸= δ2, then the function

f cannot be computed using the GHKL protocol (Theorem 4.8).
(b) Otherwise: this case is left not characterized. For a subset of this subclass,

we show possibility (Proposition 4.10).
3. Unbalanced with respect to arbitrary vectors:

If for every non-zero p = (p1, . . . , pℓ) ∈ Rℓ and any δ1 ∈ R it holds that:
p ·Mf ̸= δ1 ·1m, OR for every non-zero q = (q1, . . . , qm) ∈ Rm and any δ2 ∈ R
it holds that: Mf ·qT ̸= δ2 ·1T

ℓ , then f can be computed with complete fairness
(Theorem 4.4).

We remark that in general, if |X| ̸= |Y | then almost always a random function
is in subclass 3. Moreover, if |X| = |Y |, only negligible amount of functions
are in subclass 2b, and thus only negligible amount of functions are left not
characterized.

If a function is balanced with respect to arbitrary vectors (i.e., the vector may
contain negative values), then all the rows of the function lie in the hyperplane
H(q, δ2), and all the columns lie in the hyperplane H(p, δ1). Observe that δ1 = 0

if and only if H(p, δ1) passes through the origin, and
∑ℓ

i=1 pi = δ1 if and only if
H(p, δ1) passes through the all one point 1. Thus, the requirements of subclass 2a
are a different formalization of the requirements of Theorem 4.8. Likewise, the
requirements of subclass 3 are a different formalization of Theorem 4.4, as was
proven in Claim 4.2.

5 Extensions: Asymmetric Functions and Non-Binary
Outputs

5.1 Asymmetric Functions

We now move to a richer class of functions, and consider asymmetric boolean
functions where the parties do not necessarily get the same output. We consider
functions f(x, y) = (f1(x, y), f2(x, y)), where each fi, i ∈ {1, 2} is defined as: fi :

{x1, . . . , xℓ}×{y1, . . . , ym} → {0, 1}. Interestingly, our result here shows that if the
function f2 is of full-dimensional, then f can be computed fairly, irrespectively
to the function f1. This is because simulating P1 is more challenging (because
it is the first to receive an output) and the simulator needs to assume the rich
description of f2 in order to be able to bias the output of the honest party P2.
On the other hand, since P2 is the second to receive an output, simulating P2 is
easy and the simulator does not need to bias the output of P1, thus, nothing is
assumed about f1.



In the full version of this paper [2], we revise the protocol of [17] to deal
with this class of functions. This is done in a straightforward way, where the
online dealer computes at each round the value ai according to the function f1,
and bi according to f2. We then derive a set of equations, similarly to Eq. (1)
and obtain an analogue theorem to Theorem 3.1. We then show the following
Corollary:

Corollary 5.1 Let f : {x1, . . . , xℓ} × {y1, . . . , ym} → {0, 1} × {0, 1}, where f =

(f1, f2). If f2 is a full-dimensional function, then f can be computed with complete
fairness.

5.2 Functions with Non-Binary Output

Until now, all the known possibility results in fairness deal with the case of
binary output. We now extend the results to the case of non-binary output. Let
Σ = {σ1, . . . , σk} be an alphabet for some finite k > 0, and consider functions
f : {x1, . . . , xℓ} × {y1, . . . , ym} → Σ.

The protocol is exactly the GHKL protocol presented in Section 3, where
here ai, bi are elements in Σ and not just bits. However, the analysis for this
case is more involved. For instance, in the binary case for every input yj ∈
Y , we considered the parameter pyj , the probability that P2 receives 1 in each
round before i∗ when its input is yj . In the non-binary case, we have to define
an equivalent parameter pyj (σ) for any symbol σ in the alphabet Σ (i.e., the
probability that P2 receives σ in each round before i∗ when its input is yj). This
makes things harder, and in order to obtain fairness, several requirements should
be satisfied simultaneously for every σ ∈ Σ.

In order to see this, fix some Xreal. For any symbol σ ∈ Σ, and for every
yj ∈ Y , let pyj (σ) denote the probability that bi is σ (when i ≤ i∗). That is:

pyj (σ)
def
= Pr

x̂←Xreal

[f(x̂, yj) = σ] .

Observe that
∑

σ∈Σ pyj (σ) = 1. For every σ ∈ Σ, we want to represent the vector
(py1(σ), . . . , pym(σ)) as a function of Xreal and Mf , as we did in the binary case
(where there we just had: (py1 , . . . , pym) = Xreal · Mf ). However, here Mf does
not represent exactly what we want, and the multiplication Xreal ·Mf gives the
“expected output distribution vector” and not exactly what we want. Instead,
for any σ ∈ Σ we define the binary matrix Mσ

f as follows:

Mσ
f (i, j) =

{
1 if f(xi, yj) = σ

0 otherwise
.

Now, we can represent the vector (py1(σ), . . . , pym(σ)) as Xreal ·Mσ
f . However, here

a single vector Xreal determines the values of |Σ| vectors, one for each σ ∈ Σ.
Therefore, we overall get |Σ| systems of equations, one for each symbol in the
alphabet. In [2] we show that it is enough to consider only |Σ| − 1 systems since
our probabilities sum-up to 1 (i.e.,

∑
σ∈Σ pyj (σ) = 1), and provide the sets of

equations that guarantees fairness. In the following, we provide a corollary of
our result which provides a simpler criterion.



Given a function f : X × Y → Σ, let ρ ∈ Σ be arbitrarily, and define Σρ =

Σ \ {ρ}. Define the boolean function f ′ : X × Y Σρ → {0, 1}, where Y Σρ = {yσ
j |

yj ∈ Y, σ ∈ Σρ}, as follows:

f ′(x, yσ
j ) =

{
1 if f(x, yj) = σ

0 otherwise

Observe that |Y Σρ | = (|Σ| − 1) · |Y |. We show that if the boolean function f ′ is
full-dimensional, then the function f can be computed with complete-fairness.
Observe that this property can be satisfied only when |X|/|Y | > |Σ| − 1.

An example. We give an example for a non-binary function that can be com-
puted with complete-fairness. We consider trinary alphabet Σ = {0, 1, 2}, and
thus we consider a function of dimensions 5 × 2. We provide the trinary func-
tion f and the function f ′ that it reduced to. Since the binary function f ′ is a
full-dimensional function in R4, it can be computed fairly, and thus the trinary
function f can be computed fairly as well. We have:

f y1 y2

x1 0 1

x2 1 0

x3 1 1

x4 2 0

x5 1 2

=⇒

f ′ y1
1 y1

2 y2
1 y2

2

x1 0 1 0 0

x2 1 0 0 0

x3 1 1 0 0

x4 0 0 1 0

x5 1 0 0 1
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