
Algebraic (Trapdoor) One-Way Functions
and their Applications

Dario Catalano1, Dario Fiore2?, Rosario Gennaro3, and Konstantinos
Vamvourellis4

1 Dipartimento di Matematica e Informatica, Università di Catania, Italy
catalano@dmi.unict.it

2 Max Planck Institute for Software Systems (MPI-SWS), Germany
fiore@mpi-sws.org

3 City College of New York, USA
rosario@cs.ccny.cuny.edu
4 New York University, USA

kv472@nyu.edu

Abstract. In this paper we introduce the notion of Algebraic (Trapdoor)
One Way Functions, which, roughly speaking, captures and formalizes
many of the properties of number-theoretic one-way functions. Infor-
mally, a (trapdoor) one way function F : X → Y is said to be algebraic
if X and Y are (finite) abelian cyclic groups, the function is homomor-
phic i.e. F (x) · F (y) = F (x · y), and is ring-homomorphic, meaning that
it is possible to compute linear operations “in the exponent” over some
ring (which may be different from Zp where p is the order of the under-
lying group X) without knowing the bases. Moreover, algebraic OWFs
must be flexibly one-way in the sense that given y = F (x), it must be
infeasible to compute (x′, d) such that F (x′) = yd (for d 6= 0). Inter-
estingly, algebraic one way functions can be constructed from a variety
of standard number theoretic assumptions, such as RSA, Factoring and
CDH over bilinear groups.
As a second contribution of this paper, we show several applications
where algebraic (trapdoor) OWFs turn out to be useful. These include
publicly verifiable secure outsourcing of polynomials, linearly homomor-
phic signatures and batch execution of Sigma protocols.

1 Introduction

Algebraic One-Way Functions. This paper introduces the notion of Al-
gebraic One-Way Function, which aims to capture and formalize many of the
properties enjoyed by number-theoretic based one-way functions. Intuitively, an
Algebraic One-Way Function (OWF) F : Xκ → Yκ is defined over abelian cyclic
groups Xκ,Yκ, and it satisfies the following properties:

– Homomorphic: the classical property that says that group operations are
preserved by the OWF.

? Work entirely done while at NYU.

– Ring-Homomorphic: this is a new property saying, intuitively, that it is pos-
sible to efficiently perform linear operations “in the exponent” over some
ring K. While this property turns out to be equivalent to the homomorphic
property for groups of known order n and the ring K = Zn, it might not
hold for groups of unknown order. Yet for the case of RSA Moduli we show
that this property holds, and more interestingly it holds for any finite ring.

– Flexibly One-Way: We strengthen the usual notion of one-wayness in the
following way: given y = F (x) is should be unfeasible to compute (x′, d) such
that F (x′) = yd and d ∈ K 6=0 (in contrast with the traditional definition of
one-wayness where d is fixed as 1).

In our work we also consider natural refinements of this notion to the cases when
the function is a permutation and when there exists a trapdoor that allows to
efficiently invert the function.

We demonstrate the existence of Algebraic OWFs with three instantiations,
the security of which is deduced from the hardness of the Diffie-Hellman problem
in groups with bilinear maps and the RSA/Factoring assumptions respectively.

Applications. As a second contribution of this paper, we turn our attention
to three separate practical problems: outsourcing of polynomial computations,
linearly homomorphic signatures and batch executions of identification protocols.
In all three separate problems, we show that Algebraic OWFs can be used for
building truly efficient schemes that improve in several ways on the “state-of-
the-art”. In particular, we propose solutions for:

– Publicly Verifiable Secure Outsourcing of Polynomials which works over rings
of arbitrary size and characteristic and does not necessarily use bilinear maps.

– Linearly Homomorphic Signature Schemes also over arbitrary rings, and in
particular even small fields such as F2. The only known constructions for the
latter case require assumptions over lattices [8] while we can use any of the
assumptions above obtaining more efficient algorithms.

– Batch Executions of Identification Protocols: we construct a Sigma-protocol
based on algebraic one-way functions and then we show that it is possible to
construct a “batch” version of it where many statements are proven basically
at the cost of a single one. A similar batch version for the Schnorr’s Sigma
protocol has been proposed in [20] and we generalize it to any of the assump-
tions above. In particular for the instantiation based on RSA we obtain a
batch version of the Guillou-Quisquater protocol [25] which yields, to the
best of our knowledge, the first batch verifiable Sigma protocol for groups of
unknown order, a problem left open in [20].

The application to batch executions of identification protocols is deferred
to the full version of this paper [11]. Below, we elaborate in detail about the
improvements of our solutions to the remaining two applications.

1.1 Secure Outsourcing of Polynomials

Starting from work by Benabbas et al. [6], several papers have been investigating
the problem of securely outsourcing the computation of large polynomials. The

problem can be described as follows: a computationally weak client stores a large
polynomial (say in m variables, of degree d) with a powerful server. Later, the
client will request the server to evaluate the polynomial at a certain input x and
the server must provide such result together with a “proof” of its correctness.
In particular, it is crucial that verifying such a proof must require substantially
less resources than computing the polynomial from scratch. Furthermore, the
client must store only a “small” amount of secret information, e.g. not the entire
polynomial.

Following [6], several other papers (e.g. [33, 34, 16]) have investigated this
problem, focusing specifically on the feature of public verification, i.e. the proof
of correctness of the result provided by the server can be verified by anyone. This
comes in contrast with the original solution in [6] which obtained only private
verification, i.e. the proof of correctness of the result provided by the server can
be verified only by the client who initially stored the polynomial.

The popularity of this research problem can be explained by its numerous
practical applications including, as discussed in [6], Proofs of Retrievability (the
client stores a large file F with the server and later wants a short proof that
the entire file can be retrieved) and Verifiable Keyword Search (given a text file
T = {w1, . . . , w`} and a word w, the server tells the client if w ∈ T or not).

Limitation of Previous Solutions. The solutions for outsourcing of polyno-
mial computations mentioned above suffer from two main drawbacks:

– Large Field Size. The schemes presented in [6, 33, 16] work only for poly-
nomials computed over fields of prime characteristic p, which is the same
p as the order of the underlying cryptographic group that is used to prove
security. That means that for the schemes to be secure, p must be large.
Therefore up to now, none of the existing schemes could handle small field
sizes. The solution recently proposed in [34] can support polynomials over
Z2, and thus, by working in a “bit-by-bit” fashion, over any field. However,
to work over other fields of any characteristic p, it incurs a O(log p) computa-
tional overhead since O(log p) parallel instances of the scheme must be run.
It would be therefore nice to have a scheme that works for polynomials over
arbitrary fields, without a “bit-by-bit” encoding, so that the same scheme
would scale well when working over larger field sizes.

– Public Verifiability via Bilinear Maps. All previous solutions that achieve
public verifiability [33, 34, 16] do so by means of groups with bilinear maps
as the underlying cryptographic tool. Since pairing computations may be
expensive compared to simpler operations such as exponentiations, and given
that bilinear maps are the only known algebraic structure under which we can
currently build publicly verifiable computation, it is an interesting question
to investigate whether we can have solutions that use alternative algebraic
tools and cryptographic assumptions (e.g. RSA moduli) to achieve public
verifiability.

Our new solution removes these two problems. As discussed above, we can
instantiate our protocols over RSA moduli, and prove their security under the

DDH/RSA/Factoring Assumptions over such groups, therefore avoiding the use
of bilinear maps. Perhaps more interestingly, our protocols can handle finite rings
of any size and any characteristic, thus allowing for much more flexibility and
efficiency. Moreover, the schemes in [34] are based on specific Attribute-Based
Encryption schemes (e.g. [28]) whose security relies on “q-type” assumptions,
whereas our solution can do so based on the well known RSA/Factoring as-
sumptions.

As in the case of [16] our techniques extend for building a protocol for Matrix
Multiplication. In this problem (also studied in [30]) the client stores a large
(n×d) matrix M with the server and then provides d-dimensional vectors x and
obtains y = M · x together with a proof of correctness.

Other comparisons with related work. The subject of verifiable outsourced
computation has a large body of prior work, both on the theoretical front (e.g.
[4, 24, 27, 29, 23]) and on the more applied arena (e.g. [31, 5, 37, 38]).

Our work follows the “amortized” paradigm introduced in [18] (also adopted
in [14, 2]) where a one-time expensive preprocessing phase is allowed. The proto-
cols described in those papers allow a client to outsource the computation of an
arbitrary function (encoded as a Boolean circuit) and use fully homomorphic en-
cryption (i.e. [21]) resulting in solutions of limited practical relevance. Instead,
we follow [6] by considering a very limited class of computations (polynomial
evaluation and matrix multiplication) in order to obtain better efficiency.

As discussed above, we improve on [33] by providing a solution that works
for finite rings of arbitrary characteristic (even small fields) and by avoiding the
use of bilinear maps. Given that our solution is a generalization of [16] we also
inherit all the improvements of that paper. In particular, compared to [33]:

– we get security under constant-size assumptions (i.e. assumptions that do
not asymptotically depend on the degree of the polynomial), while their
scheme uses a variation of the CDH Assumption that grows with the degree.

– we handle a larger class of polynomial functions: their scheme supports poly-
nomials in m variables and total degree d (which we also support) but we
additionally consider also polynomials of degree d in each variable.

– For the case we both support, we enjoy a much faster verification protocol: a
constant amount of work (a couple of exponentiations over an RSA modulus)
while they require O(m) pairings5.

1.2 Linearly Homomorphic Signatures

Imagine a user Alice owns some data set m1, . . . ,mn ∈M that she keeps (signed)
in some database stored at a, not necessarily trusted, server. Imagine also that
some other user, Bob, is allowed to query the database to perform some basic

5 In contrast the delegation phase is basically free in their case, while our delegation
step requires O(md) work – note however that in a publicly verifiable scheme, the
verification algorithm might be run several times and therefore its efficiency is more
important.

computation (such as the mean or other statistics) over Alice’s data set. The
simplest way to do this in a reliable manner (for Bob) is to download the full data
set from the server, check all the signatures and compute the desired statistic.
This solution, however, has two drawbacks. First, it is inefficient in terms of
bandwidth. Second, even though Alice allows Bob to access some statistics over
her data, she might not want this data to be explicitly revealed. Homomorphic
signatures allow to overcome both these issues in a very elegant fashion [8].
Indeed, using a homomorphic signature scheme, Alice can sign m1, . . . ,mn, thus
producing the signatures σ1, . . . , σn, which can be verified exactly as ordinary
signatures. The homomorphic property provides the extra feature that given
σ1, . . . , σn and some function f :Mn →M, one can compute a signature σf on
the value f(m1, . . . ,mn) without knowledge of the secret signing key SK. In other
words, for a fixed set of original signed messages, it is possible to provide any
y = f(m1, . . . ,mn) with a proof of correctness σf . In particular the creation and
the verification of σf does not require SK. The security definition is a relaxation
over the classical security notion for signatures: it should be impossible to create
a signature σf for m 6= f(m1, . . . ,mn) without knowing SK.

The notion of homomorphic signature was introduced by Johnson et al. [26]
and later refined by Boneh et al. [7]. Its main motivation was realizing a linear
network coding scheme [1, 35] secure against pollution attacks. The construction
from [7] uses bilinear groups as the underlying tool and authenticates linear
functions on vectors defined over large prime fields. Subsequent works considered
different settings as well. In particular, the constructions in [19, 12, 13] are based
on RSA, while [9, 8] rely on lattices and can support linear functions on vectors
over small fields. A general framework for building homomorphic signatures in
the standard model, was recently provided by Freeman [17].

Our Contribution. In this paper we show that algebraic trapdoor one way per-
mutations, directly allow for a very simple and elegant extension of Full Domain
Hash (FDH) to the case of linearly homomorphic signatures. Similarly to stan-
dard FDH signatures our construction is secure in the random oracle model and
allows for very efficient instantiations. Our framework allows for great flexibility
when choosing a homomorphic signature scheme and the underlying message
space. Indeed our constructions support messages and homomorphic operations
over arbitrary finite rings. While it was already known how to realize linearly
homomorphic signatures over small fields [9, 8], ours seem to be the first schemes
achieving this in a very efficient way and based on simple assumptions such as
Factoring and RSA. To give a more concrete idea about the efficiency of our
scheme, if we consider the case of messages in F2, then our signing algorithm is
more efficient than that in [8] in the same order of magnitude as taking a square
root in Z∗N is more efficient than sampling a pre-image in lattice-based trapdoor
functions, at comparable security levels.

2 Preliminaries

In what follows we will denote with λ ∈ N a security parameter. We say that a
function ε is negligible if it vanishes faster than the inverse of any polynomial. If

S is a set, we denote with x
$← S the process of selecting x uniformly at random

in S. Let A be a probabilistic algorithm. We denote with x
$← A(·) the process

of running A on some appropriate input and assigning its output to x.

Below we give informal definitions of verifiable computation and linearly
homomorphic signatures. For more formal and precise descriptions, we defer the
interested reader to the full version of this paper [11] and to relevant related
work [34, 17].

Verifiable Computation [34]. A Verifiable Computation scheme VC enables
a client to outsource the computation of a function f to an untrusted worker,
in such a way that the client can verify the correctness of the result returned by
the worker. In order for the outsourcing to make sense, it is crucial that the cost
of verification at the client must be cheaper than computing the function locally.
A VC scheme for a class of functions F is defined by the following algorithms.
The key generation KeyGen(1λ, f), given a function f ∈ F , produces a secret key
SKf that will be used for input delegation, a public verification key PKf , used
to verify the correctness of the delegated computation, and a public evaluation
key EKf which will be handed to the server to delegate the computation of f .
The problem generation algorithm ProbGen(PKf ,SKf , x) → (σx,VKx) takes a
value x ∈ Dom(f), and is run by the delegator to produce an encoding σx of
x, together with a public verification key VKx. Compute(EKf , σx) → σy is run
by the worker to compute an encoded version of y = f(x). The verification
algorithm Verify(PKf ,VKx, σy) → y ∪ ⊥ takes the public information and an
encoded output σy, and returns a value y or an error ⊥.

Intuitively, for security, we require that any PPT worker, with oracle access
to ProbGen, should not be able to cheat by producing a proof σ for y′ 6= f(x)
that correctly verifies for f(x).

Linearly-Homomorphic Signatures. Linearly-homomorphic signatures, as
recently formalized in [9, 8, 17], extend the standard notion of digital signatures
as follows. A linearly-homomorphic signature scheme consists of the following
algorithms. The key generation Hom.KG(1λ,m), given a maximum data set
size m, outputs a public key PK and a secret key SK. The signing algorithm
Hom.Sign(SK, τ,M, i) takes SK, a tag τ identifying a data set, a message M and
an index i ∈ {1, 2, . . . ,m}, and outputs a signature σ. Hom.Ver(VK, τ,M, σ, f)
checks whether σ is valid w.r.t. a tag τ , a message M and a function f ∈ F .
The evaluation algorithm Hom.Eval(VK, τ, f,σ), given a tag τ , a function f and
a tuple of signatures {σi}mi=1 (that should be valid for {Mi}mi=1 respectively)
outputs a new signature σ′ that will verify correctly for f(M1, . . . ,Mm)6.

6 We remark that, for technical reasons, the realization given in section 5, slightly
deviates from the above syntax. In particular, it requires Hom.Eval to receive, as

The security notion for linearly-homomorphic signatures is an extension of
the classical notion of unforgeability against chosen-message attacks. The ad-
versary A can ask signatures on triples of the form (τ,M, i) (precisely, the tag
is chosen by the challenger), and at the end it should not be able to produce
a valid signature σ∗ on (τ∗,M∗, f∗) such that: either (1) τ∗ is “new”, or (2)
τ∗ = τ for some tag τ asked during the game and M∗ 6= f∗(M1, . . . ,Mm), where
M1, . . . ,Mm are the messages in the data set identified by τ . Notice that by
definition of Hom.Eval, for any f∗ everyone could compute a valid signature on
M = f∗(M1, . . . ,Mm). Thus condition (2) makes sure that no one can do it for
M∗ 6= f∗(M1, . . . ,Mm).

3 Algebraic (Trapdoor) One-Way Functions

A family of one-way functions consists of two efficient algorithms (Gen, F) that
work as follows. Gen(1λ) takes as input a security parameter 1λ and outputs a
key κ. Such key κ determines a member Fκ(·) of the family, and in particular it
specifies two sets Xκ and Yκ such that Fκ : Xκ → Yκ. Given κ, for any input
x ∈ Xκ it is efficient to compute y ∈ Yκ where y = Fκ(x). In addition, we assume
that κ specifies a finite ring K that will be used as described below.

(Gen, F) is a family of algebraic one-way functions if it is:

Algebraic: ∀λ ∈ N, and every κ
$← Gen(1λ), the sets Xκ, Yκ are abelian cyclic

groups. In our work we denote the group operation by multiplication, and we
assume that given κ, sampling a (random) generator as well as computing the
group operation can be done efficiently (in probabilistic polynomial time).

Homomorphic: ∀λ ∈ N, every κ
$← Gen(1λ), for any inputs x1, x2 ∈ Xκ, it

holds: Fκ(x1) · Fκ(x2) = Fκ(x1 · x2).
Ring-homomorphic: intuitively, this property states that it is possible to eval-

uate inner product operations in the exponent given some “blinded” bases.
Before stating the property formally, we give a high level explanation of this
idea by using an example. Assume that one is given values W1 = hω1 ,W2 =
hω2 ∈ Xκ, ω1, ω2 ∈ Z, and wants to compute h(ω1α1+ω2α2 mod q) for some
integer coefficients α1, α2. If q 6= |Xκ| and the order of Xκ is not known,
then it is not clear how to compute such a value efficiently (notice that h
is not given). The ring-homomorphic property basically says that with the
additional knowledge of Fκ(h), such computation can be done efficiently.

More formally, let κ
$← Gen(1λ), h1, . . . , hm ∈ Xκ be generators (for m ≥

1), and let W1, . . . ,W` ∈ Xκ be group elements, each of the form Wi =

h
ω

(1)
i

1 · · ·hω
(m)
i
m · Ri, for some Ri ∈ Xκ and some integers ω

(j)
i ∈ Z (note that

this decomposition may not be unique).
We say that (Gen, F) is ring-homomorphic (for the ring K specified by κ) if

there exists an efficient algorithm Eval such that for any κ
$← Gen(1λ), any

additional inputs, the vector messages M and the functions f under which the
signatures σ are supposed to verify.

set of generators h1, . . . , hm ∈ Xκ, any vector of elements W ∈ X `κ of the
above form, and any vector of integers α ∈ Z`, it holds

Eval(κ,A,W ,Ω,α) = h
〈ω(1),α〉
1 · · ·h〈ω

(m),α〉
m

∏̀
i=1

Rαi
i

where A = (A1, . . . , Am) ∈ Ymκ is such that Ai = Fκ(hi), Ω = (ω
(j)
i)i,j ∈

Z`×m, and each product 〈ω(j),α〉 in the exponent is computed over the ring
K. We notice that over all the paper we often abuse notation by treating
elements of the ring K as integers and vice versa. For this we assume a
canonical interpretation of d ∈ K as an integer [d] ∈ Z between 0 and |K|−1,
and that both d and [d] are efficiently computable from one another.
We note that in the case when the ring K is Zp, where p is the order of the
group Xκ, then this property is trivially realized: every OWF where Xκ is a
group of order p, is ring-homomorphic for Zp. To see this, observe that the
following efficient algorithm trivially follows from the simple fact that Xκ is
a finite group: Eval(κ,A,W ,Ω,α) =

∏`
i=1W

αi
i .

What makes the property non-trivial for some instantiations (in particular
the RSA and Factoring-based ones shown in the next section) is that the
algorithm Eval must compute the inner products 〈ω(j),α〉 over the ring K,
which might be different from Zp, where p is the order of the group Xκ over
which the function is defined.

Flexibly One-way: finally, we require a family (Gen, F) to be non-invertible
in a strong sense. Formally, we say that (Gen, F) is flexibly one-way if for
any PPT adversary A it holds:

Pr[A(1λ, κ, y) = (x′, d) : d 6= 0 ∧ d ∈ K ∧ Fκ(x′) = yd]

is negligible, where κ
$← Gen(1λ), x

$← Xκ is chosen uniformly at random
and y = Fκ(x).
Our definition asks for d 6= 0 as we additionally require that in the case
when d = 0 (over the ring K) the function must be efficiently invertible.
More precisely, given a value y = Fκ(x) ∈ Yκ (for any x ∈ Xκ) and an
integer d such that d = 0 over the ring K (d may though be different from
zero over the integers), there is an efficient algorithm that computes x′ ∈ Xκ
such that Fκ(x′) = yd.

Notice that flexible one-wayness is stronger than standard one-wayness (in which
d is always fixed to 1). Also, our notion is closely related to the notion of q-one
wayness for group homomorphisms given in [15]. Informally, this latter notion
states that for some prime q: (1) f is one-way in the standard sense, (2) there
is a polynomial-time algorithm that on input (f, z, y, i) such that f(z) = yi (for
0 < i < q) computes x such that f(x) = y, and (3) yq is efficiently invertible.
It is not hard to see that when q = |K| flexible one-wayness and q-one-wayness
are basically equivalent, except for that we do not require the existence of an

efficient algorithm that on input (F, z, y, i) such that F (z) = yi computes x such
that F (x) = y.

We stress that even though flexible one-wayness may look non-standard, in
the next section we demonstrate that our candidates satisfy it under very simple
and standard assumptions.

Algebraic Trapdoor One-Way Functions. Our notion of algebraic one-
way functions can be easily extended to the trapdoor case, in which there exists
a trapdoor key that allows to efficiently invert the function. More formally, we
define a family of trapdoor one-way functions as a set of efficient algorithms
(Gen, F, Inv) that work as follows. Gen(1λ) takes as input a security parameter
1λ and outputs a pair (κ, td). Given κ, Fκ is the same as before. On input the
trapdoor td and a value y ∈ Yκ, the inversion algorithm Inv computes x ∈ Xκ
such that Fκ(x) = y. Often we will write Invtd(·) as F−1κ (·). Then we say that
(Gen, F, Inv) is a family of algebraic trapdoor one-way functions if it is algebraic,
homomorphic and ring-homomorphic, in the same way as defined above.

Finally, when the input space Xκ and the output space Yκ are the same
(i.e., Xκ = Yκ) and the function Fκ : Xκ → Xκ is a permutation, then we call
(Gen, F, Inv) a family of algebraic trapdoor permutations.

3.1 Instantiations

We give three simple constructions of algebraic (trapdoor) one-way functions
from a variety of number theoretic assumptions: CDH in bilinear groups, RSA
and factoring.

CDH in Bilinear Groups.

Gen(1λ): use G(1λ) to generate groups G1,G2,GT of the same prime order p,
together with an efficiently computable bilinear map e : G1 × G2 → GT .
Sample two random generators g1 ∈ G1, g2 ∈ G2 and output κ = (p, e, g1, g2).
The finite ring K is Zp.

Fκ(x): the function Fκ : G1 → GT is defined by: Fκ(x) = e(x, g2).

The algebraic and homomorphic properties are easy to check. Moreover, the
function is trivially ring-homomorphic for Zp as p is the order of G1.

Its security can be shown via the following Theorem. The proof is straight-
forward and is deferred to the full version.

Theorem 1. If the co-CDH assumption holds for G(·), then the above function
is flexibly one-way.

RSA (over QRN). This construction is an algebraic trapdoor permutation,
and it allows to explicitly choose the ring K as Ze for any prime e ≥ 3.

Gen(1λ, e): let e ≥ 3 be a prime number. Run (N, p, q)
$← RSAGen(1λ) to gener-

ate a Blum integerN , product of two safe primes p and q. If gcd(e, φ(N)) 6= 1,
then reject the tuple (N, p, q) and try again. Output κ = (N, e) and td =
(p, q).

Fκ(x): the function Fκ : QRN → QRN is defined by: Fκ(x) = xe mod N .
Invtd(y): the inversion algorithm computes c = e−1 mod φ(N), and then out-

puts: xc mod N .
Eval(κ,A,W ,Ω,α): for j = 1 to m, compute ω(j) = 〈ω(j),α〉 over the integers

and write it as ω(j) = ω(j)′ + e · ω(j)′′ , for some ω(j)′ , ω(j)′′ ∈ Z. Finally,
output

V =

∏`
i=1W

αi
i∏m

j=1A
ω(j)′′

j

mod N

The algebraic and homomorphic properties are easy to check. To see that the
function is ring-homomorphic for K = Ze, we show the correctness of the Eval
algorithm as follows:

V =

∏`
i=1W

αi
i∏m

j=1A
ω(j)′′

j

mod N =

∏l
i=1(

∏m
j=1 h

ω
(j)
i
j ·Ri)αi∏m

j=1 h
(eω(j)′′ mod φ(N))
j

mod N

=

∏m
j=1 h

(〈ω(j),α〉 mod φ(N))
j

∏l
i=1R

αi
i∏m

j=1 h
(eω(j)′′ mod φ(N))
j

mod N

=

∏m
j=1 h

(ω(j)′+eω(j)′′ mod φ(N))
j

∏l
i=1R

αi
i∏m

j=1 h
(eω(j)′′ mod φ(N))
j

mod N

= hω
(1)′

1 · · ·hω
(m)′

m

l∏
i=1

Rαi
i mod N.

The security of the function is shown via the following Theorem:

Theorem 2. If the RSA assumption holds for RSAGen, the above function is
flexibly one-way.

To prove the theorem, we simply observe that since d 6= 0 and d ∈ Ze, it holds
gcd(e, d) = 1. Therefore, it is possible to apply the well known Shamir’s trick
[36] to transform any adversary against the security of our OWF to an adversary
which solves the RSA problem for the fixed e.

On the other hand, given y ∈ Yκ, in the special case when d = 0 mod e,
finding a pre-image of yd can be done efficiently by computing yd

′
where d′ is

the integer such that d = e · d′.

Factoring. This construction also allows to explicitly choose the ring K, which
can be Z2t for any integer t ≥ 1.

Gen(1λ, t): run (N, p, q)
$← RSAGen(1λ) to generate a Blum integer N product

of two safe primes p and q. Output κ = (N, t) and td = (p, q).

Fκ(x): The function Fκ : QRN → QRN is defined by: Fκ(x) = x2
t

mod N .
Invtd(y): given td = (p, q) and on input y ∈ QRN , the inversion algorithm pro-

ceeds as follows. First, it uses the factorization of N to compute the four

square roots x,−x, x′,−x′ ∈ Z∗N of y, and then it outputs the only one
which is in QRN (recall that since N is a Blum integer exactly one of the
roots of y is a quadratic residue).

Eval(κ,A,W ,ω,α): for j = 1 to m, compute ω(j) = 〈ω(j),α〉 over the integers
and write it as ω(j) = ω(j)′ + 2t · ω(j)′′ . Finally, output

V =

∏`
i=1W

αi
i∏m

j=1A
ω(j)′′

j

mod N

The algebraic and homomorphic properties are easy to check. To see that
the function is ring-homomorphic for Z2t , observe that its correctness can be
checked similarly to the RSA case. We notice that this construction is an alge-
braic trapdoor permutation.

The security of the function can be shown via the following Theorem. For
lack of space, its proof appears in the full version of this paper.

Theorem 3. If Factoring holds for RSAGen, then the above function is flexibly
one-way.

4 Our Verifiable Computation Schemes

In this section we propose the construction of verifiable computation schemes
for the delegation of multivariate polynomials and matrix multiplications. Our
constructions make generic use of our new notion of algebraic one-way functions.

An overview of our solutions. Our starting point is the protocol of [6]: as-
sume the client has a polynomial F (·) of large degree d, and it wants to compute
the value F (x) for arbitrary inputs x. In [6] the client stores the polynomial
in the clear with the server as a vector of coefficients ci in Zp. The client also
stores with the server a vector of group elements ti of the form gaci+ri where g
generates a cyclic group G of order p, a ∈R Zp, and ri is the ith-coefficient of a
polynomial R(·) of the same degree as F (·). When queried on input x, the server
returns y = F (x) and t = gaF (x)+R(x), and the client accepts y iff t = gay+R(x).

If R(·) was a random polynomial, then this is a secure way to authenticate
y, however checking that t = gay+R(x) would require the client to compute R(x)
– the exact work that we set out to avoid! The crucial point, therefore, is how to
perform this verification fast, i.e., in o(d) time. The fundamental tool in [6] is the
introduction of pseudo-random functions (PRFs) with a special property called
closed-form efficiency: if we define the coefficients ri of R(·) as PRFK(i) (which
preserves the security of the scheme), then for any input x the value gR(x) can
be computed very efficiently (sub-linearly in d) by a party who knows the secret
key K for the PRF.

Our first observation was to point out that one of the PRFs proposed in
[6] was basically a variant of the Naor-Reingold PRF [32] which can be easily
istantiated over RSA moduli assuming the DDH assumption holds over such
groups (in particular over the subgroup of quadratic residues).

Note, however, that this approach implies a private verification algorithm by
the same client who outsourced the polynomial in the first place, since it requires
knowledge of the secret key K. To make verification public, Fiore and Gennaro
proposed the use of Bilinear Maps together with algebraic PRFs based on the
decision linear problem [16].

Our second observation was to note that the scheme in [6] is really an
information-theoretic authentication of the polynomial “in the exponent”. In-
stead of using exponentiation, we observed that any “one-way function” with
the appropriate “homomorphic properties” would do. We teased out the rele-
vant properties and defined the notion of an Algebraic One-Way Function and
showed that it is possible to instantiate it using the RSA/Rabin functions.

If we use our algebraic one-way functions based on RSA and factoring de-
scribed in Section 3.1, then we obtain new verifiable computation schemes whose
security relies on these assumptions and that support polynomials over a large
variety of finite rings: Ze for any prime e ≥ 3, Z2t for any integer t ≥ 1. Pre-
viously known solutions [33, 16] could support only polynomials over Zp where
p must be a large prime whose size strictly depends on the security parameter
1λ (basically, p must be such that the discrete logarithm problem is hard in a
group of order p).

In contrast, our factoring and RSA solutions allow for much more flexibility.
Precisely, using the RSA function allows us to compute polynomials over Ze for
any prime e ≥ 3, where e is the prime used by the RSA function. Using the
Rabin function allows us to handle polynomials over Z2t for any integer t ≥ 1.

A solution for Polynomials of Degree d in each variable. In this section
we propose the construction of a scheme for delegating the computation of m-
variate polynomials of degree at most d in each variable. These polynomials
have up to l = (d + 1)m terms which we index by (i1, . . . , im), for 0 ≤ ij ≤ d.
Similarly to [6, 16], we define the function h : Km → Kl which expands the input
x to the vector (h1(x), . . . , hl(x)) of all monomials as follows: for all 1 ≤ j ≤ l,
use a canonical ordering to write j = (i1, . . . , im) with 0 ≤ ik ≤ d, and then
hj(x) = (xi11 · · ·ximm). So, using this notation we can write the polynomial as

f(x) = 〈f , h(x)〉 =
∑l
j=1 fj · hj(x) where the fj ’s are its coefficients.

Our scheme uses two main building blocks: an algebraic one-way function
(see definition in Section 3) (Gen, F) and a pseudorandom function with closed
form efficiency for polynomials whose notion is recalled below.

Closed-Form Efficient PRFs. The notion of closed form efficient pseudo-
random functions, firstly introduced by Benabbas et al. [6] and later refined by
Fiore and Gennaro [16], is defined as follows.

The function consists of algorithms (PRF.KG,PRF.F). The key generation
PRF.KG takes as input the security parameter 1λ, and outputs a secret key
K and some public parameters pp that specify domain X and range Y of the
function. On input x ∈ X , PRF.FK(x) uses the secret key K to compute a value
y ∈ Y. It must of course satisfy the usual pseudorandomness property. Namely,
(PRF.KG,PRF.F) is secure if for every PPT adversary A, the following difference

is negligible: ∣∣Pr[APRF.FK(·)(1λ, pp) = 1]− Pr[AR(·)(1λ, pp) = 1]
∣∣

where (K, pp)
$← PRF.KG(1λ), and R(·) is a random function from X to Y.

In addition, it is required to satisfy the following closed-form efficiency prop-
erty. Consider an arbitrary computation Comp that takes as input l random
values R1, . . . , Rl ∈ Y and a vector of m arbitrary values x = (x1, . . . , xm),
and assume that the best algorithm to compute Comp(R1, . . . , Rl, x1, . . . , xm)
takes time T . Let z = (z1, . . . , zl) a l-tuple of arbitrary values in the domain
X of PRF.F. We say that a PRF (PRF.KG,PRF.F) is closed-form efficient for
(Comp, z) if there exists an algorithm PRF.CFEvalComp,z such that

PRF.CFEvalComp,z(K,x) = Comp(FK(z1), . . . , FK(zl), x1, . . . , xm)

and its running time is o(T). For z = (1, . . . , l) we usually omit the subscript z.
Note that depending on the structure of Comp, this property may enforce

some constraints on the range Y of the PRF. In particular in our case, Y will be
an abelian group. We also remark that due to the pseudorandomness property
the output distribution of PRF.CFEvalComp,z(K,x) (over the random choice of K)
is indistinguishable from the output distribution of Comp(R1, . . . , R`, x1, . . . , xm)
(over the random choices of the Ri).

Our scheme. Our verifiable computation scheme works generically for any
family of functions F that is the set of m-variate polynomials of degree d over
a finite ring K such that: (1) the algebraic one-way function Fκ : Xκ → Yκ is
ring-homomorphic for K, and (2) there exists a PRF whose range is Xκ, and
that has closed form efficiency relative to the computation of polynomials, i.e.,

for the algorithm Poly(R,x) =
∑l
j=1R

hj(x)
j .

If we instantiate these primitives with the CDH-based algebraic OWF of
Section 3.1 and the PRFs based on Decision Linear described in [16], then our
generic construction captures the verifiable computation scheme of Fiore and
Gennaro [16]. Otherwise we can obtain new schemes by using our algebraic
OWFs based on RSA and Factoring described in Section 3.1. They have input
and output space Xκ = Yκ = QRN , the subgroup of quadratic residues in Z∗N .
So, to complete the instantiation of the scheme VCPoly, we need a PRF with
closed form efficiency whose range is QRN . For this purpose we can use the
PRF constructions described in [6] that are based on the Naor-Reingold PRF.
The only difference is that in our case we have to instantiate the PRFs in the
group QRN , and thus claim their security under the hardness of DDH in the
group QRN .

With these instantiations we obtain new verifiable computation schemes that
support polynomials over a large variety of finite rings: Ze for any prime e ≥ 3,
Z2t for any integer t ≥ 1. Previously known solutions [33, 16] could support only
polynomials over Zp where p must be a large prime whose size strictly depends
on the security parameter 1λ. In contrast, our factoring and RSA solutions allow
for much more flexibility.

The description of our generic construction VCPoly follows.

KeyGen(1λ, f). Run κ
$← Gen(1λ) to obtain a one-way function Fκ : Xκ → Yκ

that is ring-homomorphic for K. Let f be encoded as the set of its coefficients
(f1, . . . , fl) ∈ Kl.
Generate the seed of a PRF, K

$← PRF.KG(1λ, dlog de,m), whose output
space is Xκ, the input of the one-way function. Choose a random generator

h
$← Xκ, and compute A = Fκ(h).

For i = 1 to l, compute Wi = hfi ·PRF.FK(i). Let W = (W1, . . . ,Wl) ∈ (Xκ)l.
Output EKf = (f,W,A), PKf = A, SKf = K.

ProbGen(PKf ,SKf ,x). Output σx = x and VKx = Fκ(PRF.CFEvalPoly(K,h(x))).
Compute(EKf , σx). Let EKf = (f,W,A) and σx = x. Compute y = f(x) =∑l

i=1 fi · hi(x) (over K) and V = Eval(κ,A,W, f, h(x)), and return σy =
(y, V).

Verify(PKf ,VKx, σy). Parse σy as (y, V). If y ∈ K and Fκ(V) = Ay · VKx, then
output y, otherwise output ⊥.

The correctness of the scheme follows from the properties of the algebraic one-
way function and the correctness of PRF.CFEval.

Theorem 4. If (Gen, F) is a family of algebraic one-way functions and PRF.F
is a family of pseudo-random functions then any PPT adversary A making at
most q = poly(λ) queries has negligible advantage AdvPubVer

A (VCPoly,F , q, λ).

Proof (Sketch). Here we provide a proof sketch of Theorem 4. We defer the
interested reader to the the full version of this work for the formal proof.

Consider the following hybrid games:

Game 0: this is the real security game.
Game 1: this is the same as Game 0 except that the challenger performs a

different evaluation of the algorithm ProbGen. Let x be the input asked by
the adversary. The challenger computes VKx =

∏l
i=1 PRF.FK(i)hi(x).

By correctness of PRF.CFEval, Game 1 is identically distributed as Game 0.
Game 2: this game proceeds as Game 1, except that the function PRF.Fk(i)

is replaced by a truly random function that on every i lazily samples a value

Ri
$← Xκ uniformly at random.

By the security of the pseudorandom function, it is not hard to see that
Game 2 is negligibly-close to Game 1.

To complete the proof of the theorem it remains to show that by the flexible
one-wayness of the algebraic OWF, any PPT adversary has at most negligible
advantage of winning in Game 2.

Assume by contradiction there exists a PPT adversary A that has non-
negligible probability ε of winning in Game 2. We show that from such A it
is possible to construct an efficient algorithm B that breaks the flexible one-
wayness of the algebraic one-way function with the same probability ε.
B receives the pair (κ,A) as its input, where A ∈ Yκ, and proceeds as follows.

It chooses l random values W1, . . . ,Wl
$← Xκ, and it sets EKf = (f,W,A) and

PKf = A. Next, for i = 1 to l, B computes Zi = Fκ(Wi) ·A−fi .

B runs A(PKf ,EKf) and answers each query x as follows: it computes VKx =∏l
i=1 Z

hi(x)
i and returns VKx. By the homomorphic property of Fκ this compu-

tation of VKx is equivalent to the one made by the challenger in Game 2.
Finally, let x∗, σ̂y = (ŷ, V̂) be the output of A at the end of the game such

that Verify(PKf ,VKx∗ , σ̂y) = ŷ, ŷ 6= ⊥ and ŷ 6= f(x∗). By verification, this means

that Fκ(V̂) = Aŷ ·VKx∗ . Let y = f(x∗) ∈ K be the correct output of the compu-
tation, and let V = Eval(κ,A,W, f, h(x)) be the proof as obtained by honestly
running Compute. By correctness of the scheme we have that Fκ(V) = Ay ·VKx∗ .
Hence, we can divide the two verification equations and by the homomorphic
property of Fκ, we obtain Fκ(V̂ /V) = Aδ where δ = ŷ − y 6= 0. B outputs
U = V̂ /V and δ as a solution for the flexible one-wayness of Fκ(A).

Extensions of our Protocols. The techniques showed above can be further
extended in order to provide efficient solutions for the class of polynomials in
m variables and maximum degree d in each monomial, and for matrix multipli-
cations. We leave the description of these extensions for the full version of this
work [11].

5 Linearly-Homomorphic FDH Signatures

In this section we show a direct application of Algebraic Trapdoor One Way
Permutations (TDP) to build linearly-homomorphic signatures.

An intuitive overview of our solution. Our construction can be seen as
a linearly-homomorphic version of Full-Domain-Hash (FDH) signatures. Recall
that a FDH signature on a message m is F−1(H(m)) where F is any TDP
and H is a hash function modeled as a random oracle. Starting from this basic
scheme, we build our linearly homomorphic signatures by defining a signature
on a message m, tag τ and index i as σ = F−1(H(τ, i) ·G(m)) where F is now an
algebraic TDP, H is a classical hash function that will be modeled as a random
oracle and G is a homomorphic hash function (i.e, such that G(x) ·G(y) = G(x+
y)). Then, we will show that by using the special properties of algebraic TDPs
(in particular, ring-homomorphicity and flexible one-wayness) both the security
and the homomorphic property of the signature scheme follow immediately.

Precisely, if the algebraic TDP used in the construction is ring-homomorphic
for a ring K, then our signature scheme supports the message space Kn (for some
integer n ≥ 1) and all linear functions over this ring. Interestingly, by instanti-
ating our generic construction with our two algebraic TDPs based on Factoring
and RSA (see Section 3.1), we obtain schemes that are linearly-homomorphic
for arbitrary finite rings, i.e., Z2t or Ze, for any t ≥ 1 and any prime e. As we
will detail at the end of this section, previous solutions (e.g., [7, 19, 3, 9, 8, 12,
13, 17]) could support only large fields whose size strictly depends on the secu-
rity parameter. The only exception are the lattice-based schemes of Boneh and
Freeman [9, 8] that work for small fields, but are less efficient than our solution.
In this sense, one of our main contributions is to propose a solution that of-
fers a great flexibility as it can support arbitrary finite rings, both small and

large, whose characteristic can be basically chosen ad-hoc (e.g., according to the
desired application) at the moment of instantiating the scheme.

Our Scheme. The scheme is defined by the following algorithms.

Hom.KG(1λ,m, n) On input the security parameter λ, the maximum data set
size m, and an integer n ≥ 1 used to determine the message space M as we
specify below, the key generation algorithm proceeds as follows.

Run (κ, td)
$← Gen(1λ) to obtain an algebraic TDP, Fκ : Xκ → Xκ that

is ring-homomorphic for the field K. Next, sample n + 1 group elements

u, g1, . . . , gn
$← Xκ and choose a hash function H : {0, 1}∗ → Xκ.

The public key is set as VK = (κ, u, g1, . . . , gn, H), while the secret key is
the trapdoor SK = td.
The message space M = (K)n is the set of n-dimensional vectors whose
components are elements of K, while the set of admissible functions F is all
degree-1 polynomials over K with m variables and constant-term zero.

Hom.Sign(SK, τ,M, i) The signing algorithm takes as input the secret key SK,
a tag τ ∈ {0, 1}λ, a message M = (M1, . . . ,Mn) ∈ Kn and an index i ∈
{1, . . . ,m}. To sign, choose s

$← K uniformly at random and use the trapdoor
td to compute

x = F−1κ (H(τ, i) · us ·
n∏
j=1

g
Mj

j)

and output σ = (x, s).
Hom.Ver(VK, τ,M, σ, f) To verify a signature σ = (x, s) on a message M ∈ M,

w.r.t. tag τ and the function f , the verification algorithm proceeds as follows.
Let f be encoded as its set of coefficients (f1, f2, . . . , fm). Check that all
values fi and Mj are in K and then check that the following equation holds

Fκ(x) =

m∏
i=1

H(τ, i)fi · us ·
n∏
j=1

g
Mj

j

If both checks are satisfied, then output 1 (accept), otherwise output 0 (re-
ject).

Hom.Eval(VK, τ, f,σ,M ,f) The public evaluation algorithm takes as input the
public key VK, a tag τ , a function f ∈ F encoded as (f1, . . . , fm) ∈ Km, a
vector of signatures σ = (σ1, . . . , σm) where σi = (xi, si), a vector of mes-
sages M = (M (1), . . . ,M (m)) and a vector of functions f = (f (1), . . . , f (m)).
If each signature σi is valid for the tag τ , the message M (i) and the func-
tion f (i), then the signature σ output by Hom.Eval is valid for the message
M = f(M (1), . . . ,M (m)). In order to do this, our algorithm first computes
s = f(s1, . . . , sm) =

∑m
i=1 fi · si (over K). Next, it defines:

A = (H(τ, 1), . . . ,H(τ,m), u, g1, . . . , gn) ∈ Xm+n+1
κ ,

Ω =


f
(1)
1 · · · f (1)m s1 M

(1)
1 · · · M (1)

n

...
...

...
...

f
(m)
1 · · · f (m)

m sm M
(m)
1 · · · M (m)

n

 ∈ Zm×m+n+1

and uses the Eval algorithm of the algebraic TDP to compute x = Eval(κ,A,x,
Ω, f). Finally, it outputs σ = (x, s).

We remark that our construction requires the Hom.Eval algorithm to know
the messages M (i) for which the signatures σi are supposed to verify cor-
rectly. Moreover we stress that Hom.Eval needs to receive both f and f as
otherwise it would not be able to correctly perform the homomorphic op-
erations. Notice, however, that the value of the produced message does not
depend on f (this is needed essentially to run the Eval algorithm correctly).

Since our scheme follows the FDH paradigm, its security holds in the random
oracle model, however, following similar results for FDH signatures, in the full
version we propose a variant of our scheme that can be proven secure in the
standard model in the weaker security model of Q-time security, in which the
adversary is restricted to query signatures on at most Q different datasets, and
Q is a pre-fixed bound.

The security of our scheme follows from the following theorem. For lack of
space, its proof appears in the full version.

Theorem 5. If (Gen, F, Inv) is a family of algebraic trapdoor permutations and
H is modeled as a random oracle, then the linearly-homomorphic signature
scheme described above is secure.

Efficiency and Comparisons. The most attractive feature of our proposal is
that it allows for great variability of the underlying message space. In particular
our scheme allows to consider finite rings of arbitrary size without sacrificing
efficiency7. This is in sharp contrast with previous solutions which can either
support only large fields (whose size directly depends on the security parameter
e.g., [7, 19, 3, 9, 8, 12, 13, 17]) or are much less efficient in practice [9, 8].

Here we discuss in more details the efficiency of our scheme when instantiated
with our RSA and Factoring based Algebraic TDP. Since each signature σ =
(x, s) consists of an element x ∈ Z∗N and a value s in the field K, i.e., its size
is |σ| = |N | + |S| where |N | is the bit size of the RSA modulus and |S| is the
bit size of the cardinality S of K. Ignoring the cost of hashing, both signing and
verifying require one single multi-exponentiation (where all exponents have size
|S|) and one additional exponentiation. Thus the actual efficiency of the scheme
heavily depends on the size of |S|. For large values of |S| our scheme is no better
than previous schemes (such as the RSA schemes by Gennaro et al. [19] and by
Catalano, Fiore and Warinschi [13]). For smaller |S|, however, our schemes allow
for extremely efficient instantiations. If we consider for instance the binary field
F2, then generating a signature costs only (again ignoring the cost of hashing)
one square root extraction and a bunch of multiplications. Notice however that
for the specific N (i.e. N = pq where p = 2p′ + 1, q = 2q′ + 1 and p′, q′ are both
primes) considered in our instantiations, extracting square root costs one single

7 In fact, the exact size of the ring can be chosen ad-hoc (e.g., according to the desired
application) at the moment of instantiating the scheme.

exponentiation (i.e., one just exponentiates to the power z = 2−1 mod p′q′).
Verification is even cheaper as it requires (roughly) m+ n multiplications.

As mentioned above, the only known schemes supporting small fields are
those by Boneh and Freeman [9, 8]. Such schemes are also secure in the random
oracle model, but rely on the hardness of SIS-related problems over lattices.
There, a signature is a short vector σ in the lattice, whereas the basic signing
operation is computing a short vector in the intersection of two integer lattices.
This is done by using techniques from [22, 10]. Even though the algebraic tools
underlying our scheme are significantly different with respect to those used in [9,
8] and it is not easy to make exact comparisons, it is reasonable to expect that
taking a square root in Z∗N is faster than state-of-the-art pre-image sampling for
comparable security levels.

Acknowledgements The second author did the present work while at NYU
supported by NSF grant CNS-1017471. The research of the third author was
sponsored by the U.S. Army Research Laboratory and the U.K. Ministry of De-
fence and was accomplished under Agreement Number W911NF-06-3-0001. The
views and conclusions contained in this document are those of the author(s) and
should not be interpreted as representing the official policies, either expressed or
implied, of the U.S. Army Research Laboratory, the U.S. Government, the U.K.
Ministry of Defence or the U.K. Government. The U.S. and U.K. Governments
are authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation hereon.

References

1. R. Ahlswede, Ning-Cai, S. Li, and R. Yeung. Network information flow. IEEE
Transactions on Information Theory, 46(4):1204–1216, 2000.

2. B. Applebaum, Y. Ishai, and E. Kushilevitz. From secrecy to soundness: Efficient
verification via secure computation. In S. Abramsky, C. Gavoille, C. Kirchner,
F. Meyer auf der Heide, and P. G. Spirakis, editors, ICALP 2010, Part I, volume
6198 of LNCS, pages 152–163, Bordeaux, France, July 6–10, 2010. Springer, Berlin,
Germany.

3. N. Attrapadung and B. Libert. Homomorphic network coding signatures in the
standard model. In D. Catalano, N. Fazio, R. Gennaro, and A. Nicolosi, editors,
PKC 2011, volume 6571 of LNCS, pages 17–34, Taormina, Italy, Mar. 6–9, 2011.
Springer, Berlin, Germany.

4. L. Babai. Trading group theory for randomness. In 17th ACM STOC, pages
421–429, Providence, Rhode Island, USA, May 6–8, 1985. ACM Press.

5. M. Belenkiy, M. Chase, C. C. Erway, J. Jannotti, A. Küpçü, and A. Lysyanskaya.
Incentivizing outsourced computation. In Workshop on Economics of Networked
Systems – NetEcon, pages 85–90, 2008.

6. S. Benabbas, R. Gennaro, and Y. Vahlis. Verifiable delegation of computation over
large datasets. In P. Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages
111–131, Santa Barbara, CA, USA, Aug. 14–18, 2011. Springer, Berlin, Germany.

7. D. Boneh, D. Freeman, J. Katz, and B. Waters. Signing a linear subspace: Signature
schemes for network coding. In S. Jarecki and G. Tsudik, editors, PKC 2009,
volume 5443 of LNCS, pages 68–87, Irvine, CA, USA, Mar. 18–20, 2009. Springer,
Berlin, Germany.

8. D. Boneh and D. M. Freeman. Homomorphic signatures for polynomial functions.
In K. G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 149–
168, Tallinn, Estonia, May 15–19, 2011. Springer, Berlin, Germany.

9. D. Boneh and D. M. Freeman. Linearly homomorphic signatures over binary fields
and new tools for lattice-based signatures. In D. Catalano, N. Fazio, R. Gennaro,
and A. Nicolosi, editors, PKC 2011, volume 6571 of LNCS, pages 1–16, Taormina,
Italy, Mar. 6–9, 2011. Springer, Berlin, Germany.

10. D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. Bonsai trees, or how to delegate
a lattice basis. In H. Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS,
pages 523–552, French Riviera, May 30 – June 3, 2010. Springer, Berlin, Germany.

11. D. Catalano, D. Fiore, R. Gennaro, and K. Vamvourellis. Algebraic (trapdoor) one-
way functions and their applications. Cryptology ePrint Archive, Report 2012/434,
2012. Full version.

12. D. Catalano, D. Fiore, and B. Warinschi. Adaptive pseudo-free groups and appli-
cations. In K. G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS,
pages 207–223, Tallinn, Estonia, May 15–19, 2011. Springer, Berlin, Germany.

13. D. Catalano, D. Fiore, and B. Warinschi. Efficient network coding signatures in the
standard model. In PKC 2012, LNCS, pages 680–696. Springer, Berlin, Germany,
2012.

14. K.-M. Chung, Y. Kalai, and S. P. Vadhan. Improved delegation of computation
using fully homomorphic encryption. In T. Rabin, editor, CRYPTO 2010, vol-
ume 6223 of LNCS, pages 483–501, Santa Barbara, CA, USA, Aug. 15–19, 2010.
Springer, Berlin, Germany.

15. R. Cramer and I. Damg̊ard. Zero-knowledge proofs for finite field arithmetic; or:
Can zero-knowledge be for free? In H. Krawczyk, editor, CRYPTO’98, volume 1462
of LNCS, pages 424–441, Santa Barbara, CA, USA, Aug. 23–27, 1998. Springer,
Berlin, Germany.

16. D. Fiore and R. Gennaro. Publicly verifiable delegation of large polyno-
mials and matrix computations, with applications. In 2012 ACM Confer-
ence on Computer and Communication Security. Full version available at
http://eprint.iacr.org/2012/281. ACM Press, October 2012.

17. D. M. Freeman. Improved security for linearly homomorphic signatures: A generic
framework. In PKC 2012, LNCS, pages 697–714. Springer, Berlin, Germany, 2012.

18. R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers. In T. Rabin, editor, CRYPTO 2010,
volume 6223 of LNCS, pages 465–482, Santa Barbara, CA, USA, Aug. 15–19, 2010.
Springer, Berlin, Germany.

19. R. Gennaro, J. Katz, H. Krawczyk, and T. Rabin. Secure network coding over the
integers. In P. Q. Nguyen and D. Pointcheval, editors, PKC 2010, volume 6056 of
LNCS, pages 142–160, Paris, France, May 26–28, 2010. Springer, Berlin, Germany.

20. R. Gennaro, D. Leigh, R. Sundaram, and W. S. Yerazunis. Batching Schnorr
identification scheme with applications to privacy-preserving authorization and
low-bandwidth communication devices. In P. J. Lee, editor, ASIACRYPT 2004,
volume 3329 of LNCS, pages 276–292, Jeju Island, Korea, Dec. 5–9, 2004. Springer,
Berlin, Germany.

21. C. Gentry. Fully homomorphic encryption using ideal lattices. In M. Mitzenmacher,
editor, 41st ACM STOC, pages 169–178, Bethesda, Maryland, USA, May 31 –
June 2, 2009. ACM Press.

22. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In R. E. Ladner and C. Dwork, editors, 40th ACM
STOC, pages 197–206, Victoria, British Columbia, Canada, May 17–20, 2008. ACM
Press.

23. S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating computation: interac-
tive proofs for muggles. In R. E. Ladner and C. Dwork, editors, 40th ACM STOC,
pages 113–122, Victoria, British Columbia, Canada, May 17–20, 2008. ACM Press.

24. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

25. L. C. Guillou and J.-J. Quisquater. A practical zero-knowledge protocol fitted
to security microprocessor minimizing both trasmission and memory. In C. G.
Günther, editor, EUROCRYPT’88, volume 330 of LNCS, pages 123–128, Davos,
Switzerland, May 25–27, 1988. Springer, Berlin, Germany.

26. R. Johnson, D. Molnar, D. X. Song, and D. Wagner. Homomorphic signature
schemes. In B. Preneel, editor, CT-RSA 2002, volume 2271 of LNCS, pages 244–
262, San Jose, CA, USA, Feb. 18–22, 2002. Springer, Berlin, Germany.

27. J. Kilian. A note on efficient zero-knowledge proofs and arguments. In 24th ACM
STOC, pages 723–732, Victoria, British Columbia, Canada, May 4–6, 1992. ACM
Press.

28. A. Lewko and B. Waters. New proof methods for attribute-based encryption:
Achieving full security through selective techniques. Crypto 2012, to appear.

29. S. Micali. Cs proofs. In 35th FOCS, Santa Fe, New Mexico, Nov. 20–22, 1994.
30. P. Mohassel. Efficient and secure delegation of linear algebra. Cryptology ePrint

Archive, Report 2011/605, 2011.
31. F. Monrose, P. Wyckoff, and A. D. Rubin. Distributed execution with remote

audit. In NDSS’99, San Diego, California, USA, Feb. 3–5, 1999. The Internet
Society.

32. M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-
random functions. In 38th FOCS, pages 458–467, Miami Beach, Florida, Oct. 19–
22, 1997. IEEE Computer Society Press.

33. C. Papamanthou, E. Shi, and R. Tamassia. Signatures of correct computation.
Cryptology ePrint Archive, Report 2011/587, 2011.

34. B. Parno, M. Raykova, and V. Vaikuntanathan. How to delegate and verify in
public: Verifiable computation from attribute-based encryption. In TCC 2012,
LNCS, pages 422–439. Springer, Berlin, Germany, 2012.

35. S.-Y. Robert-Li, R. Y. Yeung, and N. Cai. Linear network coding. IEEE Trans-
actions on Information Theory, 49(2):371–381, 2003.

36. A. Shamir. On the generation of cryptographically strong pseudorandom se-
quences. ACM Trans. Comput. Syst., 1(1):38–44, 1983.

37. S. W. Smith and S. Weingart. Building a high-performance, programmable secure
coprocessor. Computer Networks, 31:831–860, 1999.

38. B. Yee. Using Secure Coprocessors. PhD thesis, Carnegie Mellon University, 1994.

