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Abstract. Resettable hardware tokens, usually in the form of smart
cards, are used for a variety of security-critical tasks in open environ-
ments. Many of these tasks require trusted hardware tokens. With the
complexity of hardware, however, it is not feasible to check if the hard-
ware contains an internal state or gives away information over side chan-
nels. This inspires the question of the cryptographic strength of untrusted
resettable hardware tokens in the universal composability framework.
In this work, we consider the problem of realizing general UC-functionali-
ties from untrusted resettable hardware-tokens, with the goal of minimiz-
ing both the amount of interaction and the number of tokens employed.
Our main result consists of two protocols, realizing functionalities that
are sufficient to UC-realize any resettable two-party functionality.
The first protocol requires two rounds of interaction in an initialization
phase and only a single hardware-token. The second protocol is fully non-
interactive and requires two tokens. One of these relaxations, allowing
either communication with the issuer of the token or issuing two tokens,
is necessary. We show that even a simple functionality cannot be realized
non-interactively using a single token.

Keywords: Resettably secure computation, Tamper-Proof hardware,
Universal Composability

1 Introduction

In this paper we investigate the cryptographic strength of tamper-proof reset-
table hardware tokens in the universal composability model. This setting is mo-
tivated by smart cards. Smart cards are tamper-proof and resettable. Our aim is
to obtain non-interactive protocols where a sender can issue tamper-proof hard-
ware which is not necessarily trusted by the receiver. Non-interactive protocols
allow communication only in one direction from the sender to the receiver. We
will, however, differentiate two types of non-interactive protocols. In the first
type we allow an exchange of hardware tokens and interactive communication
between sender and receiver in an initialization phase before the input is given.
After the input is given the only communication allowed is one message sent
from the sender to the receiver. The second and more strict type allows (even in
an initialization phase) communication and sending of hardware tokens in one
direction only.



Of course, using resettable hardware and non-interactive protocols one can-
not expect to realize any non-resettable ideal functionality. The real adversary
could always reset the token and start the protocol all over again. Hence this
unavoidable attack must be reflected in the ideal functionality. Note that this
poses a limitation on the usefulness of some ideal functionalities. E.g. a coin-toss
of a single bit becomes useless as an attacker could reset the protocol until his
desired result occurs. Resettable functionalities resemble an ideal, i.e. black-box,
code obfuscation which is impossible without secure hardware [1].

Our Contribution. In the following we prove that there exist simple re-
settable ideal functionalities, namely point-functions, which cannot securely be
realized by a strictly non-interactive protocol using one single resettable hard-
ware token. We prove the impossibility of realizing a point-function with a single
resettable token in a strictly non-interactive protocol along the lines of [2]. Any
successful simulator for a corrupted token would already yield a cheating strategy
for the token in the real model.

If we were given a common-reference-string (CRS), however, non-interactive
protocols can be realized via secure two party computations between the receiver
and the hardware token. Note that the secure two-party computation must be
adapted to be used with a resettable token. A general construction can be found
in [3]. For each message m which is sent to the token in the secure two-party
computation one sends the complete previous transcript plus the message m.
The token then verifies the transcript and answers according to the protocol.
Any UC-compiler for secure two-party computation in the CRS-hybrid-model
(e.g. [4]) can be used to implement the underlying two-party protocol.

So the problem of non-interactive secure computation boils down to securely
computing a CRS in an initialization phase of the protocol. As our main contri-
bution we provide two constructions for securely realizing the CRS functionality
with resettable tamper-proof hardware tokens. The first protocol-construction
obtains a CRS using a single resettable hardware-token and a 4-move interactive
initialization-phase. The second protocol-construction obtains a resettable CRS
using two resettable hardware tokens and no further interaction with the sender.

Our Techniques. At the core of our first construction, which allows inter-
action with the sender in an initialization phase, is a Blum coin-toss protocol. In
this protocol the hardware token is used like a UC-commitment which is opened
via the possession of a secret which is sent by the sender in the unveil phase.
This secret is not directly given to the token to avoid communication between
the sender and the token, instead a zero-knowledge proof is used. Note that this
ZK proof must be resettably-sound and therefore can only be achieved using
non-black-box techniques.

Our second construction uses two hardware tokens which are both issued by
the sender and works in the strictly non-interactive setting where nothing may
ever be sent by the receiver. In the strictly non-interactive setting one cannot use
one of the two tokens like a UC-commitment which is unveiled via the possession
of a secret value, because both tokens are resettable and the receiver could learn
the committed value, reset, and force the coin-toss to some malicious value. The



basic idea behind our solution is a Blum coin-toss where the receiver commits
to a random value x and sends x together with the commitment c to the first
token. The token answers with a value y which is deterministically derived from
the commitment by a pseudorandom function. The second token is then used to
check if the value y is indeed deterministically derived. The second token is given
the commitment c and must answer with the same y. In this case x ⊕ y is the
result of the coin-toss. For the security proof in case of a corrupted receiver it
is crucial that the communication with the two tokens takes place in this order.
The second token must not reveal the value y too early, because the simulator
must choose y depending on x which is not possible if he must choose y too
early. To cope with that, the first token signs the commitment and the second
token accepts a commitment only together with a proof of possession of a valid
signature. For the simulation of a corrupted sender, however, it is necessary to
obtain y before one is actually committed to x. To do so the simulator executes
the protocol out of order. He is able to forge the proof of possession of a valid
signature. To the best of our knowledge this simulation technique is novel and
an interesting result on its own.

As an application of our non-interactive protocols we propose a conditional
decrypt for a fully homomorphic encryption scheme. The condition for decryption
being that a universal argument is provided to the token that a specific compu-
tation has been performed. This allows offloading computations from the token.
The actual computation can be performed using fully homomorphic encryption
and only the conditional decrypt has to be realized as a two-party computation.
This construction can be used to achieve obfuscation.

Further Related and Concurrent Work. The notion of resettability has
gained considerable attention, especially in the context of zero-knowledge. The
results range from a resettable prover [3, 5, 6], to a resettable verifier [7, 6] and
simultaneously resettable prover and verifier [8–10]. These works spawned a line
of work realizing compilers for resettable and stateless secure multi-party com-
putation. Goyal and Sahai [11] presented a compiler which enables multi-party
computation of arbitrary PPT-functionalities either with honest majority where
any party can be resettable, or no honest majority is required and only one
predetermined party may be resettable. Surpassing the honest majority require-
ment, Goyal and Maji [12] introduced a compiler that transforms most PPT-
functionalities (except a certain class of pseudorandom generators) into a state-
less variant. Goyal et al. [13] present an unconditionally secure zero-knowledge
protocol for NP. They show that statistically secure commitments with one
stateless token are only possible when interaction between the parties is allowed,
but impossible in the non-interactive setting. This is due to the fact that in the
non-interactive case the token needs to contain superpolynomial entropy since
both sender and receiver are unbounded. In contrast, we consider computational
UC-security [14], so their impossibility result does not apply to us.

There are several results concerning multi-party computation in the UC-
framework. [14] showed that under the assumption of an honest majority, any
multi-party protocol is realizable in the UC-framework. Since it is known to be



impossible to construct large classes of UC-secure two-party protocols in the
plain model [14–16], the result of Canetti et al. [4] was a breakthrough. In their
work, a common reference string is needed as a setup assumption to overcome
the impossibility results and realize arbitrary multi-party protocols in the UC-
framework. Further work based on tamper-proof hardware includes [17, 18].

In a work independent and concurrent to ours, [19] investigated how stateless
tamper-proof hardware tokens can serve as a minimal UC-setup assumption.
They present a black-box protocol realizing OT with two stateless tokens and
show that OT from one stateless token is not possible if only black-box techniques
are used. This is similar to our impossibility result, but we cover any amount of
resettable tokens in the non-interactive setting. Further, they construct a coin-
toss protocol with a single hardware token using similar techniques to our first
protocol. However, they do not consider a non-interactive coin-toss protocol.

2 Preliminaries

Let in the following k denote a security parameter. We use the cryptographic
standard notions of negligible functions, as well as computational/statistical/per-
fect indistinguishability.

2.1 Framework

We state and prove our results in the UniversalComposability (UC)-framework
of [14]. In this framework security is defined by comparison of a real model and
an ideal model. The protocol of interest Π is running in the latter, where an
adversary A coordinates the behavior of all corrupted parties. We assume static
corruption, i.e. the adversary A cannot adaptively change corruption during a
protocol-run. In the ideal model, which is secure by definition, an ideal function-
ality F implements the desired protocol task and a simulator S tries to mimic
the actions of A. An environment Z is plugged either to the ideal or the real
model and has to guess which model it is actually plugged to. Denote the ran-
dom variable representing the output of Z when interacting with the real model
by RealAΠ(Z) and when interacting with the ideal model by IdealSF (Z). Protocol
Π is said to be UC-secure if for any environment Z the distributions RealAΠ(Z)
and IdealSF (Z) are (computationally, statistically or perfectly) indistinguishable.

2.2 Strongly Unforgeable Signatures

As our scheme requires the use of signatures, we shall briefly review the stan-
dard notion of strongly unforgeable signature schemes. A signature scheme SIG
consists of three PPT-algorithms KeyGen, Sign and Verify.

– KeyGen(1k) generates a public verification key vk and a private signature
key sgk.

– Signsgk(m) takes a signature key sgk and a message m ∈ {0, 1}∗ and returns
a signature σ.



– Verifyvk(m,σ) takes as input a verification key vk, a message m ∈ σ∗ and a
signature σ and outputs 1 if σ is a valid signature for m and 0 otherwise.

In the EUF-CMA-experiment an adversary A is given a verification key vk and
access to a signature-oracle. A wins the experiment if it manages to forge a
valid signature σ for a message of its choice m, without having queried its
signature-oracle with m. A signature scheme SIG is called EUF-CMA-secure,
if no PPT-adversary A wins the EUF-CMA-experiment better than with negli-
gible probability. For the sake of simplicity, we require signature schemes with a
deterministic verification procedure and succinct signature length (i.e. the length
of σ does not depend on m). Standard hash-and-sign [20, 21] constructions suffice
these requirements.

Additionally, we require the signing procedure to be deterministic. However,
this is no restriction since the random coins used for signing can be chosen by a
pseudorandom function, which is seeded by a part of the signing key.

2.3 Resettably-Sound Zero-Knowledge Arguments of Knowledge

For the construction of our protocols we use resettably-sound zero-knowledge
(rsZK) arguments of knowledge [7]. We briefly define the notions.

Definition 1. A resettably-sound zero-knowledge argument of knowledge system
for a language L ∈ NP (with witness-relation RL and witness-set wL(x) = {w :
(x,w) ∈ RL}) consists of a pair of PPT-machines (P,V), where the verifier V is
stateless, such that there exist two PPT-machines Sim and Ext and the following
conditions hold.

– Completeness. For every (x,w) ∈ RL it holds that Pr[〈P(w),V〉(x) = 1] =
1.

– Computational Soundness. For every x /∈ L and every PPT-machine P∗

it holds that Pr[〈P∗,V〉(x) = 1] < negl(|x|).
– Computational Zero-Knowledge. For every (x,w) ∈ RL and every state-

ful or stateless PPT V∗ it holds the distributions Real = {〈P(w),V∗〉(x)} and
Ideal = {Sim(x,V∗)} are computationally indistinguishable.

– Proof of Knowledge. For every x ∈ L and every PPT-machine P∗ there
exists a negligible ν such that Pr[Ext(x,P∗)] ∈ wL(x)] > Pr[〈P∗,V〉(x) =
1]− ν.

2.4 Perfectly Binding Commitments

Another tool we need is a non-interactive perfectly binding commitment scheme.
Generally, a commitment scheme consists of two phases: the commit phase in
which a sender commits to a value v without revealing it, and the reveal phase
where the sender reveals his private coins r together with v such that a receiver
can verify the correctness of the commitment. The value v has to be hidden
from the receiver while the commitment has to be binding for the sender. For



our application, a standard computationally hiding and perfectly binding com-
mitment scheme is sufficient, e.g. a construction based on a one-way permutation
[22]. Perfectly binding means that there is exactly one randomness to unveil cor-
rectly.

3 Resettable Hardware in the UC-Framework

In this section, we will introduce resettable UC-functionalities and the ideal
functionalities for resettable hardware tokens. We first provide the definition
of resettable two-party UC-functionalities. Let M be a Turing machine. The
resettable functionality FM specified by M is defined as follows. For the sake of
readability, we omit session and message identifiers.

Functionality FM (parametrized by a security parameter k).

– Sender Input Upon receiving (sender, init) from S, store init, write init on
M’s input tape and run M until it halts. Store the state of M. Accept no
further inputs by S

– Receiver Input Upon receiving (receiver,msg) from R, write msg on M’s
input tape and run M starting from most recent state until it halts. Store
the state of M. Read a message out from M’s output tape and send out to
R.

– Reset (Adversarial receiver only) Upon receiving reset from R, reset the
Turing machine M to its initial state. Write init on M’s input tape and run
M until it halts. Store the state of M.

We use a definition of wrapper-functionalities very similar to [18, 17]. For
simplicity, we state the functionality in the two-party case where only a sender-
machine S and a receiver-machine R are present. This definition allows the sender
S to wrap a program T in a hardware token, and send this token to the receiver
R who can query it an arbitrary (polynomial) number of times. Additionally, we
allow an adversarial receiver to reset the program T to its initial state.

Functionality Fwrap (parametrized by a security parameter k and a polynomial
runtime bound p(·)).

– Create Upon receiving (create,T, p(·)) from S, where T is a Turing machine,
send create to R and store T.

– Execute Upon receiving (run, w) from R, check if a create-message has al-
ready been sent by S, if not output ⊥. Run T(w) for at most p(k) steps, and
let m be the output. Save the current state of T. Output m to R

– Reset (Adversarial Receiver only) Upon receiving reset from R, reset the
Turing machine T to its initial state.

The messages between Fwrap and R are delivered immediately without sched-
uling by the adversary. In the sequel, we will use the notation T for programs



(given as code, Turing-machine etc.) and T for the instance of the wrapper-
functionality Fwrap in which T runs.

We will introduce two new hybrid functionalities as an intermediate build-
ing block between Fwrap and general resettable UC-functionalities. Both func-
tionalities are enhanced wrapper-functionalities where both the receiver of the
token and the wrapped program are given access to a trusted common reference
string. The two different flavors of this functionality we consider here differ in
that the common reference string is either resettable by a corrupted receiver or
non-resettable.

Functionality Fhybrid1wrap (parametrized by a security parameter k and a polyno-
mial runtime bound p(·)).

– Create Upon receiving (create,T, p(·)) from S, where T is a Turing machine,
store T, choose the common reference string crs uniformly at random of
length ` and give T read-access to crs. Send (create, crs) to R and S.

– Execute Upon receiving (run, w) from R, check if a create-message has al-
ready been sent by S, if not output ⊥. Run T(w) for at most p(k) steps, and
let m be the output. Save the current state of T. Output m to R

– Reset (Adversarial Receiver only) Upon receiving reset from R, reset the
Turing machine T to its initial state.

Remark. By having the functionality Fhybrid1wrap send the common reference string
crs to the sender S we model an artifact that arises in our protocol.

Functionality Fhybrid2wrap (parametrized by a security parameter k and a polyno-
mial runtime bound p(·)). Let H be a random oracle that maps to strings of
length `.

– Create Upon receiving (create,T, p(·)) from S, where T is a Turing machine,
store T, set the common reference string to be crs = H(1) and give T read-
access to crs. Send (create, crs) to R.

– Execute Upon receiving (run, w) from R, check if a create-message has al-
ready been sent by S, if not output ⊥. Run T(w) for at most p(k) steps, and
let m be the output. Save the current state of T. Output m to R

– Reset (Adversarial Receiver only) Upon receiving (reset, j) from R, reset
Turing machine T to its initial state and set the common reference string to
crs = H(j).

We will briefly sketch how general-purpose UC-compilers in the CRS-hybrid-
model, like for instance the compiler of [4], can be used to implement arbitrary re-
settable two-party UC-functionalities in the Fhybrid1wrap and Fhybrid2wrap hybrid model.
Recall that these functionalities provide both the receiver and the encapsulated
program access to an encapsulated common reference string. The basic idea is
to assign the receiver the role of one protocol-party and the encapsulated pro-
gram the role of the other protocol-party. The case of a malicious sender is



trivial, as any UC-simulator against a corrupted sender can also serve as a sim-
ulator against a malicious token. The case of a malicious receiver needs to take
reset-attacks against the token into account. However, this can be dealt with by
applying a transformation due to [3]. This transformation replaces random coins
used by the token with pseudorandom coins, which deterministically depend on
all the messages received by the token at each point in time. This transformation
merely requires a pseudorandom function.

4 Limitations

In this section, we will sketch two limitations regarding the implementation of
resettable UC-functionalities using untrusted resettable hardware tokens. For
simplicity, we consider protocols realizing the point-function functionality FPF.
This functionality is initialized by an input x̂ ∈ {0, 1}n from the sender. The
receiver can query FPF an arbitrary (polynomial) amount of times with inputs x,
receiving output PFx̂(x), where PFx̂(x) = 1 if x = x̂ and PFx̂(x) = 0 otherwise.

Lemma 1. There exists no protocol which (computationally) UC-realizes the
FPF-functionality using only a single hardware token and no further commu-
nication. Moreover, any protocol UC-realizing the FPF-functionality using any
amount of resettable hardware tokens (issued from S to R) must make use of
non-black-box techniques in its security proof.

Proof. First assume there exists a protocol ΠPF that UC-implements FPF using
a single (resettable) hardware token and no interaction (w.l.o.g. we can assume
that messages from S to R are sent together with the token). Let ÃR be the
dummy-adversary for the receiver R. Since ΠPF is UC-secure, there exists a

simulator SR such that it holds for any PPT-environment Z that RealÃR

ΠPF
(Z) ≈c

IdealSRFPF
(Z). We will now show that for every sender-simulator SS there exists a

PPT-environment Z∗ such that the distributions RealÃΠPF
(Z∗) and IdealSSFPF

(Z∗)
are efficiently distinguishable, contradicting the UC-security of ΠPF. This Z∗
creates a malicious token T ∗ which behaves adaptively in the following sense.
The token T ∗ internally simulates the simulator SR together with a malicious
functionality F∗, providing its interface with R to SR. The malicious functionality
F∗ behaves as follows. Once it receives an input x for the first time, it checks
whether x is equal to a secret random x̂0. If so, it will behave like the point
function PFx̂0

in this call and all successive calls. If not, it will behave like
a point function PFx̂1

(for a secret random x̂1) in this call and all successive
calls. Observe now that from the view of R, the protocol ΠPF always implements
a proper point function. However, a simulator SS must decide if it inputs x̂0
or x̂1 into the ideal functionality FPF without knowing the first input x of R.
The environment Z can now distinguish between real and ideal as follows. It
first flips an unbiased coin. If the outcome is 0, it provides input x = x̂0 to
R, otherwise it provides input x = x̂1 to R. If Z∗ is connected to the real
experiment, then the output of R behaves according to the specification of F∗.



In the ideal experiment however, the output of R behaves either like PFx̂0
or

PFx̂1
(or completely different). Thus, with probability at least 1/2 Z∗ notices a

difference. This contradicts the UC-security of ΠPF.

For the second statement of the lemma, assume there exists a protocol
ΠPF UC-realizing FPF and that there exists a black-box simulator SS against
a corrupted sender ÃS such that it holds for all PPT-environments Z that

RealÃS

ΠPF
(Z) ≈c IdealSSFPF

(Z). Such a simulator must be able to extract a point
x̂ from the malicious tokens T ∗1 , . . . , T ∗n using only black-box techniques (i.e.
rewinding). We will now construct an environment Z∗ and a malicious receiver
AR that extracts the secret x̂ from the tokens T1, . . . , Tn. AR internally simu-
lates SS and provides his interface with T1, . . . , Tn to SS. AR then outputs to Z
whatever SS outputs. From the view of SS, the simulation of AR is identically dis-
tributed to IdealSSFPF

(Z). Thus, AR outputs the secret point x̂ with overwhelming
probability. On the other hand, any simulator SR has only black-box access to
the point function PFx̂ via FPF. Thus SR succeeds to learn x̂ only with negligible
probability. Therefore Z∗ can efficiently distinguish RealAR

ΠPF
(Z) and IdealSRFPF

(Z)
for any PPT-simulator SR, contradicting the UC-security of ΠPF.

5 Resettable UC-functionalities from Untrusted
Hardware

In this section, we present the main result of this work. We provide two UC-
secure protocols implementing the Fhybrid1wrap and Fhybrid2wrap UC-functionalities in

the Fwrap-hybrid model. The protocol for Fhybrid1wrap requires only a single Fwrap-
instance, i.e. a single untrusted hardware token. However, the protocol requires
an interactive initialization phase with the issuer of the token. The protocol
Fhybrid2wrap requires two Fwrap-instances, but is on the other hand completely non-
interactive. The blueprint for both protocols is the same. In a setup-phase, a com-
mon random reference string is negotiated via a variant of the Blum coin-tossing
protocol tailored for the respective setting. In the second phase, a program M
encapsulated in the wrapper-functionality (that has access to the common ref-
erence string) can be queried by the receiver.

We will start outlining the ideas behind the first protocol Πhybrid1. On an
intuitive level, the token is locked with a password. The receiver first needs to
obtain the password a to use the token. The receiver obtains a after performing
a Blum coin-toss with the sender which results in a common reference string. For
this coin-toss, the issuer uses the token itself to commit to a random string y.
More specifically, the sender programs the token to release y, after the token is
convinced the the receiver is in possession of a. First the sender sends the token
to the receiver to commit himself to the random string y. In the second step, the
receiver sends a random x to the sender, who replies with y and the password a
(which serves as unveil-information). The receiver now proves to the token that
he is in possession of a, thereby obtaining (y′, a′) from the token. If it holds that
y = y′, the receiver is convinced that the sender was a-priori committed to y



and a. If the receiver accepts, sender and receiver set crs = x⊕ y and the sender
signs crs, so that the receiver can use it with the token.

One issue we did not address yet is how the receiver proves to the token
that he is in possession of the password a. For that purpose, we first make the
password a verifiable. We do this by choosing the string a uniformly at random
and having the sender publish the image b = F(a) of a under a one-way function
F. As the token is resettable, we will use a resettably-sound zero-knowledge
argument of knowledge system for the receiver to prove to the token that he is
in possession of the password a, i.e. he possesses an a such that F(a) = b.

In our second protocol Πhybrid2, where the sender issues two stateless tokens
to the receiver and no communication between the sender and receiver is allowed,
the above protocol fails. The reason for this is that once the receiver knows a, it
can learn the string y, reset the second token (which acts in the role of the sender)
and force the crs to a value of his liking by choosing his input x adaptively.

We now give an outline of our second protocol. In order to prohibit the
receiver to choose his input x adaptively, he is now required to commit to x
using a non-interactive perfectly binding commitment-scheme com. The protocol
proceeds as follows. First, R computes c = com(x; r) (for random coins r). R then
sends (x, c) to the first token T1 and proves that c is a proper commitment of
x. Again, we use a resettably-sound zero-knowledge argument system, as T1 is
resettable. If T1 accepts, it computes y pseudorandomly by y = prf(c), where
prf is a pseudorandom function. Notice that a corrupted sender may choose prf
maliciously, it is therefore essential that prf remains oblivious of x. Instead of
releasing a password, T1 now computes a signature σ of c. This σ will now serve
as a witness to unlock the second token T2 for a run with the commitment c.
More specifically, R sends c to T2 and proves to T2, using a resettably-sound zero-
knowledge argument system of knowledge, that it knows a valid signature of c
under the verification key vk, i.e. it knows a σ such that verification succeeds.
Once T2 is convinced that R knows such a σ, it computes y′ = prf(c) and outputs
y′ to R. R now checks if y = y′ holds, if so it sets crs = x ⊕ y and uses crs as
common random reference string in a two-party computation with T1.

5.1 A Single Resettable Token

We now provide a formal statement of protocol Πhybrid1 that UC-emulates
Fhybrid1wrap . Let k be a security-parameter. Let T = Fwrap be a resettable hard-

ware wrapper-functionality, let F : {0, 1}k → {0, 1}m be a one-way function
and (P,V) be a resettably-sound zero-knowledge argument system of knowledge
for the language L = {b : ∃a ∈ {0, 1}k s.t. b = F (a)}. Further let SIG be an
EUF-CMA-secure signature scheme.

Let ` = poly(k) be the desired length of the output common reference string.

Protocol Πhybrid1

1. Sender S (setup step 1): The input of S is a program M
– Choose a← {0, 1}k uniformly at random. Set b = F (a).



– Choose y ← {0, 1}` uniformly at random.
– Generate a key pair (vk, sgk) = SIG.KeyGen()
– Program a stateless token T with the following functionality.
• Upon receiving a message unveil from R, run the verifier V with

input b. Forward the messages between R and V. If V rejects, output
⊥.
• If V accepts, send y to R.
• Upon receiving a message (crs, σ), check if SIG.Verifyvk(crs, σ) = 1,

if not abort.
• Upon receiving input (run, w) from R, run M on input w starting

from its most recent state, output whatever M outputs and save the
new state of M and wait for the next message (run, w).

– Input T into T and send (vk, b) to R
2. Receiver R (setup step 2):

– Wait for the ready message from T and a message (vk, b) from S.
– Choose x← {0, 1}` uniformly at random.
– Send x to S.

3. Sender S (setup step 3):
– Upon receiving a message x from R, set crs = x ⊕ y, compute σ =

SIG.Signsgk(crs). Send (y, a, σ) to R. Output crs.
4. Receiver R (setup step 4):

– Wait for a message (y, a, σ) from S.
– Check if F(a) = b, if not abort.
– Run the prover P with input b and witness-input a. Forward the messages

between P and T . Let y′ be the output of T .
– If y 6= y′, abort.
– Set crs = x⊕ y.
– Send (crs, σ) to T

5. Receiver R (Execute Phase): Upon receiving input (run, w), send (run, w)
to T and output whatever T outputs.

5.2 Proof of Security

We will prove computational UC-security against both corrupted sender and
receiver.

Corrupted Receiver. We will start with a corrupted receiver. Let AR be the
dummy-adversary for a corrupted receiver. Let Ext be the knowledge-extractor
for the argument of knowledge-system (P,V). We will first state the simulator
SR.

Simulator SR

– Simulate the first round of a sender S, forward the message (vk, b) to AR and
store the signature key sgk. Use the token-code T output by S to simulate
the token T for AR. Let a be the preimage of b under the one-way function
F.



– When the simulated S receives a message x from AR do the following. Let
crs be the common reference string output by Fhybrid1wrap . Set y = crs⊕ x and
σ = SIG.Signsgk(crs). Output (y, a, σ) to AR.

– If AR sends an unveil-message to T do the following. If AR has not yet sent
x to S, output ⊥, regardless if V would accept. Otherwise output the same
y as S.

– If AR sends a tuple (crs′, σ′) to T do the following. If it holds that AR has
not yet sent an x to S or SIG.Verifyvk(crs′, σ′) = 0 output ⊥.

– If AR sends a tuple (run, w) to T do the following. If AR has not yet sent
a tuple (crs, σ) to T1 with SIG.Verifyvk(crs, σ) = 1, output ⊥. Otherwise
forward (run, w) to Fhybrid1wrap and output whatever Fhybrid1wrap outputs.

– Whenever AR sends a message reset to T send reset to Fhybrid1wrap and reset
the state of T .

Theorem 1. For every PPT-environment Z, it holds that the random variables
RealAR

Πhybrid1(Z) and IdealSR
Fhybrid1

wrap
(Z) are computationally indistinguishable.

To prove the theorem, we will show indistinguishability of the following ex-
periments.

Experiment 1. Simulator S1 simulates the real protocol Πhybrid1.

Experiment 2. Identical to experiment 1, except that T outputs ⊥ if AR sends
an unveil-query for which the verifier V accepts before AR has sent his coins x
to S.

Experiment 3. Identical to experiment 2, except that S’s coins y are computed
by y = crs⊕ y, where crs is a common random reference string chosen uniformly
at random.

Experiment 4. Identical to experiment 3, except that T aborts if AR sends a a
tuple (crs, σ), where it holds that SIG.Verifyvk(crs, σ) = 1 and crs has not been
signed by S. This is the ideal experiment.

Remarks. Experiment 1 and experiment 2 are computationally indistinguish-
able, given that the one-way function F is strongly one way. Experiment 2 and
experiment 3 are identically distributed, as both x and crs are uniformly and
independently distributed. The indistinguishability of experiment 3 and experi-
ment 4 follows easily from the EUF-CMA-security of SIG.

Lemma 2. From Z’s view, experiment 1 and experiment 2 are computationally
indistinguishable, given that F is a one-way function and the argument system
(P,V) suffices the proof of knowledge property.

Proof. From Z’s view, experiment 1 and experiment 2 are identically distributed
conditioned to the event that AR does not convince V that it possesses an a such
that F(a) = b before sending his own coins x to S. Thus, a Z distinguishing



between experiment 1 and experiment 2 must succeed in making AR convince T
of this before receiving such a value a from S.

Assume that Z causes this event with non-negligible probability ε. We will
construct an adversary B that inverts the one-way function F with non-negligible
probability. Let m = poly(k) be an upper bound on the number of unveil calls
that AR sends to T . Let b′ be the image on which B is supposed to invert F. B
first chooses an index i ∈ {1, . . . ,m} uniformly at random.

Let S ′1 be a simulator the behaves exactly like S1, except for one modifica-
tion. S ′1 sets b = b′ instead of generating b by b = F(a). B then simulates the
interaction between Z and S ′1 until AR makes the i’th unveil-call. B now halts
the computation of Z. If the computation of Z continued after this point, the
subsequent messages passed by AR correspond to the messages of a malicious
prover P∗ for the argument system (P,V). Thus, B can construct P∗ from the
state of the halted Z which basically continues the simulation of Z at its current
state and forwards messages between AR and an external verifier V. B can now
take the code of P∗ and run the extractor Ext(b,P∗). Let a be the output of Ext.
B outputs a and terminates.

First notice, that from Z’s view, this simulation is identically distributed
to experiment 1. Thus, the event that AR succeeds in convincing T that it
possesses a preimage a of b happens with probability at least ε. With probability
at least 1/m, the index i chosen by B matches the index of the proof where
this event happens. Therefore, it holds that Pr[〈P∗,V(c)〉 = 1] ≥ ε/m. Due to
the proof of knowledge property of the argument system (P,V) it holds that
Pr[Ext(b,P∗) ∈ wL1

(b)] > Pr[〈P∗,V(c)〉 = 1] − ν ≥ ε − ν for some negligible ν.
Thus, with probability ε− ν, which is non-negligible, B outputs a preimage a of
b′ under F , thus breaking the one-wayness property of F .

Corrupted Sender. Next, we will prove computational UC-security for the case
of a corrupted sender. Let AS be the dummy-adversary for a corrupted sender
and let Sim be the non-black-box simulator for the argument system (P,V), that
takes as input a statement (k, b) and the code V∗ of a malicious verifier. The
simulator SS is given as follows.

Simulator SS

– Let T∗ be the token sent by AS and (vk, b) be the message sent by AS.
– Simulate T using T∗.
– Construct a malicious verifier V∗ for the argument system (P,V) that basi-

cally simulates the zero-knowledge step of T∗ and outputs the state of T∗

after the zero-knowledge step is over.
– Run the non-black-box simulator Sim on input b and auxiliary input V∗. The

output of Sim is the state of T∗ after the zero-knowledge protocol. Continue
the simulation of T from this state until it outputs y.

– Let crs be the common reference string sent by Fhybrid1wrap . Set x = crs⊕ y.
– Send x to S. Let (y′, a, σ) be the response of S.
– If y 6= y′ or F(a) 6= b abort. Otherwise run T on input (crs, σ).



– Input T∗ with the most recent state taken from T hardwired into Fhybrid1wrap

and output crs to S.

Let Z be a PPT environment. We will now prove computational indistin-
guishability between RealAR

ΠCRS
(Z) and IdealSRFCRS

(Z) directly, given that the argu-
ment system (P,V) is zero-knowledge.

Theorem 2. RealAS

Πhybrid1(Z) and IdealSS
Fhybrid1

wrap
(Z) are computationally indistin-

guishable.

To prove the theorem, we will show indistinguishability of the following ex-
periments.

Experiment 1. Simulator S1 simulates the protocol Πhybrid1

Experiment 2. Identical to experiment 1, except that when R sends an unveil-
message to T∗, S2 runs the non-black-box simulator Sim on the verifier V∗ (as
constructed in the description of the simulator SS) instead of letting the prover P
interact with T∗. S2 then uses the output of Sim as most recent state to continue
the computation of T∗.

Experiment 3. Identical to experiment 2, except that S3 runs the unveil-phase
of T before interacting with AS, thereby obtaining y. Set x = crs⊕ y, where crs
is a uniformly random common reference string. This is the ideal experiment.

Remarks. The indistinguishability of experiment 1 and experiment 2 follows
from the computational zero-knowledge property of the argument system (P,V).
Experiment 2 and experiment 3 are identically distributed, as the interactions
of R with T and AS are independent of one another in both experiments and
thus exchangeable.

Lemma 3. From Z’s view, experiment 1 and experiment 2 are computation-
ally indistinguishable, provided that the argument system (P,V) is computational
zero-knowledge.

Proof. Fix a PPT-environment Z. Assume for contradiction that Z distinguishes
experiment 1 and experiment 2 with non-negligible advantage ε. We will con-
struct a malicious verifier V∗ and a distinguisher D, such that D distinguishes
the random variables 〈P(a),V∗〉(b) and Sim(b,V∗) with advantage ε, for some
a and b. Fix the random tape of Z such that Z with these fixed coins distin-
guishes between experiment 1 and experiment 2 with advantage ε. By a simple
averaging argument, such coins must exist. Let (a, b) with F(a) = b be the fixed
tuple that corresponds with this Z. The malicious verifier V∗ is constructed as
in the description of the simulator. The distinguisher D is obtained by plugging
the machine Z and S2 together, with modification to the simulator S2 that it
does not obtain the state of T by running Sim on b and V∗, but using its own
input as state of T . Clearly, if D’s input is distributed by 〈P(a),V∗〉(b), then Z’s
view is distributed identical as in experiment 1. If, on the other hand, D’s input
is distributed according to Sim(b,V∗), then Z’s view is distributed identical to
experiment 2. Thus D and V∗ contradict the zero-knowledge property of (P,V).



5.3 Two Resettable Tokens

In this section we will describe our protocol Πhybrid2 that implements Fhybrid2wrap .
Let {PRF} be a family of pseudorandom functions, com(·, ·) be a non-interactive
perfectly binding commitment scheme and SIG = (KeyGen,Sign,Verify) be an
EUF-CMA-secure signature scheme with deterministic signing algorithm. We
further need two resettably-sound zero-knowledge argument of knowledge sys-
tems. Let (P1,V1) be such a system for the language L1 = {(x, c)|∃r : c =
com(x; r)} and (P2,V2) be such a system for the language L2 = {(vk, c)|∃σ :
Verify(c, σ) = 1}. Let T1 and T2 be two Fwrap functionalities.

Protocol Πhybrid2

1. Sender S (setup step 1): The input of S is a program M
– Sample a pseudorandom function prf ← {PRF}, generate signature and

verification keys (sgk, vk) = SIG.KeyGen().
– Choose a random tape for the token T1 and program T1 as follows.
• Set flag ready = 0.
• Upon receiving input (x, c) from R, run the verifier V1 with input

(x, c). Forward the messages between R and V1. If V1 rejects, output
⊥.
• If V1 accepts, compute y = prf(c) and σ = SIG.Signsgk(c). Set flag
ready = 1 and output (y, σ)
• Upon receiving input (run, w) from R, run M on input w starting

from its most recent state, output whatever M outputs and save the
new state of M and wait for the next message (run, w).

– Choose a random tape for the token T2 and program T2 as follows.
• Upon receiving input c from R, run the verifier V2 with input (vk, c).

Forward the messages between R and V2. If V2 rejects, output ⊥.
• If V1 accepts, compute y = prf(c) and output y.

– Input T1 into T1 and T2 into T2. Send vk to R.
2. Receiver R (setup step 2):

– Choose x← {0, 1}k uniformly at random.
– Compute c = com(x; r) with a uniformly random chosen r.
– Send (x, c) to T1 and run the prover P1 with input (x, c) and witness-

input r. Forward the messages between P1 and T1. Let (y, σ) be the
output of T1.

– Check if SIG.Verifyvk(c, σ) = 1, if not abort.
– Send c to T2 and run the prover P2 with input (vk, c) and witness-input
σ. Let y′ be the output of T2.

– Check whether y = y′, if not abort. Otherwise set crs = x⊕ y.
3. Receiver R (Execute Phase): Upon receiving input (run, w), send (run, w)

to T1 and output whatever T1 outputs.

Corrupted Receiver. We will prove computational UC-security against a cor-
rupted receiver R. We therefore first provide the simulator SR.



Simulator SR

– Simulate the first round of a sender S and forward the message vk to AR

and store sgk. Use the token-codes T1 and T2 output by S to simulate T1
and T2 for AR. Setup a counter j = 1.

– If AR sends a message (x, c) to T1 do the following. Continue the simulation
of T1 until the verifier V1 either accepts or rejects. If it accepts, even though
a tuple (x′, y′, c′, j′) has been stored, for some x′ 6= x and c′ = c, output
⊥. Otherwise, if V1 accepts, compute σ = SIG.Signsgk(c) and output (y, σ),

for which a tuple (x, y, c, j′) has been stored. Send (reset, j′) to Fhybrid2wrap .
If no such tuple has been stored before, increment j by 1, send (reset, j′)
to the Fhybrid2wrap functionality to get a string crs, set y = x ⊕ crs, compute
σ = SIG.Signsgk(c), store the tuple (x, y, c, j) and output (y, σ).

– If AR sends a message c to T2 do the following. Continue the simulation of
T2 until the verifier V2 either accepts or rejects. If it accepts, check if a tuple
(x′, y′, c′, j′) with c′ = c has been stored. If not, output ⊥. Otherwise output
y′.

– Whenever AR sends a message reset to T2, reset T2.

Theorem 3. For every PPT-environment Z, it holds that the random variables
RealAR

Πhybrid2(Z) and IdealSR
Fhybrid2

wrap
(Z) are computationally indistinguishable.

Again, to prove the theorem, we will show indistinguishability of the following
experiments.

Experiment 1. Simulator S1 simulates the protocol Πhybrid2. This is the real
experiment.

Experiment 2. Identical to experiment 1, except that y is not computed as
y = prf(c) but as follows. If a tuple (x′, y′, c′, j′) has been stored with c′ = c,
set y = y′. Otherwise, choose crs uniformly at random and set y = x⊕ crs. Also
store the tuple (x, y, c).

Experiment 3. Identical to experiment 2, except that T1 outputs ⊥ if V1 accepts,
even though a tuple (x′, y′, c′, j′) has been stored, with x′ 6= x and c′ = c.

Experiment 4. Identical to experiment 3, except that T2 outputs ⊥ if V2 accepts,
even though no tuple (x′, y′, c′, j′) with c′ = c has been stored. This is the ideal
experiment.

Remarks. Given that prf is a pseudorandom function, we can replace the outputs
of prf with truly random values, thus experiment 1 and experiment 2 are indis-
tinguishable. The indistinguishability of experiment 2 and experiment 3 follows
from the binding property of the commitment scheme com. The event that T1
outputs ⊥ even though V1 accepts happens only when AR manages to convince
T1 that c is a commitment to two different values x and x′. The proof of knowl-
edge property of the argument system (P1,V1) guarantees that the corresponding



unveils r and r′ can be extracted with high probability. The indistinguishability
of experiment 3 and experiment 4 follows from the EUF-CMA-property of the
signature scheme SIG. If T2 outputs ⊥, even though the verifier V2 accepts, then
AR has convinced V2 that it possesses a signature on a commitment c for which
it never received a signature σ from T1. The proof of knowledge property enables
us to extract such a forged signature, contradicting the EUF-CMA-security of
SIG. For the complete proof refer to the full version of this paper.

Corrupted Sender. We will prove computational UC-security against a cor-
rupted sender S. Let therefore AS be the dummy-adversary and Z be a PPT-
environment. We first state the sender-simulator SS. This simulator programs a
simulator-token TS and sends this token to Fhybrid2wrap .

Simulator SS.

– Let T1 and T2 be the inputs of AS.
– Simulate T2 with the code T2.
– Set c = com(0; r) for a randomly chosen r.
– Use the code T2 to construct the code V∗2 of a verifier that runs the verifier-

stage of T2 when its input is c. The output of V∗2 is the the same output that
T2 would provide to R.

– Run Sim2 with input (vk, c) and witness-input V∗. Let y′ be the output of
Sim2

– Program a token TS as follows.

• Read the common reference string crs provided by the Fhybrid2wrap function-
ality. Set x = crs⊕ y′.

• Use the code T1 to construct the code V∗1 of a verifier that runs the
verifier stage of T1 when its input is (x, c). The output of V∗1 is the the
same output that T1 would provide to R.

• Run Sim1 with input (x, c) and witness-input V∗1. Let (y, σ) be the output
of Sim1.

• Check whether y = y′. If not abort.
• Upon receiving input (run, w) from R, run M on input w starting from

its most recent state, output whatever M outputs and save the new state
of M and wait for the next message (run, w).

– Input TS into Fhybrid2wrap

Theorem 4. For every PPT-environment Z, it holds that the random variables
RealAS

Πhybrid2(Z) and IdealSS
Fhybrid2

wrap
(Z) are computationally indistinguishable.

To prove the theorem, we will show indistinguishability of the following ex-
periments.

Experiment 1. Simulator S1 simulates the protocol Πhybrid2. This is the real
experiment.



Experiment 2. Identical to experiment 1, except that S2 does the following.
Instead of running P2 with input (vk, c) and witness-input σ, it runs Sim2 with
input (vk, c) and witness-input V∗2 (where V∗2 is as defined in the description of
simulator SS).

Experiment 3. Identical to experiment 2, except that S3 does the following.
Instead of running P1 with input (x, c) and witness-input r, it runs Sim1 with
input (x, c) and witness-input V∗1 (where V∗1 is as defined in the description of
simulator SS).

Experiment 4. Identical to experiment 3, except that the commitment c is com-
puted as c = com(0; r) instead of c = com(x; r).

Experiment 5. Identical to experiment 4, except that S5 first interacts with T2
and then with T1, instead of vice versa. Moreover, it sets x = crs⊕ y′ instead of
choosing x uniformly at random. This is the ideal experiment.

Remarks. Experiment 1 and experiment 2 are indistinguishable given that the
argument system (P1,V1) is zero-knowledge. Similarly, experiment 2 and ex-
periment 3 are indistinguishable given that (P2,V2) is zero-knowledge. Both
indistinguishability proofs are almost identical to the proof of Lemma 3 and
thus omitted. The indistinguishability of experiment 3 and experiment 4 follows
straightforwardly from the hiding property of the commitment scheme com. Ex-
periment 4 and experiment 5 are identically distributed, as in both experiments
y is independently uniformly distributed.

6 Applications

One application for our protocols is implementing a UC-secure functionality we
call conditional decryption, FCONDEC. In essence, what can be achieved through
the conditional decryption functionality is that the computational workload is
transfered from the hardware token to the user of the protocol, similar in concept
to delegation of computation [23, 24].

The FCONDEC-functionality takes as sender-input a private key sk for a fully
homomorphic encryption scheme FHE. The receiver can send decryption-queries
c to FCONDEC. Before FCONDEC decrypts such queries, the receiver must prove that
the query is well-formed. This proof is implemented using a universal argument
system [25]. Such a conditional decryption has a straightforward application in
the context of obfuscation. Given FCONDEC, a sender initializes the conditional
decryption functionality. He can then encrypt an arbitrary program and send it
to the receiver. All the receiver has to do is to homomorphically evaluate the
encrypted program and send the result together with a proof to the token. If the
homomorphic evaluation was carried out correctly, the token will decrypt the
result and send it to the receiver. The advantage of this approach is that the
sender can obfuscate programs arbitrarily without having to send a new token



each time. A similar construction can be found in [26]. Due to space limitations,
the above high level description omits several important details which are nec-
essary for a UC-proof. A detailed description of the protocols and a full proof
can be found in a preliminary version of this paper [27].

7 Conclusion

In this work, we investigated the cryptographic strength of untrusted resettable
hardware tokens in the UC-framework. We devised two protocols that use reset-
table hardware tokens to realize intermediate functionalities that are sufficient
to UC-emulate arbitrary resettable functionalities. The first protocol uses one
resettable token and two rounds of interaction in an initialization phase, after
which no further interaction takes place. In the second protocol, messages and
hardware tokens are only passed from the sender to the receiver. However, this
protocol requires two resettable token. Given these protocols, it is possible to
UC-realize any resettable two-party computation. We showed that a completely
non-interactive coin-toss with only one resettable token is impossible. Thus, both
our protocols are optimal if one of the conditions (no interaction or just a single
token) is dropped.
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