
On the Feasibility of Extending Oblivious
Transfer⋆

Yehuda Lindell and Hila Zarosim

Dept. of Computer Science
Bar-Ilan University, Israel

lindell@biu.ac.il,zarosih@cs.biu.ac.il

December 24, 2012

Abstract. Oblivious transfer is one of the most basic and important
building blocks in cryptography. As such, understanding its cost is of
prime importance. Beaver (STOC 1996) showed that it is possible to
obtain poly(n) oblivious transfers given only n actual oblivious transfer
calls and using one-way functions, where n is the security parameter.
In addition, he showed that it is impossible to extend oblivious transfer
information theoretically. The notion of extending oblivious transfer is
important theoretically (to understand the complexity of computing this
primitive) and practically (since oblivious transfers can be expensive and
thus extending them using only one-way functions is very attractive).
Despite its importance, very little is known about the feasibility of ex-
tending oblivious transfer, beyond the fact that it is impossible informa-
tion theoretically. Specifically, it is not known whether or not one-way
functions are actually necessary for extending oblivious transfer, whether
or not it is possible to extend oblivious transfers with adaptive secu-
rity, and whether or not it is possible to extend oblivious transfers when
starting with O(log n) oblivious transfers. In this paper, we address these
questions and provide almost complete answers to all of them. We show
that the existence of any oblivious transfer extension protocol with se-
curity for static semi-honest adversaries implies one-way functions, that
an oblivious transfer extension protocol with adaptive security implies
oblivious transfer with static security, and that the existence of an obliv-
ious transfer extension protocol from only O(logn) oblivious transfers
implies oblivious transfer itself.

1 Introduction

Background – extending oblivious transfer. In the oblivious transfer prob-
lem [17, 5], a sender holds a pair of input bits (b0, b1) and enables a receiver to
obtain one of them at its choice. The security requirements are that the sender

⋆ This research was supported by the israel science foundation (grant
No. 189/11). Hila Zarosim is grateful to the Azrieli Foundation for the award of
an Azrieli Fellowship.

learns nothing about which input is obtained by the receiver, while the receiver
learns only one bit.

Oblivious transfer is one of the most basic and important primitives in cryp-
tography in general, and in secure computation in particular. Oblivious transfer
is used in almost all general protocols for secure computation with no honest
majority (e.g., see [20, 7]), and has been shown to imply essentially all basic cryp-
tographic tasks [13]. Due to its importance, the complexity of computing obliv-
ious transfer is of great importance. Oblivious transfer can be constructed from
enhanced trapdoor permutations [5, 9] and from homomorphic encryption [1]. In
addition, it is known that it is not possible to construct oblivious transfer from
public-key encryption (or one-way functions and permutations) in a black-box
manner [6]. Thus, oblivious transfer requires quite strong hardness assumptions
(at least when considering black-box constructions, and no nonblack-box con-
structions from weaker assumptions are known).

Due to the importance of oblivious transfer and its cost, Beaver asked whether
or not it is possible to use a small number of oblivious transfers and a weaker as-
sumption like one-way functions in order to obtain many oblivious transfers [3];
such a construction is called an OT extension. Beaver answered this question in
the affirmative and in a beautiful construction showed how to obtain poly(n)
oblivious transfers given ideal calls to O(n) oblivious transfers and using a pseu-
dorandom generator and symmetric encryption, which can both be constructed
from any one-way function. In addition, he showed that OT extensions cannot be
achieved information theoretically. These results of [3] are of great importance
theoretically since they deepen our understanding of the complexity of oblivious
transfer. In addition, OT extensions are of interest practically, since oblivious
transfer is much more expensive than symmetric primitives. Thus, OT extensions
can potentially be used to speed up protocols that rely on many oblivious trans-
fers. In this direction, efficient OT extensions (based on a stronger assumption
than one-way functions) were presented in [11].

This paper – a feasibility study of OT extensions. In this paper, we ask
the following questions:

1. What is the minimal assumption required for constructing OT extensions?
It has been shown that one-way functions suffice, and that OT extensions
cannot be carried out information theoretically [3]. However, it is theoreti-
cally possible that OT extensions can be achieved under a weaker assumption
than that of the existence of one-way functions. Admittedly, it is hard to con-
ceive of a cryptographic construction that is not information theoretic and
does not require one-way functions. However, a proof that one-way functions
really are necessary is highly desired.

2. Can oblivious transfer be extended with adaptive security? The known con-
structions of OT extensions maintain security only in the presence of static
corruptions, where the set of corrupted parties is fixed before the protocol
begins. This is because the messages sent by the sender in the constructions
of [3, 11] are binding with respect to the sender’s input strings, and so an
adaptive simulator cannot explain a transcript in multiple ways. Nothing is

known about whether or not adaptively secure OT extensions exist without
assuming erasures1.

3. How many oblivious transfers are needed for extensions? In the construc-
tions of [3, 11], one must start with O(n) oblivious transfers where n is the
security parameter. These constructions can also be made to work when a
superlogarithmic number ω(log n) of oblivious transfers are given. However,
they completely break down if O(log n) oblivious transfers only are avail-
able. We ask whether or not it is possible to extend a logarithmic number of
oblivious transfers.

We prove the following theorems:

Theorem 1.1 If there exists an OT extension protocol from n to n + 1 (with
security in the presence of static semi-honest adversaries), then there exist one-
way functions.

Thus, one-way functions are necessary and sufficient for OT extensions.

Theorem 1.2 If there exists an OT extension protocol from n to n+ 1 that is
secure in the presence of adaptive semi-honest adversaries, then there exists an
oblivious transfer protocol that is secure in the presence of static semi-honest
adversaries.

This means that the construction of an adaptive OT extension protocol in-
volves constructing statically secure oblivious transfer from scratch. This can
still be meaningful, since adaptive oblivious transfer cannot be constructed from
static oblivious transfer in a black-box manner [15]. However, it does demon-
strate that adaptive OT extensions based on weaker assumptions than those
necessary for static oblivious transfer do not exist.

Theorem 1.3 If there exists an OT extension protocol from f(n) = O(log n)
to f(n) + 1 that is secure in the presence of static malicious adversaries, then
there exists an oblivious transfer protocol that is secure in the presence of static
malicious adversaries.

This demonstrates that in order to extend only a logarithmic number of
oblivious transfers (with security for malicious adversaries), one has to construct
an oblivious transfer protocol from scratch. Thus, meaningful OT extensions
exist only if one starts with a superlogarithmic number of oblivious transfers.

We stress that all of our results are unconditional, and are not black-box
separations. Rather, we construct concrete one-way functions and OT protocols
in order to prove our results.

Our results provide quite a complete picture regarding the feasibility of con-
structing OT extensions. The construction of [3] is optimal in terms of the com-
putational assumption, and the constructions of [3, 11] are optimal in terms of

1 Note that in the erasures model, an OT extension can be constructed from one-way
functions using the original construction of Beaver and the two-party computation
protocol of [14] that is adaptively secure with erasures and is based on Yao’s protocol.

the number of oblivious transfers one starts with. Finally, the fact that no OT ex-
tensions are known for the setting of adaptive corruptions is somewhat explained
by Theorem 2.

Open questions. Theorem 2 shows that there do not exist adaptively secure
OT extensions based on weaker assumptions than what is needed for statically
secure OT. However, we do not know how to construct an adaptively secure OT
extension even from statically secure OT. Thus, the question of whether or not it
is possible to construct an adaptively secure OT extension from an assumption
weaker than adaptive OT is still open.

Theorem 3 holds only with respect to OT-extensions that are secure against
malicious adversaries. For the case of semi-honest adversaries, the question of
whether one can construct an an OT-extension from f(n) = O(log n) to f(n)+1
from an assumption weaker than statically secure OT protocol is open.

In this paper, we have investigated OT extensions. However, the basic ques-
tion of extending a cryptographic primitive using a weaker assumption than that
needed for obtaining the primitive from scratch is of interest in other contexts
as well. For example, hybrid encryption (where one encrypts a symmetric key
using an asymmetric scheme, and then encrypts the message using a symmetric
scheme) is actually an extension of public-key encryption that requires one-way
functions only.

A primitive that could certainly benefit from a study such as this one is key
agreement. In this context, the question is whether it is possible for two parties
to agree on an m + 1-bit long key, given an m-bit key, under assumptions that
are weaker than those required for constructing a secure key-agreement from
scratch. In the basic case, it is clear that OWFs are necessary and sufficient
for any nontrivial KA extension that starts with n bits (where n is the security
parameter). A more interesting question regarding this problem relates to the
adaptive setting. Specifically, since adaptive key agreement is very expensive,
it would be very beneficial if one could extend this primitive more efficiently
and/or under weaker assumptions.

2 Definitions and Notations

We denote the security parameter by n, and we denote by Un a random variable
uniformly distributed over {0, 1}n. We say that a function µ : N → N is negligible
if for every positive polynomial p(·) and all sufficiently large n it holds that
µ(n) < 1

p(n) . We use the abbreviation PPT to denote probabilistic polynomial-

time. We denote the bits of a string x ∈ {0, 1}n by x1, . . . , xn; for a subscripted
string xb, we denote the bits by x1

b , . . . , x
n
b . In addition, for strings x0, x1, σ ∈

{0, 1}n we denote by xσ the string x1
σ1
, . . . , xn

σn
.

For two distribution ensembles X = {X(a, n)} and Y = {Y (a, n)} with a ∈
{0, 1}∗ and n ∈ N, we write X

c≡ Y if they are computationally indistinguishable,

and we write X
s≡ Y if they are statistically close. We also denote by SD(X,Y)

the statistical distance between X and Y .

Interactive Protocols. Let π = ⟨A,B⟩ be an interactive protocol for comput-
ing a functionality f . We denote f = (fA, fB), where fA is the first output of f
(for party A) and fB is the second output of f (for party B).

The random variable Viewπ
A(xA, xB) denotes the view of the party A in an

execution of π with inputs xA for A and xB for B, where the random tapes of
the parties are uniformly chosen. Note that a view of a party contains its input,
randomness and the messages it has received during the execution.

The random variable Outputπ
A(xA, xB) denotes the output of the party A

in an execution of π with inputs xA for A and xB for B, where the random tapes
of the parties are uniformly chosen.

Definition 2.1 Let f(·, ·) be a deterministic binary functionality, let π = ⟨A,B⟩
be an interactive protocol and let n be the security parameter. We say that π
computes the functionality f if there exists a negligible function negl(·) such that
for all n, xA and xB:

Pr [⟨A(1n, xA), B(1n, xB)⟩ = (fA(xA, xB), fB(xA, xB))] ≥ 1− negl(n).

Definition 2.2 Let π = ⟨A, b⟩ be a protocol that computes a deterministic func-
tionality f = (fA, fB). Protocol π securely computes f in the presence of static
semi-honest adversaries if there exist two PPT algorithms SA and SB such that:

{SA(1
n, xA, fA(xA, xB))}

c≡ {Viewπ
A(1

n, xA, xB)} and {SB(1
n, xB , fB(xA, xB))}

c≡ {Viewπ
B(1

n, xA, xB)} where xA, xB ∈ {0, 1}∗ and n ∈ N.

Security in the presence of malicious adversaries. To define security in
the presence of malicious adversaries, we use the ideal/real framework as defined
by Canetti in [4]. Loosely speaking, in this approach we formalize the real-life
computation as a setting where the parties, given their private inputs, interact
according to the protocol in the presence of a real-life adversary that controls a
set of corrupted parties. The real-life adversary can be either static (where the
set of corrupted parties is fixed before the protocol begins) or adaptive (where
the adversary can choose to corrupt parties during the protocol execution based
on what it sees). At the end of the computation, the honest parties output what
is specified by the protocol and the adversary outputs some arbitrary function
of its view. If the adversary is adaptive, there is an additional entity Z, called
the environment, who sees the output of all of the parties. In addition, there
is a “postexecution phase”, where Z can instruct the adversary to also corrupt
parties after the execution of the protocol ends (and the transcript is fixed,
implying that “rewinding” is no longer allowed). At the end of the postexecution
phase, Z outputs some function of its view.

Next we consider an ideal process, where an ideal-world adversary controls a
set of corrupted parties. Then, in the computation phase, all parties send their
inputs to some incorruptible trusted party. The ideal-world adversary sends in-
puts on behalf of the corrupted parties. The trusted party evaluates the function
and hands each party its output. The honest parties then output whatever they

received from the trusted party and the ideal-world adversary outputs some ar-
bitrary value. Similarly to the real-life setting, in the case of adaptive security,
there is an environment Z who sees all outputs and can instruct the adversary to
also corrupt parties in the postexecution phase. At the end of the postexecution
phase, Z outputs some function of its view.

Loosely speaking, a protocol π is secure in the presence of static malicious ad-
versaries, if for every static malicious real-life adversary A, there exists a static
malicious ideal-world adversary SIM such that the distribution obtained in a
real-life execution of π with adversary A is indistinguishable from the distribu-
tion obtained in a ideal-world with adversary SIM. Likewise, a protocol π is
secure in the presence of adaptive malicious adversaries, if for every adaptive mali-
cious real-life adversary A and environment Z, there exists an adaptive malicious
ideal-world adversary SIM such that the output of Z in a real-life execution
of π with adversary A is indistinguishable from its output in a ideal-world with
adversary SIM.

Security in the presence of adaptive semi-honest adversaries is defined in the
same way as adaptive malicious adversaries, except that the adversary only sees
the internal state of a corrupted party but cannot instruct it to deviate from the
protocol specification. For full definitions see [4].

The hybrid model. Let ϕ be a functionality. The ϕ-hybrid model is defined
as follows. The real-life model for protocol π is augmented with an incorruptible
trusted party T for evaluating the functionality ϕ, and the parties are allowed
to make calls to the ideal functionality ϕ by sending their ϕ-inputs to T . If we
consider malicious adversaries, the adversary specifies the inputs of all parties
under its control. If the adversary is semi-honest, then even the corrupted parties
hand T inputs as specified by the protocol π. At each invocation of ϕ, the trusted
party T sends the parties their respective outputs.

We stress that if π is in the ϕ-hybrid model, then a view of a party A contains
also the inputs sent by A to the functionality ϕ and the outputs sent to A by T
computing ϕ.

Oblivious transfer and extensions. We are now ready to define oblivious
transfer and OT extensions.

Definition 2.3 The bit oblivious transfer functionality OT is defined by
OT ((b0, b1), σ) = (λ, bσ). The parallel oblivious transfer functionality m × OT
is defined for strings x0, x1, σ ∈ {0, 1}m as follows: m × OT ((x0, x1), σ) =
(λ, (x1

σ1
, . . . , xm

σm
)) = (λ, xσ) (recall that xσ denotes the string x1

σ1
, . . . , xn

σn
).

We denote byOT k the ideal functionality of k independentOT computations.
We stress that OT k is not the same as k × OT , since in the latter all of the
inputs are given at once whereas in OT k the inputs can be chosen over time
(in particular, the receiver can choose its inputs as a function of the previous
outputs it received). Using this notation, we have that an OT extension protocol
is a protocol that securely computes m×OT given access to OT k, where k < m.
Formally:

Definition 2.4 (OT -extension) Let π be a protocol and let k,m : N → N be
two functions where k(n) < m(n) for all n. We say that π is an OT-extension
from k = k(n) to m = m(n) if π securely computes the m×OT functionality in
the OT k-hybrid model.

OT extensions – two technical propositions. We present two propositions
that we use throughout the paper. Beaver showed that OT can be precom-
puted [2]. That is, it is possible to first compute OT on random inputs and then
use the result to later compute an OT on any input. Stated formally:

Proposition 2.5 (Beaver [2]) Let m = m(n) be a polynomial. If there exists
a protocol that securely computes the m × OT functionality, then there exists a
protocol that securely computes the OTm ideal functionality.

Proposition 2.5 shows that Definition 2.4 could have been stated as a protocol
that securely computes OTm in the OT k (or even the k ×OT) hybrid model.

The fact that a single extension implies many has been stated many times in
the literature (e.g., [3]) and is well accepted folklore, but has not been formally
proved. In the full version of this paper [16], we sketch a proof of this. We
stress that this holds irrespectively of how many oblivious transfers you start
with (even if only a constant number), as long as only a polynomial number of
transfers are derived. We state the proposition for adaptive malicious adversaries
and observe that it holds for all four combinations of static/adaptive and semi-
honest/malicious adversaries.

Proposition 2.6 Let f : N → N be any polynomially-bounded function, and let
n be the security parameter. If there exists a protocol π that is an OT-extension
from f(n) to f(n)+1 that is secure in the presence of adaptive malicious adver-
saries, then for every polynomial p(·) there exists an OT-extension protocol from
f(n) to p(n) that is secure in the presence of adaptive malicious adversaries.

3 OT Extensions Imply One-Way Functions

In this section we show that the existence of an OT extension protocol implies
the existence of one-way functions. We prove the theorem for any OT extension
that is secure in the presence of static semi-honest adversaries (thus the theorem
also holds when the OT extension is secure in the presence of adaptive and/or
malicious adversaries, since these variants all imply security for static semi-
honest adversaries).

Theorem 3.1 Let n be the security parameter. If there exists a protocol that is
an OT-extension from n to n + 1 that is secure in the presence of static semi-
honest adversaries, then there exist one-way functions.

Proof Sketch: To prove this, we use an information-theoretic lower bound
given in [18] to show that the existence of a protocol π that is an OT-extension

from n to n+1 implies the existence of two polynomial-time constructible prob-
ability ensembles that are computationally indistinguishable and yet their sta-
tistical distance is noticeable. The fact that this implies one-way functions was
shown in [8].

We define two polynomial-time constructible probability ensembles RL =
{RLn}n∈N and SM = {SMn}n∈N that are computationally indistinguishable, but
have noticeable statistical distance. Let SS and SR be the two simulators that
are guaranteed to exist for π by its semi-honest security. We begin by defining
the probability ensembles RL and SM, that represent the real and the simulated
transcripts, respectively.

RLn: First, a party P ∈ {S,R} is chosen at random. Then, inputs for both
parties x0, x1, σ ∈ {0, 1}n are chosen uniformly at random and the real
protocol π is executed on inputs (x0, x1) for the sender and σ for the receiver.
The output of RLn is a pair (v, ω) where v is the view of party P in the
execution described above and ω is the output of the other party.

SMn: Similarly to the above, a party P ∈ {S,R} and inputs x0, x1, σ ∈ {0, 1}n
are chosen uniformly at random. Then, the simulator SP (that is, SR is
P = R and SS if P = S) is executed on the corresponding input and output
of party P . The output of SMn is a pair (v, ω) where v is the view generated
by the simulator and ω is the output of the other party as defined by the
functionality.

We now prove that the ensembles RL and SM are computationally indistinguish-
able but statistically far. The fact that they are computationally indistinguish-
able can be derived from the (computational) security of π. Specifically, for every
P ∈ {S,R}, it holds that the view generated by the simulator SP is computa-
tionally indistinguishable from a real view of P in an execution of π, and hence
it can be easily shown that RL and SM are computationally indistinguishable.
Intuitively, the fact that the two ensembles are statistically far apart follows
from the fact that OT cannot be extended with statistical security [3] and so the
ensembles cannot be statistically close. However, this argument is not sufficient,
because it only implies that RL and SM are not statistically close, whereas what
we need to show is that the two ensembles are statistically far apart. Specifi-
cally, the impossibility result of [3] only shows that there exists a polynomial
p(·) such that for infinitely many n’s, the statistical distance between RLn and
SMn is 1

p(n) , while the existence of one-way functions as proven in [8] only fol-

lows if there exists a polynomial p(·) such that for all sufficiently large n’s, the
statistical distance between RLn and SMn is 1

p(n) . We therefore use the recent

non-asymptotic bound on the statistical distance shown by [18], and use it to
derive the following:

Claim 3.2 There exists a polynomial p(·) such that for all sufficiently large n’s
the statistical distance between RLn and SMn is at least 1/p(n). Stated differently,
the ensembles RL and SM have noticeable statistical distance.

The proof of Claim 3.2 appears in [16]. Applying [8], as mentioned above, we
conclude that one-way functions exist, and this concludes the proof sketch.

4 Adaptive Security

In this section we consider the feasibility of constructing OT -extension protocols
that are secure in the presence of adaptive adversaries. It is easy to see that the
OT -extension protocols of Beaver [3] and Ishai et al. [11] are not secure when
considering adaptive security. This is because the receiver’s view is essentially a
binding commitment to all of the sender’s inputs.2 This raises the question as to
whether there exists an OT extension protocol at all in the presence of adaptive
adversaries. Of course, if the existence of an OT extension protocol (that is secure
for adaptive adversaries) implies OT that is secure for adaptive adversaries, then
this means that only a trivial OT extension that constructs OT from scratch
exists. We provide a partial answer to this question and show that a protocol for
OT -extension that is secure in the presence of adaptive adversaries implies the
existence of an OT protocol that is secure in the presence of static adversaries.
Thus, any protocol for extending OT that maintains adaptive security needs
to assume, at the very least, the existence of a statically secure protocol for
OT . We state and prove this for semi-honest adversaries; an analogous theorem
for malicious adversaries can be obtained by applying a GMW-type compiler.
Formally, we prove the following theorem (the intuition appears immediately
after Protocol 4.2 below):

Theorem 4.1 Let n be the security parameter. If there exists an OT -extension
protocol from n to n + 1 that is secure in the presence of adaptive semi-honest
adversaries, then there exists an OT protocol that is secure in the presence of
static semi-honest adversaries.

Proof. We prove the theorem by building an OT protocol that is secure in the
presence of static adversaries from any OT extension from n to 4n that is secure
in the presence of adaptive adversaries. (Note that by Proposition 2.6, an OT
extension from n to 4n exists if there exists an extension from n to n + 1.) We
first present the construction of the OT protocol for static adversaries and then
provide intuition as to why it is secure.

Let π = ⟨S,R⟩ be a protocol that securely computes the 4n×OT functionality
in the OTn-hybrid model in the presence of adaptive semi-honest adversaries.
We assume that all of the ideal calls to OT in π are such that S plays the sender
and R plays the receiver. This is without loss of generality since the roles in OT
can always be reversed [19]. We construct an OT protocol π̂ in the plain model
(i.e., with no calls to an ideal OT functionality), as follows:

Protocol 4.2 (OT protocol π̂ = ⟨Ŝ, R̂⟩ for Static Adversaries)

– Inputs: Sender Ŝ has b0, b1 ∈ {0, 1} and receiver R̂ has σ ∈ {0, 1}.

2 In [3] a Yao garbled circuit is used which is binding when instantiated with known
encryption methods. Likewise, [11] uses correlation-robust hash functions for which
it is hard to find collisions, which is exactly what is needed in order to “explain the
transcript” in different ways as is needed for proving adaptive security.

– The protocol:

1. Ŝ chooses two random strings α0, α1 ∈ {0, 1}4n.
2. Ŝ and R̂ run the extension protocol π as follows:

(a) Ŝ plays the sender S in π with inputs (α0, α1).
(b) R̂ plays R in π with input σ4n (i.e., the string of length 4n with all

bits set to σ).
(c) The parties follow the instructions of π exactly except that whenever

π instructs them to make an ideal call to the OT functionality with
input (β0, β1) for S and input τ for R, the sender Ŝ sends the pair
(β0, β1) to R̂, and R̂ proceeds to run R with output βτ from the
simulated ideal call.

(d) Let γ ∈ {0, 1}4n denote the output of R in the execution of π.

3. Ŝ chooses two random strings r0, r1 ∈R {0, 1}4n and sets:

z0 = ⟨α0, r0⟩ ⊕ b0 and z1 = ⟨α1, r1⟩ ⊕ b1.

Ŝ sends (r0, z0) and (r1, z1) to R̂.

– Output: R̂ outputs zσ ⊕ ⟨γ, rσ⟩.

It is clear that π̂ correctly computes the OT functionality. This is because by
the correctness of the OT extension protocol, R will output γ = ασ in Step 2d,
except with negligible probability. Thus, zσ ⊕ ⟨γ, rσ⟩ = zσ ⊕ ⟨ασ, rσ⟩ = bσ, as
required.

We proceed to prove that π securely computes the OT functionality in the
presence of semi-honest adversaries. We begin with the intuition. If Ŝ and R̂
were to run the original extension protocol π with the ideal calls, then it is
clear that π̂ is a secure OT protocol. This is because Ŝ learns nothing about σ,
and R̂ learns ασ but nothing about α1−σ. Thus, R̂ learns bσ but nothing about
b1−σ (observe that ⟨α1−σ, r1−σ⟩ hides b1−σ by the fact that α1−σ is random).
Now, in π̂ the difference is that Ŝ sends both inputs to R̂ in every ideal OT
call within the execution of π. Clearly, Ŝ’s view can be simulated since its view
is identical to the case that π with the ideal OT calls is used. In contrast, R̂
learns more information since it obtains both sender inputs in all ideal OT calls.
Since the inputs to each ideal call are a single bit, we have that R̂ obtains n
more bits of information than in the original extension protocol using ideal OT
calls. However, α1−σ is 4n bits long and so still must have high entropy even
given the n additional bits of information learned. This entropy is enough to
hide b1−σ since ⟨α1−σ, r1−σ⟩ is a perfect universal hash function, and so a good
randomness extractor.

The above seems to have nothing to do with the fact that the extension
protocol π is secure in the presence of adaptive adversaries. However, the argu-
ment that just n more bits of information are obtained is valid only in this case.
Specifically, by the definition of security in the presence of adaptive adversaries,
the simulator must be able to simulate in the case that the receiver is corrupted
at the onset, and the sender is corrupted at the end after the protocol concludes

(formally, in the “post-execution corruption phase”). This means that the simu-
lator must first generate a receiver-view (given the receiver’s input and output),
and must then later generate a sender-view (given the sender’s input) that is
consistent with the already fixed receiver-view that it previously generated. This
sender-view contains, amongst other things, the inputs that the sender uses in
all of the n ideal calls to the OT functionality within the extension protocol π.
Thus, it is possible to add these inputs of the sender to the previously gener-
ated receiver-view (we call this the extended receiver view) and the result is the
receiver-view in the modified extension protocol used in Step 2 of π̂; in par-
ticular, both sender’s inputs to all ideal OT calls appear. Observe that only n
bits of additional information are added to the receiver view in order to obtain
the extended view, and so there are at most 2n extended views for any given
receiver view. However, there are 24n different possible strings α1−σ. The crucial
point here is that the above implies that many different possible strings α1−σ

must be consistent with any given extended view (except with negligible proba-
bility). This relies critically on the fact that the receiver-view is fixed before the
sender corruption and so the same extended receiver-view must be consistent
with many different sender inputs to the ideal OT calls. Now, once we have that
many different possible α1−σ strings are consistent, we can use the fact that
α1−σ is randomly chosen to apply the leftover hash lemma and conclude that
⟨α1−σ, r1−σ⟩ is a bit that is statistically close to uniform. We now proceed to
the formal proof.

Corrupted sender: The case of a corrupted sender is straightforward since the
sender Ŝ receives no information in Step 2 of π̂ beyond what it receives in a
real execution of π with ideal OT calls. Thus the simulator that is assumed to
exist for the sender S in π can be used to generate the exact view of Ŝ in Step 2
of π̂. Since Ŝ receives no messages beyond in Step 2, there is nothing more to be
added to the view of Ŝ.

Corrupted receiver: In order to construct our simulator SR̂ for the corrupted

receiver R̂ in π̂, we first define a specific simulator SIM for the extension pro-
tocol π for the adaptive setting. Let A and Z be the following real-life semi-
honest adversary and environment for π; see Section 2 for a brief overview of
the definition of adaptive security, and [4] for full definitions. At the beginning
of the execution of π, the adversary A corrupts the receiver and learns its input
σ ∈ {0, 1}4n. It then follows the honest strategy for R and at the end of the
execution, outputs its entire view. In the post-execution phase, Z generates a
“corrupt S” message, sends it to A who corrupts S and hands Z the internal
view of S. Z then outputs its internal view (note that it contains views of both
R and S). Let SIM be the ideal-process adversary that is guaranteed to exist
for this A and Z by the security of π. We remark that SIM generates a view
of an execution of π in the OT -hybrid model, where ideal calls are used for the
n invocations of OT . We use SIM to construct the simulator SR̂ for the case
of a corrupted receiver in π̂.

Construction 4.3 (SR̂) SR̂ receives σ and bσ as input and works in three stages
as follows:

1. Stage 1 – obtain simulated receiver-view in π:
(a) Choose a random string ασ ∈R {0, 1}4n as the “output of π” and a

random tape rSIM for SIM of the appropriate length.
(b) Start an execution of SIM with random-tape rSIM. When SIM cor-

rupts the receiver, hand σ4n to SIM as the input of R.
(c) In the computation stage, play the role of the trusted party and send ασ

to SIM as the output of R from 4n × OT . (Since we are in the semi-
honest setting, R always sends its specified input σ4n and so the output
that it would receive is always ασ.)

(d) Let vR be the output of SIM at the end of the execution phase (this
consists of a view for the receiver). If vR is not consistent with σ4n and
ασ,

3 return ⊥ and abort. Otherwise, proceed to the next stage.
2. Stage 2 – obtain extended receiver-view:

(a) Choose a random string α1−σ ∈ {0, 1}4n.
(b) Send a “corrupt S” message to SIM on behalf of Z. When SIM cor-

rupts the sender, hand (α0, α1) to SIM as the input of S.
(c) Let vS be the view of the sender sent by SIM to Z. If vS is not consistent

with vR and the inputs, output ⊥ and abort. If vS is consistent with vR
and the inputs, then for each of the n calls for the ideal OT functionality,
extend vR by appending the other input used by the sender (as appear
in vS) into the view vR (note that vR already contains one of the inputs
used by the sender in each call since the receiver receives one output in
each ideal call). Let v′R be the extended view.

3. Stage 3 – complete simulation:
(a) Choose two random strings r0, r1 ∈ {0, 1}4n; let zσ = ⟨ασ, rσ⟩⊕bσ (where

bσ is from the input of SR̂) and let z1−σ be a random bit.
(b) Output v′R, r0, r1, z0, z1.

We prove that:{
SR̂(1

n, σ, bσ)
}
b0,b1,σ∈{0,1},n∈N

c≡
{
Viewπ̂

R̂
(1n, b0, b1, σ)

}
b0,b1,σ∈{0,1},n∈N

(1)

To prove Eq. (1), we consider a hybrid simulator Sh that receives as input b1−σ

in addition to the input (σ, bσ) of SR̂. It then works exactly as SR̂ except that in
Stage 3 of the simulation it sets z1−σ = ⟨α1−σ, r1−σ⟩ ⊕ b1−σ (instead of setting
z1−σ to a random bit as SR̂ does).

We first prove that the output of the hybrid simulator is indistinguishable
from the receiver view in a real execution. That is, we prove that:{

Sh(1n, σ, b0, b1)
} c≡

{
Viewπ̂

R̂
(1n, b0, b1, σ)

}
(2)

3 We say that a view is consistent with inputs and outputs if when running the party
on the given view and input, it outputs the correct output.

The only difference between the two distributions is that in Viewπ̂
R̂
(1n, b0, b1, σ),

the “extended view of R” (including both inputs used by the sender in each ideal
OT call) is generated in a real execution of π, whereas in Sh(1n, σ, b0, b1) the ex-
tended view is generated by SIM after the corruption at the end. So intuitively
the guarantee that SIM is a good simulator implies that the two ensembles
are computationally indistinguishable. Formally, we define a machine D that
receives the output of Z after an execution of π in the adaptive setting, and
attempts to determine whether it obtained a pair of receiver/sender views from
a real or ideal execution. D generates an extended receiver-view from the pair
of receiver/sender views that it received, and in addition computes the messages
(r0, z0), (r1, z1) using the correct sender inputs b0, b1 (that it’s given as auxil-
iary input) and using the strings α0, α1 that appear in Z’s output. Finally, D
outputs the extended receiver-view together with the last message; this consti-
tutes a view of the receiver R̂ in π̂. It is immediate that if D received a pair
of views from a real execution of π then it outputs a view which is identical to
Viewπ̂

R̂
(1n, b0, b1, σ). In contrast, if D received a pair of views generated by SIM

in an ideal execution, then it outputs a view which is identical to Sh(1n, σ, b0, b1).
Thus, Eq. (2) follows from the security of π with simulator SIM.

We now proceed to prove that the output of SR̂ is statistically close to the
output of the hybrid simulator Sh. That is:{

SR̂(1
n, σ, bσ)

}
b0,b1,σ∈{0,1},n∈N

s≡
{
Sh(1n, σ, b0, b1)

}
b0,b1,σ∈{0,1},n∈N (3)

First note that SR̂ and Sh work identically in the first two stages of the simulation
and differ only in how z1−σ is computed. In particular, the distributions over the
extended views generated by SR̂ and by Sh are identical; let V ′

R(1
n, σ) denote

this distribution.

The first step is to show that with probability negligibly close to 1, there
are exponentially many strings α1−σ that are consistent with an extended view
generated by SIM (as run by Sh or equivalently SR̂). Fix σ ∈ {0, 1} and bσ (the
following holds for all σ, bσ and we fix them here for clarity). For a given random
tape rSIM of SIM and a given ασ, let vR be the (regular, non-extended) view
generated by SIM with random tape rSIM and ασ in the execution phase.
Let ∆(rSIM, ασ) be the set of all strings α1−σ of size 4n for which the views
vR, vS generated by SIM with random tape rSIM and inputs ασ and α1−σ in
the computation and post-execution phases, respectively, are all consistent (we
have already fixed σ and bσ so consistency is also with respect to these values;
see Footnote 3). Note that if Sh or SR̂ would output ⊥ in the first stage (i.e., if
vR is not consistent with the input and output) when choosing rSIM, ασ then
∆(rSIM, ασ) is empty.

We now prove that for every σ, bσ ∈ {0, 1}, there exists a negligible function
µ such that

PrrSIM,ασ

[
|∆(rSIM, ασ)| ≥ 23n

]
≥ 1− µ(n).

Intuitively, this holds because if ∆(rSIM, ασ) is “small”, then SIM would fail
with high probability. Formally, assume that PrrSIM,ασ [|∆(rSIM, ασ)| ≥ 23n] is
non-negligibly smaller than 1. We consider two cases:

1. With non-negligible probability, the view vR generated by SIM with ran-
dom tape rSIM and ασ cause Sh and SR̂ to output ⊥ (i.e., it is not consistent
with the inputs/outputs): In this case, a distinguisher Z easily distinguishes
the output of SIM from the views of vR, vS in a real execution of π since in
a real execution the views are consistent except with negligible probability.

2. With non-negligible probability, vR is consistent but |∆(rSIM, ασ)| < 23n:
In this case, it is possible to distinguish a real execution of π from an ideal
execution with SIM because the probability that a random α1−σ is in

∆(rSIM, ασ) is less than 23n

24n = 2−n. Thus, the environment Z can just
supply a random α1−σ and see if in the post-execution corruption it receives
a consistent view. In the real execution it will always receive a consistent
view. However, in the ideal (simulated) execution, it will receive a consis-
tent view with probability less than 2−n. This is due to the fact that when
α1−σ /∈ ∆(rSIM, ασ) the view is not consistent. Thus, Z distinguishes with
probability (1 − 2−n) times the probability that this case occurs, which is
non-negligible.

We stress that the calculation in the second case holds since the view of the
receiver vR is fixed before the post-execution phase and thus is fixed before
α1−σ is essentially chosen.

We now fix r∗SIM and α∗
σ for which |∆(r∗SIM, α∗

σ)| ≥ 23n and prove that the
outputs of Sh and SR̂ are statistically close for such r∗SIM and α∗

σ. First, recall
that an extended view v′R is obtained by concatenating the other (previously not
received) input of the sender in the n calls to the ideal OT to the view vR. Since
there are 2n possible “other sender inputs” in the n ideal OT calls, it follows that
for any given receiver-view vR (which is fully determined by r∗SIM and α∗

σ; recall
that σ, bσ are already fixed) there are at most 2n possible associated extended
views. (Again, this relies on the fact that the receiver-view is fixed before the
post-execution corruption phase.)

Now, since there are 2n possible extended views, we can partition the at least
23n consistent strings α1−σ ∈ ∆(r∗SIM, α∗

σ) so that each partition contains the set
of strings α1−σ that yield the extended view v′R. Equivalently, we associate α1−σ

with v′R if SIM with r∗SIM and α∗
σ outputs the extended view v′R when given

α1−σ in the post-execution corruption phase. We denote by Γ (v′R, r
∗
SIM, α∗

σ) the
set of all strings α1−σ ∈ ∆(r∗SIM, α∗

σ) which are associated with v′R, as described
above.

We argue that the probability of obtaining an extended view v′R for which
|Γ (v′R, r

∗
SIM, α∗

σ)| < 2n is at most 2−n (i.e., an extended view for which the set
of associated strings α1−σ is small is obtained with probability at most 2−n).
We stress that the probability is over the choice of α1−σ (all other randomness
is fixed).

In order to see this, observe that the fact that |∆(r∗SIM, α∗
σ)| ≥ 23n implies

that there are at least 23n strings α1−σ that are associated with some extended
view v′R. Now, for every v′R for which |Γ (v′R, r

∗
SIM, α∗

σ)| < 2n, we have that v′R
is generated by less than 2n of those 23n strings. Thus, such a v′R is obtained
with probability less than 2n/23n = 2−2n. By union bound over the 2n possible

extended views v′R (which also bounds the number of extended views for which
|Γ (v′R, r

∗
SIM, α∗

σ)| < 2n) we conclude that

Pr
[
|Γ (v′R, r

∗
SIM, α∗

σ)| < 2n
]
< 2n · 1

22n
=

1

2n
(4)

where the probability is over the choice of α1−σ.
From Eq. (4), we know that when α1−σ is random, the probability that we

will obtain an extended view v′R such that Γ (v′R, r
∗
SIM, α∗

σ) is small (with less
than 2n strings α1−σ associated with it) is less than 2−n. We therefore proceed
by conditioning further over views v′R for which |Γ (v′R, r

∗
SIM, α∗

σ)| ≥ 2n. Specif-
ically, we argue that the distributions generated by SR̂ and Sh are statistically
close, conditioned on r∗SIM, α∗

σ such that |∆(r∗SIM, α∗
σ)| ≥ 23n and conditioned

on the extended view being a specific v′
∗
R for which

∣∣Γ (v′
∗
R, r

∗
SIM, α∗

σ)
∣∣ ≥ 2n.

First, observe that since α1−σ is chosen uniformly and independently of
r∗SIM, ασ, it is uniformly distributed in Γ (v′

∗
R, r

∗
SIM, α∗

σ), when conditioning
on all of the above. (The conditioning over v′

∗
R is equivalent to saying that

α1−σ is uniform in Γ (v′
∗
R, r

∗
SIM, α∗

σ) instead of being uniform in {0, 1}4n.) Sec-
ond, recall that Γ (v′

∗
R, r

∗
SIM, α∗

σ) is a set of size at least 2n. Third, note that
Hr1−σ

(x) = ⟨r1−σ, x⟩) is a universal hash function from {0, 1}4n to {0, 1}. Thus,
by the Leftover Hash Lemma (the version given in [12]), it holds that:

SD
(
(r1−σ, ⟨r1−σ, α1−σ⟩), (r1−σ, U1)

)
≤ 1

2(n−1)/2

where SD denotes statistical distance and U1 denotes the uniform distribution
over {0, 1} (as above, this statistical distance is computed when conditioned
over v′

∗
R, r

∗
SIM, α∗

σ). Thus, these random variables are statistically close, con-
ditioned on v′

∗
R, r

∗
SIM, α∗

σ as above. Noting that in the output of SR̂ we have
(r1−σ, z1−σ) = (r1−σ, U1), and in the output of Sh we have that (r1−σ, z1−σ) =
(r1−σ, ⟨r1−σ, α1−σ⟩), we conclude that{

SR̂(1
n, σ, bσ) | v′

∗
R, r

∗
SIM, α∗

σ

}
s≡
{
Sh(1n, σ, b0, b1) | v′

∗
R, r

∗
SIM, α∗

σ

}
where the conditioning is as described above. We reiterate that this holds since
the extended views and the pair (rσ, zσ) are generated in an identical way by
SR̂ and Sh, and the only difference is with respect to (r1−σ, z1−σ). Eq. (3)
follows from the fact that we condition here on events that occur with all but
negligible probability (and the events have identical probability with SR̂ and
Sh). Combining Eq. (2) with Eq. (3), we derive Eq. (1), thereby completing the
proof of Theorem 4.1.

Corollary – lengthening string OT. Observe that in our proof above the
receiver always uses σ4n for input. Thus, it follows that the theorem holds even
if the receiver is interested in only obtaining the string of all of the “0 inputs”
or the string of all of the “1 inputs”. Stated differently, our proof holds also for
the problem of lengthening string OT; i.e., for the problem of obtaining a single
string OT for strings of length n+1 or more, given a single string OT for strings
of length n.

5 OT Extensions Require Super-Logarithmic Calls

Theorem 5.1 Let f : N → N be a function such that f(n) ∈ O(log n), and
let n be the security parameter. Then, if there exists a protocol π that is an
OT-extension from f(n) to f(n) + 1 that is secure in the presence of malicious
adversaries, then there exists a protocol for the OT functionality that is secure
in the presence of malicious adversaries.

Proof. Intuitively, in an OT extension protocol using only O(log n) ideal OT
calls, it is possible for the receiver to guess the bits that it would receive as
output from these calls instead of actually running them. Since there are only
O(log n) calls, the probability that the receiver guesses correctly is 2−O(logn) =
1/poly(n). This idea can be used to construct an OT protocol that is weak in the
sense that full privacy is maintained, but correctness only holds with probability
1/2 + 1/poly(n). We stress that a naive attempt to implement the above idea
will not work since it is necessary to ensure that if the receiver’s guesses are
incorrect then it still outputs the correct output of the protocol with probability
almost 1/2. Otherwise, the “advantage” in obtaining the correct output when
the receiver guesses correctly can be canceled out by the “disadvantage” when
the receiver guesses incorrectly. We therefore use a similar technique as in the
proof regarding adaptive adversaries above. Specifically, we use the fact that an
extension from f(n) to f(n) + 1 implies an extension from f(n) to n, and then
use this to obliviously transfer n random bits. The actual oblivious transfer is
carried out by applying a universal hash function to the random strings and
using the result to mask the actual bits being transferred. This ensures that we
obtain correctness that is noticeable greater than 1/2 and so can be amplified.
However, in addition, we also have to claim that privacy is maintained. This is
not immediate since the receiver does not follow the specified protocol (rather,
it chooses the outputs from the ideal OT calls at random, and this may effect
the other messages that it sends). By requiring that the extension protocol be
secure for malicious adversaries, this ensures that the receiver cannot learn more
by behaving in this way. In addition, we show that a malicious sender can also
achieve the same affect by inputting a random bit (for both sender inputs) in each
ideal OT call. This implies that a malicious sender can also not learn anything
by the receiver behaving in this way. We now proceed to the formal proof.

Throughout the proof, we will construct protocols that are secure for semi-
honest adversaries only. This suffices since semi-honest OT implies malicious
OT [7, 10]. Let f : N → N be a function such that f(n) ∈ O(log n) and
let π = ⟨S,R⟩ be a protocol such that on security parameter n and inputs
x0, x1 ∈ {0, 1}f(n)+1 and σ ∈ {0, 1}f(n)+1 securely computes the (f(n)+1)×OT
functionality in the OT f(n)-hybrid model (that is, making at most f(n) calls to
an ideal OT). We assume that π is secure in the presence of malicious adver-
saries. We assume that in all of these calls, R is the one to receive output (this
is without loss of generality since oblivious transfer is symmetric [19] and so
the roles can be reversed by adding additional messages in π). We show how
to construct a protocol for computing the OT functionality without any further

assumptions other than the existence of an extension protocol π with the pa-
rameters in the theorem statement. This is achieved in two steps. First, we use
the OT-extension from f(n) = O(log n) to n to construct a protocol π̃ which is
simulatable and therefore fully secure, but whose error might be large. Then we
amplify the correctness of the protocol using multiple executions. As we show,
this can be done once the basic protocol is fully secure.

Step 1 – constructing a weak-OT. We begin by formally defining weak-
OT, which is an oblivious transfer for semi-honest adversaries that has weak
correctness but full simulation security.4 We then show how to construct a weak-
OT protocol π̃ = ⟨S̃, R̃⟩ from an OT-extension from f(n) to n. Note that by
Proposition 2.6, if there exists an extension protocol from f(n) to f(n)+1, then
there exists an extension protocol from f(n) to n.

Definition 5.2 (Weak-OT) A two-party protocol π = ⟨S,R⟩ is a weak-OT if
the following hold:

– Weak-correctness: There exists a polynomial p(·) such that for all b0, b1, σ ∈
{0, 1} and all large enough n’s, Pr[Outputπ

R(1
n, b0, b1, σ) = bσ] ≥ 1

2 +
1

p(n) .

– Privacy: There exists PPT machines SR and SS such that

{SR(1
n, σ, bσ)}b0,b1,σ∈{0,1},n∈N

c≡ {Viewπ
R(1

n, b0, b1, σ)}b0,b1,σ∈{0,1},n∈N

{SS(1
n, b0, b1)}b0,b1,σ∈{0,1},n∈N

c≡ {Viewπ
S(1

n, b0, b1, σ)}b0,b1,σ∈{0,1},n∈N

Let α0, α1, c ∈ {0, 1}n be n-bit strings. Let α0 = α1
0, . . . , α

n
0 , α1 = α1

1, . . . , α
n
1 ,

and c = c1, . . . , cn. Recall that αc = α1
c1 , α

2
c2 , . . . , α

n
cn ; that is, the ith bit of αc

is either αi
0 or αi

1, depending on the value of ci.
Let π = ⟨S,R⟩ be an OT-extension protocol from f(n) = O(log n) to n. We

construct a weak OT protocol π̃ = ⟨S̃, R̃⟩ as follows:

Protocol 5.3 (A weak-OT with no ideal OT calls)

– Inputs: Sender S̃ has two bits b0, b1 ∈ {0, 1}, and receiver R̃ has σ ∈ {0, 1}.
– The protocol:

1. S̃ chooses two random strings α0, α1 ∈R {0, 1}n.
2. R̃ chooses a random string c ∈R {0, 1}n.
3. S̃ and R̃ simulate an execution of the extension protocol π, as follows:

(a) S̃ plays the role of the sender S with input α0, α1 ∈ {0, 1}n and R̃
plays the role of the receiver R with input c ∈ {0, 1}n.

(b) Whenever π instructs the parties to make an OT call, the parties
make no call and R̃ chooses a random bit as its output from the call.
We denote by β1, . . . , βf(n) the random bits chosen by R̃ as the OT
outputs.

(c) Let γ ∈ {0, 1}n denote the receiver-output of the simulation of π
received by R̃.

4 Note that we cannot cast this as a special case of Definition 2.2 since full correctness
is required there by stating that π computes f .

4. R̃ chooses a random c′ ∈R {0, 1}n and sends (c0, c1) to S̃, where cσ = c
and c1−σ = c′.

5. S̃ chooses two random strings r0, r1 ∈R {0, 1}n, computes z0 = ⟨r0, αc0⟩⊕
b0 and z1 = ⟨r1, αc1⟩ ⊕ b1, and sends (r0, z0), (r1, z1) to R̃.

– Output: S̃ outputs nothing and R̃ outputs out = zσ ⊕ ⟨rσ, γ⟩.

We now prove that Protocol 5.3, also denoted π̃, is a weak-OT protocol.
Intuitively, weak correctness holds because R̃ correctly guesses the outputs of
the OT calls with probability 1/2f(n) in which case γ = αc by the correctness of
π (except with negligible probability), and thus ⟨rσ, γ⟩ = ⟨rσ, αc⟩ and out = bσ.
In addition, when the guesses made by R̃ are not correct, it still outputs bσ
with probability 1/2. This holds because when r is random, the function ⟨r, ·⟩
is a universal hash function, and so ⟨rσ, γ⟩ is uniformly distributed and equals
⟨rσ, αc⟩ with probability 1/2. See [16] for the full proof.

We proceed to prove privacy, by constructing SS̃ and SR̃ as required. We
start by constructing the simulator SS̃ for the case that the sender is corrupted.
To prove this we use the fact that the original protocol π is secure in the presence
of malicious adversaries. Consider a malicious adversary A for π that controls
the sender and learns its input α0, α1 ∈ {0, 1}n. A follows the honest strategy for
S except that it chooses random bits β1, . . . , βn and then in the jth call to the
ideal OT functionality, it uses βj as both sender inputs to the OT call (ensuring
that R receives βj). We stress that in the rest of the execution, it behaves as if
it has used the correct inputs that were supposed to be sent to the OT calls.
Observe that the view of A in an execution of π is identically distributed to the
view of S̃ in the simulation of π run in Step 3 of Protocol 5.3. Let SIM be the
simulator that is guaranteed to exist for A by the security of π. We construct
the simulator SS̃ using SIM:

Construction 5.4 (SS̃) : Upon input b0, b1 ∈ {0, 1}, SS̃ works as follows:

1. SS̃ chooses two random strings α0, α1 ∈R {0, 1}n and runs SIM with
sender-inputs α0, α1. Let vS be the sender-view output by SIM at the end of
its execution (SIM also sends input to the trusted party, but this is ignored
by SS̃).

2. SS̃ chooses two random strings c0, c1 ∈R {0, 1}n as the message received

from R̃ in Step 4 of Protocol 5.3, and outputs vS̃ = (vS , c0, c1).

The fact that SS̃ is a good simulator follows immediately from the fact that
SIM generates a sender-view that is indistinguishable from what A would see
in a real execution of π. Since we have already observed that the view of S̃ in
Step 3 of Protocol 5.3 is identical to the view of A above in π, it follows that vS
is indistinguishable from S̃’s view in Step 3 of Protocol 5.3. Next observe that
a distinguisher D for SIM and π obtains the input/output used (α0, α1, c) and
thus can extend the view of the sender to include c0, c1 where cσ = c, and c is
the input of R into the execution of π with A (we can assume that D knows σ
as auxiliary input). Thus, the view of S̃ in Protocol 5.3 (resp., as generated by
simulator SS̃) can be perfectly constructed by D from the real view vS of S in π

(resp., from a simulated view vS of S as generated by SIM). This implies that
if the output of SS̃ can be distinguished from the view of S̃ in a real execution
of Protocol 5.3, then the output of SIM can be distinguished from the view of
A in a real execution of π, in contradiction to the security of π with simulator
SIM. The formal reduction is straightforward.

We now proceed to construct a simulator SR̃ for the case that the receiver
is corrupted. As above, we consider a malicious adversary A for π as follows. A
receives the receiver’s input c ∈ {0, 1}n and follows the honest receiver strategy
except that in each of the calls to the ideal OT functionality, it chooses a random
bit βj and proceeds with βj as the output of the ideal OT . Let SIM be the
simulator that is guaranteed to exist for A by the security of π. We use it
construct the simulator SR̃ (recall that SIM works in the setting for malicious
adversaries and thus interacts with a trusted party and sends a receiver-input
which is not necessarily the prescribed receiver-input):

Construction 5.5 (SR̃) : Upon input σ, bσ ∈ {0, 1}, SR̃ works as follows:

1. SR̃ chooses three random strings α0, α1, c ∈R {0, 1}n.
2. SR̃ runs SIM with receiver input c.

3. When SIM sends some c∗ ∈ {0, 1}n to the trusted party, SR̃ hands αc∗ as
the receiver-output to SIM from the trusted party. Let vR be the output of
SIM.

4. SR̃ chooses random strings c′, r0, r1 ∈R {0, 1}n, and sets cσ = c and c1−σ =
c′. Then, SR̃ computes zσ = ⟨rσ, αcσ ⟩ ⊕ bσ and sets z1−σ ∈R {0, 1} to be a
random bit.

5. SR̃ outputs a receiver view (c0, c1, vR, r0, z0, r1, z1). (Note that c0, c1 are ac-

tually part of R̃’s random tape, since they are chosen by R̃.)

Intuitively, the two differences between the simulated and real executions are
(a) the execution of π is simulated using SIM (which is indistinguishable by
assumption), and (b) z1−σ is generated randomly instead of being computed as
z1−σ = ⟨r1−σ, αc1−σ ⟩⊕ b1−σ. However, since c1−σ = c′ is chosen at random inde-
pendently of the execution, and since SIM learns only the bits in the sender’s
input that correspond to c∗, with high probability there is enough uncertainty
about ⟨αc1−σ , r1−σ⟩ and thus z1−σ is statistically close to a random bit. This is
formally proven in [16]. We conclude that Protocol 5.3 is a weak-OT protocol.

Step 2 – full-OT from weak-OT. The last step to transform weak OT to
full OT simply works by running multiple executions and taking the majority
result. Since the weak OT is fully secure, and it is only the correctness that is
weak, this preserves security and so achieves what is needed. This concludes the
proof.

Acknowledgements. We thank Yuval Ishai for helpful discussions.

References

1. W. Aiello, Y. Ishai and O. Reingold. Priced Oblivious Transfer: How to Sell
Digital Goods. In EUROCRYPT 2001, Springer-Verlag (LNCS 2045), pages
110–135, 2001.

2. D. Beaver. Precomputing Oblivious Transfer. In CRYPTO’95, Springer-Verlag
(LNCS 963), pages 97–109, 1995.

3. D. Beaver. Correlated Pseudorandomness and the Complexity of Private Com-
putations. In the 28th STOC, pages 479–488, 1996.

4. R. Canetti. Security and Composition of Multiparty Cryptographic Protocols.
Journal of Cryptology, 13(1):143–202, 2000.

5. S. Even, O. Goldreich and A. Lempel. A Randomized Protocol for Signing
Contracts. In Communications of the ACM, 28(6):637–647, 1985.

6. Y. Gertner, S. Kannan, T. Malkin, O. Reingold, and M. Viswanathan. The
Relationship Between Public Key Encryption and Oblivious Transfer. In the
41st FOCS, page 325–335, 2000.

7. O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game –
A Completeness Theorem for Protocols with Honest Majority. In 19th STOC,
pages 218–229, 1987. For details see [9].

8. O. Goldreich. A Note on Computational Indistinguishability. Information Pro-
cessing Letters, 34(6):277–281, 1990.

9. O. Goldreich. Foundations of Cryptography: Volume 2 – Basic Applications.
Cambridge University Press, 2004.

10. I. Haitner, Y. Ishai, E. Kushilevitz, Y. Lindell and E. Petrank. Black-Box Con-
structions of Protocols for Secure Computation. SIAM Journal on Computing,
40(2):225–266, 2011.

11. Y. Ishai, J. Kilian, K. Nissim and E. Petrank. Extending Oblivious Transfer
Efficiently. In CRYPTO 2003, Springer (LNCS 2729), pages 145–161, 2003.

12. R. Impagliazzo and D. Zuckerman. How to Recycle Random Bits. In the 30th
FOCS, 248–253, 1989.

13. J. Kilian. Founding Cryptography on Oblivious Transfer. In the 20th STOC,
pages 20–31, 1988.

14. Y Lindell. Adaptively Secure Two-Party Computation with Erasures. In CT-
RSA 2009), Springer (LNCS 5473), pages 117–132, 2009.

15. Y. Lindell and H. Zarosim. Adaptive Zero-Knowledge Proofs and Adaptively
Secure Oblivious Transfer. In the Journal of Cryptology, 24(4):761-799, 2011.

16. Y. Lindell and H. Zarosim. On the Feasibility of Extending Oblivious Transfer.
Cryptology ePrint Archive: Report 2012/333, 2012.

17. M. Rabin. How to Exchange Secrets by Oblivious Transfer. Tech. Memo TR-81,
Aiken Computation Laboratory, Harvard University, 1981.

18. S. Winkler and J. Wullschleger. On The Efficiency Of Classical And Quantum
Oblivious Transfer Reductions. In CRYPTO 2010, Springer (LNCS 6223), pages
707–723, 2010.

19. S. Wolf and J. Wullschleger. Oblivious Transfer is Symmetric. In EUROCRYPT
2006, Springer (LNCS 4004), pages 222–232, 2006.

20. A. Yao. How to Generate and Exchange Secrets. In the 27th FOCS, pages
162–167, 1986.

