
Succinct Non-Interactive Arguments
via Linear Interactive Proofs?

Nir Bitansky1??, Alessandro Chiesa2, Yuval Ishai3? ? ?, Omer Paneth4†, and
Rafail Ostrovsky5‡

1 Tel Aviv University
2 MIT

3 Technion
4 Boston University

5 UCLA

Abstract. Succinct non-interactive arguments (SNARGs) enable veri-
fying NP statements with lower complexity than required for classical NP
verification. Traditionally, the focus has been on minimizing the length
of such arguments; nowadays researches have focused also on minimizing
verification time, by drawing motivation from the problem of delegating
computation.

A common relaxation is a preprocessing SNARG, which allows the verifier
to conduct an expensive offline phase that is independent of the state-
ment to be proven later. Recent constructions of preprocessing SNARGs
have achieved attractive features: they are publicly-verifiable, proofs con-
sist of only O(1) encrypted (or encoded) field elements, and verifica-
tion is via arithmetic circuits of size linear in the NP statement. Ad-
ditionally, these constructions seem to have “escaped the hegemony” of
probabilistically-checkable proofs (PCPs) as a basic building block of
succinct arguments.

? The full version of this paper can be found on ePrint [BCI+12].
?? This research was done while visiting Boston University and IBM T. J. Watson

Research Center. Supported by the Check Point Institute for Information Security,
an ISF grant 20006317, and the Fulbright program.

? ? ? Supported by the European Research Council as part of the ERC project CaC (grant
259426), ISF grant 1361/10, and BSF grant 2008411. Research done in part while
visiting UCLA and IBM T. J. Watson Research Center.
† Supported by an NSF grant 1218461.
‡ Department of Computer Science and Department of Mathematics, UCLA. Email:

rafail@cs.ucla.edu. Research supported in part by NSF grants CNS-0830803; CCF-
0916574; IIS-1065276; CCF-1016540; CNS-1118126; CNS-1136174; US-Israel BSF
grant 2008411, OKAWA Foundation Research Award, IBM Faculty Research Award,
Xerox Faculty Research Award, B. John Garrick Foundation Award, Teradata Re-
search Award, and Lockheed-Martin Corporation Research Award. This material is
also based upon work supported by the Defense Advanced Research Projects Agency
through the U.S. Office of Naval Research under Contract N00014-11-1-0392. The
views expressed are those of the author and do not reflect the official policy or
position of the Department of Defense or the U.S. Government.

We present a general methodology for the construction of preprocess-
ing SNARGs, as well as resulting concrete efficiency improvements. Our
contribution is three-fold:

(1) We introduce and study a natural extension of the interactive proof
model that considers algebraically-bounded provers; this new setting is
analogous to the common study of algebraically-bounded “adversaries”
in other fields, such as pseudorandomness and randomness extraction.
More concretely, in this work we focus on linear (or affine) provers, and
provide several constructions of (succinct two-message) linear-interactive
proofs (LIPs) for NP. Our constructions are based on general transfor-
mations applied to both linear PCPs (LPCPs) and traditional “unstruc-
tured” PCPs.

(2) We give conceptually simple cryptographic transformations from
LIPs to preprocessing SNARGs, whose security can be based on different
forms of linear targeted malleability (implied by previous knowledge as-
sumptions). Our transformations convert arbitrary (two-message) LIPs
into designated-verifier SNARGs, and LIPs with degree-bounded verifiers
into publicly-verifiable SNARGs. We also extend our methodology to ob-
tain zero-knowledge LIPs and SNARGs. Our techniques yield SNARGs
of knowledge and thus can benefit from known recursive composition and
bootstrapping techniques.

(3) Following this methodology, we exhibit several constructions achiev-
ing new efficiency features, such as “single-ciphertext preprocessing SNARGs”
and improved succinctness-soundness tradeoffs. We also offer a new per-
spective on existing constructions of preprocessing SNARGs, revealing a
direct connection of these to LPCPs and LIPs.

1 Introduction

Interactive proofs [GMR89] are central to modern cryptography and complexity
theory. One extensively studied aspect of interactive proofs is their expressibility,
culminating with the result IP = PSPACE [Sha92]. Another aspect, which is the
focus of this work, is that proofs for NP statements can potentially be much
shorter than an NP witness and be verified much faster than the time required
for checking the NP witness.

1.1 Background

Succinct interactive arguments. In interactive proofs for NP with statistical
soundness, significant savings in communication (let alone verification time) are
unlikely [BHZ87, GH98, GVW02, Wee05]. If we settle for proof systems with
computational soundness, known as argument systems [BCC88], then significant
savings can be made. Using collision-resistant hashes (CRHs) and probabilistically-
checkable proofs (PCPs) [BFLS91], Kilian [Kil92] showed a four-message in-
teractive argument for NP where, to prove membership of an instance x in a
given NP language L with NP machine ML, communication and verification

time are bounded by poly(λ+ |ML|+ |x|+ log t), and the prover’s running time
is poly(λ + |ML| + |x| + t). Here, t is the classical NP verification time of ML

for the instance x, λ is a security parameter, and poly is a universal polynomial
(independent of λ, ML, x, and t). We call such argument systems succinct.

Proof of knowledge. A natural strengthening of computational soundness is
(computational) proof of knowledge: it requires that, whenever the verifier is
convinced by an efficient prover, not only can we conclude that a valid witness
for the theorem exists, but also that such a witness can be extracted efficiently
from the prover. This property is satisfied by most proof system constructions,
including the aforementioned one of Kilian [BG08], and is useful in many appli-
cations of succinct arguments.

Removing interaction. Kilian’s protocol requires four messages. A challenge,
which is of both theoretical and practical interest, is the construction of non-
interactive succinct arguments. As a first step in this direction, Micali [Mic00]
showed how to construct publicly-verifiable one-message succinct non-interactive
arguments for NP, in the random oracle model, by applying the Fiat-Shamir
heuristic [FS87] to Kilian’s protocol. In the plain model, one-message solutions
are impossible for hard-enough languages (against non-uniform provers), so one
usually considers the weaker goal of two-message succinct arguments where the
verifier message is generated independently of the statement to be proven. Fol-
lowing [GW11], we call such arguments SNARGs. More precisely, a SNARG for
a language L is a triple of algorithms (G,P, V) where: the generator G, given
the security parameter λ, samples a reference string σ and a corresponding ver-
ification state τ (G can be thought to be run during an offline phase, by the
verifier, or by someone the verifier trusts); the (honest) prover P (σ, x, w) pro-
duces a proof π for the statement “x ∈ L” given a witness w; then, V (τ, x, π)
verifies the validity of π. Soundness should hold even if x is chosen depending
on σ.

Gentry and Wichs [GW11] showed that no SNARG can be proven secure via
a black-box reduction to a falsifiable assumption [Nao03]; this may justify using
non-standard assumptions to construct SNARGs. (Note that [GW11] rule out
SNARGs only for (hard-enough) NP languages. For the weaker goal of verifying
deterministic polynomial-time computations in various models, there are beau-
tiful constructions relying on standard assumptions, such as [GKR08, KR09,
AIK10, CKV10, GGP10, BGV11, CRR11, CTY11, CMT12, FG12]. We focus
on verifying nondeterministic polynomial-time computations.)

Extending earlier works [ABOR00, DLN+04, Mie08, DCL08], several works
showed how to remove interaction in Kilian’s PCP-based protocol and obtain
SNARGs of knowledge (SNARKs) using extractable collision-resistant hash-
ing [BCCT12a, DFH12, GLR11], or construct MIP-based SNARKs using fully-
homomorphic encryption with an extractable homomorphism property [BC12].

The preprocessing model. A notion that is weaker than a SNARK is that of
a preprocessing SNARK: here, the verifier is allowed to conduct an expensive

offline phase. More precisely, the generator G takes as an additional input a
time bound T , may run in time poly(λ+ T) (rather than poly(λ+ log T)), and
generates σ and τ that can be used, respectively, to prove and verify correctness
of computations of length at most T . Bitansky et al. [BCCT12b] showed that
SNARKs can always be “algorithmically improved”; in particular, preprocessing
SNARKs imply ones without preprocessing. (The result of [BCCT12b] crucially
relies on the fast verification time and the adaptive proof-of-knowledge property
of the SNARK.) Thus, “preprocessing can always be removed” at the expense
of only a poly(λ)-loss in verification efficiency.

1.2 Motivation

The typical approach to construct succinct arguments (or, more generally, other
forms of proof systems with nontrivial efficiency properties) conforms with the
following methodology: first, give an information-theoretic construction, using
some form of probabilistic checking to verify computations, in a model that en-
forces certain restrictions on provers (e.g., the PCP model [Kil92, Mic00, BG08,
DCL08, BCCT12a, DFH12, GLR11] or other models of probabilistic checking
[IKO07, KR08, SBW11, SMBW12, SVP+12, BC12, SBV+12]); next, use crypto-
graphic tools to compile the information-theoretic construction into an argument
system (where there are no restrictions on the prover other than it being an ef-
ficient algorithm).

Existing constructions of preprocessing SNARKs seem to diverge from this
methodology, while at the same time offering several attractive features: such as
public verification, proofs consisting of only O(1) encrypted (or encoded) field
elements, and verification via arithmetic circuits that are linear in the statement.

Groth [Gro10] and Lipmaa [Lip12] (who builds on Groth’s approach) intro-
duced clever techniques for constructing preprocessing SNARKs by leveraging
knowledge-of-exponent assumptions [Dam92, HT98, BP04] in bilinear groups. At
high level, Groth considered a simple reduction from circuit satisfaction prob-
lems to an algebraic satisfaction problem of quadratic equations, and then con-
structed a set of specific cryptographic tools to succinctly check satisfiability
of this problem. Gennaro et al. [GGPR12] made a first step to better separate
the “information-theoretic ingredient” from the “cryptographic ingredient” in
preprocessing SNARKs. They formulated a new type of algebraic satisfaction
problems, called Quadratic Span Programs (QSPs), which are expressive enough
to allow for much simpler, and more efficient, cryptographic checking, essen-
tially under the same assumptions used by Groth. In particular, they invested
significant effort in obtaining an efficient reduction from circuit satisfiability to
QSPs.

Comparing the latter to the probabilistic-checking-based approach described
above, we note that a reduction to an algebraic satisfaction problem is a typi-
cal first step, because such satisfaction problems tend to be more amenable to
probabilistic checking. As explained above, cryptographic tools are then usu-
ally invoked to enforce the relevant probabilistic-checking model (e.g., the PCP
one). The aforementioned works [Gro10, Lip12, GGPR12], on the other hand,

seem to somehow skip the probabilistic-checking step, and directly construct spe-
cific cryptographic tools for checking satisfiability of the algebraic problem itself.
While this discrepancy may not be a problem per se, we believe that understand-
ing it and formulating a clear methodology for the construction of preprocessing
SNARKs are problems of great interest. Furthermore, a clear methodology may
lead not only to a deeper conceptual understanding, but also to concrete im-
provements to different features of SNARKs (e.g., communication complexity,
verifier complexity, prover complexity, and so on). Thus, we ask:

Is there a general methodology for the construction of preprocessing SNARKs?
Which improvements can it lead to?

1.3 Our Results

We present a general methodology for the construction of preprocessing SNARKs,
as well as resulting concrete improvements. Our contribution is three-fold:

– We introduce a natural extension of the interactive proof model that consid-
ers algebraically-bounded provers. Concretely, we focus on linear interactive
proofs (LIPs), where both honest and malicious provers are restricted to
computing linear (or affine) functions of messages they receive over some
finite field or ring. We then provide several (unconditional) constructions of
succinct two-message LIPs for NP, obtained by applying simple and general
transformations to two variants of PCPs.

– We give cryptographic transformations from (succinct two-message) LIPs
to preprocessing SNARKs, based on different forms of linear targeted mal-
leability, which can be instantiated based on existing knowledge assumptions.
Our transformation is very intuitive: to force a prover to “act linearly” on
the verifier message, simply encrypt (or encode) each field or ring element
in the verifier message with an encryption scheme that only allows linear
homomorphism.

– Following this methodology, we obtain several constructions that exhibit new
efficiency features. These include “single-ciphertext preprocessing SNARKs”
and improved succinctness-soundness tradeoffs. We also offer a new perspec-
tive on existing constructions of preprocessing SNARKs: namely, although
existing constructions do not explicitly invoke PCPs, they can be reinter-
preted as using linear PCPs, i.e., PCPs in which proof oracles (even mali-
cious ones) are restricted to be a linear functions.6

We now discuss our results further, starting in Section 1.3 with the information-
theoretic constructions of LIPs, followed in Section 1.3 by the cryptographic
transformations to preprocessing SNARKs, and concluding in Section 1.3 with
the new features we are able to obtain.

6 A stronger notion of linear PCP has been used in other works [IKO07, SBW11,
SMBW12, SVP+12, SBV+12] to obtain arguments for NP with nontrivial efficiency
properties.

1-round linear IP

1-round linear IP
w/ algebraic verifier

publicly-verifiable
preprocessing SNARK

+
linear-only
encryption

+
linear-only

one-way encoding

CRYPTOGRAPHIC
COMPILERS

linear PCP

linear PCP
w/ algebraic verifier

INFORMATION-THEORETIC
COMPILERS

designated-verifier
preprocessing SNARK

(traditional) PCP

Fig. 1: High-level summary of our transformations.

Linear interactive proofs. The LIP model modifies the traditional interactive
proofs model in a way analogous to the way the common study of algebraically-
bounded “adversaries” modifies other settings, such as pseudorandomness [NN90,
BV07] and randomness extraction [GR05, DGW09]. In the LIP model both hon-
est and malicious provers are restricted to apply linear (or affine) functions over
a finite field F to messages they receive from the verifier. (The notion can be
naturally generalized to apply over rings.) The choice of these linear functions
can depend on auxiliary input to the prover (e.g., a witness), but not on the
verifier’s messages.

With the goal of non-interactive succinct verification in mind, we restrict
our attention to (input-oblivious) two-message LIPs for boolean circuit satis-
fiability problems with the following template. To verify the relation RC =
{(x,w) : C(x,w) = 1} where C is a boolean circuit, the LIP verifier VLIP sends
to the LIP prover PLIP a message q that is a vector of field elements, depending
on C but not on x; VLIP may also output a verification state u. The LIP prover
PLIP(x,w) applies to q an affine transformation Π = (Π ′, b), resulting in only a
constant number of field elements. The prover’s message a = Π ′ ·q + b can then
be quickly verified (e.g., with O(|x|) field operations) by VLIP, and the soundness
error is at most O(1/|F|). From here on, we shall use the term LIP to refer to
LIPs that adhere to the above template.

LIP complexity measures. Our constructions provide different tradeoffs among
several complexity measures of an LIP, which ultimately affect the features of the
resulting preprocessing SNARKs. The two most basic complexity measures are
the number of field elements sent by the verifier and the number of those sent by
the prover. An additional measure that we consider in this work is the algebraic
complexity of the verifier (when viewed as an F-arithmetic circuit). Specifically,
splitting the verifier into a query algorithm QLIP and a decision algorithm DLIP, we
say that it has degree (dQ, dD) if QLIP can be computed by a vector of multivariate
polynomials of total degree dQ each in the verifier’s randomness, and DLIP by a
vector of multivariate polynomials of total degree dD each in the LIP answers a
and the verification state u. Finally, of course, the running times of the query
algorithm, decision algorithm, and prover algorithm are all complexity measures
of interest.

As mentioned above, our LIP constructions are obtained by applying general
transformations to two types of PCPs. We now describe each of these transfor-
mations and the features they achieve. Some of the parameters of the resulting
constructions are summarized in Table 1.

LIPs from linear PCPs. A linear PCP (LPCP) of length m is an oracle com-
puting a linear function π : Fm → F; namely, the answer to each oracle query
qi ∈ Fm is ai = 〈π, qi〉. Note that, unlike in an LIP where different affine func-
tions, given by a matrix Π and shift b, are applied to a message q, in an LPCP
there is one linear function π, which is applied to different queries. (An LPCP
with a single query can be viewed as a special case of an LIP.) This difference
prevents a direct use of an LPCP as an LIP.

Our first transformation converts any (multi-query) LPCP into an LIP with
closely related parameters. Concretely, we transform any k-query LPCP of length
m over F into an LIP with verifier message in F(k+1)m, prover message in Fk+1,
and the same soundness error up to an additive term of 1/|F|. The transfor-
mation preserves the key properties of the LPCP, including the algebraic com-
plexity of the verifier. Our transformation is quite natural: the verifier sends
q = (q1, . . . , qk+1) where q1, . . . , qk are the LPCP queries and qk+1 = α1q1 +
. . .+αkqk is a random linear combination of these. The (honest) prover responds
with ai = 〈π, qi〉, for i = 1, . . . , k + 1. To prevent a malicious prover from using
inconsistent choices for π, the verifier checks that ak+1 = α1a1 + . . .+ αkak.

By relying on two different LPCP instantiations, we obtain two corresponding
LIP constructions:

– A variant of the Hadamard-based PCP of Arora et al. [ALM+98] (ALMSS),
extended to work over an arbitrary finite field F, yields a very simple LPCP
with three queries. After applying our transformation, for a circuit C of
size s and input length n, the resulting LIP for RC has verifier message in
FO(s2), prover message in F4, and soundness error O(1/|F|). When viewed
as F-arithmetic circuits, the prover PLIP and query algorithm QLIP are both
of size O(s2), and the decision algorithm is of size O(n). Furthermore, the
degree of (QLIP, DLIP) is (2, 2).

– A (strong) quadratic span program (QSP), as defined by Gennaro et al.
[GGPR12], directly yields a corresponding LPCP with three queries. For a
circuit C of size s and input length n, the resulting LIP for RC has verifier
message in FO(s), prover message in F4, and soundness error O(s/|F|). When

viewed as F-arithmetic circuits, the prover PLIP is of size Õ(s), the query
algorithm QLIP is of size O(s), and the decision algorithm is of size O(n). The
degree of (QLIP, DLIP) is (O(s), 2).

A notable feature of the LIPs obtained above is the very low “online complexity”
of verification: in both cases, the decision algorithm is an arithmetic circuit of
size O(n). Moreover, all the efficiency features mentioned above apply not only
to satisfiability of boolean circuits C, but also to satisfiability of F-arithmetic
circuits.

In both the above constructions, the circuit to be verified is first represented
as an appropriate algebraic satisfaction problem, and then probabilistic checking
machinery is invoked. In the first case, the problem is a system of quadratic
equations over F, and, in the second case, it is a (strong) quadratic span program
(QSP) over F. These algebraic problems are the very same problems underlying
[Gro10, Lip12] and [GGPR12].

As explained earlier, [GGPR12] invested much effort to show an efficient
reduction from circuit satisfiability problems to QSPs. Our work does not sub-
sume nor simplify the reduction to QSPs of [GGPR12], but instead reveals a
simple LPCP to check a QSP, and this LPCP can be plugged into our general
transformations. Reducing circuit satisfiability to a system of quadratic equa-
tions over F is much simpler, but generating proofs for the resulting problem
is quadratically more expensive. (Concretely, both [Gro10] and [Lip12] require
O(s2) computation already in the preprocessing phase).

LIPs from traditional PCPs. Our second transformation relies on traditional
“unstructured” PCPs. These PCPs are typically more difficult to construct than
LPCPs; however, our second transformation has the advantage of requiring the
prover to send only a single field element. Concretely, our transformation con-
verts a traditional k-query PCP into a 1-query LPCP, over a sufficiently large
field. Here the PCP oracle is represented via its truth table, which is assumed to
be a binary string of polynomial size (unlike the LPCPs mentioned above, whose
truth tables have size that is exponential in the circuit size). The transformation
converts any k-query PCP of proof length m and soundness error ε into an LIP,
with soundness error O(ε) over a field of size 2O(k)/ε, in which the verifier sends
m field elements and receives only a single field element in return. The high-level
idea is to use a sparse linear combination of the PCP entries to pack the k an-
swer bits into a single field element. The choice of this linear combination uses
additional random noise to ensure that the prover’s coefficients are restricted
to binary values, and uses easy instances of subset-sum to enable an efficient
decoding of the k answer bits.

Taking time complexity to an extreme, we can apply this transformation
to the PCPs of Ben-Sasson et al. [BSCGT12] and get LIPs where the prover
and verifier complexity are both optimal up to polylog(s) factors, but where
the prover sends a single element in a field of size |F| = 2λ·polylog(s). Taking
succinctness to an extreme, we can apply our transformation to PCPs with
soundness error 2−λ and O(λ) queries, obtaining an LIP with similar soundness
error in which the prover sends a single element in a field of size |F| = 2λ·O(1). For
instance, using the query-efficient PCPs of H̊astad and Khot [HK05], the field size
is only |F| = 2λ·(3+o(1)).7 (Jumping ahead, this means that a field element can
be encrypted using a single, normal-size ciphertext of homomorphic encryption
schemes such as Paillier or Elgamal even when λ = 100.) On the down side, the

7 In the case of [HK05], we do not obtain an input-oblivious LIP, because the queries
in their PCP depend on the input; while it is plausible to conjecture that the queries
can be made input-oblivious, we did not check that.

degrees of the LIP verifiers obtained via this transformation are high; we give
evidence that this is inherent when starting from “unstructured” PCPs.

starting point of # field elements in # field elements in algebraic properties field size for 2−λ

LIP construction verifier message prover message of verifier knowledge error

Hadamard PCP O(s2) 4 (dQ, dD) = (2, 2) 2λ ·O(1)

QSPs of [GGPR12] O(s) 4 (dQ, dD) = (O(s), 2) 2λ ·O(s)

PCPs of [BSCGT12] Õ(s) 1 none 2λ·polylog(s)

PCPs of [HK05] poly(s) 1 none 2λ·(3+o(1))

Table 1: Summary of our LIP constructions.

Honest-verifier zero-knowledge LIPs. We also show how to make the above
LIPs zero-knowledge against honest verifiers (HVZK). Looking ahead, using
HVZK LIPs in our cryptographic transformations results in preprocessing SNARKs
that are zero-knowledge (against malicious verifiers in the CRS model).

For the Hadamard-based LIP, an HVZK variant can be obtained directly
with essentially no additional cost. More generally, we show how to transform
any LPCP where the decision algorithm is of low degree to an HVZK LPCP
with the same parameters up to constant factors;this HVZK LPCP can then
be plugged into our first transformation to obtain an HVZK LIP. Both of the
LPCP constructions mentioned earlier satisfy the requisite degree constraints.

For the second transformation, which applies to traditional PCPs (whose
verifiers, as discussed above, must have high degree and thus cannot benefit
from our general HVZK transformation), we show that if the PCP is HVZK (see
[DFK+92] for efficient constructions), then so is the resulting LIP; in particular,
the HVZK LIP answer still consists of a single field element.

Proof of knowledge. In each of the above transformations, we ensure not only
soundness for the LIP, but also a proof of knowledge property. Namely, it is
possible to efficiently extract from a convincing affine function Π a witness for
the underlying statement. The proof of knowledge property is then preserved
in the subsequent cryptographic compilations, ultimately allowing to establish
the proof of knowledge property for the preprocessing SNARK. As discussed
in Section 1.1, proof of knowledge is a very desirable property for preprocessing
SNARKs; for instance, it enables to remove the preprocessing phase, as well as to
improve the complexity of the prover and verifier, via the result of [BCCT12b].

Preprocessing SNARKs from LIPs. We explain how to use cryptographic
tools to transform an LIP into a corresponding preprocessing SNARK. At high
level, the challenge is to ensure that an arbitrary (yet computationally-bounded)
prover behaves as if it was a linear (or affine) function. The idea, which also

implicitly appears in previous constructions, is to use an encryption scheme
with targeted malleability [BSW12] for the class of affine functions: namely,
an encryption scheme that “only allows affine homomorphic operations” on an
encrypted plaintext (and these operations are independent of the underlying
plaintexts). Intuitively, the verifier would simply encrypt each field element in
the LIP message q, send the resulting ciphertexts to the prover, and have the
prover homomorphically evaluate the LIP affine function on the ciphertexts;
targeted malleability ensures that malicious provers can only invoke (malicious)
affine strategies.

We concretize the above approach in several ways, depending on the proper-
ties of the LIP and the exact flavor of targeted malleability; different choices will
induce different properties for the resulting preprocessing SNARK. In particu-
lar, we identify natural sufficient properties that enable an LIP to be compiled
into a publicly-verifiable SNARK. We also discuss possible instantiations of the
cryptographic tools, based on existing knowledge assumptions. (Recall that, in
light of the negative result of [GW11], the use of nonstandard cryptographic
assumptions seems to be justified.)

Designated-verifier preprocessing SNARKs from arbitrary LIPs. First, we show
that any LIP can be compiled into a corresponding designated-verifier pre-
processing SNARK with similar parameters. (Recall that “designated verifier”
means that the verifier needs to maintain a secret verification state.) To do so, we
rely on what we call linear-only encryption: an additively homomorphic encryp-
tion that is (a) semantically-secure, and (b) linear-only. The linear-only property
essentially says that, given a public key pk and ciphertexts Encpk(a1), . . . ,Encpk(am),
it is infeasible to compute a new ciphertext c′ in the image of Encpk, except by
“knowing” β, α1, . . . , αm such that c′ ∈ Encpk(β+

∑m
i=1 αiai). Formally, the prop-

erty is captured by guaranteeing that, whenever A(pk,Encpk(a1), . . . ,Encpk(am))
produces valid ciphertexts (c′1, . . . , c

′
k), an efficient extractor E (non-uniformly

depending on A) can extract a corresponding affine function Π “explaining” the
ciphertexts. As a candidate for such an encryption scheme, we propose variants
of Paillier encryption [Pai99] (as also considered in [GGPR12]) and of Elgamal
encryption [EG85] (in those cases where the plaintext is guaranteed to belong to
a polynomial-size set, so that decryption can be done efficiently). These variants
are “sparsified” versions of their standard counterparts; concretely, a ciphertext
does not only include Encpk(a), but also Encpk(α ·a), for a secret field element α.
(This “sparsification” follows a pattern found in many constructions conjectured
to satisfy “knowledge-of-exponent” assumptions.) As for Paillier encryption, we
have to consider LIPs over the ring Zpq (instead of a finite field F); essentially, the
same results also hold in this setting (except that soundness is O(1/min {p, q})
instead of O(1/|F|)).

We also consider a notion of targeted malleability, weaker than linear-only
encryption, that is closer to the definition template of Boneh et al. [BSW12]. In
such a notion, the extractor is replaced by a simulator. Relying on this weaker
variant, we are only able to prove the security of our preprocessing SNARKs
against non-adaptive choices of statements (and still prove soundness, though

not proof of knowledge, if the simulator is allowed to be inefficient). Nonetheless,
for natural instantiations, even adaptive security seems likely to hold for our con-
struction, but we do not know how to prove it. One advantage of working with
this weaker variant is that it seems to allow for more efficient candidates con-
structions. Concretely, the linear-only property rules out any encryption scheme
where ciphertexts can be sampled obliviously; instead, the weaker notion does
not, and thus allows for shorter ciphertexts. For example, we can consider a
standard (“non-sparsified”) version of Paillier encryption. We will get back to
this point in Section 1.3.

Publicly-verifiable preprocessing SNARKs from LIPs with low-degree verifiers.
Next, we identify properties of LIPs that are sufficient for a transformation to
publicly-verifiable preprocessing SNARKs. Note that, if we aim for public verifi-
ability, we cannot use semantically-secure encryption to encode the message of
the LIP verifier, because we need to “publicly test” (without decryption) certain
properties of the plaintext underlying the prover’s response. The idea, implicit in
previous publicly-verifiable preprocessing SNARK constructions, is to use linear-
only encodings (rather than encryption) that do allow such public tests, while
still providing certain one-wayness properties. When using such encodings with
an LIP, however, it must be the case that the public tests support evaluating
the decision algorithm of the LIP and, moreover, the LIP remains secure despite
some “leakage” on the queries. We show that LIPs with low-degree verifiers
(which we call algebraic LIPs), combined with appropriate one-way encodings,
suffice for this purpose.

More concretely, like [Gro10, Lip12, GGPR12], we consider candidate encod-
ings in bilinear groups under similar knowledge-of-exponent and computational
Diffie-Hellman assumptions; for such encoding instantiations, we must start with
an LIP where the degree dD of the decision algorithm DLIP is at most quadratic.
(If we had multilinear maps supporting higher-degree polynomials, we could sup-
port higher values of dD.) In addition to dD ≤ 2, to ensure security even in the
presence of certain one-way leakage, we need the query algorithm QLIP to be of
polynomial degree.

Both of the LIP constructions from LPCPs described in Section 1.3 sat-
isfy these requirements. When combined with the above transformation, these
LIP constructions imply new constructions of publicly-verifiable preprocessing
SNARKs, one of which can be seen as a simplification of the construction of
[Gro10] and the other as a reinterpretation (and slight simplification) of the
construction of [GGPR12].

Zero-knowledge. In all aforementioned transformations to preprocessing SNARKs,
if we start with an HVZK LIP (such as those mentioned in Section 1.3) and addi-
tionally require a rerandomization property for the linear-only encryption/encoding
(which is available in all of the candidate instantiations we consider), we obtain
preprocessing SNARKs that are (perfect) zero-knowledge in the CRS model.
In addition, for the case of publicly-verifiable (perfect) zero-knowledge prepro-

cessing SNARKs, the CRS can be tested, so that (similarly to previous works
[Gro10, Lip12, GGPR12]) we also obtain succinct ZAPs.

New efficiency features for SNARKs. We obtain the following concrete
improvements in communication complexity for preprocessing SNARKs.

“Single-ciphertext preprocessing SNARKs”. If we combine the LIPs that we
obtained from traditional PCPs (where the prover returns only a single field
element) with “non-sparsified” Paillier encryption, we obtain (non-adaptive)
preprocessing SNARKs that consist of a single Paillier cipherext. Moreover,
when using the query-efficient PCP from [HK05] as the underlying PCP, even a
standard-size Paillier ciphertext (with plaintext group Zpq where p, q are 512-bit
primes) suffices for achieving soundness error 2−λ with λ = 100. (For the case
of [HK05], due to the queries’ dependence on the input, the reference string of
the SNARK also depends on the input.) Alternatively, using the sparsified ver-
sion of Paillier encryption, we can also get security against adaptively-chosen
statements with only two Paillier ciphertexts.

Towards optimal succinctness. A fundamental question about succinct argu-
ments is how low can we push communication complexity. More accurately: what
is the optimal tradeoff between communication complexity and soundness? Ide-
ally, we would want succinct arguments that are optimally succinct : to achieve
2−Ω(λ) soundness against 2O(λ)-bounded provers, the proof length is O(λ) bits
long.

In existing constructions of succinct arguments, interactive or not, to provide
2−Ω(λ) soundness against 2O(λ)-bounded provers, the prover has to communi-
cate ω(λ) bits to the verifier. Concretely, PCP-based (and MIP-based) solu-
tions require Ω(λ3) bits of communication. This also holds for known prepro-
cessing SNARKs, because previous work and the constructions discussed above
are based on bilinear groups or Paillier encryption, both of which suffer from
subexponential-time attacks.

If we had a candidate for (linear-only) homomorphic encryption that did
not suffer from subexponential-time attacks, our approach could perhaps yield
preprocessing SNARKs that are optimally succinct. The only known such can-
didate is Elgamal encryption (say, in appropriate elliptic curve groups) [PQ12].
However, the problem with using Elgamal decryption in our approach is that it
requires, in general, to compute discrete logarithms.

One way to overcome this problem is to ensure that honest proofs are always
decrypted to a known polynomial-size set. This can be done by taking the LIP to
be over a field Fp of only polynomial size, and ensuring that any honest proof π
has small `1-norm ‖π‖1, so that in particular, the prover’s answer is taken from
a set of size at most ‖π‖1 ·p. For example, in the two LPCP-based constructions
described in Section 1.3, this norm is O(s2) and O(s) respectively for a circuit of
size s. This approach, however, has two caveats: the soundness of the underlying
LIP is only 1/poly(λ) and moreover, the verifier’s running time is proportional
to s, and not independent of it, as we usually require.

A very interesting related question that may lead to a solution circumvent-
ing the aforementioned caveats is whether there exist LIPs where the decision
algorithm has linear degree. With such an LIP, we would be able to directly use
Elgamal encryption because linear tests on the plaintexts can be carried out “in
the exponent”, without having to take discrete logarithms.

Finally, a rather generic approach for obtaining “almost-optimal succintness”
is to use (linear-only) Elgamal encryption in conjunction with any linear homo-
morphic encryption scheme (perhaps not having the linear-only property) that is
sufficiently secure. Concretely, the verifier sends his LIP message encrypted un-
der both encryption schemes, and then the prover homomorphically evaluates the
affine function on both. The additional ciphertext can be efficiently decrypted,
and can assist in the decryption of the Elgamal ciphertext. For example, there are
encryption schemes based on Ring-LWE [LPR10] that are conjectured to have
quasiexponential security; by using these in the approach we just discussed, we
can obtain 2−Ω(λ) soundness against 2O(λ)-bounded provers with Õ(λ) bits of
communication.

Strong knowledge and reusability. Designated-verifier SNARKs typically suffer
from a problem known as the verifier rejection problem: security is compromised
if the prover can learn the verifier’s responses to multiple adaptively-chosen
statements and proofs. For example, the PCP-based (or MIP-based) SNARKs
of [BCCT12a, GLR11, DFH12, BC12] suffer from the verifier rejection problem
because a prover can adaptively learn the encrypted PCP (or MIP) queries, by
feeding different statements and proofs to the verifier and learning his responses,
and since the secrecy of these queries is crucial, security is lost.

Of course, one way to avoid the verifier rejection problem is to generate a
new reference string for each statement and proof. Indeed, this is an attractive
solution for the aforementioned SNARKs because generating a new reference
string is very cheap: it costs poly(λ). However, for a designated-verifier pre-
processing SNARK, generating a new reference string is not cheap at all, and
being able to reuse the same reference string across an unbounded number of
adaptively-chosen statements and proofs is a very desirable property.

A property that is satisfied by all algebraic LIPs , which we call strong
knowledge, is that such attacks are impossible. Specifically, for such LIPs, every
prover either makes the verifier accept with probability 1 or with probability
less than O(poly(λ)/|F|). (In the full version of this paper, we also show that
traditional “unstructured” PCPs cannot satisfy this property.) Given LIPs with
strong knowledge, it seems that designated-verifier SNARKs that have a reusable
reference string can be constructed. Formalizing the connection between strong
knowledge and reusable reference string actually requires notions of linear-only
encryption that are somewhat more delicate than those we have considered so
far.

1.4 Structured PCPs In Other Works

Ishai et al. [IKO07] proposed the idea of constructing argument systems with
nontrivial efficiency properties by using “structured” PCPs and cryptographic
primitives with homomorphic properties, rather than (as in previous approaches)
“unstructured” polynomial-size PCPs and collision-resistant hashing. We have
shown how to apply this basic approach in order to obtain succinct non-interactive
arguments with preprocessing. We now compare our work to other works that
have also followed the basic approach of [IKO07].

Strong vs. weak linear PCPs. Both in our work and in [IKO07], the notion of a
“structured” PCP is taken to be a linear PCP. However, the notion of a linear
PCP used in our work does not coincide with the one used in [IKO07]. Indeed
there are two ways in which one can formalize the intuitive notion of a linear
PCP. Specifically:
– A strong linear PCP is a PCP in which the honest proof oracle is guaranteed

to be a linear function, and soundness is required to hold for all (including
non-linear) proof oracles.

– A weak linear PCP is a PCP in which the honest proof oracle is guaranteed
to be a linear function, and soundness is required to hold only for linear
proof oracles.

In particular, a weak linear PCP assumes an algebraically-bounded prover, while
a strong linear PCP does not. While Ishai et al. [IKO07] considered strong linear
PCPs, in our work we are interested in studying algebraically-bounded provers,
and thus consider weak linear PCPs.

Arguments from strong linear PCPs. Ishai et al. [IKO07] constructed a four-
message argument system for NP in which the prover-to-verifier communication
is short (i.e., an argument with a laconic prover [GVW02]) by combining a
strong linear PCP and (standard) linear homomorphic encryption; they also
showed how to extend their approach to “balance” the communication between
the prover and verifier and obtain a O(1/ε)-message argument system for NP
with O(nε) communication complexity. Let us briefly compare their work with
ours.

First, in this paper we focus on the non-interactive setting, while Ishai et al.
focused on the interactive setting. In particular, in light of the negative result of
Gentry and Wichs [GW11], this means that the use of non-standard assumptions
in our setting (such as linear targeted malleability) may be justified; in contrast,
Ishai et al. only relied on the standard semantic security of linear homomorphic
encryption (and did not rely on linear targeted malleability properties). Second,
we focus on constructing (non-interactive) succinct arguments, while Ishai et al.
focus on constructing arguments with a laconic prover. Third, by relying on weak
linear PCPs (instead of strong linear PCPs) we do not need to perform (explicitly
or implicitly) linearity testing, while Ishai et al. do. Intuitively, this is because we
rely on the assumption of linear targeted malleability, which ensures that a prover
is algebraically bounded (in fact, in our case, linear); not having to perform

proximity testing is crucial for preserving the algebraic properties of a linear
PCP (and thus, e.g., obtain public verifiability) and obtaining O(poly(λ)/|F|)
soundness with only a constant number of encrypted/encoded group elements.
(Recall that linearity testing only guarantees constant soundness with a constant
number of queries.)

Turning to computational efficiency, while their basic protocol does not pro-
vide the verifier with any saving in computation, Ishai et al. noted that their
protocol actually yields a batching argument : namely, an argument in which, in
order to simultaneously verify the correct evaluation of ` circuits of size S, the
verifier may run in time S (i.e., in time S/` per circuit evaluation). In fact, a set
of works [SBW11, SMBW12, SVP+12, SBV+12] has improved upon, optimized,
and implemented the batching argument of Ishai et al. [IKO07] for the purpose
of verifiable delegation of computation.

Finally, [SBV+12] have also observed that QSPs can be used to construct
weak linear PCPs; while we compile weak linear PCPs into LIPs, [SBV+12] (as
in previous work) compile weak linear PCPs into strong ones. Indeed, note that
a weak linear PCP can always be compiled into a corresponding strong one, by
letting the verifier additionally perform linearity testing and self-correction; this
compilation does not affect proof length, increases query complexity by only a
constant multiplicative factor, and guarantees constant soundness.

Remark 1.1. The notions of (strong or linear) PCP discussed above should not
be confused with the (unrelated) notion of a linear PCP of Proximity (linear
PCPP) [BSHLM09, Mei12], which we now recall for the purpose of comparison.

Given a field F, an F-linear circuit [Val77] is an F-arithmetic circuit C : Fh →
F` in which every gate computes an F-linear combination of its inputs; its kernel,
denoted ker(C), is the set of all w ∈ Fh for which C(w) = 0`. A linear PCPP
for a field F is an oracle machine V with the following properties: (1) V takes
as input an F-linear circuit C and has oracle access to a vector w ∈ Fh and
an auxiliary vector π of elements in F, (2) if w ∈ ker(C) then there exists π so
that V w,π(C) accepts with probability 1, and (3) if w is far from ker(C) then
V w,π(C) rejects with high probability for every π.

Thus, a linear PCPP is a proximity tester for the kernels of linear circuits
(which are not universal), while a (strong or weak) linear PCP is a PCP in which
the proof oracle is a linear function.

References

[ABOR00] William Aiello, Sandeep N. Bhatt, Rafail Ostrovsky, and Sivaramakrish-
nan Rajagopalan. Fast verification of any remote procedure call: Short
witness-indistinguishable one-round proofs for NP. In Proceedings of the
27th International Colloquium on Automata, Languages and Program-
ming, ICALP ’00, pages 463–474, 2000.

[AIK10] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to
soundness: Efficient verification via secure computation. In Proceedings
of the 37th International Colloquium on Automata, Languages and Pro-
gramming, ICALP ’10, pages 152–163, 2010.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario
Szegedy. Proof verification and the hardness of approximation prob-
lems. Journal of the ACM, 45(3):501–555, 1998. Preliminary version in
FOCS ’92.

[BC12] Nir Bitansky and Alessandro Chiesa. Succinct arguments from multi-
prover interactive proofs and their efficiency benefits. In Proceedings
of the 32nd Annual International Cryptology Conference, CRYPTO ’12,
pages 255–272, 2012.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclo-
sure proofs of knowledge. Journal of Computer and System Sciences,
37(2):156–189, 1988.

[BCCT12a] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From
extractable collision resistance to succinct non-interactive arguments of
knowledge, and back again. In Proceedings of the 3rd Innovations in The-
oretical Computer Science Conference, ITCS ’12, pages 326–349, 2012.

[BCCT12b] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Re-
cursive composition and bootstrapping for SNARKs and proof-carrying
data. Cryptology ePrint Archive, Report 2012/095, 2012.

[BCI+12] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and
Paneth Omer. Succinct non-interactive arguments via linear interactive
proofs. Cryptology ePrint Archive, Report 2012, 2012.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy.
Checking computations in polylogarithmic time. In Proceedings of the
23rd Annual ACM Symposium on Theory of Computing, STOC ’91, pages
21–32, 1991.

[BG08] Boaz Barak and Oded Goldreich. Universal arguments and their applica-
tions. SIAM Journal on Computing, 38(5):1661–1694, 2008. Preliminary
version appeared in CCC ’02.

[BGV11] Siavosh Benabbas, Rosario Gennaro, and Yevgeniy Vahlis. Verifiable
delegation of computation over large datasets. In Proceedings of the 31st
Annual International Cryptology Conference, CRYPTO ’11, pages 111–
131, 2011.

[BHZ87] Ravi B. Boppana, Johan H̊astad, and Stathis Zachos. Does co-NP have
short interactive proofs? Information Processing Letters, 25(2):127–132,
1987.

[BP04] Mihir Bellare and Adriana Palacio. The knowledge-of-exponent assump-
tions and 3-round zero-knowledge protocols. In Proceedings of the 24th
Annual International Cryptology Conference, CRYPTO ’04, pages 273–
289, 2004.

[BSCGT12] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer.
On the concrete-efficiency threshold of probabilistically-checkable proofs,
2012. Electronic Colloquium on Computational Complexity, TR12-045.

[BSHLM09] Eli Ben-Sasson, Prahladh Harsha, Oded Lachish, and Arie Matsliah.
Sound 3-query PCPPs are long. ACM Transactions on Computation
Theory, 1(2):7:1–7:49, 2009. Preliminary version appeared in ICALP ’08.

[BSW12] Dan Boneh, Gil Segev, and Brent Waters. Targeted malleability: Homo-
morphic encryption for restricted computations. In Proceedings of the
3rd Innovations in Theoretical Computer Science Conference, ITCS ’12,
pages 350–366, 2012.

[BV07] Andrej Bogdanov and Emanuele Viola. Pseudorandom bits for polynomi-
als. In Proceedings of the 48th Annual IEEE Symposium on Foundations
of Computer Science, FOCS ’07, pages 41–51, 2007.

[CKV10] Kai-Min Chung, Yael Kalai, and Salil Vadhan. Improved delegation of
computation using fully homomorphic encryption. In Proceedings of the
30th Annual International Cryptology Conference, CRYPTO ’10, pages
483–501, 2010.

[CMT12] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practi-
cal verified computation with streaming interactive proofs. In Proceed-
ings of the 3rd Innovations in Theoretical Computer Science Conference,
ITCS ’12, pages 90–112, 2012.

[CRR11] Ran Canetti, Ben Riva, and Guy N. Rothblum. Two 1-round protocols for
delegation of computation. Cryptology ePrint Archive, Report 2011/518,
2011.

[CTY11] Graham Cormode, Justin Thaler, and Ke Yi. Verifying computations
with streaming interactive proofs. Proceedings of the VLDB Endowment,
5(1):25–36, 2011.

[Dam92] Ivan Damg̊ard. Towards practical public key systems secure against cho-
sen ciphertext attacks. In Proceedings of the 11th Annual International
Cryptology Conference, CRYPTO ’92, pages 445–456, 1992.

[DCL08] Giovanni Di Crescenzo and Helger Lipmaa. Succinct NP proofs from
an extractability assumption. In Proceedings of the 4th Conference on
Computability in Europe, CiE ’08, pages 175–185, 2008.

[DFH12] Ivan Damg̊ard, Sebastian Faust, and Carmit Hazay. Secure two-party
computation with low communication. In Proceedings of the 9th Theory
of Cryptography Conference, TCC ’12, pages 54–74, 2012.

[DFK+92] Cynthia Dwork, Uriel Feige, Joe Kilian, Moni Naor, and Shmuel
Safra. Low communication 2-prover zero-knowledge proofs for NP. In
Proceedings of the 11th Annual International Cryptology Conference,
CRYPTO ’92, pages 215–227, 1992.

[DGW09] Zeev Dvir, Ariel Gabizon, and Avi Wigderson. Extractors and rank
extractors for polynomial sources. Computational Complexity, 18(1):1–
58, 2009.

[DLN+04] Cynthia Dwork, Michael Langberg, Moni Naor, Kobbi Nissim, and Omer
Reingold. Succinct NP proofs and spooky interactions, December 2004.
Available at www.openu.ac.il/home/mikel/papers/spooky.ps.

[EG85] Taher El Gamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. IEEE Transactions on Information Theory,
31(4):469–472, 1985.

[FG12] Dario Fiore and Rosario Gennaro. Publicly verifiable delegation of large
polynomials and matrix computations, with applications. Cryptology
ePrint Archive, Report 2012/281, 2012.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: practical solutions to
identification and signature problems. In Proceedings of the 6th Annual
International Cryptology Conference, CRYPTO ’87, pages 186–194, 1987.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive ver-
ifiable computing: outsourcing computation to untrusted workers. In
Proceedings of the 30th Annual International Cryptology Conference,
CRYPTO ’10, pages 465–482, 2010.

[GGPR12] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic span programs and succinct NIZKs without PCPs. Cryptology
ePrint Archive, Report 2012/215, 2012.

[GH98] Oded Goldreich and Johan H̊astad. On the complexity of interactive
proofs with bounded communication. Information Processing Letters,
67(4):205–214, 1998.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating
computation: Interactive proofs for Muggles. In Proceedings of the 40th
Annual ACM Symposium on Theory of Computing, STOC ’08, pages
113–122, 2008.

[GLR11] Shafi Goldwasser, Huijia Lin, and Aviad Rubinstein. Delegation of com-
putation without rejection problem from designated verifier CS-proofs.
Cryptology ePrint Archive, Report 2011/456, 2011.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof systems. SIAM Journal on Computing,
18(1):186–208, 1989. Preliminary version appeared in STOC ’85.

[GR05] Ariel Gabizon and Ran Raz. Deterministic extractors for affine sources
over large fields. In Proceedings of the 46th Annual IEEE Symposium on
Foundations of Computer Science, FOCS ’05, pages 407–418, 2005.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge argu-
ments. In Proceedings of the 16th International Conference on the
Theory and Application of Cryptology and Information Security, ASI-
ACRYPT ’10, pages 321–340, 2010.

[GVW02] Oded Goldreich, Salil Vadhan, and Avi Wigderson. On interactive proofs
with a laconic prover. Computational Complexity, 11(1/2):1–53, 2002.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive
arguments from all falsifiable assumptions. In Proceedings of the 43rd
Annual ACM Symposium on Theory of Computing, STOC ’11, pages
99–108, 2011.

[HK05] Johan H̊astad and Subhash Khot. Query efficient PCPs with perfect
completeness. Theory of Computing, 1(1):119–148, 2005.

[HT98] Satoshi Hada and Toshiaki Tanaka. On the existence of 3-round zero-
knowledge protocols. In Proceedings of the 18th Annual International
Cryptology Conference, CRYPTO ’98, pages 408–423, 1998.

[IKO07] Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Efficient argu-
ments without short PCPs. In Proceedings of the Twenty-Second An-
nual IEEE Conference on Computational Complexity, CCC ’07, pages
278–291, 2007.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In
Proceedings of the 24th Annual ACM Symposium on Theory of Comput-
ing, STOC ’92, pages 723–732, 1992.

[KR08] Yael Kalai and Ran Raz. Interactive PCP. In Proceedings of the 35th
International Colloquium on Automata, Languages and Programming,
ICALP ’08, pages 536–547, 2008.

[KR09] Yael Tauman Kalai and Ran Raz. Probabilistically checkable arguments.
In Proceedings of the 29th Annual International Cryptology Conference,
CCC ’09, pages 143–159, 2009.

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-
interactive zero-knowledge arguments. In Proceedings of the 9th Theory
of Cryptography Conference, TCC ’12, pages 169–189, 2012.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. In Proceedings of the 29th Annual In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques, EUROCRYPT ’10, pages 1–23, 2010.

[Mei12] Or Meir. Combinatorial PCPs with short proofs. In Proceedings of the
26th Annual IEEE Conference on Computational Complexity, CCC ’12,
2012.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM Journal on Comput-
ing, 30(4):1253–1298, 2000. Preliminary version appeared in FOCS ’94.

[Mie08] Thilo Mie. Polylogarithmic two-round argument systems. Journal of
Mathematical Cryptology, 2(4):343–363, 2008.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In Proceedings
of the 23rd Annual International Cryptology Conference, CRYPTO ’03,
pages 96–109, 2003.

[NN90] Joseph Naor and Moni Naor. Small-bias probability spaces: efficient
constructions and applications. In Proceedings of the 22nd Annual ACM
Symposium on Theory of Computing, STOC ’90, pages 213–223, 1990.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree
residuosity classes. In Proceedings of the 17th International Confer-
ence On Theory And Application Of Cryptographic Techniques, EURO-
CRYPT ’99, pages 223–238, 1999.

[PQ12] Christophe Petit and Jean-Jacques Quisquater. On polynomial systems
arising from a Weil descent. In Proceedings of the 18th International
Conference on the Theory and Application of Cryptology and Information
Security, ASIACRYPT ’12, 2012.

[SBV+12] Srinath Setty, Benjamin Braun, Victor Vu, Andrew J. Blumberg, Bryan
Parno, and Michael Walfish. Resolving the conflict between generality
and plausibility in verified computation. Cryptology ePrint Archive, Re-
port 2012/622, 2012.

[SBW11] Srinath Setty, Andrew J. Blumberg, and Michael Walfish. Toward practi-
cal and unconditional verification of remote computations. In Proceedings
of the 13th USENIX Conference on Hot Topics in Operating Systems,
HotOS ’13, pages 29–29, 2011.

[Sha92] Adi Shamir. IP = PSPACE. Journal of the ACM, 39(4):869–877, 1992.
[SMBW12] Srinath Setty, Michael McPherson, Andrew J. Blumberg, and Michael

Walfish. Making argument systems for outsourced computation practical
(sometimes). In Proceedings of the 2012 Network and Distributed System
Security Symposium, NDSS ’12, 2012.

[SVP+12] Srinath Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun, Andrew J.
Blumberg, and Michael Walfish. Taking proof-based verified computation
a few steps closer to practicality. In Proceedings of the 21st USENIX
Security Symposium, Security ’12, 2012.

[Val77] Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In
Mathematical Foundations of Computer Science, volume 53 of Lecture
Notes in Computer Science, pages 162–176. 1977.

[Wee05] Hoeteck Wee. On round-efficient argument systems. In Proceedings of the
32nd International Colloquium on Automata, Languages and Program-
ming, ICALP ’05, pages 140–152, 2005.

