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Abstract. It is known that cryptographic feasibility results can change
by moving from the classical to the quantum world. With this in mind, we
study the feasibility of realizing functionalities in the framework of uni-
versal composability, with respect to both computational and information-
theoretic security. With respect to computational security, we show that
existing feasibility results carry over unchanged from the classical to the
quantum world; a functionality is “trivial” (i.e., can be realized without
setup) in the quantum world if and only if it is trivial in the classical
world. The same holds with regard to functionalities that are complete
(i.e., can be used to realize arbitrary other functionalities).

In the information-theoretic setting, the quantum and classical worlds
differ. In the quantum world, functionalities in the class we consider are
either complete, trivial, or belong to a family of simultaneous-exchange
functionalities (e.g., XOR). However, other results in the information-
theoretic setting remain roughly unchanged.

1 Introduction

In a classical setting of cryptography, participants in a protocol (both the hon-
est parties and the adversary), are modeled as being able to perform classical
computation only. In the quantum setting, however, parties are able to send and
receive quantum states and process quantum information. It is well known that
cryptographic feasibility results in these two settings differ; for example, key
exchange with information-theoretic security is possible in the quantum world,
but not in the classical world. In this paper we focus on protocols for univer-
sally composable two-party computation, and study the relationships between
feasibility/impossibility results in the classical and quantum settings.
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1.1 Universally Composable Computation in the Classical World

Our focus in on secure computation within the framework of universal compos-
ability [8], which provides strong composition guarantees when arbitrary proto-
cols are executed concurrently. Soon after the introduction of this framework,
Canetti and Fischlin [9] showed that, without honest majority, UC commitment
is impossible to achieve. This was later extended to rule out protocols for securely
achieving most other “interesting” tasks [10, 32].

On the positive side, it is known that (under suitable cryptographic assump-
tions) any functionality can be securely computed, without honest majority, if
we are willing to assume some form of trusted setup such as a common ref-
erence string [9, 11]. Subsequent work has identified other complete setup as-
sumptions [1, 19, 18, 12]. Completeness results in the information-theoretic (or
statistical) setting, where the adversary is computationally unbounded, have
also been shown [21, 18].

Maji et al. [28] proved a zero/one law: every two-party deterministic function
with polynomial-size input domain is either trivial1 (i.e, can be realized in the
UC framework with no setup assumptions), or complete (i.e., sufficient for com-
puting arbitrary other functions, under appropriate complexity assumptions).
This characterization was extended by Katz et al. [20], who showed complete-
ness for deterministic functions with exponential-size input domains, and by
Rosulek [33], who showed completeness for randomized, reactive functions as
well. In the setting of information-theoretic security, Kraschewski et al. [22] give
a characterization of completeness for two-party deterministic functionalities,
and show that a zero/one laws does not hold. In fact, Maji et al. [27] show there
is an infinite hierarchy of function complexity in the statistical setting.

1.2 The Shift to a Quantum World

How do the results described in the previous section change when we move to
the quantum world? The answer, a priori, is unclear. Feasibility results in the
classical setting may not hold in the quantum setting since quantum adversaries
are more powerful than classical ones. This is true even if “quantum-resistant”
cryptographic assumptions are used, since techniques such as rewinding that
are used to prove security against classical adversaries may not apply in the
quantum setting. Even in the case of statistical security, feasibility results may
not translate from the classical world to the quantum world [14].

In the other direction, impossibility results in the classical setting might po-
tentially be circumvented in the quantum setting since honest parties can rely on
quantum mechanics, too. As a notable example of this, statistically secure key
exchange is possible in the quantum world [3] but not in the classical one. While
several impossibility results for statistically secure two-party computation in the
quantum setting are known [29, 24, 23, 34, 6], these results say nothing about
the computational setting. They also say nothing about what might be possi-
ble given trusted setup. An example here, that also demonstrates the power of

1 We use trivial and feasible exchangeably hereafter.
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quantum protocols, arises in the context of building oblivious transfer (OT) from
commitment. Classically, this is impossible [27]. However, there is a construction
of OT from commitment in the quantum world [4, 15, 36, 5]; as a consequence,
commitment is complete for UC computation in that setting [36].

Given the above, the situation regarding triviality and completeness of func-
tionalities within the quantum UC framework (see Section 2) is unclear, though
partial answers are known. In the statistical setting, Unruh [36] gives a generic
“lifting” theorem asserting that classically secure protocols remain (statistically)
secure in the quantum world. So any functionalities that are classically trivial (in
a statistical sense) are also trivial in a quantum setting. Moreover, any functional-
ity that is classically complete in a statistical sense (and so in particular OT [36])
is complete with respect to the quantum UC framework as well. The situation
is less clear with regard to computational security. A recent work by Hallgren
et al. [17] “salvages” a few classically complete functionalities, showing that,
for example, coin-flipping and zero-knowledge are still complete in the quantum
world. But this does not rule out the possibility that some classically complete
functionalities are no longer complete in the quantum setting.

1.3 Our Results

We study feasibility and completeness of an interesting class of two-party, deter-
ministic functionalities on polynomial-size domains. We prove generic, quantum-
lifting theorems and use them to show that feasibility in the quantum world
is equivalent to classical feasibility, in both the computational and statistical
settings. An important ingredient here is a quantum analogue of the Canetti-
Fischlin result [9], showing that there is no quantum protocol realizing UC com-
mitment against computationally bounded quantum adversaries in the plain
model.2 This result extends the known impossibility results mentioned earlier
for statistically secure protocols in the quantum setting.

At the core of our quantum-lifting theorems is a quantum construction of sta-
tistically secure OT from the “2-bit cut-and-choose” functionality F2CC. (Note
that F2CC is not complete in the classical setting.) Our construction is a modi-
fication of the BBCS protocol [4], but existing techniques do not seem to apply
for arguing its security. Instead, we introduce and analyze an adaptive version
of the sampling technique from [5], and use this to prove the security of our OT
protocol. The adaptive-sampling analysis may be of independent interest.

Our lifting theorems for the case of computational security, together with
Unruh’s lifting theorem for the statistical case [36], imply that any classically
complete functionality remains complete in the quantum setting. On the other
hand, we identify tasks that are statistically complete using quantum protocols
but are incomplete classically. Our results show, roughly, that every functionality
in our class is either trivial or complete in the quantum computational setting;
thus, the situation here is analogous to the classical case [28]. In the quantum

2 A similar result was stated in [31] with no proof.
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statistical setting, however, functionalities fall into one of three different classes;
this is in contrast with the (more complicated) classical picture [27, 22].

1.4 Additional Related Work

Proving security of quantum protocols has been challenging and nontrivial. In-
deed, it was only several years after the invention of quantum key-exchange
protocols that rigorous proofs of security were given [30, 25, 35]. With regard
to secure computation, the first broad feasibility results were in the setting of
multi-party protocols with information-theoretic security, assuming honest ma-
jority [13, 2]. Positive results for computational security in the quantum world,
without honest majority, have only recently been shown [37, 26, 17, 16].

1.5 Outline of the Paper

In Section 2, we describe the classical and the quantum UC models as well as
our terminology. We prove our lifting theorems for completeness in Section 3,
and for feasibility in Section 4. In Section 5, we apply our lifting theorems to
classify the cryptographic complexity of functionalities in the class we consider.

2 The Model

In this section we describe the model and our terminology. We consider two types
of security statements, namely classical and quantum. The classical statements
are done in Canetti’s (classical) UC framework [8]. For quantum statements
we use the recently developed quantum-UC framework [36]. In this work, we
assume static, i.e., non-adaptive corruption. Namely an adversary chooses the
set of parties to corrupt before execution of the protocol.

The UC framework. The security of protocols is argued via the simulation
paradigm. Intuitively, a protocol securely realizes a given ideal functionality F, if
the adversary cannot gain more in the protocol (real-world) than what she could
in an ideal-evaluation of F where a trusted party computes the function values
and hand them to designated players (ideal-world). More formally, a protocol π
securely realizes a functionality F if for every real-world adversary A there ex-
ists an ideal-world adversary S, called the simulator, such that no environment
can distinguish whether it is witnessing the real-world execution with adversary
A or the ideal-world execution with simulator S. The parties, the adversary,
the simulator, the functionalities, and the environment, are modeled as inter-
active Turing-machines (ITMs). Depending on the assumed computing power
of the adversaries and the environment we distinguish between computational
security, where they are all considered to be polynomially bounded ITMs, and
information-theoretic (i.t.), also known as statistical security, where they are as-
sumed to be computationally unbounded.
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Universal composability and the hybrid model. The most important fea-
ture of the simulation-based security definition is that it allows to argue about
security of protocols in a composable way. In particular, let π be a protocol which
securely realizes a functionality F. If we can prove that a protocol π′ securely
realizes a functionality F′ using invocations of F as in the ideal world, then it
follows automatically that if we replace in π′ the invocations of F by invocations
of π, the resulting protocol also securely realizes F′. Therefore we only need to
prove the security of π′ in the so-called F-hybrid model, where the players run
π′ and are allowed to make invocations to F.

Reductions and cryptographic complexity. For two ideal functionalities F
and F′, we say that F computationally (classical) UC reduces to F′, denoted
as F vccomp F′, if there exists a F′-hybrid protocol πF

′
which computationally

securely realizes F. If the protocol πF
′

statistically securely realizes F, then we
say that F statistically (classical) UC reduces to F′, denoted as F vcstat F′. As
syntactic sugar, we say that F and F′ are computationally (resp. statistically)

UC equivalent, denoted as F
ccomp
≡ F′ (resp. F cstat≡ F′), if F vccomp F′ and

F′ vccomp F (resp. F vcstat F′ and F′ vcstat F).

The reduction-relation v is “transitive” in the sense that if F′ v F, then any
task which is implementable in the F′-hybrid world is also implementable in the
F-hybrid world. This implies a notion of cryptographic complexity for functions,
where F′ v F implies that F is at least as high in the hierarchy as F′.

Feasibility and completeness. Let FSEC denote the secure channels function-
ality.We say that a functionality F is computationally (resp. statistically) UC
feasible if F vccomp FSEC (resp. F vcstat FSEC). Furthermore, we say that F is
computationally (resp. statistically) UC complete if for any well-formed function-
ality F′ : F′ vccomp F (resp. F′ vcstat F).

The Quantum UC framework [36]. The quantum-UC framework generalizes
the classical UC model, in which the players (including the adversaries and the
environment) are quantum machines. A quantum universal composition theo-
rem was proved in [36]. We point out that in this work we only consider ideal
functionalities with classical inputs and outputs. For two ideal functionalities
F and F′, we say that F computationally quantum-UC reduces to F′, denoted
as F vqcomp F′, if there exists a F′-hybrid protocol πF

′
which computationally

securely realizes F. If the protocol πF
′

statistically securely realizes F, then we
say that F statistically quantum-UC reduces to F′, denoted as F vqstat F′. We
say that a functionality F is computationally (resp. statistically) quantum-UC
feasible if F can be computationally (resp. statistically) quantum-UC realized in
the plain quantum-UC model, i.e., without assuming any hybrids.3 Furthermore,
we say that F is computationally (resp. statistically) quantum-UC complete if for
any well-formed (classical) functionality F′ : F′ vqcomp F (resp. F′ vqstat F).

3 We point out that quantum secure channel is implied by authentication channel
due to QKD protocols, which is by default provided in the quantum-UC framework,
hence there is no need to assume quantum secure channels.
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The definitions of computation and statistical quantum-UC equivalence is also
analogous to the classical setting.

In [36] the so-called (statistical) quantum lifting theorem was proved which,
roughly speaking shows that if a classical protocol is statistically UC secure then
it is also statistically quantum-UC secure.

Fact 1 ([36, Theorem 15] – The Quantum Lifting Theorem) If a proto-
col π statistically UC realizes a functionality F, then π statistically quantum-UC
realizes the functionality F.

Remark 1 (Polynomial Simulation). In all the security definitions considered in
this work we explicitly require that the simulator’s running time is polynomial to
the running time of the adversary. We call this property polynomial simulation.
The property ensures that when a protocol statistically realizes a functionality,
then it also computationally realizes it [7, 8]. We point out that the definition of
statistical quantum-UC security in [36] explicitly requires polynomial simulation.

Ideal functionalities and the class U−. Ideally, we would like our statements
to cover the whole class U of finite, deterministic, two-party functionalities, which
is the central class studied in [27, 28]. However, we were unable to prove or
disprove (quantum-UC) neither completeness nor feasibility of the 1-bit cut-
and-choose functionality F1CC ∈ U (also denoted as FCC). We were able to prove
statistical quantum-UC completeness of its “closest sibling;” namely, the 2-bit
cut-and-choose functionality F2CC.

4 Therefore, our results are for the slightly
smaller class U− which is U excluding the small fraction of functionalities that
are sufficient for (statistically classically) realizing F1CC but not for realizing F2CC.
Formally:

U− = {F | (F ∈ U) ∧ ((F2CC vcstat F) ∨ (F1CC 6vcstat F))}.

Note that, as demonstrated in [28], the missing fraction, i.e., U \ U−, is indeed
very small as, roughly, it corresponds to the lowest primitive of an infinite strict
hierarchy of (statistically classically) incomplete “cut-and-choose” primitives.5

Nevertheless, it remains an open problem to prove quantum-UC feasibility or
completeness of F1CC (which would complete the characterization of U) as it
does not follow from any known classical or quantum results.

For completeness, we list a few two-party ideal functionalities that are used
as setups in this work.Consistently with existing literature we use the names
Alice and Bob for the parties:

• 1-out-of-2 Oblivious Transfer FOT: Alice (the sender) inputs 2 bits (s0, s1) and
Bob (the receiver) inputs a selection bit c ∈ {0, 1}. Bob receives sc from FOT. We

4 Our conjecture is that F1CC is also statistically quantum-UC complete. Recall that
classically neither FCC nor F2CC is statistically UC complete [28].

5 These are variations of F2CC parameterized by the size of Bob’s input, i.e., FmCC

behaves as FCC where Bob’s input is a string of length m. (F1CC is the lowest and
F2CC is the second lowest primitive in this hierarchy.) [28].
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also consider the more general string OT, where (s0, s1) are `-bit strings. Our
OT protocol in Sect. 3.1 realizes string OT.

• Commitment FCOM: Alice (the committer) inputs a bit b and Bob (the receiver)
receives from FCOM a notification that a bit was received. At a later point, Alice
can input the command open to FCOM in which case Bob receives b.

• XOR FXOR: Alice and Bob input bits bA and bB , respectively. They both receive
the output y = bA ⊕ bB .

• 2-bit Cut-and-Choose F2CC: Bob inputs a 2-bit string b = (b0, b1), an Alice
inputs a selection bit sA; informally, sA indicates whether or not Alice wishes
to learn b. Bob receives output sA and Alice receives output b if sA = 1, and
receives ⊥ if sA = 0.
• Coin Tossing FCOIN: Alice and Bob input a request to FCOIN, and FCOIN randomly
chooses a fair coin r ∈ {0, 1} and it then sends delayed output r to both Alice
and Bob.

Note that the functionalities FOT, FXOR, F2CC, and FCOM are in the set U−.

Notational conventions. Throughout the paper we use small π to denote a
classical protocol in classical UC model, while we use capital Π to denote a
classical or quantum protocol in quantum UC model.

3 Quantum Lifting for Completeness

In this section we prove that statements about completeness of functionalities
in the classical setting are preserved in the quantum setting. More precisely, we
prove the following theorem:

Theorem 1. For any F ∈ U− the following statements hold:

1. (Statistical Setting) If F is statistically classical-UC complete then F is sta-
tistically quantum-UC complete.

2. (Computational Setting) If F is computationally classical-UC complete under
the semi-honest OT assumption shOT then F is computationally quantum-
UC complete under the assumptions of existence of a quantum-secure pseu-
dorandom generator and a dense encryption that is quantum IND-CPA.

The statistical statement follows easily from Unruh’s quantum lifting theorem
(Fact 1) and the definition of completeness. In the remaining of this section
we prove the computational statement. To this direction we follow a structure
similar to that of [28]: First, in Section 3.1 we show that for any F ∈ U−,
either F is computationally quantum-UC feasible or for a functionality F′ ∈
{FXOR,FOT,F2CC,FCOM}, there exists a statistically quantum-UC secure protocol
which reduces F′ to F. Second, in Section 3.2, we show that FXOR, FOT, F2CC, and
FCOM are computationally quantum-UC complete. Statement 2 of the theorem
follows then immediately by combining the above steps and using the fact that
any statistically quantum-UC secure protocol is also computationally quantum-
UC secure.
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3.1 Non-Feasibility Implies FXOR, FOT, F2CC, or FCOM

To show that every infeasible F ∈ U−, there is some F′ ∈ {FXOR,FOT,F2CC,FCOM}
such that F′ vqcomp F, we use the following result that is proved in [28, Theo-
rems 1,4]: if F ∈ U is not UC feasible, then for F′ vcstat F. Using this result on
U− we obtain the following:

Fact 2 ([28]) Let F ∈ U−. If F is not compuationally (UC) feasible, then for
some F′ ∈ {FXOR,FOT,F2CC,FCOM} the following holds: F′ vcstat F.

Because the reductions in Fact 2 are information-theoretic (with polynomial-
simulation), the statement can be translated to the quantum-UC setting by
Fact 1. This proves the following lemma:

Lemma 1. Let F ∈ U−. If F is not statistically quantum-UC feasible , then for
some F′ ∈ {FXOR,FOT,F2CC,FCOM} the following holds: F′ vqstat F.

Proof. First observe that F is not statistically classical-UC feasible, because oth-
erwise the lifting lemma (Fact 1) will impy that F is also statistically quantum-
UC feasible, contradicting the assumption. Then by our lifting theorem for fea-
sibility in later section (Sect. 4, Theorem 2), statistical UC infeasibility of F
implies that F is not computationally UC feasible. Then Fact 2 tells us that for
some F′ ∈ {FXOR,FOT,F2CC,FCOM} : F′ vcstat F , which, in turns implies that
F′ vqstat F by Fact 1.

3.2 Quantum-UC Completeness of FXOR, FOT, F2CC, and FCOM

We next prove that each of the functionalities FXOR,FOT, F2CC and FCOM is compu-
tationally quantum-UC complete6. The quantum-UC completeness of FOT and
FCOM was proved in [36]:

Lemma 2. FOT and FCOM are statistically quantum-UC complete.

This immediately gives us the desired computational quantum-UC complete-
ness of FOT and FCOM. Next, we show completeness for the XOR functionality. To
this direction we use the following idea: first we use the straight-forward classical
FXOR-hybrid coin-tossing protocol (each party chooses a random bit and sends
it to FXOR; the output of every party is the value they receive from FXOR) to
construct FCOIN; subsequently, we apply the results of [17] who proved computa-
tionally quantum-UC completeness of FCOIN under proper assumptions.

Lemma 3. Assuming existence of a quantum-secure pseudorandom generator
and a dense encryption that is quantum IND-CPA, then FXOR is computationally
quantum-UC complete.

6 Actually, as will be shown, FCOM, FOT, F2CC are statistically quantum-UC complete.
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The most involved completeness proof is the one concerning the cut-and-
choose functionality F2CC. In [28], they constructed a classical protocol realizing
FCOM from F1CC. However, their security proof involves rewinding, and it is unclear
how to make it go through against quantum adversaries.7

Instead, we demonstrate completeness of F2CC by constructing a quantum
protocol that statistically quantum-UC realizes FOT in F2CC-hybrid world (and
then applying Lemma 2). The idea is motivated by the quantum OT construction
in the FCOM hybrid world by Bennett et al [4]. In this protocol, roughly speaking,
FCOM is used in a checking subroutine to ensure that malicious Bob measures
his qubits upon arrival (and does not store them until Alice informs him about
the bases used). More specifically, Alice sends several qubits encoded in random
bases, and Bob measures all of them and commits, for each qubit, to the pair
(x̃Bi , θ̃

B
i ), where x̃Bi is the outcome of the measurement of the ith qubit and θ̃Bi

is the corresponding basis Bob used. Alice then asks Bob to open a randomly
chosen subset of the committed pairs, and she checks consistency with how she
had prepared the qubits. Intuitively, this indeed ensures that Bob has measures
most of the qubits, as otherwise he would not know what to commit to. Formally
proving this intuition turned out to be non-trivial, with the first rigorous proofs
given in [15, 36, 5].

Our protocol uses, instead of commitments, invocations to F2CC to implement
the checking step (see the protocol ΠQOT below). Intuitively, this should enforce
Bob to measure all the qubits as in the original protocol based on commitments.
Unfortunately, the formal proof does not carry over. The problem arises from
the fact that in the original protocol, Bob has to commit to all the θ̃Bi and x̃Bi
before he gets to see the random subset that Alice chooses for testing consistency,
whereas in our protocol based on F2CC, Bob can make his input (θ̃Bi , x̃

B
i ) to F2CC

adaptively, and dependent on which prior positions Alice has tested. Current
proofs, like [15, 5], cannot deal with that.

In order to deal with this issue, we introduce an adaptive version of the
sampling framework of [5]. We then show, analogous to the static setting as
in [5], that the security of the OT scheme reduces to the analysis of a quantum
sampling problem in our adaptive sampling framework. Analyzing the quantum
sampling problem can further be reduced to a classical probabilistic analysis,
which can be handled by standard techniques (e.g., Azuma’s inequality).

In the following, we describe the F2CC-hybrid OT protocol ΠQOT and state its
security in Lemma 4. The formal proof can be found in the full version.

Lemma 4. There exists an F2CC-hybrid protocol which statistically quantum-UC
realizes FOT.

The following corollary follows from Lemma 4 and the completeness of FOT

(Lemma 2), by applying the quantum-UC composition theorem.

7 It is in general hard to clearly define what it means for a security proof to “not
use rewinding”. It is not enough for the protocol to have a straight-line simulator,
which [28] actually satisfies. The subtlety is that the correctness of the simulator
might still involve rewinding argument (e.g., in defining hybrid experiments).
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Protocol ΠQOT

Parameters: A family F =
{
f : {0, 1}n → {0, 1}`

}
of universal hash functions.

Parties: The sender Alice and the recipient Bob.
Inputs: Alice gets two `-bit strings s0 and s1, Bob gets a bit c.

1. (Initialization)
1.1 Alice chooses x̃A = (x̃A1 , . . . , x̃

A
n ) ∈R {0, 1}n and θ̃A = (θ̃A1 , . . . , θ̃

A
n ) ∈R

{+,×}n uniformly at random and sends |x̃A〉θ̃A to Bob who denotes the
received state by |ψ〉.

2.2 Bob chooses θ̃B = (θ̃B1 , . . . , θ̃
B
n ) ∈R {+,×}n uniformly at random and

measures the qubits of |ψ〉 in the bases θ̃B ; denote the result by x̃B :=
(x̃B1 , . . . , x̃

B
n ).

2. (Checking)
2.1 For i = 1, . . . n the following steps are executed sequentially:

(a) Alice chooses a bit bi ∈R {0, 1} uniformly at random.
(b) Alice and Bob invoke F2CC with inputs bi and (x̃Bi , θ̃

B
i ), respectively.

2.2 If in some iteration i of Step 2.1 Alice receives θ̃Bi = θ̃Ai but x̃Bi 6= x̃Ai , then
Alice aborts. If in Step 2.1 Bob receives (as output of F2CC) the bit bi = 1
more than 3n/5 times then Bob aborts.

2.3 Let x̂A be the string resulting from removing in x̃A the bits at positions i
with bi = 1. Define θ̂A, x̂B , θ̂B analogously.

3. (Partition Index Set) Alice sends θ̂A to Bob. Bob sets Ic := {i : θ̂Ai = θ̂Bi }
and I1−c := {i : θ̂Ai 6= θ̂Bi }. Then Bob sends (I0, I1) to Alice.

4. (Secret Transferring)
4.1 Alice picks a function f ∈R F; for i = 0, 1 : Alice computes mi := si⊕f(x′i),

where x′i is the n-bit string that consists of x̂A|Ii padded with zeros, and
sends (f,m0,m1) to Bob.

4.2 Bob outputs s := mc ⊕ f(x′B), where x′B is the n-bit string that consists of
x̂B |Ic padded with zeros.

Corollary 1. F2CC is statistically quantum-UC complete.

The proof of Theorem 3 follows easily from Lemmas 1, 2, 3, and Corollary 1,
by applying the quantum-UC composition theorem.

4 Quantum Lifting for Feasibility

In this section we show a bi-directional lifting theorem for feasibility statements.
Informally, we show that if a functionality F ∈ U− is feasible in the classical
UC setting, then F is also feasible in the quantum-UC setting and vise versa.
In fact, we can even show a stronger statement, namely that the set of feasible
functionalities in U− is the same set irrespective of whether we are considering
the classical or the quantum setting and independent of the level of security (i.e,
computational or statistical). We point out that the computational statements
in the following theorem are under that semi-honest OT assumption for the
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classical setting, and under the assumptions of existence of a quantum-secure
pseudorandom generator and a dense encryption that is quantum IND-CPA, for
the quantum setting.

Theorem 2. Let F ∈ U−. The following statements are equivalent

1. F is computationally (classical) UC feasible.

2. F is statistically (classical) UC feasible.

3. F is statistically quantum-UC feasible.

4. F is computationally quantum-UC feasible.

Proof. (1 ⇒ 2) is already implicit in [28]. For F ∈ U−, if F is computationally
feasible, then such F is splittable and we can construct a trivial protocol [32].
Then we can show the same trivial protocol can realize F information theoreti-
cally, which means F is statistically feasible.

(2 ⇒ 3) is immediate from Unruh’s quantum lifting lemma. (3 ⇒ 4) follows
because we require poly-time simulation in statistical UC model, and hence
statistical UC security in particular implies computational UC security. We are
left to show (4⇒ 1).

Assume for contradiction that F is computationally quantum-UC feasible
but classically not computationally classical-UC feasible. Invoke Fact 2 again,
we have that for some F′ ∈ {FOT,F2CC,FCOM,FXOR} : F′ vcstat F, which by Theo-
rem 1, implies that F is computationally quantum-UC complete. This, combined
with the assumption that F is computationally quantum-UC feasible, implies
that every F ∈ U− is computationally quantum-UC feasible. This is a contra-
diction because one can prove that FCOM is not computationally quantum-UC
feasible, i.e., there exists no (quantum) protocol that realizes FCOM with compu-
tational quantum-UC security. The argument is similar the classical impossibility
proof of UC commitments [9], and the details can be found in the full version.

5 Putting it Together

In this section we bring the pieces together and describe the cryptographic-
complexity landscape for U− in the quantum world. In the case of computational
quantum-UC security, we can derive a zero/one law in the flavor of [28]. For
statistical quantum-UC security we show that, roughly speaking, every F ∈ U−
is either statistically quantum-UC feasible, or F is statistically quantum-UC
complete, or FXOR statistically quantum-UC reduces to F.

5.1 Computational Security: A Zero/One Law

Our quantum lifting theorems for feasibility and completeness imply that all
computational UC complete (resp. UC feasible) functionalities in U− are also
computational quantum-UC complete (resp. quantum-UC feasible). Using this
fact along with the classical zero/one law, one can derive a zero-one law for the
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computational quantum-UC setting in a straight-forward manner (under the
assumptions of existence of a quantum-secure pseudorandom generator and a
dense encryption that is quantum IND-CPA). This proves the following theorem
(see Figure 1a):

Theorem 3 (A Computational Zero/One Law). Every functionality F ∈
U− is either computationally quantum-UC feasible or computationally quantum-
UC complete.

As a straightforward corollary of the above theorem we can conclude that
the quantum lifting theorem for completeness can be made bi-directional in the
computational setting. Theorem 1 already states that computational complete-
ness of some F ∈ U− in the classical setting implies computational completeness
of F in the quantum setting. In the other direction, if F is quantumly-UC com-
plete, then Theorem 3 implies that it is not quantum-UC feasible, which implies
(by Theorem 2) that it is not (classically) UC feasible; hence, the computational
(classical) zero/one law implies that F is computationally (classically) UC com-
plete. This proves the following:

Corollary 2. Let F ∈ U− be a functionality. F is computationally UC complete
under the semi-honest OT assumption shOT if and only if F is computationally
quantum-UC complete under the assumptions of existence of a quantum-secure
pseudorandom generator and a dense encryption that is quantum IND-CPA.

5.2 Statistical Security: Three Classes

We next turn to the setting of statistical security. In the classical setting, the
cryptographic-complexity landscape is complicated, as, apart from the com-
plete/feasible functionalities, there is a partition of the set U− in clusters for
which the exact relation is not known. In contrast we can show a “[zero/xor/one]-
law” in the statistical quantum-UC setting. In other words we can divide the
class U− into functionalities that are either complete, or feasible, or we can re-
duce FXOR to them. This considerably simplifies the landscape of the classical
statistical setting, as the hierarchy of functionalities that we can reduce F2CC to
collapses at the second level (i.e, to F2CC) which as it follows from Lemma 4 is
in fact complete in the quantum setting. This illustrates, as [36] mentioned also,
that the inverse of the Unruh’s quantum lifting lemma is in general not true.
Namely, there exist classical well-formed infeasible functionalities F and F′ such
that there exist an F-hybrid quantum protocol which statistically quantum-UC
securely realizes F′, but there exists no F-hybrid classical protocol which statis-
tically classical-UC realizes F′.

The following theorem states the aforementioned zero/xor/one-law:

Theorem 4 (A [zero/xor/one]-law for the information-theoretic set-
ting). Let F ∈ U−. Then exactly one of the following statements holds: (1) F
is quantum-UC feasible, (2) F is quantum-UC complete, and (3) F is neither
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quantum-UC complete nor quantum-UC feasible and FXOR vqstat F. Further-
more, for each of the three statements, there exists at least one F ∈ U− which
satisfies it.

Proof (Sketch). By Lemma 2 and because statistically, F2CC, FCOM and FOT are
quantum-UC complete and FXOR is not quantum-UC feasible (since otherwise
FXOR is also classical-UC feasible, contradicting the classical impossibility result
in [27]), we can see that that for any F ∈ U−, either F is quantum-UC feasible,
or at least one of the following two statements holds: (1) F is quantum-UC
complete and (2) FXOR vqstat F.

We then show that FXOR is not quantum-UC complete by proving that there
is no quantum protocol that UC realizes FCOM in the FXOR-hybrid world. Proof of
this statement is reminiscence of Lo and Chau’s proof that quantum protocols
are impossible to implement commitment [24]. The essence there is a so called
“purification” attack where a dishonest sender can purify the protocol in the
commit phase which allows him to apply a transformation on his local system,
by which he can open to a value other than what he committed to. In our case,
the only difference is that a quantum protocol can use FXOR as an extra setup.
However, FXOR is nothing but a classical fair-exchange channel. In particular,
the classical information in the protocol is symmetric to both parties, and we
can argue that a dishonest committer can make the overall quantum state pure
conditioned on shared classical information at the end of commit phase, so that
the purification attack still applies. We defer a formal proof to the full version.

Finally, [27] showed that classically the class of functionalities that FXOR

reduces to and are not complete, denoted E , are exactly those of the form
FEXCH

(`1,`2): simultaneous exchange channels that trasmit `1 (resp. `2) bits from
one party to the other. The above argument that FXOR is not quantum-UC com-
plete extends straightforwardly to all such FEXCH, thus we conclude that any
functionality in the FXOR family E are neither statistically quantum-UC complete
nor statistically quantum-UC feasible. Thus we can derive the quantum-UC sta-
tistical landscape for U− as in Figure 1b.
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