
Succinct Malleable NIZKs and an Application to
Compact Shuffles

Melissa Chase1, Markulf Kohlweiss2, Anna Lysyanskaya3, and
Sarah Meiklejohn4

1 Microsoft Research Redmond
melissac@microsoft.com

2 Microsoft Research Cambridge
markulf@microsoft.com

3 Brown University
anna@cs.brown.edu

4 UC San Diego
smeiklej@cs.ucsd.edu

Abstract. Depending on the application, malleability in cryptography
can be viewed as either a flaw or — especially if sufficiently understood
and restricted — a feature. In this vein, Chase, Kohlweiss, Lysyanskaya,
and Meiklejohn recently defined malleable zero-knowledge proofs, and
showed how to control the set of allowable transformations on proofs.
As an application, they construct the first compact verifiable shuffle, in
which one such controlled-malleable proof suffices to prove the correct-
ness of an entire multi-step shuffle.
Despite these initial steps, a number of natural problems remained: (1)
their construction of controlled-malleable proofs relies on the inherent
malleability of Groth-Sahai proofs and is thus not based on generic prim-
itives; (2) the classes of allowable transformations they can support are
somewhat restrictive.
In this paper, we address these issues by providing a generic construction
of controlled-malleable proofs using succinct non-interactive arguments
of knowledge, or SNARGs for short. Our construction can support very
general classes of transformations, as we no longer rely on the transfor-
mations that Groth-Sahai proofs can support.

1 Introduction

Recently, malleability is increasingly being viewed more as a feature than as
a bug [27, 28, 18, 1, 13, 16, 6]. In this vein, we (called CKLM in the sequel to
disambiguate between our current and prior work) [7] introduced controlled-
malleable non-interactive zero-knowledge proof systems (cm-NIZKs for short).
At a high level, a cm-NIZK allows one, given a proof π for an instance x ∈ L, to
compute a proof π′ for the related instance T (x) ∈ L for transformations T under
which the language is closed. This malleability property can be additionally
controlled, meaning there is some specified class of allowable transformations T
such that, given the proof π for x ∈ L, a new proof π′ for T (x) ∈ L may be

obtained only for T ∈ T . The notion of a cm-NIZK is non-trivial when the proof
system also needs to be concise or derivation-private; i.e., in addition to π′ being
the same size as π, it should be impossible to tell whether π′ was obtained using
a witness or by mauling a proof for a previous statement.

The notion of a derivation-private cm-NIZK is well motivated: as one ap-
plication, CKLM showed that it allows for the modular design of schemes that
satisfy randomizable and homomorphic chosen-ciphertext security. Another ap-
plication they presented is a compactly verifiable shuffle for an election, wherein
a set of encrypted votes, submitted by N different voters, is shuffled (i.e. re-
randomized and permuted), in turn, by L voting authorities. To ensure that
the authorities are behaving honestly, each authority provides a non-interactive
zero-knowledge proof that it has correctly shuffled the votes; if this is done using
standard NIZKs, then in order to verify that the overall shuffling process was
correct a verifier would need to access L separate proofs, each proving that an
authority correctly performed the shuffling process. If each proof is of size s(N),
this means that the verifier’s work is Θ(Ls(N)) (here we ignore the security
parameter). Using derivation-private cm-NIZKs, the verifier’s workload can be
reduced: each authority can, instead of producing a brand new proof, “maul”
the proof of the previous authority; the proof produced by the last authority
should then convince the verifier that the ciphertexts output at the end are a
valid shuffling of the input ciphertexts. This makes vote shuffling a factor of L
more efficient, as the verifier needs to verify a proof of size only Θ(s(N) + L).
(The size of the proof is still dependent on L because each authority needs to,
intuitively, add a “stamp of participation” in order for a verifier to ascertain that
the shuffling process was performed correctly.)

CKLM then showed how to construct derivation-private cm-NIZK proof sys-
tems for a limited, but nevertheless expressive, class of transformations. Specif-
ically, their approach builds heavily on the Groth-Sahai proof system [24]; this
means that they can consider only relations on group elements in groups that
admit bilinear pairings, and it might therefore seem as though controlled mal-
leability were just a property of the Groth-Sahai proof system and not necessarily
something that could be realized using more general building blocks. Interest-
ingly, as a consequence of this limitation, CKLM did not fully deliver on the
promise of a compactly verifiable shuffle: in order to prove that a given set of
ciphertexts is a shuffle, they needed to represent everything, including the trans-
formations applied to the set of ciphertexts, as a set of elements in the underlying
group. The way they chose to do this was using a permutation matrix; since this
permutation matrix needs to be extractable from the proof, the size of each proof
in their construction was Θ(N2 +L). For the usual voting scenario, in which the
number of voters far exceeds the number of mix authorities, a vote shuffling
scheme wherein each authority produces its own proof but the proofs are only
of size Θ(N) (such as the verifiable shuffle of Groth and Lu [23]), therefore has
a shorter proof overall.

Thus, the two important, and somewhat related open problems were: first,
can a derivation-private controlled-malleable NIZK be realized in a modular

fashion from general building blocks, without requiring the specific number-
theoretic assumptions underlying the Groth-Sahai proof system? Second, can
it be realized for general classes of languages and transformations, and not just
those languages whose membership is expressible using pairing product equations
over group elements as needed to invoke the Groth-Sahai proof system? In this
paper, we give a positive answer to both.

Our contributions. We first investigate how to construct a derivation-private cm-
NIZK from succinct non-interactive arguments (SNARGs) [22, 6]. We limit our
attention to t-tiered languages and transformations; briefly, a language is t-tiered
if each instance x can be efficiently labeled with an integer i = tier(x), 1 ≤ i ≤ t,
and a transformation T for a t-tiered language L is t-tiered if tier(T (x)) > tier(x)
for all x ∈ L where tier(x) < t, and T (x) = ⊥ if tier(x) = t. Some transformations
are naturally t-tiered: for example, a vote shuffling transformation carried out
by authority i should output a set of ciphertexts and stamps of approval from
each authority up to i; furthermore, all transformations can be made t-tiered if
one is willing to reveal how many times a transformation has been applied.

Intuitively, our construction works as follows: given a proof π for an instance
x ∈ L, to provide a proof for a new instance x′ = T (x) ∈ L, a user can form
a “proof of a proof;” i.e., prove knowledge of this previous instance x and its
proof π, as well as the transformation T from x to x′, and call this proof π′. By
the succinctness property of SNARGs, this new proof π′ can in fact be the same
size as the previous proof π, and thus this “proof of a proof” approach can be
continued without incurring any blowup in size.

Although the intuition is relatively simple, going from SNARGs to cm-NIZKs
is in fact quite challenging. While the outline above describes how to build mal-
leability into SNARGs, it is still the case that SNARGs satisfy only the non-
black-box notion of adaptive knowledge extraction, whereas cm-NIZKs require
a much stronger (black-box) version of extractability. (This stronger notion is
crucially used in the CCA encryption and the shuffle applications in CKLM.)
To therefore break all these requirements up into smaller pieces, we begin with
SNARGs and then slowly work our way up to cm-NIZKs in three separate con-
structions, with each construction incorporating an additional requirement.

We begin in Section 3.1 with a construction of a malleable SNARG. This
construction closely follows the intuition above (which is itself inspired by the
“targeted malleability” construction of Boneh et al. [6]): malleability is achieved
by proving knowledge of either a fresh witness or a previous instance and proof,
and a transformation from that instance to the current one. As observed by Bi-
tansky et al. [3, 4], care must be taken with this kind of recursive composition
of SNARGs, as the size of the extractor can quickly blow up as we continue
to extract proofs from other proofs; we can therefore construct t-tiered mal-
leable SNARGs (i.e., SNARGs malleable with respect to the class of all t-tiered
transformations) for only constant t. Furthermore, a formal treatment of our
particular recursive technique reveals that a stronger notion of extraction, in
which the extractor gets to see not only the random tape but also the code for

the adversary, is necessary for both our construction and the original one of
Boneh et al.

With our construction in Section 3.1, we therefore added malleability to the
SNARG while preserving succinctness. In Section 3.2, we next tackle the issue of
extractability; in particular, we want to boost from the non-black-box notion of
extractability supported by SNARGs to the standard black-box notion of a proof
of knowledge (NIZKPoK). To do this, we in fact rely only on the soundness of the
SNARG, and do not attempt to use the (non-black-box) extractor at all. Instead,
we perform a sort of verifiable encryption, in which we encrypt the witness and
then prove knowledge (using the malleable SNARG) of the value inside the
ciphertext; in this our approach is perhaps most similar to that of Damg̊ard
et al. [11]. A black-box extractor is then simple to construct: it just decrypts
the ciphertext and thus, provided the proof is sound, recovers the witness. In
addition, to preserve the full generality of our t-tiered transformations one would
instantiate the encryption scheme using fully homomorphic encryption, although
we will also see in Section 4 that interesting classes of transformations can still
be supported by more limited schemes (such as ones that are multiplicatively
homomorphic).

With our construction in Section 3.2, we therefore achieved the same prop-
erties that the Groth-Sahai proof system already provided (namely, a malleable
NIWIPoK), but with respect to a more general class of transformations. As such,
to now construct cm-NIZKs in Section 3.3, we can follow approximately the same
construction as CKLM, who also used malleable NIWIPoKs to construct their
cm-NIZK. Once again, however, care must be taken in this step, as we would
like to preserve the generality in the class of transformations that we supported
in the previous two sections. We therefore modify the CKLM construction to
allow for this, and thus achieve cm-NIZKs for all t-tiered transformations.

In summary, we show that if zero-knowledge SNARGs exist for all languages
in NP and fully homomorphic encryption exists, then derivation-private cm-
NIZK proof systems exist for all t-tiered classes of transformations, where t is a
constant. We do this by constructing three distinct types of proofs, each of which
may be of independent interest: first, a malleable SNARG, then a malleable
NIZKPoK, and finally a cm-NIZK. While each of our constructions builds from
the previous one, we stress that our constructions are all fully generic; e.g., any
malleable SNARG can be used to construct a malleable NIZKPoK, not just the
specific one we construct.

Finally, in Section 4, we show how to use our SNARG-based proofs for t-
tiered transformation classes (using just multiplicatively homomorphic encryp-
tion rather than the heavyweight requirement of fully homomorphic encryption)
to construct a compact verifiable shuffle with proof size Θ(N + L) under gen-
eral assumptions. This enhances CKLM in two ways: (1) CKLM had proof size
Θ(N2+L); (2) CKLM required Groth-Sahai proofs, rather than general assump-
tions. In a separate paper [9], we showed that, by making additional assumptions
about groups that admit bilinear pairings (similar to those made by Groth and

Lu [23]), we can also obtain a compact verifiable shuffle with proofs of size
Θ(N + L) using the Groth-Sahai proof system.

2 Definitions and Notation

We recall the main security notions we use. We begin with the recent defini-
tions for malleability due to CKLM [7], as well as their definition for compactly
verifiable shuffles; we then define succinct non-interactive zero-knowledge argu-
ments (SNARGs), which form the basis for our construction of malleable proofs
in Section 3.

2.1 Malleable proofs

Let R(·, ·) be a relation such that the corresponding language LR = {x |
∃w such that (x,w) ∈ R} is in NP. As defined by CKLM, the relation is closed
with respect to a transformation T = (Tinst, Twit) if, for every (x,w) ∈ R,
(Tinst(x), Twit(w)) ∈ R as well. We define zero knowledge and related notions
formally in the full version of the paper [8], but recall briefly here that a non-
interactive zero-knowledge (NIZK) proof system [5, 14, 20] is a set of algorithms
(CRSSetup,P,V) for which there exists an efficient simulator (S1, S2) such that
no adversary can distinguish between proofs formed by the prover and proofs
formed by the simulator, and an efficient extractor (E1, E2) that can produce a
witness w such that (x,w) ∈ R from any valid proof π for x. For zero knowledge,
we discuss here two additional variants: the first, composable zero knowledge,
says that the adversary should still be unable to distinguish even give the simu-
lation trapdoor, and the second, statistical zero knowledge, says that the distri-
bution of proofs formed by the simulator and prover are indistinguishable even
to an unbounded adversary; composable zero knowledge is thus implied by sta-
tistical zero knowledge, as an unbounded adversary could produce the simulator
trapdoor itself.

To incorporate malleability, CKLM extend a NIZK (CRSSetup,P,V) to add
an additional algorithm, ZKEval, that given a transformation T , a previous in-
stance x, and a previous proof π such that V(crs, x, π) = 1, computes a valid
proof for Tinst(x); i.e., a proof π′ such that V(crs, Tinst(x), π′) = 1. They then
say that the proof system is malleable with respect to a set of transformations
T if for every T ∈ T , this computation can be performed efficiently. In terms
of controlling malleability, the main definition of CKLM reconciles simulation
soundness [29, 12] and simulation-sound extractability [21] with malleability by
requiring that, for a set of transformations T , if an adversary can produce a proof
π that x ∈ LR then the extractor can extract from π either a witness w or a
transformation T ∈ T and previously proved instance x′ such that x = Tinst(x

′).
This is defined more formally as:

Definition 2.1. [7] Let (CRSSetup,P,V,ZKEval) be a NIZKPoK system for an
efficient relation R, with a simulator (S1, S2) and an extractor (E1, E2). Let

T be a set of unary transformations for the relation R such that membership
in T is efficiently testable. Let SE 1 be an algorithm that, on input 1k, outputs
(crs, τs, τe) such that (crs, τs) is distributed identically to the output of S1. Let A
be given, let Q := Qinst × Qproof be a table for storing the instances queried to
S2 and the proofs given in response, and consider the following game:

– Step 1. (crs, τs, τe)
$←− SE 1(1k).

– Step 2. (x, π)
$←− AS2(crs,τs,·)(crs, τe).

– Step 3. (w, x′, T)← E2(crs, τe, x, π).
– Step 4. b← ((w 6= ⊥ ∧ (x,w) /∈ R) ∨

((x′, T) 6= (⊥,⊥) ∧ (x′ /∈ Qinst ∨ x 6= Tinst(x
′) ∨ T /∈ T)) ∨

(w, x′, T) = (⊥,⊥,⊥))

The NIZKPoK satisfies controlled-malleable simulation-sound extractability
(CM-SSE, for short) with respect to T if for all PPT algorithms A there exists
a negligible function ν(·) such that the probability (over the choices of SE 1, A,
and S2) that V(crs, x, π) = 1 and (x, π) 6∈ Q but b = 1 is at most ν(k).

CKLM also defined the notion of derivation privacy for malleable proofs,
which says that proofs should not reveal whether they were formed fresh or via
transformation.

Definition 2.2. [7] For a non-interactive proof (CRSSetup,P,V,ZKEval), an
efficient relation R malleable with respect to T , an adversary A, and a bit b, let
pAb (k) be the probability of the event that b′ = 0 in the following game:

– Step 1. crs
$←− CRSSetup(1k).

– Step 2. (state, x1, w1, π1, . . . , xq, wq, πq, T)
$←− A(crs).

– Step 3. If V(crs, xi, πi) = 0 for some i, (xi, wi) /∈ R for some i, or T /∈ T ,
abort and output ⊥. Otherwise, form

π
$←−
{
P(crs, Tinst(x1, . . . , xq), Twit(w1, . . . , wq)) if b = 0
ZKEval(crs, T, {xi, πi}qi=1) if b = 1.

– Step 4. b′
$←− A(state, π).

Then the proof system is derivation private if for all PPT algorithms A there
exists a negligible function ν(·) such that |pA0 (k)− pA1 (k)| < ν(k).

CKLM give a zero-knowledge variant of this definition called strong deriva-
tion privacy, in which proofs output by ZKEval should be indistinguishable from
those output by the simulator. The security experiment is almost the same, with
the only differences being that A is given the simulation trapdoor, A is not re-
quired to output any witnesses, and S2 is used in place of P. Putting these all
together, if a proof system is zero knowledge, strongly derivation private, and
CM-SSE, then CKLM call it a cm-NIZK.

2.2 Succinct non-interactive arguments of knowledge

Our cm-NIZK construction in Section 3 builds on succinct non-interactive argu-
ments of knowledge, or SNARGs (also called SNARKs) for short. Proofs of this
kind were first shown to exist by Micali in 2000 [26], who used the Fiat-Shamir
heuristic [15] to eliminate the interaction in previous succinct arguments. More
recently, Groth provided a construction using pairings [22] which was improved
by Lipmaa [25], Bitansky et al. [3] constructed designated-verifier SNARGs us-
ing the new notion of extractable collision-resistant hash functions, and Gennaro
et al. [17] constructed constant-sized SNARGs with a relatively short common
reference string.

Our definition is based primarily on that of Boneh et al. [6], although for the
succinctness property we incorporate the definition of Gentry and Wichs [19] as
well. In addition, to perform our recursive composition in Section 3.1, we require
a stronger notion of extraction than the original definition provided; essentially,
we consider adversaries that take in advice strings as input. Although we present
two formulations below, strong and generative adaptive knowledge extraction,
we note that these notions are in fact equivalent; a more in-depth discussion can
be found in the full version.

Definition 2.3. Let 0 < γ < 1 be a constant. A (strong) γ-succinct non-
interactive argument of knowledge for a relation R is a tuple of probabilistic
polynomial-time algorithms (CRSSetup,P,V) with the following properties:

1. Perfect completeness. For all k ∈ N, (x,w) ∈ R, crs
$←− CRSSetup(1k), and

π
$←− P(crs, x, w), the probability that V(crs, x, π) = 1 is 1.

2. Strong/generative adaptive knowledge extraction. For a PPT algorithm A,
let EA be an associated PPT algorithm, and let z be a string whose size is
polynomial in the security parameter. Then consider the following game:

– Step 1. crs
$←− CRSSetup(1k); r

$←− {0, 1}∗.
– Step 2. (x, π)← A(crs, z; r).
– Step 3. w ← EA(crs, z; r).

We say the argument system satisfies strong adaptive knowledge extraction if
for all PPT A there exists an EA and a negligible function ν(·) such that for
all z the probability (over the choices of CRSSetup and r) that V(crs, x, π) = 1
but (x,w) 6∈ R is at most ν(k). This corresponds to previous definitions of
adaptive knowledge extraction if we consider only z = ⊥.
In addition, it satisfies generative adaptive knowledge extraction if there ex-
ists a PPT algorithm E such that for all PPT A there exists a negligible
function ν(·) such that, on input the code of A, E produces an extractor EA,
running in time polynomial in that of A, such that for all z the probability
(over the choices of CRSSetup and r) that V(crs, x, π) = 1 but (x,w) /∈ R is
at most ν(k).

3. φ-succinct arguments. For all k ∈ N, (x,w) ∈ R, and crs
$←− CRSSetup(1k), it

holds that P(crs, x, w) produces a distribution over strings of length at most
φ(k, |x|, |w|), where φ(k, |x|, |w|) is bounded by poly(k)polylog(|x|) + γ|w| for
some constant 0 < γ < 1.

While the succinctness property of SNARGs is quite attractive for appli-
cations, it comes with a price: all known SNARG constructions are based on
so-called “knowledge of exponent” assumptions [10, 2]; furthermore, a recent re-
sult due to Gentry and Wichs [19] that separates SNARGS from all falsifiable
assumptions suggests that this dependence is perhaps inherent. In addition, to
satisfy our stronger version of adaptive knowledge extraction (either strong or
generative; again, they are equivalent), the knowledge of exponent assumption
used to prove the security of existing SNARG constructions [22, 17] would have
to be potentially strengthened to consider an extractor that has access to the
code of A; for more details, we defer to the full version.

The final observation we make about SNARGs is that the definition of adap-
tive knowledge extraction requires the extractor to have non-black-box access
to the malicious prover; as we will see in Section 3.2, this can make SNARGs
difficult to integrate into protocol design. Fortunately, we can easily see that
this notion relates to the standard notion of soundness for proofs [14] (as used
implicitly in Groth’s SNARG construction [22]):

Theorem 2.1. If a proof system (CRSSetup,P,V) satisfies adaptive knowledge
extraction then it also satisfies adaptive computational soundness.

Proof. To show this, we take an adversary A that can break the soundness
of the proof system with non-negligible probability ε and use it to construct an
adversary B that breaks adaptive knowledge extraction with the same probability
ε. The code for B is simple: on input (crs; r), it gives crs to A (and implicitly runs
it on a random tape r′ ⊆ r), and when A outputs a pair (x, π) B outputs the
same. By the definition of soundness, A will win if V(crs, x, π) = 1 but x /∈ LR;
this implies that, for any w output by EB, it must be the case that (x,w) /∈ R, as
otherwise x ∈ LR. B will therefore succeed whenever A does and thus succeeds
with probability ε.

3 A Construction of cm-NIZKs from SNARGs

In this section, we construct cm-NIZK proofs from zero-knowledge SNARGs that
are malleable with respect to a wide range of transformations, namely all t-tiered
transformation classes. Intuitively, a relation is t-tiered if each instance x lives
in some tier i. We would like transformations to move up through the tiers, and
we would also like ensure that at most t transformations are applied. Formally,
we say that a relation R(t) is t-tiered if there exists an efficiently computable

function tier : L
(t)
R → [0, t] and (⊥,⊥) ∈ R(t), and that a transformation class

T (t) is t-tiered for R(t) if for all T = (Tinst, Twit) ∈ T the following two conditions
hold: (1) if (x,w) ∈ R(t) and tier(x) < t, then (Tinst(x), Twit(w)) ∈ R(t) and
tier(Tinst(x)) > tier(x); and (2) if tier(x) = t then Tinst(x) = ⊥.

We summarize the contributions in this section in Figure 1. As discussed in
the introduction, the construction in each subsection is used as a component
in the next subsection’s construction, with the end goal of constructing a cm-
NIZK. In Section 3.1 we construct a SNARG, malleable with respect to a t-
tiered transformation class, that we then use in Section 3.2 in combination with

ZK SNARG t-tiered Enc+NIZK signature-binding: our cm-NIZK

SAKE
Thm 3.3// SAKE

Thm 3.6// PoK
Thm 3.12

+E/SUF-CMA
// CM-SSE

ZK
Thm 3.1 //

T
hm

3.2

%%

ZK
Thm 3.7

+IND-CPA
//

T
hm

3.8

+
fxn

priv $$

ZK
Thm 3.11 // ZK

SDP
Thm 3.8 // DP

Thm 3.13 // SDP

Fig. 1. The various relations among our constructions in this section. The arrows indi-
cate which properties of the previous construction are used to obtain which properties
of the next one, and are labeled on the top with the theorem number that proves the
relation; the labels on the bottom indicate properties of additional primitives that are
used as well. For example, we prove in Theorem 3.12 that our signature-binding con-
struction of a cm-NIZK satisfies CM-SSE if our Enc+NIZK construction is a proof of
knowledge, and the additional signature and one-time signature schemes we use are,
respectively, unforgeable and strongly unforgeable; this is captured by the top right-
most arrow in the diagram. Strong adaptive knowledge extraction is written as SAKE,
zero knowledge as ZK, proof of knowledge as PoK, and (strong) derivation privacy as
(S)DP.

encryption to obtain a full NIZKPoK; this step seems necessary because SNARGs
satisfy only the weak notion of adaptive knowledge extraction, which seems
insufficient for constructing cm-NIZKs. Finally, using this NIZKPoK and a one-
time and regular signature scheme, we construct in Section 3.3 a cm-NIZK that
is malleable with respect to a broader class of transformations than could be
supported by the construction of CKLM [7].

3.1 From SNARGs to malleable but weakly extractable proofs

We begin by constructing a derivation-private NIZK for a relation R(t), malleable
with respect to a t-tiered transformation class T (t), that achieves some degree
of knowledge extraction. Our approach in this endeavor is inspired by that of
Boneh et al. [6], who use SNARGs to construct a “targeted malleable” encryption
scheme. To form a proof for an instance x0 at the bottom level, one can use the
SNARG directly to obtain a proof π0. Now, suppose we would like to further form
a proof for an instance x1 = Tinst(x0); one option is to use the witness Twit(w0)
and form a fresh proof just as we did for x0. Another option, however, is to
“maul” the proof π0: this can be accomplished by forming a new proof π1 that
proves knowledge of the old proof π0 and instance x0, as well as a transformation
T such that x1 = Tinst(x0).

The reason why SNARGs are attractive for this application is that, because
the extraction procedure is non-black-box and therefore the proofs can be suc-

cinct, the proof π1 can in fact be the same size as the proof π0. Continuing in
this fashion, we can see that at the i-th level, a proof for xi can be proved using
either knowledge of a witness wi for the relation R(t), or knowledge of a proof
πi−1 for xi−1 and a transformation T such that xi = Tinst(xi−1).

It turns out that, if the SNARG proof system used is zero knowledge (or
even just witness indistinguishable), then the resulting proof system is derivation
private. As mentioned above, however, the notion of extractability we can satisfy
is still only the weak notion of adaptive knowledge extraction that SNARGs
provide. In the next section, we show how to bootstrap this construction to
obtain a proof system that satisfies the standard notion of extractability for
proofs of knowledge (and still satisfies all the malleability and derivation privacy
requirements).

To begin our construction, we first formalize the intuition developed above
by defining the languages we use: at the bottom level at i = 0 we have L0 :={
x | ∃ w s.t. (x,w) ∈ R(t)

}
, and for i such that 1 ≤ i ≤ t, we have

Li :=

(x, crsi−1, . . . , crs0)

∣∣∣∣∣ ∃ (w, x′, π′, T) s.t (x,w) ∈ R(t) or
Vi−1(crsi−1, (x

′, crsi−2, . . . , crs0), π′) = 1,
Tinst(x

′) = x, and T ∈ T (t)

Using these languages and t+1 SNARG systems (CRSSetupi,Pi,Vi), we now

define our malleable t-tiered construction for R(t).

– CRSSetup(1k): Generate crsi
$←− CRSSetupi(1

k) for all i, 0 ≤ i ≤ t. Output
crs := (crs0, . . . , crst).

– P(crs, x, w): Compute i := tier(x); output π
$←− Pi(crsi, (x, crsi−1, . . . , crs0),

(w,⊥,⊥,⊥)).
– V(crs, x, π): Compute i := tier(x) and output Vi(crsi, (x, crsi−1, . . . , crs0), π).
– ZKEval(crs, T, x, π): Compute i := tier(x), define x′ := Tinst(x), and output

π
$←− Pi+1(crsi+1, (x

′, crsi, . . . , crs0), (⊥, x, π, T)).

Recall that there are three properties we would like this proof system to sat-
isfy: (1) zero knowledge, (2) derivation privacy, and (3) strong adaptive knowl-
edge extraction; we deal with each of these in turn. For the first, zero knowledge,
if we assume that our underlying proof systems are zero knowledge then we get
a proof of the following theorem for free:

Theorem 3.1. If the SNARG systems (CRSSetupi,Pi,Vi) are zero knowledge
for all i, 0 ≤ i ≤ t, then the t-tiered construction is zero knowledge.

We next turn to derivation privacy. At first glance, it would seem impossible
that our construction could meet derivation privacy: after all, tier(x) openly
reveals exactly how many times a transformation has been applied! Looking at
the definition of the prover P, however, we see that for x such that tier(x) = i it
does in fact output a proof that “looks like” i transformations have been applied,
even though it is using a fresh witness; as this is what the definition of derivation
privacy requires (i.e., that the proof, rather than the instance, not reveal the

transformation), we therefore use the witness indistinguishability of the SNARGs
(which trivially follows from zero knowledge) to show that derivation privacy
does hold. In addition, to show that strong derivation privacy holds, we require
our SNARGs to be composable zero knowledge (as the adversary in the strong
derivation privacy game gets to see the simulation trapdoor, and thus the zero
knowledge adversary needs to as well); this requirement is met, for example, by
the SNARG constructions of Groth [22] and Gennaro et al. [17], both of which
actually satisfy the significantly stronger property of statistical zero knowledge.
Due to space constraints, a proof of the following theorem can be found in the
full version [8].

Theorem 3.2. If the SNARG systems (CRSSetupi,Pi,Vi) satisfy witness indis-
tinguishability for all i, then the t-tiered construction satisfies derivation privacy
for transformations in T (t). Furthermore, if (CRSSetupi,Pi,Vi) satisfy compos-
able zero-knowledge for all i, then the t-tiered construction satisfies both deriva-
tion privacy and strong derivation privacy for transformations in T (t).

Next, we turn to adaptive knowledge extraction; here, we can show that if
the number of times the “proof of a proof” method has been applied is constant,
then the t-tiered construction is strongly adaptive knowledge extractable. As do
Boneh et al. [6], we require t be constant so the runtime of the extractor does not
blow up: if A runs in time τ , and we require the runtime of the extractor to be
only polynomial in the runtime of A, then the extraction of the t-th nested proof
(i.e., if A has formed a proof of a proof t times) might take time atτ+tb for some
constants a and b, which for arbitrary t could be exponential. To ensure that the
time taken to extract from these nested proofs instead remains polynomial, we
therefore require that t be constant. Furthermore, as we will see in the proof we
rely on strong adaptive knowledge extraction to perform our recursive extraction
(again, as do Boneh et al.). A proof of the following theorem can be found in
the full version.

Theorem 3.3. If the SNARG systems (CRSSetupi,Pi,Vi) satisfy strong adap-
tive knowledge extraction (as defined in Definition 2.3) for all i, then the t-tiered
construction satisfies strong adaptive knowledge extraction for constant t.

Finally, we discuss the size of the proofs. Looking at the language Li for
some level, we see that an instance for the next language Li+1 consists of the
same elements as an instance of Li, with the addition of the CRS crsi. If we
consider, for example, the SNARG construction of Groth [22], then the size of
crsi is O(|x(i)|2) for x(i) ∈ Li. Let f be the function that computes the size of the
instance at level i+1 given the size of the instance x at level i. Then, because an
element of size |x|2 is added to obtain the instance for the next level up, we have

that f(f(|x|)) = |x|4, and, after t transformations, that f t(|x0|) > |x0|2
t

. If t is
constant, the fact that we require SNARGs to be of size polylog(|x|) accounts
for every such polynomial factor. Considering next the witness, we observe that
the size of the witness w(i) for i > 0 is |wi| + |xi−1| + |πi−1| + |Ti|. In order
for our proofs to be succinct, we require that |πi| ≤ |πi−1|. If we assume that

|wi| ≤ |wi−1|, |xi| ≤ |xi−1|, and |Ti| ≤ |Ti−1| and that w(i) = |wi| + |xi−1| +
|πi−1|+ |Ti| ≤ 4|πi−1|, then a poly(k)polylog(|x|) + γ|w| succinct SNARG with
γ = 1/4 is sufficient for our construction.

3.2 From weak malleable proofs to malleable proofs of knowledge

With our malleable NIZK in place, we might now try to use it to directly con-
struct a cm-NIZK or, because we can satisfy only adaptive knowledge extrac-
tion, a weakened notion of cm-NIZK that accomodates this weaker extractability
property. Looking back at the definition of controlled malleability (CM-SSE) in
Definition 2.1, however, we can see that A is given access to a simulation ora-
cle S2. This oracle access seems to be fundamental to the definition: to achieve
any kind of simulation soundness, in which we want A to be unable to produce
its own proofs of false statements even after seeing many such proofs, we must
give it an oracle that can produce false proofs. If we attempt to then use any
non-black-box notion of extractability in conjunction with such an oracle, it is
not clear how such an extractor would even be defined, as it cannot simply run
the code for A (in particular, because the oracle’s ability to produce false proofs
must be presumably unavailable to A and therefore EA).

To avoid this obstacle altogether, we instead augment the construction from
the previous section to achieve full extractability. To do this, our proofs consist
of a ciphertext encrypting the witness, and a malleable zero-knowledge SNARG
proving knowledge of the value inside of this ciphertext. Now, rather than require
the use of the non-black-box extractor to prove any kind of extractability, we
can instead give an extractor the secret key, and it can extract by decrypting
the ciphertext. As we will see in our proof of Theorem 3.6, this means that all
is required of the SNARG is soundness (which, we recall by Theorem 2.1, is
implied by adaptive knowledge extraction).

In more detail, to construct a malleable NIZKPoK for a relation R(pok) and
transformation class T (pok), we use an encryption scheme and a proof system
for the relation R(t) such that

((pk , x, c), (w, r)) ∈ R(t) ⇐⇒ c = Enc(pk , w; r) ∧ (x,w) ∈ R(pok).

As for malleability, suppose we want to be able to transform the proofs for
R(pok) with respect to some transformation class T (pok). In order to implement
ZKEval for a transformation T = (Tinst, Twit) ∈ T (pok), we will need to be able to
transform the proof for R(t) and the ciphertext c. For the latter, this means we
need to be able to apply a transformation Tc on the ciphertext that produces an
encryption of Twit(w); i.e., the homomorphic property of the encryption scheme
must be robust enough to allow us to apply Twit to the encrypted message. For
the proof, we also require a transformation Tr on the randomness r of the cipher-
text, as we require a transformation that maps (pk , x, c) to (pk , Tinst(x), Tc(c))
and (w, r) to (Twit(w), Tr(r)).

A bit more formally, for every T = (Tinst, Twit) ∈ T (pok) and r′ from the
randomness space R, let Tc be the transformation that maps c = Enc(w; r)

to Eval(c, Twit; r
′) = Enc(Twit(w); r ◦ r′) (where ◦ denotes the operation that

composes the randomness, and Eval denotes the homomorphic operation on
ciphertexts), let Tr be the resulting transformation on the randomness, and
let τ(T, r′) be the transformation that maps instances (x, c) to new instances
(Tinst(x), Tc(c)), and witnesses (w, r) to new witnesses (Twit(w), Tr(r)) (i.e., the
exact transformation we need for the proof). Finally, let T (t) be the set of trans-
formations that includes τ(T, r′) for all T ∈ T (pok), r′ ∈ R, and let T (E) be the
set of all Twit.

To give our Enc+NIZK construction for R(pok), let (KeyGen,Enc,Dec,Eval)
be a function-private homomorphic encryption schemewith randomness space R
and let (CRSSetup′,P ′,V ′,ZKEval′) be a malleable zero-knowledge SNARG for
the relation R(t) with transformation set T (t). Our construction of a NIZKPoK
is as follows:

– CRSSetup(1k): Generate crs′
$←− CRSSetup′(1k) and (pk , sk)

$←− KeyGen(1k)
and output crs := (crs′, pk).

– P(crs, x, w): Parse crs = (crs′, pk) and pick randomness r
$←− R. Then

compute c ← Enc(pk , w; r) and π′
$←− P ′(crs′, (pk , x, c), (w, r)) and output

π := (π′, c).
– V(crs, x, π): Parse crs = (crs′, pk) and π = (π′, c), and output V ′(crs′, (pk , x,
c), π′).

– ZKEval(crs, T, x, π): Parse crs = (crs′, pk), π = (π′, c), and T = (Tinst, Twit).

Then choose random r′
$←− R, compute T ′ := τ(T, r′), and compute πT

$←−
ZKEval′(crs′, T ′, (pk , x, c), π′) and cT := Eval(pk , Twit, c; r

′). Output (πT , cT).

We make the following requirements on the underlying SNARG to obtain the
completeness and malleability properties; both of them follow directly from the
Enc+NIZK construction:

Theorem 3.4. Let W(E+N) be the witness space for R(pok). If the SNARG is
complete for R(t) and the encryption scheme has message space M such that
W(E+N) ⊆M, then the Enc+NIZK construction is complete.

Theorem 3.5. The Enc+NIZK construction is malleable with respect to T (pok)

whenever the SNARG is malleable with respect to the corresponding set T (t) =
τ(T (pok),R) and the encryption scheme is malleable with respect to T (E) (as
defined above).

If T (pok) is a t-tiered class of transformations on R(pok), then τ(T (pok)) will
also be t-tiered on R(t). Thus, if we instantiate (KeyGen,Enc,Dec,Eval) using a
fully homomorphic encryption scheme and we use the SNARGs constructed in
the previous section, we can obtain a malleable proof system for any t-tiered
T (pok) with constant t. (On the other hand, we will see in Section 4 that there
are interesting relations and transformation classes we can obtain without fully
homomorphic encryption as well.) As for size efficiency, we know by the suc-
cinctness property of SNARGs that the size of π′ will not grow through trans-
formation. For the ciphertext c, if we assume that Twit does not increase the size

of the witness, then the size of c will stay the same as well and thus the proof
will remain compact even as it is transformed.

We would now like to show that if the SNARG satisfies adaptive knowl-
edge extraction then the Enc+NIZK construction satisfies extractability; i.e., is
an argument of knowledge. We also must show that the construction retains
the original zero knowledge and derivation privacy properties as well. Due to
space constraints, proofs of the following three theorems can be found in the full
version.

Theorem 3.6. If the SNARG satisfies adaptive knowledge extraction with re-
spect to R(t) then the Enc+NIZK construction is a proof of knowledge with respect
to R(pok).

Theorem 3.7. If the SNARG is zero knowledge and the encryption scheme is
IND-CPA secure, then the Enc+NIZK construction is zero knowledge.

Theorem 3.8. If the SNARG is zero knowledge and strongly derivation private
with respect to the class of transformations T (t) and the encryption scheme is
function private with respect to T (E) then the Enc+NIZK construction is deriva-
tion private with respect to T (pok).

3.3 From malleable NIWIPoKs to cm-NIZKs

With our malleable NIZKPoK in place, we are finally ready to construct cm-
NIZKs (although, as we will see, we require only witness indistinguishability
rather than full zero knowledge). We first recall the construction of CKLM,
who used a relation R′ such that ((x, vk), (w, x′, T, σ)) ∈ R′ if (x,w) ∈ R or
Verify(vk , σ, x′) = 1, x = Tinst(x

′), and T ∈ T , where σ was a signature for a
secure signature scheme. We use the CKLM construction as a rough guideline for
our own; the crucial alteration we make, however, is that CKLM were willing to
retain the natural re-randomizability of Groth-Sahai proofs, whereas we want to
consider classes of transformations that do not contain the identity (for example,
the t-tiered transformation classes).

Suppose we want to construct a cm-NIZK for relation R(cm) and trans-
formation class T (cm). We use a NIWIPoK for an augmented relation R(pok)

such that ((x, vk , vkot), (w, x
′, vk ′ot, T, σ)) ∈ R(pok) if (1) (x,w) ∈ R(cm) or (2)

Verify(vk , σ, (x′, vk ′ot)) = 1 and either (2a) x = Tinst(x
′) for T = (Tinst, Twit) ∈

T (cm), or (2b) x′ = x and vk ′ot = vkot, where vkot is a verification key for a
one-time signature scheme.

Intuitively, to simulate proofs, we can use this last type of witness; i.e., on
a query x, the simulator can use sk as a trapdoor to sign (x, vkot) and produce
a signature σ, and then form a proof using (⊥, x, vkot,⊥, σ) as a witness. To
ensure that an adversary cannot simply reuse this proof and claim it as its own
(i.e., apply the identity transformation), proofs are accompanied by a one-time
signature, on both the instance and the proof, to indicate that the proof was
formed fresh for this instance. Because the one-time signature thus binds together
the instance and the proof, we call this construction “signature binding.”

Now, if we want to allow transformations (T̂inst, T̂wit) ∈ T (cm) for our cm-
NIZK, we will have to be able to transform the underlying NIWIPoK accord-

ingly. To do this for any T̂ = (T̂inst, T̂wit) ∈ T (cm), and any v̂kot ∈ VK ot

(where VK ot is the set of all possible verification keys), let ρ(T̂ , v̂kot) be a trans-

formation that maps (x, vk , vkot) to (T̂inst(x), vk , v̂kot) and (w, x′, vk ′ot, T, σ) to

(T̂wit(w), x′, vk ′ot, T̂ ◦T, σ). We require the underlying NIWIPoK to be malleable
with respect to this class T (pok).

More formally, let (KeyGen,Sign,Verify) be an unforgeable signature scheme,
(KeyGenot,Signot,Verifyot) be a strongly unforgeable one-time signature scheme,
and let (CRSSetupWI,PWI,VWI) be a malleable derivation-private NIWIPoK for
R(pok). We give our construction of a cm-NIZK using these primitives as follows:

– CRSSetup(1k): Generate crsWI
$←− CRSSetupWI(1

k); (vk , sk)
$←− KeyGen(1k).

Output crs := (crsWI, vk).

– P(crs, x, w): Parse crs = (crsWI, vk) and compute π′
$←− PWI(crsWI, (x, vk ,

vkot), (w,⊥,⊥,⊥,⊥)). Generate (vkot, skot)
$←− KeyGenot(1

k), compute σot
$←−

Signot(skot, (x, π
′)), and output π := (π′, σot, vkot).

– V(crs, x, π): Parse π = (π′, σot, vkot) and check that Verifyot(vkot, σot, (x,
π′)) = 1; if this fails then output 0. Otherwise, parse crs = (crsWI, vk) and
output VWI(crsWI, (x, vk , vkot), π

′).
– ZKEval(crs, T, x, π): Parse crs = (crsWI, vk) and π = (π′, σot, vkot). Generate

(v̂kot, ŝkot)
$←− KeyGenot(1

k) and compute π′′
$←− ZKEvalWI(crsWI, ρ(T, v̂kot),

(x, vk , vkot), π
′) and σ′ot

$←− Signot(ŝkot, (x, π
′′)). Output (π′′, σ′ot, v̂kot).

Although in using T̂ ◦ T we require that T (cm) be closed under composi-
tion, we note that this is not a strong restriction. Indeed, if T (cm) is not closed
under composition, then we can define the closure of T (cm) to be the class of

transformations T (cm)′ such that T ∈ T (cm)′ if and only if T = T1 ◦ . . . ◦ Tj for
j < t and T1, . . . , Tj ∈ T (cm). In this case, if we construct the NIWIPoK using
our Enc+NIZK construction, our proofs have to increase in size by a factor of t.
(The encryption scheme used will have to have message space large enough to
represent T1 ◦ . . . ◦ Tt as (T1, . . . , Tt).) On the other hand, this size increase is
unavoidable for general transformations if we want to obtain a definition (like
CM-SSE) in which a non-interactive black-box extractor must be able to extract
the entire transformation performed.

By construction, we directly obtain the following theorems:

Theorem 3.9. If the proof system (CRSSetupWI,PWI,VWI,ZKEvalWI) is com-
plete for relation R(pok), and the one-time signature is correct, then the signature-
binding construction is complete for relation R(cm).

Theorem 3.10. If the proof system (CRSSetupWI,PWI,VWI,ZKEvalWI) is mal-
leable with respect to the transformation class T (pok) = ρ(T (cm),VK ot) (as de-
fined above), then the signature-binding construction is malleable for transfor-
mation class T (cm).

Now, if we want to instantiate the NIWIPoK using our Enc+NIZK construc-
tion from the previous section, we must first ensure that R(pok) and T (pok) satisfy
the constraints discussed therein. In particular, we required that T (pok) be a t-
tiered transformation class for R(pok), and that there is an encryption scheme
whose message space contains the witness space for R(pok) that is homomorphic
with respect to the class of transformations {Twit} for all (Tinst, Twit) ∈ T (pok).

Expanding on this last requirement, as our witnesses for R(pok) are of the
form (w, x′, vk ′ot, T, σ), we need to use an encryption scheme in which the mes-
sage space subsumes the space of all of these values; i.e., the witness, instance,
and transformation spaces, as well as the space of possible one-time verifica-
tion keys and signatures. We also need the encryption scheme to be homomor-
phic with respect to the set of transformations that map (w, x′, vk ′ot, T, σ) to

(T̂wit(w), x′, vk ′ot, T̂ ◦ T, σ) for any (T̂inst, T̂wit) ∈ T (cm). Finally, we require that
T (cm) is t-tiered for R(cm), as this will guarantee that T (pok) is t-tiered for R(pok).
If we assume SNARGs for general languages and fully homomorphic encryption,
then we can obtain a cm-NIZK for any t-tiered transformation class as long as
t is constant; in Section 4, we will also see that we can construct cm-NIZKs for
interesting relations using only multiplicatively homomorphic encryption. More-
over, if we continue our assumption from the previous section that T̂wit does not
increase the size of w, then the size of proofs will not grow by transformation
here either.

Finally, in order to show that this is a cm-NIZK, we need to show that it
satisfies zero knowledge, CM-SSE, and strong derivation privacy. Due to space
constraints, proofs of the following three theorems can be found in the full ver-
sion.

Theorem 3.11. If the proof system (CRSSetupWI,PWI,VWI,ZKEvalWI) is wit-
ness indistinguishable then the signature-binding construction is zero knowledge.

Theorem 3.12. If the signature scheme (KeyGen,Sign,Verify) is unforgeable
(i.e., EUF-CMA secure), the one-time signature (KeyGenot,Signot,Verifyot) is
strongly unforgeable (SUF-CMA secure), and the proof system (CRSSetupWI,PWI,
VWI,ZKEvalWI) is an argument of knowledge, the signature-binding construction
satisfies the CM-SSE property.

Theorem 3.13. If the proof system (CRSSetupWI,PWI,VWI,ZKEvalWI) is deriva-
tion private for T (pok) then the signature-binding construction is strongly deriva-
tion private for T (cm).

4 A Compactly Verifiable Shuffle Using SNARGs

Now that we have just constructed our SNARG-based cm-NIZK, we consider
how to use it to construct a compactly verifiable shuffle.

We start by defining formally the relation and transformations we want to use
for shuffles. Abstractly, instances for the correctness of a shuffle are of the form
x = (pk , {ci}i, {c′i}i), where pk is a public key for a re-randomizable encryption

scheme, {ci}i are the original ciphertexts, and {c′i}i are the shuffled ciphertexts.
In addition, to allow each mix authority to prove that it participated in the
shuffle, instances also contain a set {pk j}j that consists of the public keys of the
authorities that have participated thus far. Similarly, witnesses are of the form
w = (ϕ, {Ri}i, {sk j}j), where ϕ is a permutation, {Ri}i are the re-randomization
factors, and {sk j}j are the secret keys corresponding to {pk j}j . The relation R
is such that

((pk , {ci}i,{c′i}i, {pk j}j), (ϕ, {Ri}i, {sk j}j)) ∈ R
⇔ {c′i}i = {ReRand(pk , ϕ(ci);Ri)}i ∧ (pk j , sk j) ∈ Rpk ∀j.

Briefly, valid transformations in T should be shuffles. Ignoring the authority keys
for now (details can be found in the original CKLM paper and the full version
of this paper), we define transformations on instances as

Tinst(x) = T(ϕ′,{R′
i}i)(pk , {ci}i, {c′i}i) := (pk , {ci}i, {ReRand(pk , ϕ′(ci);R

′
i)}i)

and on witnesses as

Twit(w) = T(ϕ′,{R′
i}i)(ϕ, {Ri}i) := (ϕ′ ◦ ϕ, {ϕ′(Ri) ∗R′i}i),

where ∗ is the operation used to compose the randomness (i.e., ReRand(pk ,
ReRand(pk , c;R), R′) = ReRand(pk , c;R ∗R′)).

4.1 Our construction

The shuffle construction of CKLM [7] used four building blocks: a hard relation
Rpk , a re-randomizable encryption scheme (KeyGen,Enc,Dec,ReRand), a proof
of knowledge (CRSSetup,P,V), and a cm-NIZK (CRSSetup′,P ′,V ′,ZKEval′). As
we just constructed a cm-NIZK, we can simply plug it into this generic construc-
tion, which CKLM already proved secure. What it remains to show is that the
requirements placed on transformations in Sections 3.2 and Section 3.3 are met
by the shuffle transformations.

Recall the general requirement for transformations from Section 3.3: because
we must encrypt values of the form (w, x′, vk ′ot, T, σ), we need an encryption
scheme (KeyGen,Enc,Dec,Eval) that is homomorphic with respect to the set of

transformations that map (w, x′, vk ′ot, T, σ) to (T̂wit(w), x′, vk ′ot, T̂ ◦T, σ) for any

(T̂inst, T̂wit) ∈ T (cm).
In order to meet this requirement for shuffles, we must therefore consider how

to encrypt and appropriately transform all of these values. For all of the values
except w and T , however, they are unchanged by the transformation; our only
requirement here is therefore that they can be encrypted, meaning the spaces
they live in are subsumed by the message space. As for the values that do get
transformed, w and T , as they are defined for the shuffle we must consider how to
transform the permutation ϕ, the re-randomization values {Ri}i, and the secret
keys {sk j}j . We deal with each of these in turn.

To encrypt a permutation ϕ ∈ Sn, we represent it as its component-wise
action on indices. Formally, we first consider the collection (c1, . . . , cn) in which

ci
$←− Enc(pk , i) for all i; i.e., the collection of ciphertexts encrypting their own

index within the set. Now, to represent ϕ, we compute c
(ϕ)
i

$←− Enc(pk , ϕ(i)) for

all i, 1 ≤ i ≤ n; the set {c(ϕ)i }ni=1 is then equal to ϕ({ci})ni=1. When we need to
compose this ϕ with a new permutation ϕ′ (e.g., to compute Twit(w)), we can

compute {c(ϕ
′◦ϕ)

i }ni=1 = ϕ′({c(ϕ)i }ni=1) = ϕ′(ϕ({ci}ni=1)), which does represent
the composed permutation ϕ′ ◦ ϕ as desired.

Moving on to the re-randomization values {Ri}i, we start in the same vein as

with the permutations: for all i, we compute c
(r)
i

$←− Enc(pk , Ri). We now place
our only requirement on the encryption scheme (KeyGen,Enc,Dec,Eval), which is
that it must be homomorphic with respect to the ∗ operation (i.e., the operation
used to compose randomness); namely that there exist a corresponding operation
~ on ciphertexts such that if c1 is an encryption of m1 and c2 is an encryption
of m2 then c1~ c2 is an encryption of m1 ∗m2. With such an operation in place,
when we want to permute using ϕ and add in new randomness {R′i}i, we can

compute c
(r∗r′)
i := ϕ(c

(r)
i) ~ Enc(pk , R′i). By the homomorphic properties of ~,

c
(r∗r′)
i will then be an encryption of ϕ(Ri) ∗R′i.

Finally, for the keys, we note that as long as all values of sk j lie in the message
space then we are fine, as these values are simply appended to a list and thus
do not need to be transformed.

As for the size of the resulting shuffle, we know that the CRS for the con-
struction in Section 3.1 consists of t common references strings for the underlying
SNARG. If we use the SNARG due to Gennaro et al. [17], in which the size of
the CRS is linear in the circuit size, then the total size of the CRS is O(`n). At
the next level, in the Enc+NIZK construction, we add a public key pk , and at
the next level, in the signature-binding construction, we add a verification key
vk . If the size of each of these values is constant with respect to n (or even of
size O(n)), then we obtain an overall shuffle parameter size of O(`n). For the
proofs, we know from our discussion in Section 3 that their size will depend on
the representation of the witnesses w, instances x, and transformations T . As
we’ve defined things here, the representations of ϕ and {Ri}i require n cipher-
texts each, which means the representations of w and T are O(n + `), as they
each also contain ` secret keys. Similarly, the size of the instance x is O(n+ `),
as it contains two sets of n ciphertexts and a set of ` public keys. The overall
size of the proof is therefore O(n+ `).

Although the proof size is therefore smaller, having parameters of size O(`n)
means that the total number of bits read by the verifier is still O(`n) and thus
there is no benefit over previous shuffles. To get a parameter size of only O(k`)
(for the security parameter k), we assume we have a SNARG with a CRS of
length O(n) and proofs of length O(n), and a collision-resistant hash function
H(·) that produces k-bit strings. Then a straightforward transformation gives
a SNARG where the verifier needs a CRS of length k and proofs are of length
O(n) as follows: first, CRSSetup generates a CRS crs for the underlying scheme,

and outputs both crs and H(crs). Then, the prover produces not only a proof π
but also a CRS crs′ such that H(crs′) = H(crs); the proof must then verify under
crs′. In order to verify such a proof, the verifier need only take as CRS input
the value H(crs). Knowledge extraction of this SNARG follows from collision
resistance and knowledge extraction of the underlying SNARG: if the adversary
produces a crs′ different from crs but such that H(crs′) = H(crs) then it breaks
the collision resistance of the hash function, and if it produces a proof under crs
then the underlying extractor will work. If we then use this modified SNARG in
our construction in Section 3.1, we get a malleable SNARG where the verifier
takes as input a CRS of length O(k`) and proofs of length O(n), meaning the
elections monitor in our shuffle takes in parameters of size O(k`) and proofs of
size O(n+ `).

Acknowledgments

Anna Lysyanskaya was supported by NSF grants 1012060, 0964379, 0831293,
and Sarah Meiklejohn was supported in part by a MURI grant administered by
the Air Force Office of Scientific Research and in part by a graduate fellowship
from the Charles Lee Powell Foundation.

References

1. M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyanskaya, and
H. Shacham. Delegatable anonymous credentials. In Proceedings of Crypto 2009,
volume 5677 of LNCS, pages 108–125. Springer-Verlag, 2009.

2. M. Bellare and A. Palacio. The knowledge-of-exponent assumptions and 3-round
zero-knowledge protocols. In Proceedings of Crypto 2004, pages 273–289, 2004.

3. N. Bitanksy, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision
resistance to succinct non-interactve arguments of knowledge, and back again. In
Proceedings of ITCS 2012, 2012.

4. N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. Recursive composition and
bootstrapping for SNARKs and proof-carrying data. Cryptology ePrint Archive,
Report 2012/095, 2012. http://eprint.iacr.org/2012/095.

5. M. Blum, A. de Santis, S. Micali, and G. Persiano. Non-interactive zero-knowledge.
SIAM Journal of Computing, 20(6):1084–1118, 1991.

6. D. Boneh, G. Segev, and B. Waters. Targeted malleability: homomorphic encryp-
tion for restricted computations. In Proceedings of ITCS 2012, 2012.

7. M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn. Malleable proof
systems and applications. In Proceedings of Eurocrypt 2012, pages 281–300, 2012.

8. M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn. Succinct malleable
NIZKs and an application to compact shuffles. Cryptology ePrint Archive, Report
2012/506, 2012. http://eprint.iacr.org/2012/506.

9. M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn. Verifiable elections
that scale for free. In Proceedings of PKC 2013, 2013. to appear.

10. I. Damg̊ard. Towards practical public key systems secure against chosen ciphertext
attacks. In Proceedings of Crypto 1991, pages 445–456, 1991.

11. I. Damg̊ard, S. Faust, and C. Hazay. Secure two-party computation with low
communication. In Proceedings of TCC 2012, volume 7194 of LNCS, pages 54–74,
2012.

12. A. de Santis, G. di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust
non-interactive zero knowledge. In Proceedings of Crypto 2001, volume 2139 of
LNCS, pages 566–598. Springer-Verlag, 2001.

13. Y. Dodis, K. Haralambiev, A. López-Alt, and D. Wichs. Cryptography against
continuous memory attacks. In Proceedings of FOCS 2010, pages 511–520, 2010.

14. U. Feige, D. Lapidot, and A. Shamir. Multiple non-interactive zero knowledge
proofs under general assumptions. SIAM Journal of Computing, 29(1):1–28, 1999.

15. A. Fiat and A. Shamir. How to prove yourself: practical solutions to identification
and signature problems. In Proceedings of Crypto 1986, volume 263 of LNCS, pages
186–194. Springer-Verlag, 1986.

16. G. Fuchsbauer. Commuting signatures and verifiable encryption. In Proceedings
of Eurocrypt 2011, pages 224–245, 2011.

17. R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and
succinct NIZKs without PCPs. Cryptology ePrint Archive, Report 2012/215, 2012.
http://eprint.iacr.org/2012/215.

18. C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of
STOC 2009, pages 169–178, 2009.

19. C. Gentry and D. Wichs. Separating succinct non-interactive arguments from all
falsifiable assumptions. In Proceedings of STOC 2011, pages 99–108, 2011.

20. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. In Proceedings of STOC 1985, pages 186–208, 1985.

21. J. Groth. Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In Proceedings of Asiacrypt 2006, volume 4284 of LNCS, pages
444–459. Springer-Verlag, 2006.

22. J. Groth. Short pairing-based non-interactive zero-knowledge arguments. In Pro-
ceedings of Asiacrypt 2010, pages 321–340, 2010.

23. J. Groth and S. Lu. A non-interactive shuffle with pairing-based verifiability. In
Proceedings of Asiacrypt 2007, volume 4833 of LNCS, pages 51–67. Springer-Verlag,
2007.

24. J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups.
In Proceedings of Eurocrypt 2008, volume 4965 of LNCS, pages 415–432. Springer-
Verlag, 2008.

25. H. Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. To appear in TTC 2012, 2012.

26. S. Micali. Computationally sound proofs. SIAM Journal of Computing, 30(4):1253–
1298, 2000.

27. M. Prabhakaran and M. Rosulek. Rerandomizable RCCA encryption. In Pro-
ceedings of Crypto 2007, volume 4622 of LNCS, pages 517–534. Springer-Verlag,
2007.

28. M. Prabhakaran and M. Rosulek. Homomorphic encryption with CCA security.
In Proceedings of ICALP 2008, pages 667–678, 2008.

29. A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In Proceedings of FOCS 1999, pages 543–553, 1999.

