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Abstract. Recently, there has been renewed interest in basing crypto-
graphic primitives on weak secrets, where the only information about
the secret is some non-trivial amount of (min-) entropy. From a formal
point of view, such results require to upper bound the expectation of
some function f(X), where X is a weak source in question. We show an
elementary inequality which essentially upper bounds such ‘weak expec-
tation’ by two terms, the first of which is independent of f , while the
second only depends on the ‘variance’ of f under uniform distribution.
Quite remarkably, as relatively simple corollaries of this elementary in-
equality, we obtain some ‘unexpected’ results, in several cases noticeably
simplifying/improving prior techniques for the same problem.
Examples include non-malleable extractors, leakage-resilient symmetric
encryption, alternative to the dense model theorem, seed-dependent con-
densers and improved entropy loss for the leftover hash lemma.

1 Introduction

Formal cryptographic models take for granted the availability of perfect random-
ness. However, in reality we may only obtain ‘weak’ random sources that are far
from uniform but only guaranteed with high unpredictability (formalized with
min-entropy), such as biometric data [11,4], physical sources [3,2], secrets with
partial leakage, and group elements from Diffie-Hellman key exchange [18,20].
We refer to the former as ideal model and the latter as real model.

From a formal point of view, the standard (T, ε)-security (in the ideal model)
of a cryptographic application P essentially requires that for any adversary A
with resource3 T , the expectation of f(Um) is upper bounded by ε, where func-
tion f(r) denotes A’s advantage conditioned on secret key being r, and Um
denotes uniform distribution over {0, 1}m. In the real model, keys are sampled
from some non-uniform distribution R and thus the resulting security is the ex-
pected value of f(R), which we call ‘weak expectation’. We would hope that if
P is (T, ε)-secure in the ideal setting, then P is also (T ′, ε′) in the real setting
by replacing Um with R of sufficiently high min-entropy, where T ′ and ε′ are not
much worse than T and ε respectively.

In this paper, we present an elementary inequality that upper bounds the
weak expectation of f(R) by two terms: the first term only depends on the en-
tropy deficiency (i.e. the difference between m = length(R) and the amount of

3 We use the word “resource” to include all the efficiency measures we might care
about, such as running time, circuit size, number of oracle queries, etc.



entropy it has), and the second is essentially the ‘variance’ of f under uniform
distribution Um. Quite surprisingly, some ‘unexpected’ results follow as sim-
ple corollaries of this inequality, such as non-malleable extractors [14,10,7,21],
leakage-resilient symmetric encryptions [24], alternative to the dense model the-
orem [28,27,16,17], seed-dependent condensers [12] and improved entropy loss
for the Leftover Hash Lemma (LHL) [1]. We provide a unified proof for these di-
versified problems and in many cases significantly simply and/or improve known
techniques for the same problems.

Our Technique. Our main technique is heavily based on several tools intro-
duced by Barak et al. [1] in the context of improving the “entropy loss” of the
Leftover Hash Lemma [19]. This work concentrated on the setting of deriving
(or extracting) a cryptographic key R from a weak source X, using public ran-
domness S. The main observation of [1] in this context was the fact that, for a
certain class of so called “square-friendly” applications P , — an informal notion
later made more explicit by [12], and which we explain later — one can reduce
the minimal entropy requirement on X by “borrowing” the security from P .
The main insight of this work comes from “lifting” this important observation
one level higher. Namely, “square-friendly” applications have the property of
directly tolerating weak keys R. Informally, if P is “square-friendly” and (T, ε)-
secure with uniform key Um, then P is (T ′, ε′)-secure with any weak key R
having entropy deficiency (see above) d, where T ′ ∼ T and ε′ ∼ 2d · ε.4

Direct Applications. As mentioned above, this “obvious-in-retrospect” ob-
servation leads to several interesting (and sometimes unexpected!) consequences.
First, by considering simple applications, such as information-theoretic one-time
MACs [22,9], we immediately obtain results which used to be proven directly,
occasionally with elaborate analyses (essentially re-doing the elaborate analy-
ses for the uniform case). Second, for some applications, such as weak pseudo-
random functions and leakage-resilient symmetric-encryption, we obtain greatly
improved results as compared to state-of-the-art [24] (and, again, with much
simpler proofs). Third, we carefully design new “square-friendly” applications
P , generally not studied in ‘ideal’ (uniform-key) setting — either because of
their elementary analyses, or the lack of direct applications. However, by me-
chanically translating such ‘uninteresting’ applications P to the ‘real’ (weak-key)
setting, we obtain natural and much more ‘interesting’ applications P ′. More-
over, by ‘blindly’ applying our machinery, we get surprisingly non-trivial results
about the ‘real’ security of such applications P ′. For example, starting from a
(carefully crafted) variant of pairwise independent hash functions, we get the
definition of so called non-malleable extractors [14]! Using our machinery, we
obtain an elementary construction of such non-malleable extractors from 4-wise
independent hash functions, which beats a much more elaborate construction re-
cently found by [10].5 Using a simpler P , — essentially a “one-wise” independent
hash function, — we also get a cute variant of the Leftover Hash Lemma.

4 Precisely, ε · 2d for unpredictability and
√
ε · 2d for indistinguishability applications.

5 The same final construction, with a direct proof, was independently discovered by
Li [21]. As we explain later, our approach might have some advantages.



Applications to Key Derivation. Finally, we apply our improved under-
standing of ‘real’ security of “square-friendly” applications to the setting of key
derivation, which was the original motivation of [1]. First, consider the case when
the application P is “square-friendly”. In this case, since P can directly tolerate
keys R with small entropy deficiency d, our key derivation function h only needs
to be a good condenser [25,26] instead of being an extractor. Namely, instead of
guaranteeing that R = h(X;S) is nearly uniform (i.e., has 0 entropy deficiency),
we only require that R has small entropy deficiency. This observation was re-
cently made by [12] in a (somewhat advanced) “seed-dependent” setting for
key derivation, where the distribution of X could depend on the “seed” S used
to derive the final key R, and where non-trivial extraction is impossible [12,29].
However, we observe that the same observation is true even in a more traditional
“seed-independent” setting, where randomness extraction is possible (e.g., using
LHL). In particular, since universal hash functions are good condensers for a
wider range of parameters than extractors, we immediately get the same LHL
improvements as [1]. Although this does not directly lead to further improve-
ments, we believe our modular analysis better explains the results of [1], and also
elegantly unifies the seed-independent [1] and the seed-dependent [12] settings.
Indeed, the seed-dependent condenser from [12] is obtained from our construc-
tion by replacing a universal hash function by a collision-resistant hash function,
and (literally!) changing one line in the proof (see Lemma 6 vs. Lemma 8).

More interestingly, we also look at the question of deriving keys for all (pos-
sibly “non-square-friendly”) applications P . As follows from our results on seed-
independent condensers (see Corollary 5), the question is the most challenging
when the length of the source X is also m.6 In this case, we use (appropri-
ately long) public randomness S and a length-doubling pseudorandom generator
(PRG) G on m-bit seed, to derive the following “square-friendly” key derivation
function for P : compute X ′ = G(X) and interpret the 2m-bit value X ′ as the
description of a pairwise independent hash function h from |S| to m bits; then
interpret S as the input to h; finally, set the final key R = h(S) = hX′(S).7

Interestingly, this method is not only useful for “non-square-friendly” applica-
tions, but even for “square-friendly” applications with security ε� εprg (where
εprg is the security of G against the same resources T as P ).

PRGs with Weak Seeds. However, the above result is especially interesting
when applied to PRGs themselves (i.e., P = G)! Namely, instead of using G(X)
directly as a pseudorandom string, which is not secure with weak seeds,8 we
evaluate a ‘hash function’ hG(X) on a public (random) input S, after which it is
suddenly “safer” to start expanding the derived key R using G.

6 Otherwise, one can apply a universal hash function to X with an m-bit output
without affecting the “effective” entropy of the source.

7 We mention that our result is similar in spirit to the works of [13,8], who showed
that public pairwise independent hash functions can save on the amount of secret
randomness in some applications.

8 E.g., if 1st bit of source X is constant, and 1st bit of G(X) = 1st bit of X.



Prior to our work, the only alternative method of tolerating weak PRG
seeds came from the “dense model theorem” [28,27,16,17], which roughly states
that the 2m-bit output X ′ = G(X) of a (T, εprg)-secure PRG G is (T ′, ε′)-
computationally close to having the same entropy deficiency d � m as X (de-
spite being twice as long). This means, for example, that one can now apply an
m-bit extractor (e.g., LHL) h′ to X ′ to derive the final m-bit key R = h′(G(X)).
Unfortunately, a closer look shows that not only ε′ degrades by at least the (ex-
pected) factor 2d as compared to εprg, but also the time T ′ is much less than T :
the most recent variant due to [17] has T ′ � T 1/3, while previous versions [16,27]
had T ′ = T ·poly(ε). In contrast, by replacing any extractor h′ by a “special” ex-
tractor — a pairwise independent hash function h — and also swapping the roles
of the key and the input, we can maintain nearly the same resources T ′ ≈ T , but
at the cost of potentially9 increasing ε′ from roughly εprg ·2d+T−1/3 to

√
εprg · 2d.

We believe such a tradeoff is quite favorable for many natural settings. Addition-
ally, our approach is likely to use fewer public random bits S: log(1/εprg) bits vs.
the seed length for an extractor extracting a constant fraction of min-entropy.

2 Preliminaries

Notations and Definitions. We use s← S to denote sampling an element s
according to distribution S. The min-entropy of a random variable X is defined

as H∞(X)
def
= − log(maxx Pr[X = x]). We use Col(X) to denote the collision

probability of X, i.e., Col(X)
def
=
∑
x Pr[X = x]2 ≤ 2−H∞(X), and collision

entropy H2(X)
def
= − logCol(X) ≥ H∞(X). For c ∈ {2,∞}, we say that a

distribution X over {0, 1}m has entropy deficiency d (for a given entropy Hc) if

Hc(X) ≥ m− d. We also refer to the value D
def
= 2d as security deficiency of X

(the reason for the name will be clear from our results).
We denote with ∆C(X,Y ) the advantage of a circuit C in distinguishing the

random variables X,Y : ∆C(X,Y )
def
= | Pr[C(X) = 1] − Pr[C(Y ) = 1] |. The

statistical distance between two random variables X,Y , denoted by SD(X,Y ),
is defined by

1

2

∑
x

|Pr[X = x]− Pr[Y = x]| = max
C

∆C(X,Y )

We write SD(X,Y |Z) (resp. ∆C(X,Y |Z)) as shorthand for SD((X,Z), (Y,Z))
(resp. ∆C((X,Z), (Y,Z))).

Abstract security games. We first define the general type of applications
where our technique applies. The security of an application P can be defined
via an interactive game between a probabilistic attacker A and a probabilistic
challenger C(r), where C is fixed by the definition of P , and where the particular
secret key r used by C is derived from Um in the ‘ideal’ setting, and from some

9 Our security is slightly worse only when T−2/3 � εprg ·2d, and is never worse by more
than T 1/6 factor irrespective of εprg and d, since εprg ·2d +T−1/3 ≥

√
εprg · 2d ·T−1/6.



distribution R in the ‘real’ setting. The game can have an arbitrary structure,
but at the end C(r) should output a bit, with output 1 indicating that A ‘won’
the game and 0 otherwise.

Given a particular key r, we define the advantage fA(r) of A on r (against C
fixed by P ) as follows. For unpredictability games, fA(r) is the expected value
of C(r) taken over the internal coins of A and C, so that fA(r) ∈ [0; 1]; and
for indistinguishability games, fA(r) is the expectation of C(r) − 1/2, so that
fA(r) ∈ [−1/2; 1/2]. When A is clear from the context, we simply write f(r).

We will refer to |E(fA(Um))| as the advantage of A (in the ideal model).
Similarly, for c ∈ {2,∞}, we will refer to maxR |E(fA(R))|, taken over all R with
Hc(R) ≥ m− d, as the advantage of A in the (m− d)-realc model.

Definition 1 (Security). An application P is (T, ε)-secure (in the ideal model)
if the advantage of any T -bounded A is at most ε.

An application P is (T ′, ε′)-secure in the (m−d)-realc model if the advantage
of any T ′-bounded A in the (m− d)-realc model is at most ε′.

We note that a security result in the real2 model is more desirable than (and
implies) that in the real∞ model.

3 Overcoming Weak Expectations

Unpredictability applications. For unpredictability applications (with non-
negative f), the following inequality implies that the security degrades at most
by a factor of D = 2d compared with the ideal model (which is stated as Corol-
lary 1), where d is the entropy deficiency.

Lemma 1. For any (deterministic) real-valued function f : {0, 1}m → R+∪{0}
and any random variable R with H∞(R) ≥ m− d, we have

E[f(R)] ≤ 2d · E[f(Um)] (1)

Proof. E[f(R)] =
∑
r Pr[R = r] · f(r) ≤ 2d ·

∑
r

1
2m · f(r). ut

Corollary 1. If an unpredictability application P is (T, ε)-secure in the ideal
model, then P is (T, 2d · ε)-secure in the (m− d)-real∞ model.

The above only applies to all “unpredictability” applications such as one-way
functions, MACs and digital signatures. In the full version [15] we give a simple
concrete example, by applying this technique to one-time (information-theoretic)
message authentication codes, and re-deriving the results of [22,9] in a simpler,
more modular manner.

Indistinguishability applications. Unfortunately, Corollary 1 critically de-
pends on the non-negativity of f , and is generally false when f can be negative,
which happens for indistinguishability applications. In fact, for certain indistin-
guishability applications, such as one-time pad, pseudo-random- generators and



functions (PRGs and PRFs), there exists R with d = 1 such that E[f(Um)] is
negligible (or even zero!) but E[f(R)] = 1/2. For example, consider one-time
pad encryption e = x ⊕ r of the message x using a key r, which has perfect
security ε = 0 in the ideal model, when r ← Um. However, imagine an im-
perfect key R, whose first bit is 0 and the remaining bits are uniform. Clearly,
H∞(R) = m − 1, but one can perfectly distinguish the encryptions of any two
messages differing in the first bit, implying (m − 1)-real∞ security ε′ = 1/2.
Fortunately, below we give another inequality for general f , which will be useful
for other indistinguishability applications.

Lemma 2. For any (deterministic) real-valued function f : {0, 1}m → R and
any random variable R with H2(R) ≥ m− d, we have

| E[f(R)] | ≤
√

2d ·
√
E[f(Um)2] (2)

Proof. Denote p(r) = Pr[R = r], and also recall the Cauchy-Schwartz inequality
|
∑
aibi| ≤

√
(
∑
a2i ) · (

∑
b2i ). We have

| E[f(R)] | =

∣∣∣∣∣ ∑
r

p(r) · f(r)

∣∣∣∣∣ ≤
√

2m ·
∑
r

p(r)2 ·
√

1

2m

∑
r

f(r)2

=
√

2d · E[f(Um)2]

ut

Lemma 2 upper bounds the (squared) weak expectation by the product of
“security deficiency” D = 2d of R and E[f(Um)2]. As with unpredictability
applications, the value D comes to play due to the entropy deficiency of R,
independent of f . Also, the second term E[f(Um)2] only depends on the uni-
form distribution (and not on R). However, it no longer bounds the ideal model
security E[f(Um)] of our application in consideration, but rather the expected
square of the attacker’s advantage. This leads us to the notion of square security,
which was implicitly introduced by [1] and later made explicit by [12] in a more
restricted context of key derivation.

Definition 2 (Square Security). An application P is (T, σ)-square secure if
for any T -bounded adversary A we have E[f(Um)2] ≤ σ, where f(r) denotes A’s
advantage conditioned on key being r.

Applying this definition to Lemma 2, we get the following general result.

Corollary 2 (Square security implies real model security). If P is (T, σ)-

square secure, then P is (T,
√

2d · σ)-secure in the (m− d)-real2 model.

What applications have square security? More precisely, for which appli-
cations P does a good bound on standard security ε also imply a good bound on
their square security? Let us call such applications square-friendly. We start with



a few simple observations. First, all (T, ε)-secure unpredictability applications P
are (T, ε)-square secure, since for non-negative f we have E[f(Um)2] ≤ E[f(Um)].

Hence, we immediately get
√

2d · ε-security in (m−d)-real2 model for such appli-
cations. Notice, this bound is weaker than the 2dε bound in Corollary 1, although
it applies whenever H2(R) ≥ m−d (instead of only when H∞(R) ≥ m−d, which
is more restrictive). Still, we will find the seemingly weaker bound from Lemma 2
useful even for unpredictability applications, when we talk about key derivation
functions in Section 4. This will precisely use the fact that Renyi entropy is a
weaker restriction than min-entropy, making it easier to construct an appropriate
key derivation function.

Moving to indistinguishability applications, it is known that PRGs, PRFs
and one-time pads cannot have good square security (see [1]). Indeed, given our
earlier counter-example for the one-time pad, a different result would contradict
the bound in Corollary 2. To see this explicitly, consider a 1-bit one time pad
encryption e = x ⊕ r, where x, r, e ∈ {0, 1} are the message, the key and the
ciphertext, respectively. Consider also the attacker A who guesses that x = e.
When the key r = 0, A is right and f(0) = 1 − 1

2 = 1
2 . Similarly, when the key

r = 1, A is wrong and f(1) = 0− 1
2 = − 1

2 . This gives perfect ε = E[f(U1)] = 0,
but σ = E[f(U1)2] = 1

4 .
Fortunately, there are still many interesting indistinguishability applications

which are square-friendly, such as stateless chosen plaintext attack (CPA) secure
encryption and weak pseudo-random functions (weak PRFs), as shown by [1].
These examples are shown using an elegant “double run” technique from [1]. In
the following we give a slightly cleaner exposition of this technique, by decom-
posing (until Section 4) the core of this technique from the specifics of the key
derivation setting. We also mention the “multi-run” extension of this technique,
and then derive several new, somewhat unexpected examples, using several vari-
ants of q-wise independent hash functions.

3.1 Square-Friendly Applications via the Double-Run Trick

To make the exposition more intuitive, we start with a nice example of CPA-
secure symmetric-key encryption schemes from [1], and later abstract and gen-
eralize the resulting technique.

Illustrating Example. Recall, for this application P the attacker “resources”
T = (t, q), where t is the running time of A and q is the total number of encryp-
tion queries made by A. More specifically, A is allowed to (adaptively) ask the
challenger C(r) to produce (randomly generated) encryptions of (q−1) arbitrary
messages s1, . . . , sq−1 under the secret key r, and (at any moment) one special
“challenge” query (s∗0, s

∗
1). In response to this latter query, C(r) picks a random

bit b ∈ {0, 1} and returns the encryption of s∗b . Eventually, A outputs a bit b′ and
‘wins’ if b′ = b. As with other indistinguishability applications, the advantage
f(r) of A on key r is Pr[b = b′]− 1/2.

Lemma 3 ([1]). Assume P is a symmetric-key encryption scheme which is
((2t, 2q), 2ε)-CPA-secure (in the ideal model). Then P is ((t, q), ε)-square secure.



Hence, standard CPA-security implies essentially the same level “CPA-square-
security” (formally, with all parameters halved).

Proof. It suffices to show that for any r and any attacker A with running time
t and q queries, there exists another attacker B with running time 2t and 2q
queries, such that B’s advantage on r is twice the squared advantage of A on r.

The strategy of B is to initialize two independent copies of A (with fresh
randomness) — call them A1 and A2 — and run them one after another as
follows. First, it first simulates a run of A1 against the ‘imaginary’ challenger
C1(r), using q regular encryption queries to its own ‘real’ challenger C(r), to
simulate both (q−1) regular and 1 challenge queries of A1 to C1(r). In particular,
the knowledge of the first challenge bit b1 (which B chose himself) allows B to
know whether or not A1 succeeded in this simulated run. After the first simulated
run is over, B now runs a second fresh copy A2 of A “for real”, now using A2’s
challenge query (s∗0, s

∗
1) to C2 as its own challenge query with C. This uses a

total of 2q queries for B to complete both runs. Finally, if A1 wins the game in
its first run (against simulated C1), then B returns A2’s answer in the second
run unmodified; otherwise, B reverses the answer of A2, interpreting the mistake
of A1 in the first run as an indication of a likely mistake of A2 in the second run
as well. In particular, irrespective of the sign of A’s advantage ε below, we have

Pr[B wins] = Pr[A wins twice] + Pr[A loses twice]

=

(
1

2
± ε
)2

+

(
1

2
∓ ε
)2

=
1

2
+ 2ε2

ut

The following theorem immediately follows from Corollary 2 and Lemma 3.

Theorem 1. Assume P is a ((2t, 2q), 2ε)-CPA secure symmetric-key encryption

scheme in the ideal model. Then P is also ((t, q),
√

2d · ε)-secure in the (m− d)-
real2 model.

Double-run trick. We now generalize this technique to any indistinguishabil-
ity application P which we call (T ′, T, γ)-simulatable, slightly generalizing (and,
in our opinion, simplifying) the related notion introduced by [1]. For syntactic
convenience (and without loss of generality), we assume that in the security
game for P the challenger C(r) chooses a random bit b, and the attacker A wins
by outputting a bit b′ = b without violating some failure predicate F , where F
is efficiently checkable by both A and C. For example, for the CPA encryption
example from above, this failure predicate F is empty. In contrast, for the re-
lated notion of chosen ciphertext (CCA) security, F will be true if A asked C
to decrypt the actual challenge ciphertext. Notice, since any A can efficiently
check F , we could have assumed that no such A will violate F (we call such A
legal). However, we will find our small convention slightly more convenient in
the future, including the following definition.



Definition 3. We say that an indistinguishability application P is (T ′, T, γ)-
simulatable, if for any secret key r and any legal, T -bounded attacker A, there
exists a (possibly illegal!) T ′-bounded attacker B (for some T ′ ≥ T ) such that:

(1) The execution between B and ‘real’ C(r) defines two independent executions
between a copy Ai of A and a ‘simulated’ challenger Ci(r), for i = 1, 2.
In particular, except reusing the same r, A1,C1(r),A2,C2(r) use fresh and
independent randomness, including independent challenge bits b1 and b2.

(2) The challenge b used by ‘real’ C(r) is equal to the challenge b2 used by ’sim-
ulated’ C2.

(3) Before making its guess b′ of the challenge bit b, B learns the values b1, b
′
1

and b′2.
(4) The probability of B violating the failure predicate F is at most γ.

For example, the proof of Theorem 1 showed that any CPA-secure encryption
is (T ′ = (2t, 2q), T = (t, q), γ = 0)-simulatable, since B indeed simulated two
runs of A satisfying conditions (1)-(4) above. In particular, a straightforward
abstraction of our proof shows the following:

Lemma 4. Assume P is a (T ′, ε)-secure and (T ′, T, γ)-simulatable, then P is
(T, σ)-square secure, where σ ≤ (ε + γ)/2. In particular, by Corollary 2 P is
(T,
√

2d−1(ε+ γ))-secure in the (m− d)-real2 model.

Multi-Run Extension. In the double-run game we use a test-run to estimate
the sign of the advantage (whether it is positive or not), which advises attacker
B whether or not to reverse A’s answer in the real run. We can generalize this
to a multi-run setting: the attacker B test-runs A for some odd (2i + 1) times,
and takes a majority vote before the actual run, which gives B more accurate
estimate on the sign of the advantage of A. Interestingly, with a different moti-
vation in mind, this precise question was studied by Brakerski and Goldreich [5].
Translated to our vocabulary, to gain a factor α > 1 in the square security (i.e.,
to show that σ ≤ ε/α), one needs to run the original distinguisher A for Θ(α2)

times. Going back to Corollary 2, to get ‘real’ security ε′ = 1
α ·
√

2d · ε, one needs
to run A for O(α4) times, therefore losing this factor in the allowed resources T .
Although theoretically interesting, it appears that the best practical tradeoff is
already achieved using the “double-run” trick itself, a conclusion shared by [5].

3.2 Applications to Weak Pseudorandom Functions and Extractors

Recall, weak PRFs [23] are close relatives of CPA-secure symmetric encryption,
and relax the notion of (regular) PRFs. For future applications, we give a precise
definition below.

Definition 4 (((t, q), δ))-weak PRFs). A family H of functions {hr : {0, 1}n →
{0, 1}l | r ∈ {0, 1}m} is ((t, q), δ)-secure weak PRF, if for any t-bounded at-
tacker A, and random s, s1, . . . , sq−1 ← Un and r ← Um, we have

∆A( hr(s), Ul | s , s1 , hr(s1), · · · , sq−1, hr(sq−1) ) ≤ δ



Notice, it is impossible to achieve δ = 0 in this definition for q > 1, as there
is always a small chance that s ∈ {s1, . . . , sq−1}. Also, just like CPA-secure
encryption, weak PRFs are easily seen to be ((2t, 2q), (t, q), 0)-simulatable, since
the ‘outer’ attacker B can choose its own bit b1, and set the challenge value of
the first run to be hr(sq) if b1 = 0, and uniform Ul otherwise. By Lemma 4, this
means that

Theorem 2. Assume P is a ((2t, 2q), δ)-secure weak PRF in the ideal model.

Then P is ((t, q), δ/2)-square secure, as well as ((t, q),
√

2d−1 · δ)-secure in the
(m− d)-real2 model.

Moreover, by applying the multi-run extension, if P is a ((O(α4 · t), O(α4 ·
q)), δ)-secure, then P is also ((t, q), 1

α ·
√

2d · δ)-secure in the (m−d)-real2 model.
This results nicely improves (and simplifies!) a result of Pietrzak [24], who
achieved security δ′ ∼ δ · 2d, but at a price of reducing the allowed running
time t′ and the number of queries q′ by a huge factor poly(1/δ′) = poly(2d, 1/δ).
A comparable (actually, slightly better) result follows from our multi-run deriva-

tion above, by taking a very large value of α ∼ 1/
√

2dδ. Of course, such large α
makes the resulting values t and q really low compared to the original t′ and q′.
Indeed, we believe the region of ‘small’ α, and especially the result of Theorem 2,
is much more relevant for practical use.

While the security of weak PRFs with weak keys was already studied by [24,1]
with large q in mind, we obtain some expected results by concentrating on the
most basic case of q = 1.

Application to Extractors. By looking at the k-real2 security (where k =
m − d) of weak PRFs for q = 1 and t = ∞, we essentially obtain the notion of
extractors for Renyi entropy!

Definition 5 (Extractors). We say that an efficient function Ext : {0, 1}m ×
{0, 1}n → {0, 1}l is a strong (k, ε)-extractor, if for all R (over {0, 1}m) with
H2(R) ≥ k and for random S (uniform over {0, 1}n), we get

SD( Ext(R;S) , Ul | S) ≤ ε

where coins S ← Un is the random seed of Ext. The value L = k− l is called the
entropy loss of Ext.

To apply Theorem 2 (with q = 1, t = ∞ and k = m − d) and obtain such
extractors, all that remains is to build an ((∞, 2), δ)-secure weak PRFs for a
low value of δ, which is essentially a pairwise independent hash function on two
random inputs:

SD( hr(s), Ul | s, s′, hr(s′) ) ≤ δ (3)

where r ← Um and s, s′ ← Un. For example, using any traditional pairwise
independent hash function, which has the property that

Pr
r←Um

[hr(s) = a ∧ hr(s
′) = a′] = 2−2l (4)



for any s 6= s′ and any a, a′ ∈ {0, 1}l, we achieve that the only case when one
can distinguish hr(s) and hr(s

′) is when s = s′, which happens with probability
2−n. In other words, pairwise independent hashing gives δ = 2−n, which, in turn,
gives (by Theorem 2, with q = 1, t =∞, k = m− d and δ = 2−n):

Corollary 3 (Alternative LHL). If H def
= {hr : {0, 1}n → {0, 1}l | r ∈

{0, 1}m} is pairwise independent (i.e., satisfies Equation (4)), then Ext(r; s)
def
=

hr(s) is a strong (k,
√

2m−k−n)-extractor.

To compare this result with the standard LHL [19], the optimal key length
m for a family of pairwise independent hash functions from n to l bits (where
l ≤ m/2) is known to be m = n + l (e.g., using Toeplitz matrices). Plugging

this to our bound in ε above, we get the same bound ε =
√

2l−k = 2−L/2 as the
leftover hash lemma, where in both cases l is output size and k is the entropy of
the source. More detailed comparison can be found in the full version [15].

Computational Pairwise Independence. Continuing our exploration of
q = 1 (whose square security follows from regular security of q = 2), information-
theoretic pairwise independence requires that the length m of the key r is at
least twice the length l of the function output hr(s). Looking ahead at the key
derivation setting in Section 4.3, m will be equal to the security parameter, and
we will need to achieve output length l ≥ m, which is impossible information-
theoretically. Instead, we observe that the result can be easily achieved com-
putationally, by applying a length-doubling pseudorandom generator (PRG)
G : {0, 1}m → {0, 1}2m first. Namely, a weak computationally pairwise inde-
pendent hash function with an m-bit key and output can be obtained by first
expanding the key r to r′ = G(r), and then using r′ as the 2m-bit key of (no
longer impossible) pairwise independent hash function hr′ with an m-bit output.
We postpone further exploration of this computationally ((t, 2), δ)-secure weak
PRF, and its application to key derivation, till Section 4.3.

3.3 Application to Non-Malleable Extractors

Having obtained randomness extractors for q = 1, we now continue our explo-
ration for q = 2 (and larger values). First, however, we strengthen the security
experiment for weak PRFs in order to obtain much stronger results. Indeed,
while the “double-run” trick seems to require that the challenge input s is ran-
domly chosen,10 there seems to be no reason not to allow the attacker A to
choose the input values s1, . . . , sq−1, as long as all of them are different from the
actual challenge s. In fact, we will even allow A to select s1, . . . , sq−1 based on
the challenge input s.11

The resulting notion, which we (for simplicity) only state for the information-
theoretic case of t = ∞, is given below. Here the phrase that “s1 . . . sn can be

10 Otherwise, we arrive at the notion of of PRFs, which we know are not square-friendly.
11 As mentioned later, we could even allow A to see the challenge hr(s)/Ul and s before

selecting s1, . . . , sq−1, although we do not formally pursue this direction.



arbitrarily correlated to s” means that the unbounded attacker A (implicit in
the definition below) chooses s1 . . . sq−1 as a function of s.

Definition 6 (weak (q, δ)-wise independence). A family H of functions
{hr : {0, 1}n → {0, 1}l | r ∈ {0, 1}m} is weakly (q, δ)-wise independent, if
for r←Um, s ← Un, and for s1, · · · , sq−1 ∈ {0, 1}n that are distinct from and
arbitrarily correlated to s, we have

SD( hr(s), Ul | s, hr(s1), · · · , hr(sq−1) ) ≤ δ

The failure event F happens when one of the points si = s.

Notice that, unlike weak with PRFs, here ideal security δ = 0 is possible,
since we explicitly require that s 6∈ {s1 . . . sq−1}. In fact, a (perfectly) q-wise
independent hash function (where the analog of Equation (4) holds for larger q)
is also weakly (q, 0)-wise independent.

Also observe that we can naturally view the above definition as a game be-
tween a challenger C and the attacker A, where (q−1) measures the “resources”
of A (distinct from s points where he learns the true value of hr), and δ is the
advantage of distinguishing hr(s) from random. In particular, we can naturally
define the (q, σq)-square security of H (with random key r ← Um) and then
use Corollary 2 to bound the security of H in the (m − d)-real2 model, when
using a weak key R with H2(R) ≥ m − d. In fact, we can successfully apply
the double-run trick above to show that H is (2q, q, γ)-simulatable, where, for
the first time we have a non-zero failure probability γ = q/2n. Indeed, to sim-
ulate the first virtual run of A, B simply chooses its own random point s and
asks its value hr(s). The subtlety comes from the fact that both s and the the
(q − 1)-correlated values s1 . . . sq−1 might accidentally collide with the second
(fortunately) random challenge s′, making the resulting ‘outer’ attacker B illegal.
Luckily, the probability that a random s′ collides with any of these q values is
at most γ ≤ q/2n, indeed.

Theorem 3. If function family H is weakly (2q, δ)-wise independent, then H is
(q, (δ + q/2n)/2)-square secure, as well as weakly (q, ε)-wise independent in the

(m− d)-real2 model, where ε =
√

(δ + q
2n ) · 2d−1.

Non-malleable Extractors. Next, we consider the case of q = 2, where
the notion of (2, ε)-wise independence in the k = (m−d)-real2 model becomes a
non-malleable extractor [14] (for Renyi entropy; the case q = 1 collapses to the
setting of weak PRF considered in the previous section).

Definition 7 (Non-Malleable Extractors). We say that an efficient func-
tion nmExt : {0, 1}m × {0, 1}n → {0, 1}l is a (k, ε)-non-malleable extractor, if
for all R (over {0, 1}m) with H2(R) ≥ k, for random S (uniform over {0, 1}n),
and for all functions g : {0, 1}n → {0, 1}n, s.t. g(s) 6= s for all s, we get

SD( nmExt(R;S) , Ul | S, nmExt(R; g(S)) ) ≤ ε



Applying Theorem 3 to (perfectly) 4-wise independent hash functions (i.e.,
2q = 4, δ = 0, k = m− d), we get:

Corollary 4 (Non-Malleable Extractors). If H def
= {hr : {0, 1}n → {0, 1}l |

r ∈ {0, 1}m} is 4-wise independent, then nmExt(r; s)
def
= hr(s) is a (k,

√
2m−k−n)-

non-malleable extractor.

For a simple instantiation, let H be the following (optimal) 4-wise inde-
pendent hash function with known parameters n = m/2 and l = m/4 (using
BCH codes; see [21]). The key r ∈ {0, 1}m is viewed as a tuple of 4 elements
(r1, r2, r3, r4) in GF [2m/4] = GF [2l], and a seed s ∈ {0, 1}n\0n is viewed as
a non-zero point in GF [2n]. Then, the m-bit value of (s‖s3) is viewed as 4
elements (s1, s2, s3, s4) in GF [2l], and the l-bit output of the function is set
to hr(s) = r1 · s1 + . . . + r4 · s4. Using Corollary 4, this simple function is a

(k,
√

2m/2−k)-non-malleable extractor with an output of size l = m/4. Quite
surprisingly, this noticeably improves a much more complicated initial con-
struction of non-malleable extractors of [10]. That result could only extract
l = k/2 −m/4 − Ω(logm) − log (1/ε) � m/4 bits, and relied on an unproved
conjecture in number theory. In particular, even for one-bit output, it achieved
slightly worse security ε′ = O(poly(n)) ·

√
2m/2−k.

As mentioned earlier, the same final construction was independently discov-
ered by Li [21] with a different, more direct proof. We believe that our modular
approach might have some advantages (beyond simplicity). For example, in ad-
dition to generalizing to larger values of q (an observation also made by Li [21]),
it appears that our approach seamlessly tolerates more elaborate variants of non-
malleable extractors, such as when the points s1, . . . , sq−1 could also depend on
the challenge hr(Um)/Ul. It is not immediately clear if the same easily holds for
the proof of [21].

3.4 Side Information

So far we presented our results assuming Hc(R) ≥ m − d from the perspec-
tive of our attacker A. In some settings, such as the key derivation setting
in Section 4 below, R itself is derived using some procedure, at the end of
which the attacker A gets some side information S about R. To deal with
this natural generalization, we define average-case (aka conditional) collision

entropy H2(R|S)
def
= − log

(
Es←S

[ ∑
r Pr[R = r|S = s]2

] )
and average-case

min-entropy H∞(R|S)
def
= − log ( Es←S [ maxr Pr[R = r|S = s] ] ), which then

allows one to define the average-case (m − d)-realc model, after which one can
easily generalize our basic Lemma 1 and Lemma 2 to the average-case setting.
We defer these (rather straightforward) details to the full version [15], here only
stating the required generalization of Lemma 1 and Lemma 2.

Lemma 5. For any real-valued function f(r, s) and any random variables (R,S),
where |R| = m:



(a) If H∞(R | S) ≥ m− d and f ≥ 0, then E[f(R,S)] ≤ 2d ·maxs E[f(Um, s)].
(b) If H2(R | S) ≥ m− d, then

|E[f(R,S)]| ≤
√

2d · E[f(Um, S)2] ≤
√

2d ·maxs E[f(Um, s)2].

4 Key Derivation Functions

So far we studied the security of various applications when their m-bit secret key
is weak (i.e., has some entropy deficiency d). In many situations, one is given a
source of randomness X of some, possibly different, length n and having some
entropy k, and we need to first map it to the m-bit key R by means of some
key derivation function (KDF) h : {0, 1}n → {0, 1}m. As we will see, the source
entropy k and the output length m play the most important role in this scenario,
which leads to the following definition.

Definition 8. We define (k,m)-realc model (for c ∈ {2,∞}) as the key deriva-
tion setting, where a given KDF h with range {0, 1}m is applied to any source
X with Hc(X) ≥ k, to get a secret key R = h(X) (for some application in
question).

As it turns out, in this level of generality deterministic key derivation is
(essentially)12 impossible for all sources of entropy k (see [12] for related dis-
cussion), so we will assume (and critically capitalize on) the existence of public
randomness S. Depending on context, we will view such S either as a seed for
h(X;S), or as the description of h itself.

Having clarified the setting, we now turn to the question of designing such
KDFs h for a given application P . First, when the source entropy k ≥ m +
2 log (1/ε), where ε is the desired security level for P , we can apply a good
strong randomness extractor (e.g., by using LHL) to derive a key R which is
(statistically) ε-close to Um (even conditioned on the seed S). In practice, how-
ever, many sources do not have this much entropy, so we will consider the more
challenging (and, often, more realistic) case when k is (noticeably) less than
m+2 log (1/ε). We will divide our study intro three complementary approaches.

First, in Section 4.1 we will leverage the rich body results we obtained in
Section 3 for dealing with “square-friendly” applications, and show that ran-
domness condensers (instead of more demanding extractors) are precisely the
right primitives to obtain improved key derivation results for all square-friendly
applications. This will lead to the improved variant of LHL discovered by Barak
et al. [1], but in a more modular and, arguably, intuitive manner. Interestingly,
the parameters of standard extractors (i.e., standard LHL) will also “pop-up”
to cover all (even non-square-friendly) applications when k ≥ m+ 2 log (1/ε).

Second, in Section 4.2 we turn to a more challenging seed-dependent setting,
considered by Dodis et al. [12], where the distribution on the source X could de-
pend on the public seed S. This more or less follows the presentation of [12], and
is included in this work mainly for completeness and modularity of exposition.

12 Except maybe in the model of uniform adversaries, not considered here.



Finally, while the results of the previous subsections were interesting mainly
from the perspective of the presentation, in Section 4.3 we consider the (“seed-
independent”) setting where the results of Section 4.1 lead to poor parameters.
Namely, when the application P is either non-square-friendly, or has poor exact
security ε to withstand the multiplicative 2d loss incurred by our prior tech-
niques. This will be done by capitalizing on our setting of public randomness to
design a square-friendly key derivation function h. This has the advantage that
the security of this key derivation step only needs to be analyzed with uniform
X (i.e., in the ideal model), and our prior results will immediately imply the
security of h in the real model. Moreover, instead of using the security of our
final application P (which, as we said, leads to poor parameters), we will view
the process of key derivation as a new application P ′ of its own! In particular, if
the resulting key R = h(X) will be pseudorandom, we can use it for any ‘outer’
P , irrespective of P ’s security or ”square-friendliness”.

We notice that a less optimized variant of this idea was already proposed
by [1], who noticed that a weak PRF hX— with public randomness S viewed as
the input to hX — is precisely the square-friendly primitive we are looking for.
In this work we take this observation one step further, by capitalizing on the fact
that h only needs to be secure for two queries in the ideal model (and, hence,
one query in the real model). This leads to a simple (computationally-secure)
construction of such a KDF h using length-doubling PRGs, already mentioned
at the end of Section 3.2. As an unexpected consequence, also mentioned in the
Introduction, our new KDF will give us an interesting (and often more favorable)
alternative to the dense model theorem [28,27,16,17].

4.1 Condensers and Improved Leftover Hash Lemma

Recall, in the (k,m)-realc model we have an n-bit source X having Hc(X) ≥
k, and we wish to derive an m-bit key R from X. Moreover, the results on
Section 3 — in particular Corollary 1 (for c = ∞) and Corollary 2 (for c = 2)
— show that all we need from our KDF h is to ensure that Hc(R) ≥ m − d to
ensure security degradation of the order 2d. Remembering the fact that our key
derivation has a public seed S, which means that R should have entropy even
given S. Fortunately, by the results of Section 3.4 all our results in Section 3
hold with respect to the side information S. Thus, we naturally arrive at the
following definition.

Definition 9 (Condensers). Let c ∈ {2,∞}. We say that an efficient function
Cond : {0, 1}n×{0, 1}v → {0, 1}m is a ( kn →

m−d
m )c-condenser if for Hc(X) ≥ k

and uniformly random S we have Hc( Cond(X;S) | S ) ≥ m− d.

Both H∞- and H2- condensers are useful in cryptography. The former con-
nects well with Lemma 1 (formally, its extension Lemma 5(a)) and Corollary 1,
and the latter is more in line with Lemma 2 (formally, its extension Lemma 5(b))
and Corollary 2. In the sequel, though, we will only use H2 (and let c = 2 here-
after) since it seems to give stronger final bounds (even for unpredictability ap-



plications!), and applies to more cases (e.g. square-friendly indistinguishability
applications). See [12] for more discussion.

We now recall the notion of universal hashing [6] and explicitly prove a well-
known folklore13 that universal hashing gives very good randomness condensers.

Definition 10 (Universal Hashing). A family of functions G def
= {gs : {0, 1}n →

{0, 1}m | s ∈ {0, 1}v} is universal, if for any distinct x1, x2 ∈ {0, 1}n we have

Pr
s←Uv

[gs(x1) = gs(x2)] = 2−m

Lemma 6. Universal hash function family G def
= {gs : {0, 1}n → {0, 1}m | s ∈

{0, 1}v} defines a ( kn →
m−d
m )2-condenser Cond(x; s)

def
= gs(x), where 2d = 1 +

2m−k.

Proof. We directly analyze the collision probability by estimating the probability
that two independent samples X1 and X2 of X collide under gS . The latter is
done by conditioning on whether X1 and X2 collide among themselves, and using
the universality of G to tackle the case of no collision:

Pr[gS(X1) = gS(X2)] ≤ Pr[X1 = X2] + Pr[ gS(X1) = gS(X2) ∧ X1 6=X2]

≤ 2−k + 2−m = 2−m · (2m−k + 1) = 2d−m

Instead of composing this result with Lemma 2/Lemma 5(b), we use a slightly
different version of these lemmas (whose proof is very similar as well, and is
omitted) leading to improved final results.

Lemma 7 ([1]). For any (deterministic) real-valued function f : {0, 1}m → R
and any random variable R with H2(R) ≥ m− d, we have

| E[f(R)]− E[f(Um)] | ≤
√

2d − 1 ·
√
E[f(Um)2] (5)

More generally, when side information S is present, and H2(R | S) ≥ m−d, we
have:

| E[f(R,S)]− E[f(Um, S)] | ≤
√

2d − 1 ·
√
E[f(Um, S)2] (6)

Corollary 5 (Using Universal Hashing as KDF). If P is (T, ε)-secure and
(T, σ)-square secure (in the ideal model), then using R = gs(X) makes P (T, ε′)-

secure in the (k,m)-real2 model, where ε′ ≤ ε+
√
σ·2m−k.

Reduced entropy loss for leftover hash lemma. Recalling the notion

of entropy loss L
def
= k −m, used in the earlier study of extractors, the bound

of Corollary 5 can be rewritten as ε′ ≤ ε +
√
σ · 2−L. In particular, since any

application has square-security σ ≤ 1, we get ε′ ≤ ε +
√

2−L. This implicitly
recovers the traditional application of the LHL, which argues that entropy loss

13 This argument is usually hidden inside the proof of the standard LHL, but here we
find it worthy on its own.



L ≥ 2 log (1/ε) is enough to ensure comparable security ε′ ≤ 2ε for any appli-
cation P . More interestingly, we saw in Section 3 that many “square-friendly”
applications, including all unpredictability applications and many indistinguisha-
bility applications, achieve σ ≈ ε, in which case we get a bound ε′ ≤ ε+

√
ε·2−L.

Thus, to achieve ε′ ≈ ε, we only need to set L = log (1/ε) for such applications,
saving log (1/ε) in the entropy requirement on X. More surprisingly, the result-
ing bound is meaningful even for negative L, in which case we are extracting
more bits than the entropy k we have.

Finally, one can interpret Corollary 5 as the indication that the most chal-
lenging setting for key derivation occurs when the source X has length n = m,
a result we will use in Section 4.3. Indeed, when n = m, the value m − k is
simply the entropy deficiency d of our source X. In particular, applying any of
the results in Section 3 directly to X (without doing the key derivation) would
incur a factor 2d = 2m−k loss in security. Using Corollary 5, we see that by ap-
plying an m-bit universal hash to any n-bit source X, we get the same security
degradation 2m−k as if the derived m-bit key R had the same entropy k as the
original n-bit source X!

4.2 Seed-Dependent Key Derivation

We now generalize the notion of a condenser to the seed-dependent setting,
where the adversarial sampler A can depend on the seed S but is computation-
ally bounded. This challenging setting was considered by [29] in the context of
seed-dependent extractors, where the authors made a pessimistic conclusion that
the complexity of the seed-dependent extractor must be larger than that of the
sampler A, making this notion not very useful for key derivation in practical ap-
plications. In contrast, we follow the result work of [12] who showed that (strong
enough) collision-resistant hash functions (CRHFs) must be seed-dependent con-
densers, and thus can be used as KDFs for all square secure applications, despite
having much smaller complexity than the complexity of the sampler A. This par-
tially explains the use of CRHFs as KDFs in practical applications.

Definition 11 (Seed-Dependent Condensers). An efficient function Cond
: {0, 1}n × {0, 1}v → {0, 1}m is a ( kn →

m−d
m , t)2-seed-dependent condenser if

for all probabilistic adversaries A of size t who take a random seed s← Uv and
output (using more coins) a sample X ← A(s) of entropy H2(X|S) ≥ k, we have
H2( Cond(X;S) | S ) ≥ m− d.

Definition 12 (CRHF). A family of hash functions G def
= {gs : {0, 1}n →

{0, 1}m | s ∈ {0, 1}v} is (t, δ)-collision-resistant if for any (non-uniform)
attacker B of size t, we have

Pr[gs(x1) = gs(x2) ∧ x1 6= x2] ≤ δ

where s← Uv and (x1, x2) ← B(s).



Lemma 8 (CRHFs are seed-dependent condensers). A family of (2t, D(t)
2m )-

collision-resistant hash functions G def
= {gs : {0, 1}n → {0, 1}m | s ∈ {0, 1}v}

defines a seed-dependent ( kn →
m−d
m , t)2-condenser Cond(x; s) = gs(x), where

2d = 2m−k +D(t).

Proof. We estimate the collision probability of A(S) given S, but letting A(S)
sample X1, X2 ← A(S), and bounding the probability of collision as follows:

Pr[gS(X1) = gS(X2)] ≤ Pr[X1 = X2] + Pr[ gS(X1) = gS(X2) ∧ X1 6=X2 ]

≤ 2−k +D(t)·2−m = 2−m · (2m−k +D(t)) = 2d−m

where Pr[ gS(X1) = gS(X2) ∧ X1 6=X2 ] ≤ D(t)/2m, since otherwise we can
define an efficient collision-finding adversary B(S), who simply runs the sampler
A(S) twice to get the collision (X1, X2).

In the above, the entropy deficiency d is essentially the logarithm of D(t),
which is a function on the sampler’s complexity t. We note D(t) = Ω(t2) due to
birthday attacks, and this bound can be achieved in the random oracle model.
In general, it is reasonable to assume D(t) = poly(t) for strong enough CRHFs.
Then, using the definition of condensers and Corollary 2, we get the following
surprising result, which partially explains the prevalent use of CRHFs (which do
not appear to have any extraction properties based on their definition) for key
derivation:

Corollary 6 (Using CRHFs as KDFs). If P is (T, σ)-square secure, {gs} is

a family of (2t, poly(t)2m )-CRHFs, and X is a source produced by a sampler A(s)
of complexity at most t and having H2(X|S) ≥ k ≥ m − O(log t), then using
R = gs(X) makes P (T, ε′)-secure, where ε′ ≤ O(

√
σ·poly(t)).

From an asymptotic point of view, for square-friendly applications (e.g. CPA-
secure encryptions, weak PRFs, unpredictability primitives) with negligible ideal
ε (and hence negligible σ ≈ ε), and all source samplers running in polynomial
time t (all in the “security parameter”), we get negligible security ε′=O(

√
ε·poly(t))

in the real model.

4.3 Generic, Square-Friendly Key Derivation

Finally, we return to the “seed-independent” setting and turn to the question
of generic key derivation for all applications P , by viewing the process of key
derivation with public randomness as an application in itself! Indeed, we can
imagine a game between the challenger C(x) and an attacker A, where C(x)
sends the public randomness s in the first round, and then challenges A to
distinguish the value r = h(x; s) from uniform. In fact, this is nothing more than
the weak PRF game for q = 1 considered in Section 3.2,14 except we (confusingly)

14 Alternatively, one can view this game as a computational extractor, where the ex-
tracted string r is only required to be pseudorandom.



“renamed” our secret r by x, and the derived key hr(s) by r = h(x; s) (the input
s kept its letter)! In particular, we saw that the weak PRFs are square-friendly,
which means that all we need to do (not counting letter translation) in order to
apply Theorem 2 is to design a “good enough” ((t, 2), δ)-secure weak PRF in the
ideal model.

To do so, let us examine the parameters we need. First, as explained at the
end of Section 4.1, we will assume that our source length n = m (since we
can always apply Corollary 5 to more or less reduce to this case). Thus, we
need a ((t, 2), δ)-secure weak PRF where both the key (now called x) and the
output (now called r) are m-bit long. As explained at the end of Section 3.2,
we cannot achieve this result information-theoretically. Instead, we return to
the “computational pairwise independent” construction sketched at the end of
Section 3.2, starting with a formal definition of a PRG.

Definition 13 (PRG). We say that a function G : {0, 1}m → {0, 1}2m is a
(2t, εprg)-secure PRG if for any 2t-bounded attacker A, ∆A(G(Um), U2m) ≤ εprg.

We now compose such a PRG G with any pairwise independent hash function
(see Equation (4)) hy : {0, 1}p → {0, 1}m, where key length |y| = 2m (we will
set the input length p ≤ m shortly). For example, viewing y = (a, b), where
a, b ∈ GF [2m] and s ∈ {0, 1}p ⊆ GF [2m], we could set ha,b(s) = a · s+ b. Recall,
as discussed in Section 3.2, the resulting familyH is clearly a ((∞, 2), 2−p)-secure
weak PRF, except its key y is too long (2m bits instead of m). Therefore, we
define the composed function h′x : {0, 1}p → {0, 1}m, with key x ∈ {0, 1}m,
by h′x(s) = hG(x)(s). A simple hybrid argument shows that the resulting hash
family H′ is a ((2t, 2), εprg + 2−p)-secure weak PRF. Combining this result with
Theorem 2, we finally get our key derivation function from m-to-m bits:

Theorem 4. If G is (2t, εprg)-secure and H is pairwise independent, then the
m-to-m-bit key derivation function h′x(s) = hG(x)(s) uses p bits of public ran-

domness s and achieves (t,
√

2d−1 · (εprg + 2−p))-security in the (m−d,m)-real2-
model.

In particular, if p = log(1/εprg), then H′ is (t,
√

2d · εprg)-secure in the (m−
d,m)-real2-model, and the derived key R can be used in any (even non-square-
friendly) (t, ε)-secure application P needing an m-bit key, giving (t, ε+

√
2d · εprg)-

security for P in the (m− d,m)-real2-model.

Notice, the latter bound might be beneficial not only for non-square-friendly
applications, where no other options are available, but also for square-friendly
applications where ε � εprg. Also, the assumption p ≥ log(1/εprg) is easy to
achieve, since the standard “a·s+b” pairwise independent hash function achieves
p = m, and m � log(1/εprg) for any m-to-2m-bit PRG. Hence, we never need
to use more than m bits of public randomness.

Generic Key Derivation. We now combine Theorem 4 and Corollary 5 to
tackle the case of a general n-to-m-bit key derivation function. As before, we
take a (2t, εprg)-secure PRG G : {0, 1}m → {0, 1}2m and a pairwise independent



family H = {hy : {0, 1}p → {0, 1}m | y ∈ {0, 1}2m} with p ≥ log(1/εprg), but
now also use a universal family G = {gs : {0, 1}n → {0, 1}m | s ∈ {0, 1}v}. Define
the new hash family H′ = {h′s,s′ : {0, 1}n → {0, 1}m | s ∈ {0, 1}v, s′ ∈ {0, 1}p}
by h′s,s′(x) = hG(gs(x))(s

′).
Before stating our final bound, we claim that we can instantiate H′ so that

the amount of public randomness p+ v it is at most max(m,n). Indeed, the size
of s′ can be made p = log(1/εprg) ≤ m bits. When n ≤ m, G can be keyless and
simply have the “never-colliding” identity function, so m = m+ 0 = max(m,n)
total bits is enough. When n ≥ m, the optimal key size of a universal hash family
from n bits to m bits is v = n−m (by Toeplitz matrices construction, or, when
n is a multiple of m, the “augmented” inner product construction discussed
in Section 3.2). This gives total number of bits at most m + (n − m) = n =
max(m,n).

Using Corollary 5 to analyze the ‘inner’ n-to-m-bit KDF with parameters of
the ‘outer’ m-to-m-bit KDF given by Theorem 4, we get:

Corollary 7. If G is (2t, εprg)-secure PRG, H is pairwise independent and G is
universal, then the function family H′ above defines an n-to-m-bit key deriva-
tion function that uses p + v bits of public randomness and achieves (t, εprg +√

2m−k · εprg)-security in the (k, n)-real2-model.
In particular, the derived key R can be used in any (even non-square-friendly)

(t, ε)-secure application P needing an m-bit key, giving (t, ε+εprg+
√

2m−k · εprg)-
security for P in the (k, n)-real2-model.

Moreover, H and G can be instantiated so that the amount of public random-
ness p+ v ≤ max(m,n).

As before, the generic bound for P might be beneficial not only for non-
square-friendly applications P , where no other options are available, but also for
square-friendly applications where ε� εprg.

Alternative to Dense Model Theorem. Finally, as mentioned in the
Introduction, the most unexpected consequence occurs when we apply it to P =
G itself! In this case, while the initial value Y = G(X) need not be pseudorandom
at all when H2(X) ≥ m− d, our result in Theorem 4 implies that G(hG(X)(S))

is (t, εprg +
√

2d · εprg)-pseudorandom, even conditioned on S.

Theorem 5 (Alternative to Dense Model Theorem). Assume G : {0, 1}m →
{0, 1}2m is a (2t, εprg)-secure PRG, H = {hy : {0, 1}p → {0, 1}m | y ∈ {0, 1}2m}
is a pairwise independent family with p ≥ log(1/εprg), X is any seed distribu-
tion over {0, 1}m with H2(X) ≥ m − d, and S ← Up is a public random string
(independent of X). Then, for any t-bounded distinguishers A and B, we have

∆A( hG(X)(S) , Um | S ) ≤
√

2d · εprg

∆B( G(hG(X)(S)) , U2m | S ) ≤ εprg +
√

2d · εprg

Thus, G(hG(X)(S)) is (t, εprg +
√

2d · εprg)-pseudorandom conditioned on S.



We defer the detailed comparison with the results obtained via the stan-
dard dense model theorem [28,27,16,17] to the full version [15] (but see the end
of the Introduction for some highlights), where we also give a simple concrete
instantiation of our approach.
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