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Abstract. If we have a problem that is mildly hard, can we create a
problem that is significantly harder? A natural approach to hardness am-
plification is the “direct product”; instead of asking an attacker to solve
a single instance of a problem, we ask the attacker to solve several inde-
pendently generated ones. Interestingly, proving that the direct product
amplifies hardness is often highly non-trivial, and in some cases may be
false. For example, it is known that the direct product (i.e. “parallel rep-
etition”) of general interactive games may not amplify hardness at all.
On the other hand, positive results show that the direct product does
amplify hardness for many basic primitives such as one-way functions,
weakly-verifiable puzzles, and signatures.
Even when positive direct product theorems are shown to hold for some
primitive, the parameters are surprisingly weaker than what we may
have expected. For example, if we start with a weak one-way function
that no poly-time attacker can break with probability > 1

2
, then the di-

rect product provably amplifies hardness to some negligible probability.
Naturally, we would expect that we can amplify hardness exponentially,
all the way to 2−n probability, or at least to some fixed/known negligible
such as n− logn in the security parameter n, just by taking sufficiently
many instances of the weak primitive. Although it is known that such pa-
rameters cannot be proven via black-box reductions, they may seem like
reasonable conjectures, and, to the best of our knowledge, are widely be-
lieved to hold. In fact, a conjecture along these lines was introduced in a
survey of Goldreich, Nisan and Wigderson (ECCC ’95). In this work, we
show that such conjectures are false by providing simple but surprising
counterexamples. In particular, we construct weakly secure signatures
and one-way functions, for which standard hardness amplification re-
sults are known to hold, but for which hardness does not amplify beyond
just negligible. That is, for any negligible function ε(n), we instantiate
these primitives so that the direct product can always be broken with
probability ε(n), no matter how many copies we take.



1 Introduction

Hardness amplification is a fundamental cryptographic problem: given a “weakly
secure” construction of some cryptographic primitive, can we use it to build a
“strongly secure” construction? The first result in this domain is a classical con-
version from weak one-way functions to strong one-way function by Yao [32] (see
also [13]). This result starts with a function f which is assumed to be weakly
one-way, meaning that it can be inverted on at most (say) a half of its inputs.
It shows that the direct-product function F (x1, . . . , xk) = (f(x1), . . . , f(xk)), for
an appropriately chosen polynomial k, is one-way in the standard sense, mean-
ing that it can be inverted on only a negligible fraction of its inputs. The above
result is an example of what is called the direct product theorem, which, when
true, roughly asserts that simultaneously solving many independent repetitions
of a mildly hard task yields a much harder “combined task”.5 Since the result
of Yao, such direct product theorems have been successfully used to argue se-
curity amplification of many other important cryptographic primitives, such as
collision-resistant hash functions [8], encryption schemes [12], weakly verifiable
puzzles [7, 20, 22], signatures schemes/MACs [11], commitment schemes [18, 9],
pseudorandom functions/generators [11, 26], block ciphers [24, 27, 25, 30], and
various classes of interactive protocols [5, 28, 19, 17].

Direct product theorems are surprisingly non-trivial to prove. In fact, in some
settings, such as general interactive protocols [5, 29], they are simply false and
hardness does not amplify at all, irrespective of the number of repetitions. Even
for primitives such as one-way functions, for which we do have “direct product
theorems”, the parameters of these results are surprisingly weaker than what
we may have expected. Let us say that a cryptographic construction is weakly
secure if no poly-time attacker can break it with probability greater than 1

2 .
Known theorems tell us that the direct product of k = Θ(n) independent in-
stances of a weakly secure construction will become secure in the standard sense,
meaning that no poly-time attacker can succeed in breaking security with better
than some negligible probability in the security parameter n. However, we could
naturally expect the direct product of k instances will amplify hardness expo-
nentially, ensuring that no poly-time attacker can break security with more than
2−k probability. Or, we would at least expect that a sufficiently large number
of k = poly(n) repetitions can amplify hardness to some fixed/known negligible

probability such as ε(n) = 2−n
δ

for some constant δ > 0, or even less ambitiously,
ε(n) = n− logn. We call such expected behavior amplification beyond negligible.

Limitation of Existing Proofs. One intuitive reason that the positive re-
sults are weaker than what we expect is the limitation of our reduction-based
proof techniques. In particular, assume we wanted to show that the k-wise di-

5 A related approach to amplifying the hardness of decisional problems is the “XOR
Lemma” which roughly asserts the hardness of predicting an XOR of the challenge
bits of many independent instances of a decisional problem will amplify. In this
work, we will focus of “search” problems such as one-way functions and signatures
and therefore only consider amplification via direct product.



rect product amplifies hardness down to some very small probability ε. Then we
would need an efficient reduction that uses an adversary A breaking the secu-
rity of the k-wise direct product with probability ε, to break the security of a
single instance with a much larger probability, say one half. Unfortunately, the
reduction cannot get “anything useful” from the attacker A until it succeeds at
least once. And since A only succeeds with small probability ε, the reduction is
forced to run A at least (and usually much more than) 1/ε times, since otherwise
A might never succeed. In other words, the reduction is only efficient as long
as ε is an inverse polynomial. This may already be enough to show that the
direct product amplifies hardness to some negligible probability, since the success
probability of A must be smaller than every inverse polynomial ε. But it also
tells us that black-box reductions cannot prove any stronger bounds beyond neg-
ligible, since the reduction would necessarily become inefficient.6 For example,
we cannot even prove that the k-wise direct product of a weak one-way function
will amplify hardness to n− logn security (where n is the security parameter), no
matter how many repetitions k we take.

Our Question. The main goal of this work is to examine whether the limi-
tations of current hardness amplification results are just an artifact our proof
technique, or whether they reflect reality. Indeed, we may be tempted to ignore
the lack of formal proofs and nevertheless make the seemingly believable conjec-
ture that hardness does amplify beyond negligible. In more detail, we may make
the following conjecture:

Conjecture (Informal): For all primitives for which standard direct product
theorems hold (e.g., one-way functions, signatures etc.), the k-wise direct product
of any weakly secure instantiation will amplify hardness all the way down to
some fixed negligible bound ε(n), such as ε(n) = 2−Ω(n), or, less ambitiously,
ε(n) = n− logn, when k = poly(n) is sufficiently large.

To the best of our knowledge, such a conjecture is widely believed to hold.
The survey of Goldreich et al. [14] explicitly introduced a variant of the above
conjecture in the (slightly different) context of the XOR Lemma and termed it
a “dream version” of hardness amplification which, although seemingly highly
reasonable, happens to elude a formal proof.

Our Results. In this work, we show that, surprisingly, the above conjecture
does not hold, and give strong counterexamples to the conjectured hardness
amplification beyond negligible. We do so in the case of signature schemes and
one-way functions for which we have standard direct-product theorems showing
that hardness amplifies to negligible [32, 11]. Our result for the signature case,
explained in Section 3, relies on techniques from the area of stateless (resettably-
secure) multiparty computation [6, 3, 10, 16, 15]. On a high level, we manage to
embed an execution of a stateless mutliparty protocol Π into the design of our
signature scheme, where Π generates a random instance of a hard relation R,
and the signer will output its secret key if the message contains a witness for R.
The execution of Π can be driven via carefully designed signing queries. Since

6 This “folklore” observation has been attributed to Steven Rudich in [14].



Π is secure and R is hard, the resulting signature scheme is still secure by itself.
However, our embedding is done in a way so as to allow us to attack the direct
product of many independent schemes by forcing them to execute a single cor-
related execution of Π resulting in a common instance of the hard relation R.
This allows us to break all of the schemes simultaneously by breaking a single
instance of R, and thus with some negligible probability ε(n), which is indepen-
dent of the number of copies k. Indeed, we can make ε(n) an arbitrarily large
negligible quantity (say, n− logn) by choosing the parameters for the relation R
appropriately.

One may wonder whether such counterexamples are particular to signature
schemes. More specifically, our above counterexample seems to crucially rely
on the fact that the security game for signatures is highly interactive (allow-
ing us to embed an interactive MPC computation) and that the communication
complexity between the challenger and attacker in the security game can be ar-
bitrarily high (allowing us to embed data from all of the independent copies of
the scheme into the attack on each individual one). Perhaps hardness still am-
plifies beyond negligible for simpler problems, such as one-way functions, where
the security game is not interactive and has an a-priori bounded communication
complexity. Our second result gives strong evidence that this too is unlikely, by
giving a counterexmaple for one-way functions. The counterexample relies on a
new assumption on a hash functions called Extended Second Preimage Resistance
(ESPR), which we introduce in this paper. Essentially, this assumption says that
given a random challenge x, it is hard to find a bounded-length Merkle path that
starts at x, along with a collision on it. To break many independent copies of this
problem, the attacker takes the independent challenges x1, . . . , xk and builds a
Merkle tree with them as leaves. If it manages to find a single collision at the
root of tree (which occurs with some probability independent of k), it will be
able to find a witness (a Merkle path starting at xi with a collision) for each of
the challenges xi. So far, this gives us an amplification counterexample for a hard
relation based on the ESPR problem (which is already interesting), but, with
a little more work, we can also convert it into a counterexample for a one-way
function based on this problem. For the counterexample to go through, we need
the ESPR assumption to hold for some fixed hash function (not a family), and
so we cannot rely on collision resistance. Nevertheless, we argue that the ESPR
assumption for a fixed hash function is quite reasonable and is likely satisfied
by existing (fixed) cryptographic hash functions, by showing that it holds in a
variant of the random oracle model introduced by Unruh [31], where an attacker
gets arbitrary “oracle-dependent auxiliary input”. As argued by [31], such model
is useful for determining which security properties can be satisfies by a single
hash function rather than a family.

Overall, our work gives strong indications that the limitations of our reduc-
tionist proofs for the direct product theorems might actually translate to real
attacks for some schemes.

Related Work. Interestingly, a large area of related work comes from a
seemingly different question of leakage amplification [2, 1, 23, 21]. These works



ask the following: given a primitive P which is resilient to ` bits of leakage on
its secret key, is it true that breaking k independent copies of P is resilient
to almost L = `k bits of leakage? At first sight this seems to be a completely
unrelated question. However, there is a nice connection between hardness and
leakage-resilience: if a primitive (such as a signature or one-way function) is
hard to break with probability ε, then it is resilient to log(1/ε) bits of leakage.
This means that if some counter-example shows that the leakage bound L does
not amplify with k, then neither does the security. Therefore, although this
observation was never made, the counterexamples to leakage amplification from
[23, 21] seem to already imply some counterexample for hardness. Unfortunately,
both works concentrate on a modified version of parallel repetition, where some
common public parameters are reused by all of the instances and, thus, they are
not truly independent. Indeed, although showing counterexamples for (the harder
question of) leakage amplification is still interesting in this scenario, constructing
ones for hardness amplification becomes trivial.7 However, the work of [21] also
proposed that a variant of their counterexample for leakage amplification may
extend to the setting without common parameters under a highly non-standard
assumption about computationally sound (CS) proofs. Indeed, this suggestion
led us to re-examine our initial belief that such counterexamples should not exist,
and eventually resulted in this work. We also notice that our counterexample for
signature schemes (but not one-way functions) can be easily extended to give a
counterexample for leakage amplification without common parameters.

2 Hardness Amplification Definitions and Conjectures

In this work, we will consider a non-uniform model of computation. We equate
entities such as challengers and attackers with circuit families, or equivalently,
Turing Machines with advice. We let n denote the security parameter. We say
that a function ε(n) is negligible if ε(n) = n−ω(1).

We begin by defining a general notion of (single prover) cryptographic games,
which captures the security of the vast majority of cryptographic primitives, such
as one-way functions, signatures, etc.

Definition 1 (Games). A game is defined by a probabilistic interactive chal-
lenger C. On security parameter n, the challenger C(1n) interacts with some
attacker A(1n) and may output a special symbol win. If this occurs, we say that
A(1n) wins C(1n).

We can also define a class C of cryptographic games C ∈ C. For example the
factoring problem fixes a particular game with the challenger CFACTOR that
chooses two random n-bit primes p, q, sends N = p · q to A, and outputs win
iff it gets back p, q. On the other hand, one-way functions can be thought of
as a class of games COWF , where each candidate one-way function f defines

7 E.g., the hard problem could ask to break either the actual instance or the common
parameter. While such an example does not necessarily contradict leakage amplifi-
cation, it clearly violates hardness amplification.



a particular game Cf ∈ COWF . So far, this definition of games and classes of
games such as one-way function is purely syntactic and we now define what it
means for a game to be hard.

Definition 2 (Hardness). We say that the game C is (s(n), ε(n))-hard if, for
all sufficiently large n ∈ N and all A(1n) of size s(n), we have

Pr[A(1n) wins C(1n)] < ε(n).

We say that the game C is (poly, ε(n))-hard if it is (s(n), ε(n))-hard for all polyno-
mial s(n). We say that the game C is (poly, negl)-hard if it is (s(n), 1/p(n))-hard
for all polynomials s(n), p(n).

Definition 3 (Direct Product). For a cryptographic game C we define the
k-wise direct-product game Ck, which initializes k independent copies of C and
outputs the win symbol if and only if all k copies individually output win.

Finally, we are ready to formally define what we mean by hardness amplification.
Since we focus on negative results, we will distinguish between several broad
levels of hardness amplification and ignore exact parameters. For example, we
do not pay attention to the number of repetitions k needed to reach a certain
level of hardness (an important parameter for positive results), but are more
concerned with which levels of hardness are or are not reachable altogether.

Definition 4 (Hardness Amplification). For a fixed game C, we say that
hardness amplifies to ε = ε(n) if there exists some polynomial k = k(n) such
that Ck is (poly, ε)-hard. We say that hardness amplifies to negligible if there
exists some polynomial k = k(n) such that Ck is (poly, negl)-hard. For a class C
of games, we say that:

1. The hardness of a class C amplifies to negligible if, for every game C ∈ C
which is (poly, 12 )-hard, the hardness of C amplifies to negligible.

2. The hardness of a class C amplifies to ε(n) if, for every game C ∈ C which
is (poly, 12 )-hard, the hardness of C amplifies to ε(n).

3. The hardness of a class C amplifies beyond negligible if there exists some
global negligible function ε(n) for the entire class, such that the hardness of
C amplifies to ε(n).

Remarks on Definition. The standard “direct product theorems” for classes
such as one-way functions/relations and signatures show that the hardness of
the corresponding class amplifies to negligible (bullet 1). For example, if we take
any (poly, 1/2)-hard function f , then a sufficiently large direct product fk will be
(poly, negl)-hard.8 However, what “negligible” security can we actually get? The
result does not say and it may depend on the function f that we start with.9 One

8 The choice of 1/2 is arbitrary and can be replaced with any constant or even any
function bounded-away-from 1. We stick with 1/2 for concreteness and simplicity.

9 It also seemingly depends on the exact polynomial size s(n) of the attackers we are
trying to protect against. However, using a result of Bellare [4], the dependence on
s(n) can always be removed.



could conjecture that there is some fixed negligible ε(n) such that a sufficiently
large direct product of any weak instantiation will amplify its hardness to ε(n).
This is amplification beyond negligible (bullet 3). More ambitiously, we could

expect that this negligible ε(n) is very small such as ε(n) = 2−n
Ω(1)

or even
2−Ω(n). We explicitly state these conjectures below.

Dream Conjecture (Weaker): For any class of cryptographic games C for
which hardness amplifies to negligible, it also amplifies beyond negligible.

Dream Conjecture (Stronger): For any class of cryptographic games C for

which hardness amplifies to negligible, it also amplifies to ε(n) = 2−n
Ω(1)

.

Our work gives counterexamples to both conjectures. We give two very dif-
ferent types counterexamples: one for the classes of signature schemes (Section
3) and one for the class of one-way functions (Section 4). Our counterexam-
ples naturally require that some hard instantiations of these primitives exist to
begin with, and our counterexamples for the weaker versions of the dream con-
jecture will actually require the existence of exponentially hard versions of these
primitives. In particular, under strong enough assumptions, we will show that
for every negligible function ε(n) there is stand-alone scheme which is already
(poly, negl)-hard, but whose k-wise direct product is not (poly, ε(n))-hard, no
matter how large k is.

2.1 Hard and One-Way Relations

As a component of both counterexamples, we will rely on the following definition
of hard relations phrased in the framework of cryptographic games:

Definition 5 (Hard Relations). Let R ⊆
⋃
n∈N {0, 1}

n × {0, 1}p(n) be an NP
relation consisting of pairs (y, w) with instances y and wintesses w of polynomial
size p(|y|). Let L = { y : ∃ w s.t. (y, w) ∈ R} be the corresponding NP language.
Let y ← SamL(1n) be a PPT algorithm that samples values y ∈ L. For a relation
R = (R,SamL), we define the corresponding security game where the challenger
C(1n) samples y ← SamL(1n) and the adversary wins if it outputs w s.t. (y, w) ∈
R. By default, we consider (poly, negl)-hard relations, but we can also talk about
(s(n), ε(n))-hard relations.

Note that, for hard relations, we only require that there is an efficient algorithm
for sampling hard instances y. Often in cryptography we care about a sub-class
of hard relations, which we call one-way relations, where is it also feasible to
efficiently sample a hard instance y along with a witness w. We define this below.

Definition 6 (One-Way Relation). Let R be an NP relation and L be the
corresponding language. Let (y, w)← SamR(1n) be a PPT algorithm that sam-
ples values (y, w) ∈ R, and define y ← SamL(1n) to be a restriction of SamR
to its first output. We say that (R,SamR) is a one-way relation if (R,SamL) is
a hard relation.



3 Counterexample for Signature Schemes

3.1 Overview

The work of [11] shows that the direct product of any stateless signature scheme
amplifies hardness to negligible. We now show that it does not (in general) am-
plify hardness beyond negligible. In fact, we will give a transformation from any
standard signature scheme (Gen, Sign, Verify) into a new signature scheme (Gen,
Sign, Verify) whose hardness does not amplify (via a direct product) beyond
negligible. We start by giving an informal description of the transformation to
illustrate our main ideas. In order to convey the intuition clearly, we will first
consider a simplified case where the signing algorithm Sign of the (modified)
scheme (Gen, Sign, Verify) is stateful, and will then discuss how to convert
the stateful signing algorithm into one that is stateless.10

Embedding MPC in Signatures. Let (Gen, Sign, Verify) be any standard signature
scheme. Let F = {Fk}k∈N be a randomized k-party “ideal functionality” that
takes no inputs and generates a random instance y of a hard relation R =
(R,SamL) according to the distribution SamL. Further, let Π = {Πk}k∈N be a
multi-party computation protocol that securely realizes the functionality F for
any number of parties k. Then, the new signature scheme (Gen, Sign, Verify)
works as follows.

Algorithms Gen and Verify are identical to Gen and Verify respectively. The
signing algorithm Sign is essentially the same as Sign, except that, on receiving a
signing queries of a “special form”, Sign interprets these as “protocol messages”
for Πk and (in addition to generating a signature of them under Sign) also
executes the next message function of the protocol and outputs its response as
part of the new signature. A special initialization query specifies the number of
parties k involved in the protocol and the role Pi in which the signing algorithm
should act. The signing algorithm then always acts as the honest party Pi while
the user submitting signing queries can essentially play the role of the remaining
k − 1 parties. When Πk is completed yielding some output y (interpreted as
the instance of a hard relation R) the signing algorithm Sign will look for a
signing query that contains a corresponding witness w, and, if it receives one,
will respond to it by simply outputting its entire secret key in the signature. The
security of the transformed signature (Gen, Sign, Verify) immediately follows
from the security of the MPC protocol Πk against all-but-one corruptions, the
hardness of the relation R and the security of the original signature scheme.

Attacking the Direct-Product. Let us briefly demonstrate an adversary A for
the k-wise direct product. Very roughly, A carefully chooses his signing queries

10 We note that in the setting of stateful signatures, hardness fails to amplify even
to negligible since we can embed the counterexamples of [5, 29] into the signature
scheme. Nevertheless our initial description of our counterexample for the stateful
setting will clarify the main new result, which is a counterexample for the stateless
setting.



so as to force Sign1, . . . ,Signk to engage in a single execution of the protocol
Πk, where each Signi plays the role of a different party Pi, while A simply
acts as the “communication link” between them. This results in all component
schemes Signi generating a common instance y of the hard relation. Finally, A
simply “guesses” a witness w for y at random and, if it succeeds, submits w
as a signing query, thereby learns the secret key of each component signature
scheme thereby breaking all k of them! Note that the probability of guessing w
is bounded by some negligible function in n and is independent of the number
of parallel repetitions k.

Stateful to Stateless. While the above gives us a counterexample for the case
where Sign is a stateful algorithm, (as stated above) we are mainly interested
in the (standard) case where Sign is stateless. In order to make Sign a stateless
algorithm, we can consider a natural approach where we use a modified ver-
sion Π ′k of protocol Πk: each party Pi in Π ′k computes an outgoing message in
essentially the same manner as in Πk, except that it also attaches an authenti-
cated encryption of its current protocol state, as well as the previous protocol
message. This allows each (stateless) party Pi to “recover” its state from the
previous round to compute its protocol message in the next round. Unfortu-
nately, this approach is insufficient, and in fact insecure, since an adversarial
user can reset the (stateless) signing algorithm at any point and achieve the
effect of rewinding the honest party (played by the signing algorithm) during
the protocol Πk. To overcome this problem, we leverage techniques from the
notion of resettably-secure computation. Specifically, instead of using a stan-
dard MPC protocol in the above construction, we use a recent result of Goyal
and Maji [15] which constructs an MPC protocol that is secure against reset at-
tacks and works for stateless parties for a large class of functionalities, including
“inputless” randomized functionalities (that we will use in this paper).

The above intuitive description hides many details of how the user can actu-
ally “drive” the MPC execution between the k signers within the direct-product
game where all signers respond to a single common message. We proceed to
make this formal in the following section.

3.2 Our Signature Scheme

We now give our transformation from any standard signature scheme into one
whose hardness does not amplify beyond negligible. We first establish some no-
tation.

Notation. Let n be the security parameter. Let (Gen, Sign, Verify) be any stan-
dard signature scheme. Further, let (R,SamL) be a hard relation as per Defini-
tion 5. Let {PRFK : {0, 1}poly(n) → {0, 1}poly(n)}K∈{0,1}n} be a pseudo-random
function family.

Stateless MPC. We consider a randomized k-party functionality F = {F}k∈N
that does not take any inputs; F simply samples a random pair y ← SamL(1n)



and outputs y to all parties. Let {Πk}k∈poly(n) be a family of protocols, where
each Πk = {P1, . . . , Pk} is a k-party MPC protocol for computing the function-
ality F in the public state model. This model is described formally in the full
version, and we only give a quick overview here. Each party Pi is completely de-
scribed by the next message function NMi, which takes the following four values
as input: (a) a string πj−1 that consists of all the messages sent in any round
j − 1 of the protocol, (b) the public state statei of party Pi, and (c) the secret
randomness ri. On receiving an input of the form πj−1‖statei‖ri, NMi outputs
Pi’s message in round j along with the updated value of statei. We assume that
an attacker corrupts (exactly) k − 1 of the parties. In the real-world execution,
the attacker can arbitrarily call the next-message function NMi of the honest
party Pi with arbitrarily chosen values of the public state statei and arbitrary
message πj−1 (but with an honestly chosen and secret randomness ri). Never-
theless, the final output of Pi and the view of the attacker can be simulated in
the ideal world where the simulator can “reset” the ideal functionality. In our
case, that means that the attacker can adaptively choose one of polynomially
many honestly chosen instances y1, . . . , yq of the hard relation which Pi will then
accept as output.

The Construction. We describe our signature scheme (Gen,Sign,Verify).

Gen(1n): Compute (pk, sk) ← Gen(1n). Also, sample a random tape K ←
{0, 1}poly(n) and a random identity id ∈ {0, 1}n. Output PK = (pk, id) and
SK = (sk,K, id).

Sign(SK,m): To sign a message m using secret key SK = (sk,K, id), the signer
outputs a signature σ = (σ1, σ2) where σ1 ← Sign(sk,m). Next, if m does
not contain the prefix “prot”, then simply set σ2 = {0}. Otherwise, parse
m = (“prot”‖IM‖πj‖state‖w), where IM = k‖id1‖ . . . ‖idk such that state =
state1‖ . . . ‖statek, then do the following:

– Let i ∈ [k] be such that id = idi. Compute ri = PRFK(IM). Then, apply the
next message function NMi of (stateless) party Pi in protocol Πk over the
string πj‖statei‖ri and set σ2 to the output value.11

– Now, if σ2 contains the output y of protocol Πk,12 then further check whether
(y, w) ∈ R. If the check succeeds, set σ2 = SK.

Verify(PK,m, σ): Given a signature σ = (σ1, σ2) on message m with respect
to the public key PK = (pk, id), output 1 iff Verify(pk,m, σ1) = 1.

11 Note that here σ2 consists of party Pi’s protocol message in round j + 1, and its
updated public state statei.

12 Note that this is the case when j is the final round in Πk. Here we use the prop-
erty that the last round of Πk is the output delivery round, and that when NMi is
computed over the protocol messages of this round, it outputs the protocol output.



This completes the description of our signature scheme. In the full version, we
prove the following theorem showing that the signature scheme satisfies basic
signature security.

Theorem 1. If (Gen, Sign, Verify) is a secure signature scheme, {PRFK} is a
PRF family, R is a hard relation, and Πk is a stateless MPC protocol for func-
tionality F , then the proposed scheme (Gen,Sign,Verify) is a secure signature
scheme.

3.3 Attack on the Direct Product

Theorem 2. Let (Gen,Sign,Verify) be the described signature scheme and
let R = (SamL, R) be the hard relation used in the construction. Assume that for

any y
$← SamL(1n) , the size of the corresponding witness w is bounded by |w| =

p(n). Then, for any polynomial k = k(n), there is an attack against the k-wise
direct product running in time poly(n) with success probability ε(n) = 2−p(n).

We will prove Theorem 2 by constructing an adversary A that mounts a
key-recovery attack on any k-wise direct product of the signature scheme (Gen,
Sign, Verify).

k-wise Direct Product. Let (Gen, Sign, Verify) denote the k-wise direct
product of the signature scheme (Gen, Sign, Verify), described as follows.
The algorithm Gen runs Gen k-times to generate (PK1, SK1),. . . ,(PKk, SKk).
To sign a message m, Sign computes σi ← Sign(SKi,m) for every i ∈ k and
outputs σ = (σ1, . . . , σk). Finally, on input a signature σ = (σ1, . . . , σk) on
message m, Verify outputs 1 iff ∀i ∈ k, Verify(PKi,m, σi) = 1.

Description of A. We now describe the adversary A for (Gen, Sign, Verify).
Let (PK1, . . . , PKk) denote the public key that A receives from the challenger
of the signature scheme (Gen, Sign, Verify), where each PKi = (pki, idi). The
adversary A first sends a signing query m0 of the form “prot”‖IM‖π0‖state‖w,
where IM = k‖id1‖ . . . ‖idk, and π0 = state = w = {0}. Let σ = (σ1, . . . , σk) be
the response it receives, where each σi = σ1

i , σ
2
i . A now parses each σ2

i as a first
round protocol message πi1 from party Pi followed by the public state statei of
Pi (at the end of the first round) in protocol Πk.
A now prepares a new signing query m1 of the form “prot”‖IM‖π1‖state‖w,

where IM and w are the same as before, but π1 = π1
1‖ . . . ‖πk1 , and state =

state1‖ . . . ‖statek. On receiving the response, A repeats the same process as
above to produce signing queries m2, . . . ,mt−1, where t is the total number of
rounds in protocol Πk. (That is, each signing query m2, . . . ,mt−1 is prepared in
the same manner as m1.)

Finally, let σ = (σ1, . . . , σk) be the response to the signing query mt−1.A now
parses each σ2

i as the round t protocol message πit from party Pi followed by the
state statei of Pi. Now, since the final round (i.e., round t) of protocol Πk is the
output delivery round, and further, Πk satisfies the publicly computable output
property,A simply computes the protocol output y from the messages π1

t , . . . , π
k
t .



Now, A guesses a p(n)-sized witness w∗
$← {0, 1}p(n) at random and, if (y, w∗) ∈

R(x), it now sends the final signing query mt =“prot”‖IM‖πt‖state‖w, where
IM is the same as before, πt = π1

t ‖ . . . ‖πkt , state = state1‖ . . . ‖statek, and w =
w∗. Thus, A obtains SK1, . . . , SKk from the challenger and can forge arbitrary
signatures for the direct product scheme. It’s clear that its success probability
is at least 2−p(n).

Corollary 1. Assuming the existence hard relations and a general stateless MPC
compilers, the hardness of signature schemes does not amplify to any ε(n) =

2−n
Ω(1)

. This gives a counterexample to the strong dream conjecture. If we, in
addition, assume the existence of (2Ω(n), 2−Ω(n))-hard relations with witness size
p(n) = O(n), then there exist signature schemes whose hardness does not amplify
beyond negligible. This gives a counterexample to the weak dream conjecture.

Proof. For the first result, assume that the witness size of the relation R is
bounded by p(n) = O(nc) for some constant c. Given any constant δ > 0, we
can simply instantiate the signature scheme (Gen,Sign,Verify) used in our
counterexample with the hard relation R’ that uses security parameter m(n) =
nδ/c so that its witness size is p′(n) = p(m) = O(nδ). It’s clear that R’ is still
(poly(n), negl(n))-secure but, by Theorem 2, the k-wise direct product can be

broken in poly(n) time with probability ε(n) = 2−O(nδ). Therefore security does

not amplify 2n
δ

for any δ > 0. The second part of the theorem follows in the
same way, except that, for any fixed negligible function δ(n) we set m(n) =
− log(δ(n)).

4 Counterexample for One-Way Relations and Functions

In Section 3, we proved that there exist signature schemes whose hardness does
not amplify. This already rules out the general conjecture that “for any game for
which hardness amplifies to negligible, hardness will also amplify to exponential
(or at least beyond negligible)”. Nevertheless, one might still think that the
conjecture hold for more restricted classes of games. Perhaps the simplest such
class to consider is one-way functions. Note that, unlike the case for signature
schemes, the one-wayness game does not allow interaction and has bounded
communication between attacker and challenger. Thus, the general strategy we
employed in Section 3 of embedding a multiparty computation inside signature
queries, will no longer work. In this section, we propose an alternate strategy for
showing that one-way relation hardness does not amplify beyond negligible.

4.1 Our Construction

We begin by giving a counterexample for hard relations. We then extend it to
counterexamples for one-way relations and and one-way functions. Our construc-
tions are based on a new (non-standard) cryptographic security assumption on



hash functions. Let h : {0, 1}2n 7→ {0, 1}n be a hash function. We define a Merkle
path of length ` to be a tuple of the form

p` = (x0, (b1, x1), . . . , (b`, x`)) : bi ∈ {0, 1}, xi ∈ {0, 1}n.

Intuitively, x0 could be the leaf of some Merkle tree of height `, and the values
x1, . . . , x` are the siblings along the path from the leaf to the root, where the
bits bi indicate whether the sibling xi is a left or right sibling. However, we can
also talk about a path p` on its own, without thinking of it as part of a larger
tree. Formally, if p` is a Merkle path as above, let p`−1 be the path with the last
component (b`, x`) removed. The value of a Merkle path p` as above is defined
iteratively via:

h̄(p`) =

h(h̄(p`−1), x`) ` > 0, b` = 1
h(x`, h̄(p`−1)) ` > 0, b` = 0
x0 ` = 0

We call x0 the leaf of the path p`, and z = h̄(p`) is its root. We say that

y = (xL, xR) ∈ {0, 1}2n is the known preimage of the path p` if xL, xR are
the values under the root, so that either xL = x`, xR = h̄(p`−1) if b` = 0,
or xL = h̄(p`−1), xR = x` if b` = 1. Note that this implies h(y) = h̄(p`). We

say that y′ ∈ {0, 1}2n is a second preimage of the path p` if y′ 6= y is not
the known preimage of p`, and h(y′) = h̄(p`). We are now ready to define the
extended second-preimage resistance (ESPR) assumption. This assumption says
that, given a random challenge x0 ∈ {0, 1}n, it is hard to find a (short) path p`
containing x0 as a leaf, and a second-preimage y′ of p`.

Definition 7 (ESPR). Let h : {{0, 1}2n 7→ {0, 1}n}n∈N be a poly-time com-
putable hash function. We define the Extended Second Preimage Resistance
(ESPR) assumption on h via the following security game between a challenger
and an adversary A(1n):

1. The challenger chooses x0
$← {0, 1}n at random and gives it to A.

2. A wins if it outputs a tuple (p`, y
′), where p` is a Merkle path of length ` ≤ n

containing x0 as a leaf, and y′ is a second-preimage of p`.

Discussion. In the above definition, we want h to be a single fixed hash function
and not a function family. The notion of ESPR security seems to lie somewhere
in between second-preimage resistance (SPR) and collision resistance (CR), im-
plying the former and being implied by the latter.13 Unfortunately, collision
resistance cannot be achieved by any fixed hash function (at least w.r.t non-
uniform attackers), since the attacker can always know a single hard-coded colli-
sion as auxiliary input. Fortunately, there does not appear to be any such trivial
non-uniform attack against ESPR security, since the attacker is forced to “in-
corporate” a random leaf x0 into the Merkle path on which it finds a collision.
Therefore, in this regard, it seems that ESPR security may be closer to SPR

13 A hash function is SPR if, given a uniformly random y, it’s hard to find any y′ 6= y
such that h(y) = h(y′). It is CR if it is hard to find any y 6= y′ s.t. h(y) = h(y′).



security, which can be achieved by a fixed hash function (if one-way functions
exist). Indeed, in Section 4.2, we give a heuristic argument that modern (fixed)
cryptographic hash functions already satisfy the ESPR property, even against
non-uniform attackers. We do so by analyzing ESPR security in a variant of the
random-oracle model, where the attacker may observe some “oracle-dependent
auxiliary input”. This model, proposed by Unruh [31], is intended to capture the
properties of hash functions that can be achieved by fixed hash functions, rather
than function families.

A Hard Relation from ESPR. Given a hash function h we can define the NP
relation Rh with statements x ∈ {0, 1}n and witnesses w = (p`, y

′) where p` is a
Merkle path of length ` ≤ n containing x as leaf, and y′ is a second-preimage of

p`. The corresponding NP language is defined as Lh
def
= {x : ∃ w s.t. (x,w) ∈

Rh }. We say that h is slightly regular, if for every z ∈ {0, 1}n there exist at
least two distinct pre-images y 6= y′ such that h(y) = h(y′) = z. If this is the
case, then Lh = {0, 1}∗ is just the language consisting of all bit strings. Now,

we can define the distribution x ← SamL(1n) which just samples x
$← {0, 1}n

uniformly at random. It is easy to see that, if h is an (s(n), ε(n))-hard ESPR
hash function, then Rh = (Rh,SamL) is an (s(n), ε(n))-hard relation.

Hardness Non-Amplification. We now show our counterexample to the hardness
amplification for the hard relation Rh. The main idea is that, given k random
and independent challenges x(1), . . . , x(k), the attacker builds a Merkle tree with
the challenges as leaves. Let z be the value at the top of the Merkle tree. Then
the attack just guesses some value y′ ∈ {0, 1}2n at random and, with probability
≥ 2−2n, y′ will be a second-preimage of z (i.e. h(y′) = z and y′ is distinct from
the known preimage y containing the values under the root). Now, for each leaf
x(i), let pi` be the Merkle path for the leaf x(i). Then the witness wi = (y′, pi`) is
good witness for x(i). So, with probability ≥ 2−2n with which the attack correctly
guessed y′, it breaks all k independent instances of the relation Rh, no matter
how large k is! By changing the relation Rh = (Rh,SamL) so that, on security

parameter n, the sampling algorithm SamL(1n) chooses x
$← {0, 1}m with m =

m(n) being some smaller function of n such as m(n) = nδ for a constant δ > 0 or
even m(n) = log2(n), we can get more dramatic counterexamples where hardness

does not amplify beyond ε(n) = 2−n
δ

or even ε(n) = n− logn. We now summarize
the above discussion with a formal theorem.

Theorem 3. Let h be a slightly regular, ESPR-secure hash function and let
Rh = (Rh,SamL) be the corresponding (poly, negl)-hard relation. Then, for any
polynomial k = poly(n), the k-wise direct product of Rh is not (poly, 2−2n)
secure. That is, for any polynomial k, there is a poly-time attack against the
k-wise direct product of Rh having success probability 2−2n.

Proof. We first describe the attack. The attacker gets k independently gener-
ated challenges x(1), . . . , x(k). Let ` be the unique value such that 2`−1 < k ≤ 2`,
and let k∗ = 2` be the smallest power-of-2 which is larger than k. Let us define



additional “dummy values” x(k+1) = . . . = x(k
∗) := 0n. The attack constructs a

Merkle Tree, which is a full binary tree of height `, whose k∗ leaves are associ-
ated with the values x(1), . . . , x(k

∗). The value of any non-leaf node v is defined
recursively as val(v) = h(val(vL), val(vR)) where vL, vR are the left and right
children of v respectively. For any leaf v(i) associated with the value x(i), let
(v1 = v(i), v2, . . . , v`, r) be the nodes on the path from the leaf v1 to the root r in
the Merkle tree. The Merkle path associated with the value x(i) is then defined

by p
(i)
` = (x(i), (x1, b1), . . . , (x`, b`)) where each xj is the value associated with

the sibling of vj , and bj = 0 if vj is a right child and 1 otherwise. Note that,
if r is the root of the tree and z = val(r) is the value associated with it, then

h̄(p
(i)
` ) = z for all paths p

(i)
` with i ∈ {1, . . . , k∗}. Furthermore let us label the

nodes vL, vR to be the children of the root r, the values xL, xR be the values
associated with them, and set y := (xL, xR). Then y is the known preimage such

that h(y) = z, associated with each one of the paths p
(i)
` .

The attack guesses a value y′
$← {0, 1}2n at random and, outputs the k-tuple

of witnesses (w1, . . . , wk) where wi = (p
(i)
` , y′). With probability at least 2−2n, y′

is a second-preimage of z with h(y′) = z and y′ 6= y (since h is slightly regular,
such second preimage always exists). If this is the case, then y′ is also a second

preimage of every path p
(i)
` . Therefore, with probability ≥ 2−2n the attack finds

a witness for each of the k instances and wins the hard relation game for the
direct product relation Rkh.

Corollary 2. Assuming the existence of a slightly regular (poly, negl)-hard ESPR

hash functions, the hardness of hard relations does not amplify to 2−n
Ω(1)

, giv-
ing a counterexample to the stronger dream conjecture. If we instead assume
the existence of (2Ω(n), 2−Ω(n))-hard ESPR hash functions, then the hardness of
hard relations does not amplify beyond negligible, giving a counterexample to the
weaker dream conjecture.

Proof. Let h be the ESPR hash-function. We define a modified relation Rmh =

(Rh,SamL) where the sampling algorithm SamL(1n) samples an instance x
$←

{0, 1}m where m = m(n) is some function of n. For the first part of the corollary,
let δ > 0 be any constant, and set m(n) = nδ/2. Then Rmh is still a (poly, negl)-
hard relation. However, by appplying Theorem 3 with m replacing n, we see
that for any k = poly(m) = poly(n), there is an attack against the k-wise di-

rect product which succeeds with probability ≥ 2−2m = 2−n
δ

. In other word,
for any δ > 0, there is a (poly, negl)-hard relation whose direct product is not

(poly, 2−n
δ

)-hard, no matter how large k is. This proces the first part of the
corollary. The second part of the corollary works the same way as the first part
but, for any fixed negligible function δ(n) we set m(n) = − 1

2 log(δ(n)). Assuming

that h is a (2Ω(n), 2−Ω(n))-hard ESPR hash function, the relation Rmh is then
still (poly, negl)-hard, but it’s direct product is not (poly, δ(n))-hard. This proves
the second part of the corollary.



Extension to One-Way Relations. We can get essentially the same results as
above for one-way relations rather than just hard relations. Assume that Row =
(Row,SamRow) is any one-way relation, and Rh = (Rh,SamLH) is the hard re-
lation used in our counterexample. Define the OR relation Ror = (Ror,SamRor)
via:

Ror
def
= {(y1, y2), (w1, w2) : (y1, w1) ∈ RH or (y2, w2) ∈ Row}

SamRor(1
n) : Sample y1 ← SamLh(1n), (y2, w2)← SamRow(1n)

Output: ((y1, y2), (0, w2)).

Then Theorem 3 applies as-is to the one-way relation Ror replacing RH and
Corollary 2 applies to one-way relations as well.

Extension to One-Way Functions. We can also extend the above counterexample

to one-way functions. Let i(n) ≥ n be a polynomial and f : {{0, 1}i(n) →
{0, 1}n }n∈N be a regular one-way function so that, for x

$← {0, 1}i(n), the
output f(x) is uniformly random over {0, 1}n. Let R = (R,SamL) be the hard
relation for which we have a counterexample, with witness-size bounded by u(n).

We define F : ({0, 1}i(n) × {0, 1}n × {0, 1}u(n) × {0, 1}n)→ {0, 1}n via:

F (x, y, w, z)
def
=

{
y If (y, w) ∈ R ∧ z = 0n

f(x) Otherwise.

Note that the distribution of F (x, y, w, z) is statistically close to that of f(x)
since the probability of z = 0n is negligible. The preimage of any y ∈ {0, 1}n
is either of the form (·, y, w, ·) where (y, w) ∈ R or of the form (x, ·, ·) where
f(x) = y, and hence breaking the one-wayness of F is no easier then breaking
that of f or breaking the hard relation R. On the other hand, it is possible to
break the k-wise direct product of F just by breaking the k-wise direct product
of the hard relation R. Therefore, the results of Corollary 2 apply to one-way
relations as well, if we also assume the existence of a (fixed) regular one-way
function f (and an exponentially secure one for the counterexample to the weaker
conjecture). In the full version of this work, we also show how to instantiate f
using the ESPR function h so as to get the results of Corollary 2 for one-way
functions, without needing any additional assumptions.

4.2 Justifying the ESPR Assumption

We now give some justification that ESPR hash functions may exist by show-
ing how to construct them in in a variant of the random-oracle (RO) model. Of
course, constructions in the random-oracle model do not seem to offer any mean-
ingful guarantees for showing that the corresponding primitive may be realized
by a fixed hash function: indeed the RO model immediately implies collision
resistance which cannot be realized by a fixed hash function. Rather, the RO
model is usually interpreted as implying that the given primitive is likely to be
realizable by a family of hash functions. Therefore, we will work with a variant



of the RO model in which the attacker is initialized with some arbitrary “oracle-
dependent auxiliary input”. This model was proposed by Unruh [31] with the
explicit motivation of capturing properties the can be satisfied by a fixed hash
function. For example, the auxiliary input may include some small number of
fixed collisions on the RO and therefore collision-resistance is unachievable in
this model. By showing that ESPR security is achievable, we provide some jus-
tification for this assumption.

Let O : {0, 1}2n 7→ {0, 1}n be a fixed length random oracle. Following [31],
we define “oracle-dependent auxiliary input” of size p(n) as an arbitrary function

z : {{0, 1}2n 7→ {0, 1}n} 7→ {0, 1}p(n) which can arbitrarily “compresses” the
entire oracle O into p(n) bits of auxiliary information z(O). When considering
security games in the oracle-dependent auxiliary input model, we consider at-
tackers AO(z(O)) which are initialized with polynomial-sized oracle-dependent
auxiliary input z(·). In the full version, we show that the ESPR security game
is hard in the random oracle model with auxiliary input.

Theorem 4. Let O be modeled as a random oracle, and consider the ESPR
game in which h is replaced with O. Then, for any attacker AO(z(O)) with
polynomial-sized auxiliary input z(·) and making at most polynomially many
queries to O, its probability of winning the ESPR game is at most ε = 2−Ω(n).
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