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Abstract. We propose a general construction of deterministic encryp-
tion schemes that unifies prior work and gives novel schemes. Specifically,
its instantiations provide:

– A construction from any trapdoor function that has sufficiently many
hardcore bits.

– A construction that provides “bounded” multi-message security from
lossy trapdoor functions.

The security proofs for these schemes are enabled by three tools that are
of broader interest:

– A weaker and more precise sufficient condition for semantic security
on a high-entropy message distribution. Namely, we show that to es-
tablish semantic security on a distribution M of messages, it suffices
to establish indistinguishability for all conditional distribution M |E,
where E is an event of probability at least 1/4. (Prior work required
indistinguishability on all distributions of a given entropy.)

– A result about computational entropy of conditional distributions.
Namely, we show that conditioning on an event E of probability p
reduces the quality of computational entropy by a factor of p and its
quantity by log2 1/p.

– A generalization of leftover hash lemma to correlated distributions.

We also extend our result about computational entropy to the average
case, which is useful in reasoning about leakage-resilient cryptography:
leaking λ bits of information reduces the quality of computational en-
tropy by a factor of 2λ and its quantity by λ.

1 Introduction

Public-key cryptosystems require randomness: indeed, if the encryption oper-
ation is deterministic, the adversary can simply use the public key to verify
that the ciphertext c corresponds to its guess of the plaintext m by encrypt-
ing m. However, such an attack requires the adversary to have a reasonably
likely guess for m in the first place. Recent results on deterministic public-key
encryption (DE) (building on work in the information-theoretic symmetric-key
setting [38,17,14]) have studied how to achieve security when the randomness



comes only from m itself [3,5,7,27,8,40]. DE has a number of practical applica-
tions, such as efficient search on encrypted data and securing legacy protocols
(cf. [3]). It is also interesting from a foundational standpoint; indeed, its study
has proven useful in other contexts: Bellare et al. [4] showed how it extends to
a notion of “hedged” public-key encryption that reduces dependence on exter-
nal randomness for probabilistic encryption more generally, and Dent et al. [13]
adapted its notion of privacy to a notion of confidentiality for digital signatures.

However, our current understanding of DE is somewhat lacking. The con-
structions of [3,5,7,27], as well as their analysis techniques, are rather disparate,
and some natural questions arise from them. Namely, does the scheme of [5] in-
herently require using the Goldreich-Levin hardcore bit? Can it be made to work
with trapdoor functions rather than permutations? Is the single-message security
achieved by [5,7,27] an inherent limitation of standard model (i.e., non-random-
oracle) schemes? In this work our main goal is to provide a unified framework
for the construction of DE and to shed light on these questions.

1.1 Our Results

A scheme based on trapdoor functions. We propose a general Encrypt-
with-Hardcore (EwHCore) construction of DE from trapdoor functions (TDFs),
which generalizes the basic idea behind the schemes of [3,5] and leads to a unified
framework for the construction of DE. Let f be a TDF with a hardcore function
hc, and let E be any probabilistic public-key encryption algorithm. Our scheme
encrypts an input message x by computing y = f(x) and then encrypting y
using E with hc(x) as the coins; that is, the encryption of x is E(f(x); hc(x)).

Intuitively, this scheme requires that the output of hc be sufficiently long to
provide enough random coins for E (in fact, it need only be sufficiently long to be
used as a seed for a psuedorandom generator), and that it not reveal any partial
information about x (because E does not necessarily protect the privacy of its
random coins). There are two nontrivial technical steps needed to make intuition
precise. First, we define a condition required of hc (which we call “robustness”)
and show that it is sufficient for security of the resulting DE. Second, through
a computational entropy argument, we show how to make any sufficiently long
hc robust by applying a randomness extractor.

This general scheme admits a number of instantiations depending of f and
hc. For example, when f is any trapdoor function and hc is a random oracle
(RO), we obtain the construction of [3]3. When f is an iterated trapdoor per-
mutation (TDP) and hc is a collection Goldreich-Levin (GL) [23] bits extracted
at each iteration, we obtain the construction of [5]. When f is a lossy trapdoor
function (LTDF) [35] and hc is a pairwise-independent hash, we get a variant
of the construction of [7] (which is less efficient but has a more straightforward

3 Technically, this construction does not even need a TDF because of the random
oracle model; however, it may be prudent to use a TDF because then it seems more
likely that the instantiation of the random oracle will be secure as it may be hardcore
for the TDF.



analysis). We also obtain a variant of the construction of Hemenway et al. [27]
under the same assumption as they use (see Section 5.2 for details). Note that in
all but the last of these cases, the hardcore function is already robust (without
requiring an extractor), which shows that in prior work this notion played an
implicit role.

Moreover, this general scheme not only explains past constructions, but also
gives us new ones. Specifically, if f is a trapdoor function with enough hardcore
bits, we obtain:

• DE that works on the uniform distribution of messages;

• DE that works on any distribution of messages whose min-entropy is at
most logarithmically smaller than maximum possible;

• assuming sufficient hardness distinguishing the output of hc from uniform
(so in particular of inverting f), DE that works on even-lower entropy mes-
sage distributions.

Prior results require more specific assumptions on the trapdoor function (such
as assuming that it is a permutation or that it is lossy—both of which imply
enough hardcore bits) in order to get constructions that work even just on the
uniform distribution of messages. Furthermore, our results yield more efficient
schemes (though sometimes under stronger assumptions) even in the permuta-
tion case, by avoiding iteration.

Notably, we obtain the first DE scheme without random oracles based on the
hardness of syndrome decoding using the Niederreiter trapdoor function [32],
which was shown to have linearly many hardcore bits by Freeman et al. [19]
(and moreover to be “correlated input” secure) but is not known to be lossy. (A
scheme in the random oracle model follows from [3].) Additionally, the RSA [37]
and Paillier [34] trapdoor permutations have linearly many hardcore bits un-
der certain computational assumptions (the “Small Solutions RSA” [39] and
“Bounded Computational Composite Residuosity” [9] assumptions respectively).
Therefore, we can use these TDPs to instantiate our scheme efficiently under the
same computational assumptions. Before our work, DE schemes from RSA and
Paillier either required many iterations [5] or decisional assumptions that imply
lossiness of these TDPs [30,19,7].

Security for multiple messages: definition and construction. An im-
portant caveat is that, as in [5,7], we can prove the above standard-model DE
schemes secure only for the encryption of a single high-entropy plaintext, or,
what was shown equivalent in [7], an unbounded number of messages drawn
from a block source [10], where each subsequent message brings “fresh” entropy.
On the other hand, the strongest and most practical security model for DE in-
troduced by [3] considers the encryption of an unbounded number of plaintexts
that have individual high entropy but may not have any conditional entropy.
In order for EwHCore to achieve this, the hardcore function hc must also be ro-
bust on correlated inputs. (A general study of correlated-input security for the
case of hash functions rather than hardcore functions was concurrently initiated
in [25].) In particular, it follows from the techniques of [3] that a RO hash satis-



fies such a notion. This leads to a multi-message secure scheme in the RO model
(as obtained in [3]). We thus have a large gap between what is (known to be)
achievable with random oracles versus in the standard model.

To help bridge this gap, we propose a notion of “q-bounded” security for DE,
where up to q high-entropy but arbitrarily correlated messages may be encrypted
under the same public key (whose size may depend polynomially on q). We feel
that if one is limited to the standard model, this notion is useful. Indeed, it seems
that the requirement of previous results in the standard model—that messages
come from a block source—may be difficult to guarantee: all that’s needed to
violate it is a single message that has low conditional entropy. Following [7], we
also extend our security definition to unbounded multi-message security where
messages are drawn from what we call a “q-block source” (essentially, a block
source where each “block” consists of q messages which may be arbitrarily cor-
related but have individual high entropy); Theorem 4.2 of [7] extends to show
that q-bounded multi-message security and unbounded multi-message security
for q-block sources are equivalent for a given min-entropy.

Using our EwHCore construction and a generalization of the leftover hash
lemma discussed below, we show q-bounded DE schemes (for long enough mes-
sages), for any polynomial q, based on LTDFs losing an 1 − O(1/q) fraction
of the input. It is known how to build such LTDFs from the decisional Diffie-
Hellman [35], d-linear [19], and decisional composite residuosity [7,19] assump-
tions.

1.2 Our Tools

Our results are enabled by three tools that may be of more general applicability.

A more precise condition for security of DE. We revisit the definitional
equivalences for DE proven by [5] and [7]. At a high level, they showed that
the semantic security style definition for DE (called PRIV) introduced in the
initial work of [3], which asks that a scheme hides all public-key independent4

functions of messages drawn from some distribution is in some sense equivalent
to an indistinguishability based notion for DE, which asks that it is hard to
distinguish ciphertexts of messages drawn from one of two possible distributions.
Notice that while PRIV can be meaningfully said to hold for a given message
distribution, IND inherently talks of pairs of distributions. The works of [5,7]
compensated for this by giving an equivalences in terms of min-entropy. That
is, they showed that PRIV for all message distributions of min-entropy µ is
implied by indistinguishability with respect to all pairs of plaintext distributions
of min-entropy slightly less than µ.

We demonstrate a more precise equivalence that, for a fixed distribution M,
identifies a class of pairs of distributions such that if IND holds on those pairs,
then PRIV holds on M. By re-examining the equivalence proof of [5], we show
that PRIV on M is implied by IND on all pairs of “slightly induced” distributions
of M | E, where E is an arbitrary event of probability at least 1/4.

4 As shown in [3], the restriction to public-key independent functions is inherent here.



This first tool is needed to argue that “robustness” of hc is sufficient for
security EwHCore (essentially, a robust hardcore function is one that remains
hardcore on a slightly induced distribution5).

Conditional computational entropy. We investigate how conditioning re-
duces computational entropy of a random variable X. Suppose you have a distri-
bution that has computational entropy (such as the pair f(r), hc(r) for a random
r). Suppose you condition that distribution on an event E of probability p. How
much computational entropy is left?

To make this question more precise, we should note that computational en-
tropy is parameterized by quality (how distinguishable is X from a variable Z
that has true entropy) and quantity (how much true entropy is there in Z).

We prove an intuitively natural result: conditioning on an event of probability
p reduces the quality of metric entropy by a factor of p and the quantity of metric
entropy by log2 1/p (note that this means that the reduction in quantity and
quality is the same, because the quantity of entropy is measured on log scale).
Naturally, the answer becomes so simple only once the correct notion of entropy
is in place. Our result holds for Metric∗ entropy (defined in [2,18]). This entropy
is convertible (with some loss) to HILL entropy [26,2], which can then be used
with randomness extractors to get pseudorandom bits.

Our result improves the bounds of Dziembowski and Pietrzak [18, Lemma 3],
where the loss in the quantity of entropy was related to its original quality. The
use of metric entropy simplifies the analogous result of Reingold et al. [36, The-
orem 1.3] for HILL entropy. (See [20] for information on other related work [22,
Lemma 3.1] and [11, Lemma 16].)

We use this result to show that randomness extractors can be used to convert
a hardcore function into a robust one, through a computational entropy argu-
ment for slightly induced distributions. The result is also applicable to leakage-
resilient cryptography, as demonstrated by [18]. To make the result useful in
more contexts, we also provide an average-case entropy formulation, which can
be helpful in situations in which not all leakage is equally informative. For the
information-theoretic case, it is known that leakage of λ bits reduces the average
entropy by at most λ ([15, Lemma 2.2]). We show essentially the same6 for the
computational case: if λ bits of information are leaked, then the amount of com-
putational Metric∗ entropy decreases by at most λ and its quality decreases by
at most 2λ (again, this entropy can be converted to HILL entropy and be used
in randomness extractors [15,28]).

(Crooked) Leftover hash lemma for correlated distributions. We
show that the leftover hash lemma (LHL) [26, Lemma 4.8], as well its generalized
form [15, Lemma 2.4] and the “crooked” LHL [16]) extend in a natural way to

5 One could alternatively define robustness as one that remains hardcore on inputs of
slightly lower entropy; however, in our proofs of robustness we would then need to
go through an additional argument that distributions of lower entropy are induced
by distributions of higher entropy.

6 In case of randomized leakage, the information-theoretic result of [15, Lemma 2.2(b)]
gives better bounds.



“correlated” distributions. That is, suppose we have t random variables (sources)
X1, . . . , Xt, where each Xi individually has high min-entropy but may be fully
determined by the outcome of some other Xj (though we assume Xi 6= Xj for all
i 6= j). We would like to apply a hash function H such that H(X1), . . . ,H(Xt)
is indistinguishable from t independent copies of the uniform distribution on the
range of H (also over the choice of the key for H, which is made public). We
show that this is the case assuming H is 2t-wise independent. (The standard
LHL is thus t = 1; previously, Kiltz et al. [31] showed this for t = 2.) Naturally,
this requires the output size of H to be about a 1/t fraction of its input size, so
there is enough entropy to extract.

2 Preliminaries

We omit standard cryptographic definitions (see the full version for precise defi-
nitions [20]). The security parameter is denoted by k, and 1k denotes the string
of k ones. Vectors are denoted in boldface, for example x. For convenience, we
extend algorithmic notation to operate on each vector of inputs component-

wise. For example, if A is an algorithm and x,y are vectors then z
$←A(x,y)

denotes that z[i]
$←A(x[i],y[i]) for all 1 ≤ i ≤ |x|. We write PX for the distribu-

tion of random variable X and PX(x) for the probability that X puts on value
x ∈ X , i.e., PX(x) = Pr[X = x]. Denote by |X| the size of the support of X,
i.e., |X| = |{x s.t. PX(x) > 0}|. We often identify X with PX when there is no
danger of confusion. For a function f : X → R, we denote the expectation of f

over X by E f(X)
def
= Ex∈X f(x)

def
=
∑
x∈X PX(x)f(x).

We will use the notions of min-entropy and average min-entropy (defined
in [15]). For vector-valued X the min-entropy is the minimum of the compo-
nents (see [3,5]). We use the standard notions of collision probability of X de-
noted Col(X) and statistical distance of X and Y denoted ∆(X,Y ). We denote
the computational distance between two random variables X,Y with respect to
a distinguisher D as δD(X,Y ).

Dodis et al. [15, Lemma 2.2] characterized the effect of auxiliary informa-
tion on average min-entropy, namely, H̃∞(A|(B,C)) ≥ H̃∞((A,B)|C) − |B| ≥
H̃∞(A|C)− |B|.

We will use extractors (defined in [33]) and average-case extractors (defined
in [15, Section 2.5]) and denote both by ext.

For a (probabilistic) public-key encryption scheme, which is a triple of algo-
rithms Π = (K, E ,D) defined in the usual way, we will use the standard notion
of IND-CPA security as defined in [24].

We use the standard definition of a lossy trapdoor function (LTDF) genera-
tor (defined in [35]) which we denote as a pair LTDF = (F ,F ′) of algorithms.

Computational Entropy We use the standard notion of HILL entropy as de-
fined in [26]. Additionally, we use a notion known as “metric-star” entropy (this
notion was used in [18,21]):



Definition 1. A distribution X has Metric∗ entropy at least k, denoted
HMetric∗

ε,s (X) ≥ k if for all deterministic distinguishers D of size at most s, with

outputs in [0, 1], there exists a distribution Y with H∞(Y ) ≥ k and δD(X,Y ) ≤ ε.

Equivalence (with a loss in quality) between Metric∗ and HILL entropy was
shown in [2, Theorem 5.2]. Extractors can be applied to distributions with com-
putational entropy to obtain pseudorandom outputs. This is well-known for HILL
entropy, but the only known way to extract from Metric∗ entropy is first to con-
vert Metric∗ to HILL entropy by using [2, Theorem 5.2]. Conditional entropy
has been extended to the computational case (for both HILL [28] and Metric
entropy [21]). Conditional Metric∗ can be defined similarly, by making the dis-
tinguisher deterministic with outputs in [0, 1]. The Metric∗ to HILL conversion
can be extended to the computational case as shown in [11, Lemma 18], [21, The-
orem 2.7]. Average-case extractors can be used on distributions with conditional
Metric∗ entropy by first using applying [21, Theorem 2.7].

2.1 Deterministic Encryption

An encryption scheme Π = (K, E ,D) is deterministic if E is deterministic.

Semantic security of DE. We recall the semantic-security style PRIV notion
for DE from [3]. (More specifically, it is a “comparison-based” semantic-security
style notion; this was shown equivalent to a “simulation-based” formulation
in [5].) To encryption scheme Π = (K, E ,D), an adversary A = (A0, A1, A2),
and k ∈ N we associate the left-most and middle experiments in Figure 1. We
require that there are functions v = v(k), ` = `(k) such that (1) |x| = v, (2)
|x[i]| = ` for all 1 ≤ i ≤ v, and (3) the x[i] are all distinct with probability 1

over (x, t)
$←A1(state) for any state output by A0. (Since in this work we only

consider the definition relative to deterministic Π requirement (3) is without loss
of generality.) In particular we say A outputs vectors of size v for v as above.
Define the PRIV advantage of A against Π as

Advpriv
Π,A(k) = Pr

[
Exppriv-1

Π,A (k)⇒ 1
]
− Pr

[
Exppriv-0

Π,A (k)⇒ 1
]
.

Let M be a class of distributions on message vectors. Define AM to be the class
of adversaries {A = (A0, A1, A2)} such that for each A ∈ AM there is a M ∈M
for which x has distribution M over (x, t)

$←A1(state) for any state output by

A0. We say that Π is PRIV secure for M if Advpriv
Π,A(·) is negligible for any PPT

A ∈ AM. Note that (allowing non-uniform adversaries as usual) we can without
loss of generality consider only those A with “empty” A0, since A1 can always
be hardwired with the “best” state. However, following [5] we explicitly allow
state because it greatly facilitates some proofs.

Indistinguishability of DE. Next we recall the indistinguishability-based
formulation of security for DE [5,7]. To an encryption scheme Π = (K, E ,D),
an adversary D = (D1, D2), and k ∈ N we associate the right-most experi-
ment in Figure 1. We make the analogous requirements on D1 as on A1 in the
PRIV definition. Define the IND advantage of D against Π as Advind

Π,D(k) =



2 ·Pr
[

Expind
Π,D(k)⇒ 1

]
− 1. Let M∗ be a class of pairs of distributions on mes-

sage vectors. Define DM∗ to be the class of adversaries {D = (D1, D2)} such that
for each D ∈ DM∗ , there is a pair of distributions (M0,M1) ∈ M∗ such that

for each b ∈ {0, 1} the distribution of x
$←D1(b) is M b. We say that Π is IND

secure for M∗ if Advind
Π,D(·) is negligible for any PPT D ∈ DM∗ .

Expr Exppriv-1
Π,A (k):

(pk, sk)
$←K(1k)

state
$←A0(1k)

(x1, t1)
$←A1(state)

c
$←E(pk,x1)

g
$←A2(pk, c, state)

If g = t1 ret 1 else ret 0

Expr Exppriv-0
Π,A (k):

(pk, sk)
$←K(1k)

state
$←A0(1k)

(x1, t1), (x0, t0)
$←A1(state)

c
$←E(pk,x0)

g
$←A2(pk, c, state)

If g = t1 ret 1 else ret 0

Expr Expind
Π,A(k):

(pk, sk)
$←K(1k)

b
$←{0, 1} ; (x, t)

$←D1(b)

c
$←E(pk,x)

d
$←D2(pk, c)

If b = d ret 1 else ret 0

Fig. 1. Security experiments for deterministic encryption.

3 Our Tools

3.1 A Precise Definitional Equivalence for DE

While the PRIV definition is meaningful with respect a single message distri-
bution M , the IND definition must inherently talk of pairs of different message
distributions. Thus, in proving an equivalence between the two notions, the best
we can hope to show is that PRIV security for a message distribution M is
equivalent to IND security for some class of pairs of message distributions (de-
pending on M). However, prior works [5,7] did not provide such a statement.
Instead, they showed that PRIV security on all distributions of a given entropy µ
is equivalent to IND security on all pairs of distributions of slightly less entropy.

Induced distributions. To state our result we first give some definitions relat-
ing to a notion of “induced distributions.” Let X,X ′ be distributions (or random
variables) on the same domain. For α ∈ N, we say that X ′ is an α-induced dis-
tribution of X if X ′ is a conditional distribution X ′ = X | E for an event E such
that Pr [ E ] ≥ 2−α. We call E the corresponding event to X ′. We require that the
pair (X,E) is efficiently samplable. Define X[α] to be the class of all α-induced
distributions of X. Furthermore, let X0, X1 be two α-induced distributions of
X with corresponding events E0,E1 respectively. Define X∗[α] = {(X0, X1)} to
be the class of all pairs (X0, X1) for which there is a pair (X ′0, X

′
1) of α-induced

distributions of X such that X0 (resp. X1) is statistically close to X ′0 (resp. X ′1).7

7 We need to allow a negligible statistical distance for technical reasons. Since we
will be interested in indistinguishability of functions of these distributions this will



The equivalence. We are now ready to state our result. The following theorem
captures the “useful” direction that IND implies PRIV:

Theorem 1. Let Π = (K, E ,D) be an encryption scheme. For any distribution
M on message vectors, PRIV security of Π with respect to M is implied by
IND security of Π with respect to M∗[2]. In particular, let A ∈ AM be a PRIV
adversary against Π. Then there is a IND adversary D ∈ DM∗[2] such that for
all k ∈ N

Advpriv
Π,A(k) ≤ 162 ·Advind

Π,D(k) +

(
3

4

)k
.

Furthermore, the running-time of D is the time for at most that for k executions
of A (but 4 in expectation).

The theorem essentially follows from the techniques of [5]; details are given
in [20]. Thus, our contribution here is not in providing any new technical tools
used in proving this result but rather in extracting it from the techniques of [5].
In particular, our more precise statement allows us to use results about en-
tropy of conditional distributions, which we explain next. Looking ahead, it also
simplifies proofs for schemes based on one-wayness, because it is easy to argue
that one-wayness is preserved on slightly induced distributions (the alternative
would require an argument that distributions of lower entropy are induced by
distributions of higher entropy).

To establish a definitional equivalence; that is, also show that PRIV implies
IND, we need to further restrict the latter to pairs (that are statistically close
to pairs) of complementary 2-induced distributions of M (which we did not do
above for conceptual simplicity), where we call X0, X1 complementary if E1 = E0.
We stress that this further restriction is not needed for the “useful” implication
above and for our security proofs.

3.2 Measuring Computational Entropy of Induced Distributions

We study how conditioning a distribution reduces its computational entropy.
This result is used later in the work to show that randomness extractors can
convert a hardcore function into a robust one; it also applicable to leakage-
resilient cryptography. This result is simplest to understand when stated in
terms of Metric∗ computational entropy (defined in [18]) It is easy to see that
conditioning on an event E with probability PE reduces (information-theoretic)
min-entropy by at most logPE. We show that the same holds for the computa-
tional notion of Metric∗ entropy if one considers reduction in both quantity and
quality:

Lemma 1. Let X,Y be discrete random variables. Then

HMetric∗

ε/PY (y),s′(X|Y = y) ≥ HMetric∗

ε,s (X)− log 1/PY (y) where s′ ≈ s.

not make any appreciable difference, and hence we mostly ignore this issue in the
remainder of the paper.



The use of Metric∗ entropy and an improved proof allow for a simpler and
tighter formulation than results of [18, Lemma 3] and [36, Theorem 1.3] (see the
full version for a comparison [20]). The proof is similar to [36] and can be found
in the full version [20].

If we now consider averaging over all values of Y , we obtain the following
simple formulation that expresses how much average entropy is left in X from
the point of view of someone who knows Y . (This scenario naturally occurs in
leakage-resilient cryptography, as exemplified in [18]).

Theorem 2. Let X,Y be discrete random variables. Then

HMetric∗

ε|Y |,s′ (X|Y ) ≥ HMetric∗

ε,s (X)− log |Y |, where s′ ≈ s.

This statement is similar to the statement in the information-theoretic case
(where the reduction is only in quantity) from [15, Lemma 2.2]. In the full
version [20], we compare the theorem to [11, Lemma 16] and [22, Lemma 3.1].

To apply a randomness extractor, we must convert conditional Metric∗ to
conditional HILL entropy using [21, Theorem 2.7], this conversion loses some
quality. Thus, the conversion should be applied only when necessary (for in-
stance, repeated conditioning is best measured in Metric∗ entropy, and then
converted to HILL entropy once at the end). Here we provide a “HILL-to-HILL”
formulation of Lemma 1.

Corollary 1. Let X be a discrete random variable over χ and let Y be a discrete
random variable. Then,

HHILL
ε′,s′ (X|Y = y) ≥ HHILL

ε,s (X)− log 1/PY (y)

where ε′ = ε/PY (y) + 3

√
log |χ|
s , and s′ = Ω( 3

√
s/ log |χ|).

The Corollary follows by combining Lemma 1, [2, Theorem 5.2], and setting
εHILL = 3

√
log |χ|/s (see the full version for justification of parameters [20]).

3.3 A (Crooked) Leftover Hash Lemma for Correlated Distributions

The following generalization of the (Crooked) LHL to correlated input distribu-
tions will be very useful to us when considering bounded multi-message security
in Section 6. Since our generalization of the classical LHL is a special case of our
generalization of the Crooked LHL, we just state the latter here.

Lemma 2. (CLHL for Correlated Sources) Let H : K × D → R be a 2t-
wise δ-dependent function for t > 0 with range R, and let f : R → S be a
function. Let X = (X1, . . . , Xt) where the Xi are random variables over D such
that H∞(Xi) ≥ µ for all 1 ≤ i ≤ n and moreover Pr [Xi = Xj ] = 0 for all
1 ≤ i 6= j ≤ t. Then

∆((K, f(H(K,X))), (K, f(U))) ≤ 1

2

√
|S|t(t22−µ + 3δ)

where K
$←K and U = (U1, . . . , Ut) where the Ui are all uniform and indepen-

dent over R (recall that functions operate on vectors X and U component-wise).



One can further extend Lemma 2 to the case of average conditional min-
entropy using the techniques of [15]. Note that the lemma implies the corre-
sponding generalization of the classical LHL by taking H to have range S and
f to be the identity function. The proof of the lemma, which extends the proof
of the Crooked LHL in [7], is given in the full version [20].

4 Encrypt-with-Hardcore Scheme from Robust HCFs

We define a new notion of robust HCFs. Intuitively, robust HCFs are those that
remain hardcore when the input is conditioned on any event that occurs with
good probability.

Definition 2. Let F be a TDF generator and let hc be a HCF such that hc is
hardcore for F with respect to a distribution X on input vectors. For α = α(k),
we say hc is α-robust for F on X if hc is also hardcore for F with respect to the
class X[α] of α-induced distributions of X.

Discussion. Robustness is interesting even for the classical definition of hard-
core bits, where hc is boolean and a single uniform input x is generated in the
security experiment. Here robustness means that hc remains hardcore even when
x is conditioned on an event that occurs with good probability. It is clear that
not every hardcore bit in the classical sense is robust — note, for example, that
while every bit of the input to RSA is well-known to be hardcore assuming RSA
is one-way [1], they are not even 1-robust since we may condition on a particular
bit of the input being a fixed value.

The scheme. Let Π = (K, E ,D) be a probabilistic encryption scheme, F be
a TDF generator, and hcf be a HCF. Assume that hc outputs binary strings
of the same length as the random string r needed by E . Define the associated
“Encrypt-with-Hardcore” deterministic encryption scheme EwHCore[Π,F , hc] =
(DK,DE ,DD) with plaintext-space PtSp = {0, 1}k via

Alg DK(1k):

(pk, sk)
$←K(1k)

(f, f−1)
$←F(1k)

Return ((pk, f), (sk, f−1))

Alg DE((pk, f), x):
r ← hcf (x)
c← E(pk, f(x); r)
Return c

Alg DD((sk, f−1), c):
y ← D(sk, c)
x← f−1(y)
Return x

Security analysis. To gain some intuition, suppose hc is hardcore for F on
some distribution X on input vectors. One might think that PRIV security of
EwHCore = EwHCore[Π,F , hc] on X then follows by IND-CPA security of Π.
However, this is not true. For example, hc may be a “natural” hardcore function
(i.e., that outputs some bits of the input), and E may output some of its coins
in the clear. This is how our notion of robustness comes into play, giving us the
following theorem (for a proof and further discussion, see [20]):

Theorem 3. Suppose Π is IND-CPA secure, hc is 2-robust for F on a distri-
bution M on input vectors. Then EwHCore[Π,F , hc] is PRIV-secure on M .



5 Single-Message Instantiations of EwHCore

5.1 Getting Robust Hardcore Functions

Augmented trapdoor functions. In order to describe the conversion pro-
cedure, it is useful to introduce the notion of an “augmented” version of a TDF,
which augments the description of the TDF with keying material for a HCF.
More formally, let F be a trapdoor function generator and let H be a keyed
function with keyspace K. Define the H-augmented version of F , denoted F [H],

that on input 1k returns (f,K), (f−1,K) where (f, f−1)
$←F(1k) and K

$←K;
evaluation is defined for x ∈ {0, 1}k as f(x) (i.e., evaluation just ignores K) and
inversion is defined analogously.

Making any large hardcore function robust. We show that by applying
a randomness extractor in a natural way, one can convert any large hardcore
function in the standard sense to one that is robust (with some loss in parame-
ters). However, while the conversion procedure is natural, proving that it works
turns out to be non-trivial.

Let F be a TDF generator, and let hc : {0, 1}k → {0, 1}` be an HCF for F
on an input distribution X such that H∞(X) ≥ µ. Let ext : {0, 1}` × {0, 1}d →
{0, 1}m×{0, 1}d be a strong average-case (`−α, εext)-extractor for α ∈ N. (Here
we view ext as a keyed function with the second argument as the key.) Define
a new “extractor-augmented” HCF hc[ext] for F [ext] such that hc[ext]s(x) =
ext(hc(x), s) for all x ∈ {0, 1}k and s ∈ {0, 1}d. The following characterizes the
α-robustness of hc[ext].

Lemma 3. Fix X ′ ∈ X[α], and suppose there is a distinguisher D′ against
hc[ext] on X ′. Then there is a distinguisher D against hc on X such that for
all k ∈ N

Advhcf
F,X′,hc[ext],D′(k) ≤ O

(
3

√
Advhcf

F,X,hc,D(k) + 2α ·Advhcf
F,X,hc,D(k)

)
+ εext .

Furthermore, the running-time of D is O((tD′(k+`))3), where tD′ is the running-
time of D.

Note that when α = log(k) the security loss in the reduction is polynomial (in
our application we just need α = 2). The proof, which appears in the full version
[20], relies crucially on Corollary 1.

The above conversion procedure notwithstanding, we give specific examples
of hardcore functions that are already robust.

Robust Goldreich-Levin bits for any TDF. In [20] we show that the
Goldreich-Levin [23] (GL) hardcore function is robust. Specifically, if the function
that extracts i-many independent GL bits is hardcore for F , then it is also
O(log k)-robust for F .

Robust bits for any LTDF. Peikert and Waters [35] showed that LTDFs
admit a simple, large hardcore function, namely a pairwise-independent hash



function (the same argument applies also to universal hash functions or, more
generally, randomness extractors). By using average conditional min-entropy,
in [20] we show that this hardcore function is O(log k) robust.

5.2 Putting It Together

Equipped with the above results, we describe instantiations of the Encrypt-with-
Hardcore scheme that both explain prior constructions and produce novel ones.

Using an iterated trapdoor permutation. The prior trapdoor permuta-
tion based DE scheme of Bellare et al. [5] readily provides an instantiation of
EwHCore by using an iterated trapdoor permutation as the TDF. Let F be a TDP
and hc be a hardcore bit for F . For i ∈ N denote by F i the TDP that iterates F
i-many times. Define the Blum-Micali-Yao (BMY) [6,41] hardcore function for
F i via BMYi[hc](f, x) = hc(x)‖hc(f(x))‖ . . . ‖hc(f i−1). Bellare et al. [5] used
the specific choice of hc = GL (the Goldreich-Levin bit) in their scheme, which is
explained by the fact that the GL bit is robust, and one can show that BMY it-
eration expands one robust hardcore bit to many (on a non-uniform distribution,
the bit should be hardcore on all “permutation distributions” of the former).

However, due to our augmentation procedure to make any large hardcore
function robust, we are no longer bound to any specific choice of hc. For example,
we may choose hc to be a natural hardcore bit. In fact, it may often be the
case that F has many simultaneously hardcore natural bits, and therefore our
construction will require fewer iterations of the TDP than the construction of [5].

Using a lossy TDF. Using the fact that extractors are robust hardcore func-
tions for LTDFs, we get an instantiation of the Encrypt-with-Hardcore scheme
from LTDFs that is an alternative to the prior scheme of Boldyreva et al. [7] and
the concurrent work of Wee [40]. Our scheme requires an LTDF with residual
leakage s ≤ H∞(X)−2 log(1/ε)−r, where r is the number of random bits needed
in E (or the length of a seed to a pseudorandom generator that can be used to
obtain those bits).

Using 2-correlated product TDFs. Hemenway et al. [27] show a construc-
tion of DE from a decisional 2-correlated product TDF, namely where F has the
property that f1(x), f2(x) is indistinguishable from f1(x1), f2(x2) where x1, x2
are sampled independently (in both cases for two independent public instances
f1, f2 of F). They show such a trapdoor function is a secure DE scheme for
uniform messages. To obtain an instantiation of EwHCore under the same as-
sumption, we can use F as the TDF, and an independent instance of the TDF
as hc. When a randomness extractor is applied to the latter, robustness follows
from Lemma 3, taking into account that the lemma holds even if the output of
the hardcore function is not uniform, as long as it has high HILL entropy.

Using any TDF with a large HCF. Our most novel instantiations in the
single-message case come from considering TDFs that have a sufficiently large
HCF but are not necessarily lossy or an iterated TDP. Let us first consider in-
stantiations on the uniform message distribution Freeman et al. [19] shown that



the Niederreiter TDF [32] has linearly many (simultaneous) hardcore bits un-
der the “Syndrome Decoding Assumption (SDA)” and “Indistinguishability As-
sumption (IA)” (as defined in [19, Section 7.2]). Furthermore, the RSA [37] and
Paillier [34] TDPs have linearly many hardcore bits under certain computational
assumptions, namely the “Small Solutions RSA (SS-RSA) Assumption” [39] and
the “Bounded Computational Composite Residuosity (BCCR) Assumption” [9]
respectively. Because these hardcore functions are sufficiently long, they can be
made robust via Lemma 3 and give us a linear number of robust hardcore bits—
enough to use as randomness for E (expanded by a pseudorandom generator if
necessary). Thus, by Theorem 3, we obtain:

Corollary 2. Under SDA+IA for the Niederreiter TDF, DE for the uniform
message distribution exists. Similarly, under SS-RSA the RSA TDP or BCCR
for the Paillier TDP respectively, DE for the uniform message distribution exists.

In particular, the first statement provides the first DE scheme without ran-
dom oracles based on the hardness of syndrome decoding. (A scheme in the
random oracle model follows from [3].) Moreover, the schemes provided by the
second statement are nearly as efficient as the ones obtained from lossy TDFs
(since they do not use iteration), and the latter typically requires decisional
assumptions (in contrast to the computational assumptions used here).

If we do not wish to rely on specific assumptions, we can also get DE from
strong but general assumptions, such as sub-exponential hardness. We can also
obtain DE for nonuniform message distributions (the strength of the assumption
needed will depend on how far the entropy of the message space is from the
maximum). See [20] for details.

6 Bounded Multi-Message Security and its Instantiations

6.1 The New Notion and Variations

The new notion. Our notion of q-bounded multi-message security (or just q-
bounded security) for DE is quite natural, and can be viewed as analogous to
other forms of “bounded” security (see e.g. [12]). In a nutshell, it asks for security
on up to q arbitrarily correlated but high-entropy messages (where we allow
the public-key size to depend on q). Fix an encryption scheme Π = (K, E ,D).
For q = q(k) and µ = µ(k), let Mq,µ be the class of distributions on message
vectors Mµ,q = (Mµ,q

1 , . . . ,Mµ,q
q ) where H∞(Mµ,q

i ) ≥ µ and for all 1 ≤ i ≤ q
and Mµ

1,q, . . . ,M
µ
q,q are distinct with probability 1. We say that Π is q-bounded

multi-message PRIV (resp. IND) secure for µ-sources if it is PRIV (resp. IND)
secure for Mq,µ. By Theorem 1, PRIV on Mq,µ is equivalent to IND on Mq,µ−2.

Unbounded multi-message security for q-block sources. We also con-
sider unbounded multi-message security for what we call a q-block source, a
generalization of a block-source [10] where every q-th message introduces some
“fresh” entropy. Fix an encryption scheme Π = (K, E ,D). For q = q(k), n =



n(k), and µ = µ(k), let Mq,n,µ be the class of distributions on message vectors
Mq,n,µ = (M

q,n,µ
1 , . . . ,Mq,n,µ

qn ) such that H∞(Xqi+j | X1 = x1, . . . , Xqi−1 =
xqi−1) ≥ µ for all 1 ≤ i ≤ n, all 0 ≤ j ≤ q − 1, and all outcomes x1, . . . , xqi−1
of X1, . . . , Xqi−1. We say that Π is q-bounded multi-message PRIV (resp. IND)
secure for (µ, n)-block-sources if Π is PRIV (resp. IND) secure on Mq,n,µ. Using
a similar argument to [7, Theorem 4.2], one can show equivalence of PRIV on
Mq,n,µ to IND on Mq,n,µ.

6.2 Our Basic Scheme

We cannot trivially achieve q-bounded security by running, say, q copies of a
scheme secure for one message in parallel (and encrypting the i-th message under
the i-th public key), since this approach would lead to a stateful scheme. The
main technical tool we use to achieve the notion is Lemma 2. Combined with [15,
Lemma 2.2], this tells us that a 2q-wise independent hash function is robust on
correlated input distributions of sufficient min-entropy:

Proposition 1. For any q, let LTDF = (F ,F ′) be an LTDF generator with
input length n and residual leakage s, and let H : K ×D → R where r = log |R|
be a 2q-wise independent hash function. Then H is a 2-robust hardcore function
for F on any input distribution X = (X1, . . . , Xq) such that H∞(X) ≥ q(s +
r) + 2 log q + 2 log(1/ε)− 2 for negligible ε.

By Theorem 3, we obtain a q-bounded DE scheme based on lossy trapdoor
functions that lose a 1 − O(1/q) fraction of its input. Specifically, we can use
the DDH-based construction of Peikert and Waters [35], the Paillier-based one
of [7,19], or the one from d-linear of [19] for any polynomial q.

6.3 Our Optimized Scheme

We show that by extending some ideas of [7], we obtain a more efficient DE
scheme meeting q-bounded security that achieves better parameters.

Intuition and preliminaries. Intuitively, for the optimized scheme we mod-
ifying the scheme of [7] to first pre-process an input message using a 2q-wise
independent permutation (instead of pairwise as in [7]). However, there are two
issues to deal with here. First, for q > 1 such a permutation is not known to
exist (in an explicit and efficiently computable sense). Second, Lemma 2 applies
to t-wise independent functions rather than permutations.

To solve the first problem, we turn to 2q-wise “δ-dependent” permutations
(as constructed in e.g. [29]). Namely, say that a permutation H : K×D → D is
t-wise δ-dependent if for all distinct x1, . . . , xt ∈ D

∆((H(K,x1), . . . ,H(K,xt)), (P1, . . . , Pt)) ≤ δ ,

where K
$←K and P1, . . . , Pt are defined iteratively by taking P1 to be uniform

on D and, for all 2 ≤ i ≤ t, taking Pi to be uniform on R \ {p1, . . . , pi−1} where
p1, . . . , pi−1 are the outcomes of P1, . . . , Pi−1 respectively.



To solve the second problem, we show that a t-wise δ-dependent permutation
is a t-wise δ′-dependent function where δ′ is a bit bigger than δ (see [20] for
details, where we also restate Lemma 2 in terms of δ-dependent permutations).

The construction. We now detail our construction. Let LTDF = (F ,F ′) be
an LTDF and let P : K × {0, 1}k → {0, 1}k be an efficiently invertible family of
permutations on k bits. Define the associated deterministic encryption scheme
Π[LTDF,P] = (DK,DE ,DD) with plaintext-space PtSp = {0, 1}k via

Alg DK(1k):

(f, f−1)
$←F(1k) ; K

$←K
Return ((f,K), (f−1,K))

Alg DE((f,K), x):
c← f(P(K,x))
Return c

Alg DD((sk, f−1), c):
x← f−1(P−1(K, c))
Return x

We have the following result:

Theorem 4. Suppose LTDF is a lossy trapdoor function on {0, 1}n with residual
leakage s, and let q, ε > 0. Suppose P is a 2q-wise δ-dependent permutation on
{0, 1}n for δ = t2/2n. Then for any q-message IND adversary B ∈ DMq,µ with
min-entropy µ ≥ qs + 2 log q + log(1/ε) + 5, there is an LTDF distinguisher D
such that for all k ∈ N

Advind
Π[LTDF,P],B(k) ≤ Advltdf

LTDF,D(k) + ε .

Furthermore, the running-time of D is the time to run B.

An efficiently invertible 2q-wise δ-dependent permutation on {0, 1}n for δ =
t2/2n can be obtained from [29] using key length nt+ log(1/δ) = n(t+ 1)− 2t.
Comparing the above to Proposition 1, we see that we have dropped the r in
the entropy bound (indeed, there is no hardcore function here).
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