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Abstract. We construct 3-round proofs and arguments with negligible
soundness error satisfying two relaxed notions of zero-knowledge (ZK):
weak ZK and witness hiding (WH). At the heart of our constructions lie
new techniques based on point obfuscation with auxiliary input (AIPO).
It is known that such protocols cannot be proven secure using black-
box reductions (or simulation). Our constructions circumvent these lower
bounds, utilizing AIPO (and extensions) as the “non-black-box compo-
nent” in the security reduction.

1 Introduction

Interactive proofs and arguments [GMR85, BCC88] are fundamental notions in
the theory of computation. In cryptography, these are typically used to prove
NP-statements and the proof is required to maintain the prover’s privacy. Dif-
ferent notions of privacy were considered, the most comprehensive one being
zero-knowledge (ZK). ZK protocols allow proving an assertion without revealing
anything but its validity. That is, the information learned by the verifier from
the interaction can be simulated only from the (valid) statement itself.

Since ZK was introduced [GMR85], questions regarding the round complexity
of ZK protocols were studied extensively. While it is known that 2-round ZK
protocols (with auxiliary input) do not exist for languages outside BPP [GO94],
a classical open question is whether there exist 3-round ZK protocols for NP
with negligible soundness error. The difficulty of this problem is expressed by
the lower bound of [GK96]: there do not exist 3-round black-box ZK (BBZK)
protocols with negligible soundness for languages outside BPP. Namely, to prove
that a 3-round protocol is ZK, one must demonstrate a simulator that uses the
verifier in a non-black-box way.

The work of [Bar01] shows that using non-black-box simulation it is possible
to go beyond existing black-box bounds. However, so far we do not know how
to use similar techniques to obtain 3-round ZK protocols. Nevertheless, 3-round
ZK protocols have been constructed based on non-standard “knowledge assump-
tions”. [HT98, BP04] show a 3-round ZK argument based on the knowledge of
exponent assumption (KEA) and variants of it. A different “knowledge assump-
tion” was used to show the existence of 3-round ZK proofs for NP [LM01]. (See
further discussion in Section 1.2.)
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In light of the difficulties in achieving 3-round ZK, it is natural to examine
relaxations of ZK that might enable the construction of such protocols. We
discuss several previously studied relaxations.

Witness indistinguishability (WI). A protocol is WI [FS90] if any two proofs
for the same statement that use two different witnesses are indistinguishable.
[FS90] show that, while the parallel repetition of basic (3-round) ZK protocols is
not BBZK, it is WI. Furthermore, the soundness error decreases exponentially
in the number of repetitions. However, WI protocols do not always guarantee
witness secrecy; in particular, for statements with a unique NP-witness, WI is
meaningless. Nevertheless, [FS90] show how to use WI to achieve other notions
of secrecy such as ZK and witness-hiding.

Witness hiding (WH). Roughly speaking, a protocol is WH [FS90] with respect
to a distribution D on an NP-language L if no verifier can extract a witness
from its interaction with the honest prover on a common instance x ← D. For
WH to be meaningful, it should be restricted to hard distributions; namely,
distributions D for which poly-size circuits cannot find a witness w ∈ RL(x)
for instances x ← D. WH is in a sense a “minimal” notion of privacy; indeed,
leaking the entire witness does not leave much room for imagination.

[FS90] present a 3-round protocol with negligible soundness error that is only
WH with respect to a specific type of (hard) distributions on languages, where
every instance has two witnesses. In contrast, extending the lower bounds of
[GK96], the work of [HRS09] show that, for distributions with unique witnesses,
3-round WH cannot be ”black-box reduced” to any ”standard cryptographic as-
sumption” (e.g., existence of OWFs), given natural limitations on the reduction.

In this work, we are interested in protocols that are WH with respect to
all hard distributions (including the unique witness case). We remark that con-
structing WH protocols for restricted classes of distributions, where a lower
bound on their hardness is apriori known, is a relatively easy task (and is not
ruled out by [HRS09]). Indeed, using super-polynomial black-box reductions, it is
possible to obtain 3-round WH protocols with respect to super-polynomial hard
distributions. (For example, f(n) = ω(log n) parallel repetitions of any 3-round
ZK protocol with constant soundness error is WH with respect to distributions
that are hard for 2f(n)-size adversaries.) Typical cryptographic scenarios, how-
ever, do call for secrecy with respect to general languages/distributions where
no apriori super-poly hardness bound is known at the protocol’s design time.
Here, efficient reductions requiring non-black-box techniques are needed.

Weak zero-knowledge (WZK). The standard notion of ZK requires that for any
(potentially adversarial) verifier there exist a simulator that simulates its view
in an interaction with the honest prover. The simulated view should be indistin-
guishable from the real one by any (efficient) distinguisher. The notion of WZK
[DNRS99] relaxes ZK by changing the order of quantifiers. Specifically, it allows
the ZK simulator to depend on the particular distinguisher in question.



While ZK is often used as a sub-protocol in larger systems, WZK is not always
suitable for this purpose due to its weaker simulation guarantee. In particular,
WZK is not known to be closed under sequential repetition. Nevertheless, WZK
is useful in settings where the verifier tries to learn a specific type of information
and we can present a distinguisher that can test whether the verifier succeeded in
learning it. Examples include verifiers that try to lean a specific predicate of the
witness, or any function of the witness that is efficiently verifiable. In particular,
WZK implies WH (by considering a distinguisher that tests if the verifier’s view
contains a valid witness). We note that, for black-box simulation, WZK and
(standard) ZK coincide; hence, by [GK96], a 3-round protocol with negligible
soundness error cannot even be shown to be WZK with black-box simulation.

To sum up the above discussion, 3-round arguments with negligible sound-
ness error that are ZK, WH or WZK cannot be constructed using black-box
techniques. (From this point on, we only consider proofs/arguments with neg-
ligible soundness error). In light of the existing non-black-box constructions, it
is interesting to investigate which techniques and assumptions could suffice for
constructing such protocols. Another interesting related question is understand-
ing whether the relaxed notions of WH and WZK require simpler techniques
than for full-fledged ZK; indeed, all existing WH constructions are based on the
stronger notion of ZK as a building block. The question of finding “more direct”
constructions of WH was already raised by [FS90]. This work sheds new light
on both questions, introducing techniques based on point obfuscation (PO). We
next briefly review the concept of PO.

Point obfuscation and extensions. Informally, an obfuscator is a randomized
algorithm O that gets as input a program C (given by a circuit) and outputs
a new program O(C) that has the same functionality as the original one, but
does not leak any additional information on C [BGI+01]. A stronger variant is
obfuscation with auxiliary input, in which O(C) does not leak any information
even given a related auxiliary input zC [GK05].

In this work, we consider obfuscation of point circuits and their extensions. A
point circuit Is outputs 1 on s and ⊥ on all other inputs. A multibit point circuit
Is→t outputs t on s and ⊥ otherwise. We also consider a new extension of point
circuits which we call circular point circuits - these are circuits Is�t which output
t on input s, s on input t, and ⊥ otherwise. Obfuscators for multibit point circuits
are called Digital Lockers (DL). We introduce the new notion of circular digital
lockers (CDL) that are obfuscators for circular point circuits. Point circuits and
their extensions are among the very few functionalities for which obfuscators have
been shown (albeit, typically, under rather strong hardness assumptions.) So far,
however, POs have found only a handful of applications in cryptographic theory,
mostly to strong forms of encryption [Can97, Wee05, CD08, CKVW10, BC10].

1.1 Our Contribution

We construct 3-round WH and WZK protocols based on two different variants
of point obfuscation:



– 3-round negligible soundness WH proofs for NP, given auxiliary input point
obfuscators that satisfy a relatively mild distributive security requirement.
The protocol is WH with respect to general hard distributions (including
the unique witness case).

– 3-round WZK arguments for NP, given auxiliary input digital lockers that
satisfy a worst-case simulation security requirement.

We next give an overview of our constructions, followed by a discussion on the
nature of our obfuscation assumptions and how they relate to previous assump-
tions used for 3-round ZK protocols.

3-round witness-hiding. The high level idea behind our WH protocol is as fol-
lows. Given an NP statement x ∈ L, have the verifier V construct a modified
NP verification circuit VeryL,x that on a valid witness w ∈ RL(x) outputs a
secret random point y and outputs ⊥ otherwise. V then “garbles” this circuit
using Yao’s technique and both parties execute a 2-message oblivious-transfer
protocol, at the end of which the prover P possesses the garbled circuit and
the corresponding labels for the witness w. Next, P evaluates the circuit (on w)
and obtains the point y. (This is essentially a conditional disclosure of secrets
protocol, as termed by [GIKM00, AIR01], where P learns the output y only
if it inputs a valid witness.) In the third message, P sends back to V a point
obfuscation of y. V accepts only after verifying it got a valid obfuscation of y.

Informally, soundness follows from the secrecy of the garbled circuit that
prevents a dishonest prover from obtaining the random y in case there is no
valid witness. In fact, we show that our protocol is a proof of knowledge.

The witness-hiding property is based on the security of the underlying obfus-
cator. To exemplify, consider a version of the protocol where P sends back y in
the clear. Following is an attack on this simple version of the protocol. Consider a
cheating verifier V∗ that, instead of garbling VeryL,x, garbles the identity circuit.
P now evaluates the garbled circuit on w and obtains the point y = w. If P was
to simply send back y in the clear, V∗ would have learned w and the protocol
would be completely insecure. Instead, P sends back an obfuscation O(y). The
security of the obfuscator O should then assure that V∗ cannot obtain w, unless
“it was already known” to V∗ in advance.

The security reduction and required obfuscation assumptions. As we have seen,
the WH guarantee of our protocol depends on the security of the underlying point
obfuscator O. We now discuss the properties of the obfuscation used to show
WH. Concretely, our underlying obfuscator should satisfy a distributional indis-
tinguishability requirement with respect to points and related auxiliary infor-
mation that are jointly sampled from an unpredictable distribution. We say that
a distribution ensemble D = {(Zn, Yn)}n∈N on pairs of strings is unpredictable
(UPD) if poly-size circuits cannot predict (with noticeable chance) the point Yn,
given the potentially related auxiliary input Zn. We say that O is a distribu-
tional auxiliary input point obfuscator (AIPO) if, for any UPD D = {(Zn, Yn)},
no poly-size circuit family can distinguish, given Zn, an obfuscation of O(Yn)
from an obfuscation of a random point O(Un).



In our setting, Zn represents the common input x and the prover’s first
message (during the OT protocol). Yn is the obfuscated point (returned by the
honest prover). That is, Zn is explicitly known to the verifier, while Yn is obfus-
cated. A malicious V∗ might choose its (garbled) circuit to output illegitimate
information on the witness (i.e., information it could not predict on its own only
from Zn); the obfuscation, however, should prevent it from doing so.

3-round weak zero-knowledge. The WH protocol described above is not ZK - it
enables a cheating verifier V∗ to learn arbitrary predicates of the witness. For
example, to learn w1, the first bit of w, V∗ can maliciously choose its garbled
circuit to map w to one of two arbitrary points y0, y1 according to w1. In this
case, the honest prover sends an obfuscation O(yw1), and V∗ learns w1 by simply
running the obfuscation on each of the two points y0, y1. (This can be generalized
to any function f(w) where |f(w)| = O(log n), using a poly-size set {yi}).

Towards making the protocol ZK, we try to cope with the above attack by
requiring that the verifier “proves” it “fully knows” the secret point y (rather
than just a poly-size set containing y). To achieve this without adding rounds, we
ask that the verifier itself includes an obfuscation of y in its message. The prover
then checks the obfuscation’s consistency with the point extracted from the
circuit evaluation. In case of inconsistency, the prover aborts. This modification,
however, still does not prevent the above attack. The verifier V∗ can learn w1

by sending an obfuscation of the string y0 and observing whether the prover
aborts. Moreover, the protocol may no longer be sound since a cheating prover
might use the verifier’s obfuscation to create an obfuscation of the same point y
without “knowing” y.

We resolve these issues as follows: (a) to regain soundness, we use an obfus-
cation scheme with non-malleability properties, based on an obfuscated circular
point circuit. (b) to achieve WZK, we require that, instead of a plain point
obfuscation, the verifier sends an obfuscated multibit point circuit that on the
secret input y outputs the coins used by the verifier to garble the circuit. Now,
the prover can verify that the garbled circuit is indeed VeryL,x (for some y).

In order to show that the protocol is WZK, we use stronger notions of ob-
fuscation. Since WZK requires worst-case simulation (i.e., simulation for any
x), we require that our obfuscators also satisfy a worst-case simulation guaran-
tee (rather than the weaker distributive definition used for WH). To simulate
any verifier V∗, our simulator must make use of the obfuscation simulator for
V∗. However, an obfuscation simulator for general adversaries with long output
could not exist (see [BGI+01]); in fact, known constructions of PO only address
simulation of adversaries with a single output bit. To overcome this, we use the
fact that the WZK simulator is given a specific distinguisher D, and the simu-
lated verifier view should only needs to fool this specific D. We show how to use
an obfuscation simulator for the binary adversary D(V∗), which is the composi-
tion of the distinguisher and the verifier, in order to construct a WZK simulator.
Indeed, this limitation on simulating adversaries with long output is the reason
we do not achieve full-fledged ZK.



1.2 Reflections on the Use of Point Obfuscation

The results of [GK96, HRS09] imply that our 3-round protocols cannot be shown
secure using reductions that only make black-box use of the adversary. This is
not surprising: indeed, neither auxiliary input nor standard point obfuscators
can be shown to be secure using black-box reductions [Wee05]. Hence, our use
of obfuscation inherently implies that the verifier is not used as a black-box.

To demonstrate the non-black-box nature of POs, we briefly review the tech-
niques used in existing constructions [Can97, Wee05]. We can view POs as a
special case of AIPOs, where the auxiliary input Zn is empty. In this case, Yn
is unpredictable if it is well-spread (i.e., has super-logarithmic min-entropy) and
the security requirement is that O(Yn) ≈c O(Un) for any well-spread Yn.

The hardness assumptions made in [Can97, Wee05] are shown to imply that
the strategy of any distinguisher essentially consists of a poly-size set of “dis-
tinguishing elements”. That is, only obfuscations of points within this set are
distinguishable from an obfuscation of a random point. However, these elements
cannot be extracted using black-box access to the adversary. Hence, they are
given to the reduction (or simulator) as non-uniform advice.

These techniques allow achieving the stronger worst-case simulation defini-
tion, thus showing that the distributive and worst-case definitions are in fact
equivalent in the case of no auxiliary input. When considering auxiliary input,
we can no longer apply these techniques. Indeed, the set of distinguishing el-
ements can now depend on the auxiliary input in an arbitrary way. That is,
no short advice suffices for the reduction to go through. In general, we do not
know whether the distributive AIPO definition implies the worst-case simulation
definition in the auxiliary input case (the converse still holds).

Concrete constructions. There exist very few constructions that were shown to
be secure with respect to auxiliary input. [GK05] show that any point obfuscator
is also secure with respect to auxiliary input that is chosen independently of the
obfuscated point. [DKL09] suggest a construction that, under a variant of the
LWE assumption, satisfies a restricted definition where the distribution D is
“highly unpredictable”. Both results are insufficient for our needs.

In this work, we consider two concrete constructions of AIPOs based on
two different assumptions. The first AIPO, known as the (r, rx) obfuscator, was
suggested by Canetti [Can97] based on a strong variant of DDH. Informally,
the assumption states that there exists an ensemble of prime order groups G =
{Gn : |Gn| = pn} such that for any unpredictable distribution D = (Zn, Yn) with

support {0, 1}poly(n) × Zpn
: (z, r, ry) ≈c (z, r, ru), where (z, y) ← (Zn, Yn), u

U←
Zpn

and r is a random generator of Gn
1.

For the second construction, we suggest a new assumption that is stated in
terms of uninvertibility rather than indistinguishability. The assumption strength-
ens the assumption made by Wee [Wee05] to account for auxiliary inputs. Roughly,

1 Both [Can97, DKL09], make use of a slightly different formulation for the distribu-
tional AIPO requirement. Their formulation is essentially equivalent to ours.



to construct (non auxiliary input) POs, Wee assumes a strong one-way permu-
tation f that is “uninvertible” with respect to all well-spread distributions. A
natural extension of the latter to the auxiliary input setting is to assume that the
permutation is hard to invert, even given side information Z on the pre-image
Y , from which Y cannot be predicted. An additional fact used by Wee is that
permutations inherently preserve (information-theoretic) entropy; in particular,
if Y is well-spread, so is f(Y ). In the (computational) auxiliary input setting,
this might not be true; namely, it might be that Y is unpredictable from Z,
while f(Y ) is predictable from Z. One possible way to deal with this issue is to
assume a trapdoor permutation family (with the above strong uninvertibility).
Further details can be found in the full version of this paper [BP11].

We remark that both the assumptions we consider (or any assumption that
states that a specific obfuscation candidate is an AIPO satisfying either a the
worst-case or the distributive security definition) are considered to be non-
standard. In particular, any such assumption is non-falsifiable in the terms of
Naor [Nao03].

Comparison with previous work on 3-round ZK. As already mentioned, it is
known how to construct 3-round ZK arguments and proofs using non-falsifiable
“knowledge assumptions,” such as the knowledge of exponent assumption (KEA)
[HT98, BP04], the POK assumption [LM01], or the existence of “extractable
perfect one-way functions” (EPOWF)[CD09].

The KEA assumption [Dam91], essentially asserts that any algorithm that
produces a DDH tuple, must “know” the corresponding exponents. Upon the
formulation of KEA, [Dam91] raised a more general question regarding the ex-
istence of “sparse range one-way functions”, such that any algorithm that can
sample an element within the function’s image, must also “know” a primage
(KEA indeed yields such a OWF). The EPOWF primitive of [CD09] formalizes
this generalization. All in all, all the above assumptions essentially fall under the
abstract notion of EPOWF. (Indeed, [CD09] show that either one of the KEA
or the POK assumptions imply the EPOWF primitive, when combined with a
hardness assumption such as DDH.)

In this work, we show how to circumvent the black-box impossibility results
for 3-round WZK and WH based on a different set of primitives; namely, (vari-
ants of) point obfuscation with auxiliary input. Currently, we do not know of any
formal relation between the AIPO and EPOWF primitives, beyond the relation
established in this work (through 3-round ZK). Formalizing such a relation is an
interesting question on its own (going beyond the scope of 3-round ZK).

On the efficiency of the construction. Basing our constructions on (Yao-based)
secure function evaluation results in efficient protocols with a practical imple-
mentation (similarly to [IKOS07]). By working directly with the verification
circuit VerL, we avoid the overhead of Karp reducions, existing in most ZK pro-
tocols. Specifically, we can achieve communication complexity O(ns), where n
is the security parameter and s is the size of VerL. This is not optimal as there



exist ZK arguments with polylog communication complexity [Kil92]. However,
these require using PCPs, making them less practical.

Finally, we consider the techniques in use. Unlike previous works, our work
demonstrates a direct WH construction that is not based on a ZK protocol. We
then strengthen it to a limited form of ZK. Our WH to WZK transformation is
specifically tailored for our construction. An interesting open question is whether
a general transformation of this type exists.

Organization. In Section 2 we present the main definitions and tools used in this
work. In Section 3 and Section 4 we introduce our WH and WZK protocols. For
lack of space many of the details and proof are omitted and can be found in the
full version of this paper [BP11].

2 Definitions and Tools

2.1 Weak Zero-Knowledge and Witness Hiding

In this work, we discuss two relaxations of ZK which are formalized next.

Weak zero-knowledge. In ZK, we require that the view of any verifier V∗, in an
interaction with the honest prover P, can be simulated by an efficient simulator
S. The simulated view should be indistinguishable from the view of V∗ for any
poly-size distinguisher. In weak ZK (WZK), the simulator is only required to
output a view that is indistinguishable from that of V∗ for a specific distinguisher.
This is modeled by supplying the simulator with the distinguisher circuit as
additional auxiliary input.

Definition 2.1 (Weak zero-knowledge). An argument system (P,V) is WZK
if for every PPT verifier V∗ there exist a PPT simulator S such that for every
poly-size circuit family of distinguishers D = {Dn}n∈N and any x ∈ L∩ {0, 1}n,

w ∈ RL(x), z ∈ {0, 1}poly(n) it holds that:

|Pr[Dn((P(w),V∗(z))(x)) = 1]− Pr[Dn(S(Dn, x, z)) = 1]| ≤ negl(n) .

Witness-hiding. A protocol is WH if the verifier cannot fully learn a witness from
its interaction with P. This requirement is restricted to instances and witnesses
(x,w) sampled from “hard distributions”.

Definition 2.2 (Hard distribution). Let D = {Dn}n∈N be an efficiently sam-
plable distribution ensemble on RL, i.e., the support of Dn is Supp(Dn) =
{(x,w) : x ∈ L ∩ {0, 1}n, w ∈ RL(x)}. We say that D is hard if for any poly-size
circuit family {Cn} and sufficiently large n it holds that:

Pr
(x,w)

Dn←RL
[Cn(x) ∈ RL(x)] ≤ negl(n) .



Definition 2.3 (D-witness-hiding). An argument system (P,V) for an NP
language L is WH with respect to a hard distribution D = {Dn}n∈N, if for any
poly-size verifier V∗ and all large enough n ∈ N:

Pr
(x,w)←Dn

[(P(w),V∗)(x) ∈ RL(x)] ≤ negl(n) .

We say that (P,V) is WH if it is D-WH for every hard distribution D.

As discussed in the introduction, in this work we will be interested in WH
protocols (with respect to a every hard distribution), and not with protocols
that are WH with respect to a specific hard distribution.

2.2 2-Message Delegation

A central tool used in our constructions is a 2-message delegation protocol in
which the prover and verifier jointly evaluate the NP verification circuit of the
language on the common instance and the prover’s witness. We use this primitive
(following the formulation in [IP07]) to abstract the use of the Yao’s garbled
circuit construction.

A 2-message delegation protocol is executed by parties (A,B) where A has
an input x, and B has as input a function f (given by a boolean circuit). The
protocol should allow A to obtain f(x) using two messages: A→ B → A, without
compromising the input secrecy of either party. We additionally require that,
given B’s message and secret randomness, one can reconstruct f . The protocol
is defined by a tuple of algorithms (Gen,Enc,Eval,Dec,Open) and proceeds as
follows:

A: Obtains a key sk ← Gen(1n), computes an encryption of its input c ←
Enc(sk, x), and sends c.

B: Computes an encrypted output ĉ← Eval(c, f) using randomness r, and sends
back ĉ.

A: Outputs y = Dec(sk, ĉ).

We briefly describe the security properties required from 2-message delegation
schemes in this work:

– Correctness: When both parties are honest A outputs f(x).
– Input Hiding: An adversarial B cannot learn A’s input x (in the semantic

security sense).
– Function Hiding: An adversarial A learns nothing about B’s input f , other

than the value of f(x) (security in this case is simulation based).
– Function Binding: In a later stage, B can reveal its input function f by

exhibiting its random coins. We require that for any message sent by B, it
can reveal at most one function. While function-binding is not required in
common formulations of delegation protocols, we show that a Yao-based con-
struction (when instantiated with natural forms encryption) has this prop-
erty.



In the full version of this paper [BP11], we provide a formal definition of secure 2-
message delegation and describe a concrete instantiation based on Yao’s garbled
circuit technique and 2-message OT. We also define an information-theoretic
version of this primitive, which we use in order achieve a WH protocol with
unconditional soundness (i.e., a proof).

2.3 Point Obfuscation with Auxiliary Input

We start by recalling the standard definition for circuit obfuscation with auxiliary
input. The definition is a worst-case definition, in the sense that simulation must
hold for any circuit in the family and any related auxiliary input.

Definition 2.4 (Worst-case obfuscator with auxiliary input [BGI+01,
GK05]). A PPT O is an obfuscator with auxiliary input for an ensemble C =
{Cn}n∈N of families of poly-size circuits if it satisfies:

– Functionality. For any n ∈ N, C ∈ Cn, O(C) is a circuit that computes the
same function as C.

– Polynomial slowdown. For any n ∈ N, C ∈ Cn, |O(C)| ≤ poly(|C|).
– Virtual black box. For any PPT adversary A there is a PPT simulator S
such that for all sufficiently large n ∈ N, C ∈ Cn and z ∈ {0, 1}poly(n):∣∣∣Pr[A(z,O(C)) = 1]− Pr[SC(z, 1|C|) = 1]

∣∣∣ ≤ negl(n) ,

where the probability is taken over the coins of A,S and O.

An obfuscator O is recognizable if given a program C and an alleged obfuscation
of C, C̃, it is easy to verify that C and C̃ compute the same function.

– Recognizability. There exist a polynomial time recognition algorithm V
such that for any C ∈ Cn:
– PrO [V(C,O(C)) = 1] = 1
– For any C̃ ∈ {0, 1}poly(n) if V(C, C̃) = 1 then C̃ and C compute the same

function.

Point obfuscation. We consider obfuscation of point circuits and their extensions.
A point circuit Is outputs 1 on string s and ⊥ on all other inputs.

Definition 2.5 (Worst-Case auxiliary-input point obfuscation (AIPO)).
A PPT algorithm O is a worst-case AIPO if it is a recognizable obfuscator (ac-
cording to Definition 2.4) for the circuit ensemble: C = {Cn = {Is|s ∈ {0, 1}n}}n∈N
Remark 2.1. The notion of recognizable obfuscation was not explicitly defined
in previous works. We only consider this property in the context of point obfus-
cation. While, in general, point obfuscators are not required to be recognizable,
previously constructed obfuscators [Can97, Wee05] are trivially recognizable.
This is due to the fact that they use public randomness, i.e., the randomness
used by the obfuscator appears in the clear as part of the obfuscated circuit. The
recognition algorithm, given a program and its obfuscation, can simply rerun the
obfuscation algorithm with the public randomness and compare the result to the
obfuscation in hand.



We next present a weaker distributional definition for point obfuscation with
auxiliary input that previously appeared in [Can97] (in a slightly different for-
mulation). We first give a preliminary definition of unpredictable distributions
(generalizing Definition 2.2) and then present the obfuscation definition.

Definition 2.6 (Unpredictable distribution). A distribution ensemble D =
{Dn = (Zn, Yn)}n∈N, on pairs of strings is unpredictable if no poly-size circuit
family can predict Yn from Zn. That is, for every poly-size circuit family {Cn}n∈N
and for all large enough n:

Pr
(z,y)←Dn

[Cn(z) = y] ≤ negl(n) .

Definition 2.7 (Auxiliary input point obfuscation for unpredictable
distributions (AIPO)). A PPT algorithm O is a point obfuscator for un-
predictable distributions if it satisfies the functionality and polynomial slowdown
requirements as in Definition 2.4, and the following secrecy property. For any
unpredictable distribution D = {Dn = (Zn, Yn)} over {0, 1}poly(n) × {0, 1}n it
holds that:

{z,O(y) : (z, y)← Dn}n∈N ≈c

{
z,O(u) : z ← Zn, u

U← {0, 1}n
}
n∈N

.

Remark 2.2. Using this definition in our WH construction, we can settle for a
slightly relaxed definition with bounded auxiliary input; namely |Yn| = ω(|Zn|).
We do not know if such a bounded form of auxiliary-input indeed weakens the
requirement. However, it does seem to withstand certain “diagonalization at-
tacks” that can be performed for the non-restrictive (under certain obfuscation
assumptions).

2.4 Digital Lockers and Circular Digital Lockers

We also consider obfuscation of several extensions of point circuits. Specifically,
multibit point circuits and circular point circuits. A multibit point circuit Is→t

outputs t on s and ⊥ otherwise. A circular Point circuit Is�t outputs t on input
s, s on input t, and ⊥ otherwise. Obfuscators satisfying the worst-case AIPO
definition (Definition 2.5) for multibit point circuits and circular point circuits
are called digital lockers (DLs) and circular digital lockers (CDLs).

Definition 2.8 (Digital locker (DL)). A PPT algorithm is a DL if it is a
recognizable obfuscator (according to Definition 2.4) for the circuit ensemble:
C = {Cn = {Is→t|s, t ∈ {0, 1}n}}n∈N
Definition 2.9 (Circular digital locker (CDL)). A PPT algorithm is a CDL
if it a recognizable obfuscator (according to Definition 2.4) for the circuit ensem-
ble: C = {Cn = {Is�t|s, t ∈ {0, 1}n}}n∈N
Remark 2.3. We note that the “security under circularity” feature is inherently
provided by the strong obfuscation guarantees, was already considered in pre-
vious work for constructing strong encryption schemes which withstand key de-
pendent messages and related keys attacks [CKVW10, BC10].



While AIPOs are sufficient for our WH protocol, our WZK protocol requires DLs
and CDLs. In the full version of this paper [BP11], we describe how DLs and
CDLs can be constructed based on a worst-case AIPOs that satisfy an additional
property of composability.

3 3-round WH

Overview of the protocol. As a warmup, consider first the following unsound
protocol: to prove an NP statement x ∈ L, the prover P and verifier V first engage
in a 2-message delegation protocol where P’s (secret) input is the witness w and
V’s input function is the NP verification circuit VerL,x. P obtains the result
VerL,x(w) and sends it to V. This is unsound since a cheating prover can always
send “1” as its last message.

To make the protocol sound, we augment it as follows. Let VeryL,x be a circuit
that outputs y on valid witnesses and ⊥ otherwise. Now, V will choose a secret
string y ∈R {0, 1}n and use the circuit VeryL,x as its secret input in the delegation
protocol. In order to convince V of the statement, P should send back y. Indeed,
in case x /∈ L we have VeryL,x ≡ ⊥, and hence, the “function hiding” property of
the delegation protocol assures that P does not learn the random y.

However, this protocol is not witness hiding. Indeed, a cheating verifier can
try to obtain w by maliciously choosing its input function. For instance, choosing
the function to be the identity results in the prover sending back w.

A natural approach towards fixing the latter problem would be to have the
verifier “prove” it behaved honestly, without revealing its secret. In other words,
it should give a round-efficient witness-hiding proof, which is what we set out to
do to begin with. Thus, we take a different approach. We note that an honest
verifier that “knows” y should only be able to verify that the prover “knows” it
as well; hence, it suffices to have the prover send a point obfuscation of y, instead
of sending y in the clear. The security of the obfuscation would then guarantee
that any information that the verifier learns on w could also be learned (with
noticeable probability) without the obfuscation.

The protocol. Let DEL = (Gen,Enc,Eval,Dec,Open) be a secure 2-message dele-
gation protocol and let O be a point obfuscator for unpredictable distributions
(AIPO) with recognition algorithm V. The protocol is given by Figure 1.

Theorem 3.1. Let DEL be a secure 2-message delegation protocol, and let O be
an AIPO. Protocol 1 is a WH interactive argument.

We briefly overview the proof of Theorem 3.1. The full proof as well as an
extension from an argument to a proof can be found in the full version of this
paper [BP11].

Soundness. The soundness of Protocol 1 follows from the function hiding of
the underlying delegation scheme DEL and the recognizability of the point ob-
fuscator. Indeed, in case there is no valid witness the verifier’s message reveals



Common Input: x ∈ L. Auxiliary Input to P: w ∈ RL(x).

1. P: Obtains sk ← Gen(1n) and sends c = Enc(sk, w).

2. V: Samples y
U← {0, 1}n, obtains ĉ← Eval(c,VeryL,x) and sends ĉ.

3. P: Decrypts ỹ = Dec(sk, ĉ), computes a point obfuscation O(ỹ) and sends it.
4. V: Accepts iff V(Iy,O(ỹ)) = 1, i.e., O(ỹ) computes the same function as Iy.

Fig. 1. Protocol 1, 3-round Witness Hiding

no information regarding the verifier’s secret random point y. Specifically, the
prover’s view can be simulated independently of y. Since the obfuscation is rec-
ognizable, in order to fool the verifier, the prover must send a point circuit
computing Iy and can only succeed with negligible probability.

Proof of Knowledge. In fact, we can show that our WH protocol satisfies a
stronger soundness property, namely it is a proof of knowledge. For this purpose,
we use a similar idea to the one in the “knowledge attack” that shows why the
protocol is not ZK (described in the introduction). In order to extract a witness,
we essentially apply this attack repeatedly “against” the prover, revealing the
witness’ bits one by one. Our extractor only makes black-box use of the prover
and extracts the witness using rewinding.

Witness hiding. The WH property is based on the input hiding of the delegation
scheme DEL and the indistinguishability with respect to unpredictable distribu-
tions guarantee of the AIPO O. Concretely, we show how any V∗ that manages
to extract a witness w from its interaction with P can be used to break the input
hiding property of DEL. The reduction samples (x,w) from the hard distribu-
tion and submits c0 = w, c1 = 1|w| to the challenger. Upon receiving a challenge
c = Enc(sk, cb) it simulates V∗(x) with c as the first message. V∗ then generates
its own message ĉ, and it is left to simulate the last obfuscation message. To
do so, we treat two cases, corresponding to whether the secret point y (induced
by V∗’s choice of input circuit to DEL) is (a) unpredictable from (x, c) or (b) is
predictable by some poly size predictor Π. Intuitively, the first corresponds to a
verifier that chooses its input circuit maliciously to gain information on w. The
second, corresponds to a verifier that chooses its circuit honestly. To simulate
the obfuscation in the second case, we apply the prediction circuit to compute
y ← Π(x, c) and feed V∗ with O(y). In the case that y is unpredictable, we feed
V∗ an obfuscation O(u) of a random point u. Finally, when V∗ outputs w̃, we
check whether it is a valid witness, and if so answer the challenger with b = 0.
Otherwise, we guess b at random. Indeed, by the indistinguishability guarantee
of the AIPO, in case b = 0 (i.e., the simulation is done with an encryption of w)
the simulated V∗ will manage to extract a witness with noticeable probability
(related to the the prediction probability of Π and the success probability of V∗



in a true interaction). In case that b = 1, the reduction is unlikely to produce a
valid witness since its view is completely independent of w and the underlying
distribution is hard. We stress that the reduction is, indeed, not black box in V∗;
in particular, it applies the predictor Π implied by the AIPO guarantee, which
is not black-box in V∗.

On restricted auxiliary input. In our WH protocol we require the AIPO dis-
tributional guarantee to hold with respect to any unpredictable distribution.
However, we can in fact settle for less. Specifically, the auxiliary input distribu-
tion in Protocol 1 is essentially restricted to a very “benign” form; namely, the
first delegation message (ciphertext) and the hard instance x; in particular, the
auxiliary input is of fixed polynomial size and can be made much shorter than
the obfuscated random point.

Why isn’t Protocol 1 ZK? Protocol 1 is not ZK and in fact enables a cheat-
ing verifier V∗ to learn arbitrary predicates on the witness. Specifically, V∗ can
deviate from the protocol by maliciously selecting its input circuit C for the
delegation protocol as follows. Let B : {0, 1}∗ → {0, 1}t be a polynomial time
computable function with t = O(log(n)) output bits. To learn B(w), V∗ fixes
an arbitrary set of strings Y = {yj}j∈{0,1}t and sets its input circuit C = CB

to map the witness w to yB(w). Indeed, given an obfuscation of CB(w), V∗ can
simply run the obfuscation on all points in {yj} and learn B(w). In the following
section we explain how to transform Protocol 1 to a WZK protocol.

4 3-round WZK

Overview of the protocol. To make Protocol 1 WZK, we try to cope with verifiers
executing the “malicious circuit choice attack” described in the previous section.
As explained in the introduction, this involves two main modifications:

1. We require that the verifier’s message also includes a digital locker DL(Iy→rV ),
which on the secret input y “unlocks” the secret coins rV used by the verifier
in the delegation protocol. Upon receiving this message, the honest prover
P applies Dec as in the previous protocol, obtains y, and then retrieves the
coins rV . Now P can apply the Open algorithm of the delegation to verify
that the input circuit of V∗ was honestly chosen (to be VeryL,x). In case it was
not, P returns a circular digital locker (CDL) (Definition 2.9) of a randomly
selected circular point circuit.

2. The prover is required to send back an obfuscation of y (as in the previous
protocol). However, to maintain soundness we should prevent a malicious
prover from using (or mauling) the verifier’s message DL(Iy→rV ) to get the
required obfuscation. For this purpose, we apply a “non-malleable obfus-
cation scheme”, implemented as follows.2 In its first message, the prover

2 We only consider a very restricted form of non-malleability where the adversary tries
to copy an obfuscation of the same point. A more general notion of non-mailable
obfuscation can be found in [CV08].



commits to a random r ∈ {0, 1}n (by sending the image of r under some
injective OWF f). Then in the last message, it sends a circular digital locker
CDL(Iy�r) that “binds” r and the secret point y. The honest verifier then
runs the CDL on y, retrieves r and uses the CDL recognition algorithm to
validate the CDL.

We now fully describe the protocol and then turn to analyze it.

The protocol. Let DEL = (Gen,Enc,Eval,Dec,Open) be a secure 2-message del-
egation scheme. Let DL, CDL be a digital locker and a circular digital locker.
Let V be the recognition algorithm for the CDL. Let f be an injective one way
function. The protocol is presented in Figure 2.

Common Input: x ∈ L. Auxiliary Input to P: w ∈ RL(x).

1. P: Obtains sk ← Gen(1n) and c ← Enc(sk, w), samples r
U← {0, 1}n, sends c

and f(r).

2. V: Samples y
U← {0, 1}n, obtains ĉ← Eval(c,VeryL,x) using random coins rV ,

sends ĉ and DLV = DL(Iy→rV ).
3. P: Decrypts ỹ = Dec(sk, ĉ), obtains r̃V = DLV(ỹ), verifies that

V(Iỹ→rV ,DLV) = 1 and Open(ĉ, r̃V) = VerỹL,x.

If so, sends back CDLP = CDL(Iỹ�r). Otherwise, samples u
U← {0, 1}n and

sends back CDLP = CDL(Iu�u).
4. V: Obtains r̃ = CDLP(y), accepts iff f(r̃) = f(r) and V(Iy�r̃,CDLP) = 1.

Fig. 2. Protocol 2, 3-round WZK

Theorem 4.1. Let DEL be a 2-message delegation protocol, let DL be a digi-
tal locker and CDL a circular digital locker, and let f be an injective one way
function, then Protocol 2 is a WZK argument.

We briefly overview the proof of Theorem 3.1. The full proof can be found in
the full version of this paper [BP11].

Soundness. Soundness is shown in two stages. First, we argue that given V’s
message (ĉ,DLV), it is hard to recover the underlying secret point y. I.e, no
poly-size circuit family can recover y, except with negligible chance. Indeed, the
auxiliary input obfuscation guarantee implies that if y can be recovered from
DLV and the related auxiliary information ĉ, it can also be recovered solely from
ĉ. However, since x /∈ L and DEL is function hiding, y cannot be recovered from
ĉ (similarly to the WH protocol).

Second, we show that any cheating prover P∗ can be used to recover y from
V’s message. Assume WLOG that P∗ is deterministic, and note that, in its



first message, P∗ sends some (fixed) f(r). Since f is injective, P∗ is in fact
“committed” to the corresponding fixed r. We can then feed P∗ with V’s message
and get back CDLP . Noting that whenever P∗ convinces V, CDLP(r) = y, we
can run CDLP on r (given as non-uniform advice) and obtain y with noticeable
probability.

Weak zero-knowledge. We present a WZK simulator that, given an adversary V∗
and a distinguisher D, simulates the view of V ∗ with respect to D. Let V∗D be the
composition of D with V∗. V∗D outputs a bit after receiving CDLP = CDL(Iy�r)
as the last message. In particular, there exist a PPT SCDL that simulates V∗D’s
output given oracle access to Iy�r and auxiliary input ai = (z, x, c, f(r)), repre-
senting the rest of V∗D’s view.

The WZK simulator S will simulate ai on its own, and utilize SCDL to simulate
CDLP as the last message. To simulate ai, S samples r and computes f(r). c
is simulated by generation a random key sk ← Gen(1n) and computing c =
Enc(sk, 0|w|) (instead of w as in a true interaction). The input hiding of DEL
implies that the simulated ai is indistinguishable from the true ai. We explain
how SCDL is used to simulate the last obfuscation message. S first obtains the
verifier’s message (DLV∗ , ĉ). It then runs SCDL with the simulated ai, monitoring
all its oracle queries. We treat two separate cases: (a) SCDL makes a query y which
unlocks DLV∗ ; (b) SCDL never makes such a query, in which case we always answer
its queries with ⊥.

The first case corresponds to a verifier that “knows” the secret point y. In
this case, our simulator can perfectly simulate the behavior of P. That is, it can
“open” ĉ to check its validity and consistency with DLV∗ , and send back the
corresponding CDL.

The second case corresponds to a cheating V∗ that either produces an invalid
message or somehow produces a valid message but without actually “knowing”
the secret y. In this case, the simulator will always return a “dummy obfus-
cation”. This simulates the behavior of the honest prover P. Indeed, if V∗’s
message is invalid, the prover also produces a “dummy obfuscation”. If V∗ does
not “know” y, it can not distinguish P’s message from a “dummy obfuscation”.

The simulator. Let V∗ be any verifier, and let D be the distinguisher circuit. De-
note by V∗1 (z, x, c, f(r)) the algorithm that runs V∗(z, x), feeds it with (c, f(r))
as the first message, and outputs V∗’s message. Denote by V∗2 (x, z, c, f(r),CDLP)
the algorithm that runs V∗(x, z), feeds it with (c, f(r)) as a first message,
with CDLP as a second message, and returns V∗’s output. Also, denote by
V∗D(x, z, c, f(r),CDLP) the algorithm that runs V∗2 (x, z, c, f(r),CDLP), applies
the circuit D on the output of V∗2 and returns the output bit of D.
Let SV∗,D(x, z, c, f(r)) be the PPT obfuscation simulator of V∗D as specified by
Definition 2.4. Also let `(n) be the length of a witness for instances of length n.
The description of the simulator is given by Algorithm 1.



Algorithm 1 Simulator S
Input: x ∈ L, z ∈ {0, 1}∗

1: Set ỹ = ⊥.

2: Sample r, u
U← {0, 1}n.

3: Obtain sk ← Gen(1n).
4: Compute c← Enc(sk, 1`(|x|))
5: Compute (ĉ,DLV) = V∗1 (x, z, c, f(r)).
6: Emulate SV∗,D(x, z, c, f(r)).
7: for each oracle query Q made by SV∗,D do
8: if DLV(Q) = ⊥ then
9: Answer S’s query with ⊥ and continue the emulation.

10: else
11: Set r̃V = DLV(Q)
12: if V(IQ→rV ,DLV) = 1 then
13: Set ỹ = Q
14: end if
15: End the emulation of SV∗,D.
16: end if
17: end for
18: if ỹ = ⊥ or Open(ĉ, r̃V) 6= VerỹL,x then
19: return V∗2 (x, z, c, f(r),CDL(Iu�u)).
20: else
21: return V∗2 (x, z, c, f(r),CDL(Iỹ�r)).
22: end if
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