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Abstract. In 2010, Groth constructed the only previously known sublinear-
communication NIZK circuit satisfiability argument in the common reference
string model. We optimize Groth’s argument by, in particular, reducing both the
CRS length and the prover’s computational complexity from quadratic to quasi-
linear in the circuit size. We also use a (presumably) weaker security assumption,
and have tighter security reductions. Our main contribution is to show that the
complexity of Groth’s basic arguments is dominated by the quadratic number
of monomials in certain polynomials. We collapse the number of monomials to
quasilinear by using a recent construction of progression-free sets.
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1 Introduction

By using a zero-knowledge proof, a prover can convince a verifier that some statement
is true without leaking any side information. Due to the wide applications of zero-
knowledge, it is of utmost importance to construct efficient zero-knowledge proofs.
Non-interactive zero-knowledge (NIZK) proofs can be generated once can be verified
many times by different verifiers and are thus useful in applications like e-voting.

NIZK proofs (or arguments, that is, computationally sound proofs) cannot be con-
structed in the plain model (that is, without random oracles or any trusted setup as-
sumptions). Blum, Feldman and Micali showed in [4] how to construct NIZK proofs in
the common reference string (CRS) model. During the last years, a substantial amount
of research has been done towards constructing efficient NIZK proofs (and arguments).
Since the communication complexity and the verifier’s computational complexity are
arguably more important than the prover’s computational complexity (again, an NIZK
proof/argument is generated once but can be verified many times), a special effort has
been made to minimize these two parameters.

One related research direction is to construct efficient NIZK proofs for NP-
complete languages. Given an efficient NIZK proof for a NP-complete language, one
can hope to construct NIZK proofs of similar complexity for the whole NP either by
reduction or implicitly or explicitly using the developed techniques. In some NIZK
proofs for the NP-complete problem circuit satisfiability (Circuit-SAT), see Tbl. 1,
the communication complexity is sublinear in the circuit size. Micali [22] proposed
polylogarithmic-communication NIZK arguments for all NP-languages, but they are
based on the PCP theorem (making them computationally unattractive) and on the ran-
dom oracle model. Another NIZK argument for Circuit-SAT, proposed by Groth in
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Table 1. Comparison of NIZK Circuit-SAT arguments with (worst-case) sublinear argument size.
|C| is the size of circuit, G corresponds to 1 group element and A/M /E/P corresponds to 1
addition/multiplication/exponentiation/pairing

2009 [14], is also based on the random oracle model. It is well-known that some func-
tionalities are secure in the random oracle model and insecure in the plain model. As
a safeguard, it is important to design efficient NIZK proofs and arguments that do not
rely on the random oracles. Given a fully-homomorphic cryptosystem [10], one can
construct efficient NIZK proofs for all NP-languages in communication that is linear
to the witness size [16]. However, since the witness size can be linear in the circuit size,
in the worst case the corresponding NIZK proofs are not sublinear.

In 2010, Groth [15] proposed the first (worst-case) sublinear-communication NIZK
Circuit-SAT argument in the CRS model. First, he constructed two basic arguments for
Hadamard product (the prover knows how to open commitments A, B and C to three
tuples a, b and c of dimension n, such that aibi = ci for i ∈ [n]) and permutation (the
prover knows how to open commitments A and B to two tuples a and b of dimension
n, such that a%(i) = bi for i ∈ [n]). Groth’s Circuit-SAT argument can then be seen
as a program in a program language that has two primitive instructions, for Hadamard
product and permutation. Some of the public permutations depend on the circuit, while
the secret input tuples of the basic arguments depend on the values, assigned to the input
and output wires of all gates according to a satisfying assignment. The basic arguments
then show that this wire assignment is internally consistent and corresponds indeed
to an satisfying input assignment. For example, Groth used one permutation argument
to verify that all input wires of all gates have been assigned the same values as the
corresponding output values of their predecessor gates.

In the basic variant of Groth’s pairing-based Circuit-SAT argument, see Tbl. 1, the
argument has Θ(1) group elements, but on the other hand the CRS has Θ(|C|)2 group
elements, and the prover’s computational complexity is dominated byΘ(|C|2) bilinear-
group exponentiations. A balanced version of Groth’s argument has the CRS and argu-
ment of Θ(|C|2/3) group elements and prover’s computational complexity dominated
by Θ(|C|4/3) exponentiations. (See [15] for more details on balancing. Basically, one
applies basic arguments on length-m inputs, m < n, n/m times in parallel.)



We propose a new Circuit-SAT argument (see Sect. 3 for a description of the new
techniques, and subsequent sections for the actual argument) that is strongly related
to Groth’s argument, but improves upon every step. We first propose more efficient
basic arguments. We then use them to construct a (slightly shorter) new Circuit-SAT
argument. In the basic variant, while the argument is again Θ(1) group elements, it
is one commitment and one Hadamard product argument shorter. Moreover, in Groth’s
argument, every commitment consisted of 3 group elements while every basic argument
consisted of 2 group elements. In the new argument, most of the commitments consist of
2 group elements. Thus, we saved 3 group elements, reducing the argument size from 42
to 39 group elements, even taking into account that the new permutation argument has
higher communication complexity (12 instead of 5 group elements) than that of [15].

A balanced version of the new argument achieves the combined CRS and argument
of Θ(|C|1/2+o(1)) group elements. In the full version, we describe a zap for Circuit-
SAT that has communication complexity of |C|1/2+o(1) group elements, while Groth’s
zap from [15] has the communication complexity of Θ(|C|2/3) group elements. We
also use much more efficient asymmetric pairings instead of symmetric ones, a (pre-
sumably) weaker security assumption (Power Symmetric Discrete Logarithm instead of
Power Computational Diffie-Hellman), and have more precise security reductions. The
basic version of the new Circuit-SAT argument is more communication-efficient than
any prior-art random-oracle based NIZK argument, and it also has a smaller prover’s
computational complexity than [22].

Our main contribution is to note that the complexity of Groth’s basic arguments is
correlated to the number of monomials of a certain polynomial. In [15], this polynomial
has Θ(n2) monomials, where n = 2|C| + 1. We show that one can “collapse” the
Θ(n2) monomials to Θ(N) monomials, where N is such that [N ] has a progression-
free subset (that is, a subset that does not contain arithmetic progressions of length 3)
of odd integers of cardinality n. By a recent breakthrough of Elkin [9], N = O(n ·
22
√

2(2+log2 n)) = n1+o(1). See Sect. 3 for further elaboration on our techniques.
Thus, one can build an argument of Θ(1) group elements for every language in

NP, by reducing the task at hand to a Circuit-SAT instance. Obviously, one can often
design more efficient tailor-made protocols, see [21, 7] for some follow-up work. In
particular, [7] used our basic arguments to construct a non-interactive range proof with
communication of Θ(1) group elements, while [21] used our techniques to design a
new basic argument to construct a non-interactive shuffle. (See [6] for a previous use of
additive combinatorics in the construction of zero-knowledge proofs.)

Due to the lack of space, several proofs have been deferred to the full version [20].

2 Preliminaries

Let [n] = {1, 2, . . . , n}. Let Sn be the set of permutations from [n] to [n]. Let a =
(a1, . . . , an). Let a ◦ b denote the Hadamard (entry-wise) product of a and b, that is, if
c = a ◦ b, then ci = aibi for i ∈ [n]. If y = hx, then logh y := x. Let κ be the security
parameter. If 0 < λ1 < · · · < λi < · · · < λn = poly(κ). then Λ = (λ1, . . . , λn) ⊂ Z
is an (n, κ)-nice tuple. We abbreviate probabilistic polynomial-time as PPT. If Λ1 and
Λ2 are subsets of some additive group (Z or Zp in this paper), thenΛ1+Λ2 = {λ1+λ2 :



λ1 ∈ Λ1 ∧λ2 ∈ Λ2} is their sum set and Λ1−Λ2 = {λ1−λ2 : λ1 ∈ Λ1 ∧λ2 ∈ Λ2} is
their difference set [25]. If Λ is a set, then kΛ = {λ1+ · · ·+λk : λi ∈ Λ} is an iterated
sumset, k · Λ = {kλ : λ ∈ Λ} is a dilation of Λ, and 2̂Λ = {λ1 + λ2 : λ1 ∈ λ ∧ λ2 ∈
Λ ∧ λ1 6= λ2} ⊆ Λ+ Λ is a restricted sumset. (See [25].)

Let Gbp(1κ) be a bilinear group generator that outputs a description of a bilinear
group gk := (p,G1,G2,GT , ê) ← Gbp(1κ), such that p is a κ-bit prime, G1, G2 and
GT are multiplicative cyclic groups of order p, ê : G1 × G2 → GT is a bilinear map
(pairing) such that ∀a, b ∈ Z and gt ∈ Gt, ê(ga1 , gb2) = ê(g1, g2)

ab. If gt generates
Gt for t ∈ {1, 2}, then ê(g1, g2) generates GT . Deciding the membership in G1, G2

and GT , group operations, the pairing ê, and sampling the generators are efficient, and
the descriptions of the groups and group elements are O(κ) bit long each. Well-chosen
asymmetric pairings (with no efficient isomorphism between G1 and G2) are much
more efficient than symmetric pairings (where G1 = G2). For κ = 128, the current
recommendation is to use an optimal (asymmetric) Ate pairing [18] over a subclass of
Barreto-Naehrig curves [2]. In that case, at security level of κ = 128, an element of
G1/G2/GT can be represented in respectively 512/256/3072 bits.

A (tuple) commitment scheme (Gcom, Com) in a bilinear group consists of two PPT
algorithms: a randomized CRS generation algorithm Gcom, and a randomized com-
mitment algorithm Com. Here, Gtcom(1κ, n), t ∈ {1, 2}, produces a CRS ckt, and
Comt(ckt;a; r), with a = (a1, . . . , an), outputs a commitment value A in Gt (or in
Gbt for some b > 1). We open Comt(ckt;a; r) by outputting a and r.

A commitment scheme (Gcom, Com) is computationally binding in group Gt, if for
every non-uniform PPT adversary A and positive integer n = poly(κ), the probability

Pr

[
ckt ← Gtcom(1κ, n), (a1, r1,a2, r2)← A(ckt) :
(a1, r1) 6= (a2, r2) ∧ Comt(ckt;a1; r1) = Comt(ckt;a2; r2)

]

is negligible in κ. A commitment scheme (Gcom, Com) is perfectly hiding in group Gt,
if for any positive integer n = poly(κ) and ckt ∈ Gtcom(1κ, n) and any two messages
a1,a2, the distributions Comt(ckt;a1; ·) and Comt(ckt;a2; ·) are equal.

A trapdoor commitment scheme has three additional efficient algorithms: (a) A trap-
door CRS generation algorithm inputs t, n and 1κ, and outputs a CRS ck∗ (that has the
same distribution as Gtcom(1κ, n)) and a trapdoor td, (b) a randomized trapdoor commit-
ment that takes ck∗ and a randomizer r as inputs and outputs the value Comt(ck∗;0; r),
and (c) a trapdoor opening algorithm that takes ck∗, td, a and r as an input and outputs
an r′ such that Comt(ck∗;0; r) = Comt(ck∗;a; r′).

Let R = {(C,w)} be an efficiently computable binary relation such that |w| =
poly(|C|). Here, C is a statement, and w is a witness. Let L = {C : ∃w, (C,w) ∈ R}
be an NP-language. Let n be some fixed input length n = |C|. For fixed n, we have
a relation Rn and a language Ln. A non-interactive argument for R consists of the
following PPT algorithms: a common reference string (CRS) generator Gcrs, a prover
P , and a verifier V . For crs ← Gcrs(1κ, n), P(crs;C,w) produces an argument ψ. The
verifier V(crs;C,ψ) outputs either 1 (accept) or 0 (reject).

A non-interactive argument (Gcrs,P,V) is perfectly complete, if ∀n = poly(κ),

Pr[crs← Gcrs(1κ, n), (C,w)← Rn : V(crs;C,P(crs;C,w)) = 1] = 1 .



A non-interactive argument (Gcrs,P,V) is (adaptively) computationally sound, if
for all non-uniform PPT adversaries A and all n = poly(κ), the probability

Pr[crs← Gcrs(1κ, n), (C,ψ)← A(crs) : C 6∈ L ∧ V(crs;C,ψ) = 1]

is negligible in κ. The soundness is adaptive, that is, the adversary sees the CRS before
producing the statementC. A non-interactive argument (Gcrs,P,V) is perfectly witness-
indistinguishable, if for all n = poly(κ), if crs ∈ Gcrs(1κ, n) and ((C,w0), (C,w1)) ∈
R2
n, then the distributions P(crs;C,w0) and P(crs;C,w1) are equal.

A non-interactive argument (Gcrs,P,V) is perfectly zero-knowledge, if there exists
a PPT simulator S = (S1,S2), such that for all stateful non-uniform PPT adversaries
A and n = poly(κ) (with td being the simulation trapdoor),

Pr


crs← Gcrs(1κ, n),
(C,w)← A(crs),
ψ ← P(crs;C,w) :
(C,w) ∈ Rn ∧ A(ψ) = 1

 = Pr


(crs; td)← S1(1κ, n),
(C,w)← A(crs),
ψ ← S2(crs;C, td) :
(C,w) ∈ Rn ∧ A(ψ) = 1

 .

3 Our Techniques

We will first give a more precise overview of Groth’s Hadamard product and permuta-
tion arguments [15], followed by a short description of our own main contribution. For
the sake of simplicity, we will make several simplifications (like the use of symmetric
pairings) during this discussion.

Groth uses an additively homomorphic tuple commitment scheme that allows one to
commit to a long tuple, while the commitment itself is short. The best known such com-
mitment scheme is the extended Pedersen commitment scheme in a multiplicative cyclic
group of order p and a generator g, where the commitment of a tuple a = (a1, . . . , an)
with randomness ra is equal to Com(a; ra) := gra ·

∏
gaii . Here, one usually chooses

n random secrets xi ← Zp, and then sets gi ← gxi . Following [12], Groth [15] chooses
a single random secret x← Zp and then sets gi ← gx

i

. In this case, the commitment

Com(a; ra) := gra ·
n∏
i=1

gaii = gra+
∑n
i=1 aix

i

can be seen as a lifted polynomial ra +
∑n
i=1 aix

i in x, that the committer (who does
not know x) computes from n given values gi = gx

i

. The first obvious benefit of this
commitment scheme is that it has a shorter secret (1 element instead of n elements).

Groth’s Hadamard product argument, where the prover aims to convince the verifier
that the opening of C = Com(c; rc) is equal to the Hadamard product of the openings
of A = Com(a; ra) and B = Com(b; rb) (that is, aibi ≡ ci (mod p) for i ∈ [n]),
is constructed as follows. Let A = gra ·

∏n
i=1 g

ai
i be a commitment of a and B =

grb ·
∏n
i=1 g

bi
i be a commitment of b by using the generator tuple (g1, . . . , gn). Let

C = grc ·
∏n
i=1 g

ci
i(n+1) be a commitment of b andD =

∏n
i=1 gi(n+1) be a commitment

of 1 = (1, . . . , 1) by using a different generator tuple (gn+1, . . . , gn(n+1)).



Groth’s Hadamard product argument is based around the verification equation

ê(A,B) = ê(C,D) · ê(ψ, g) (1)

that (analogously to the Groth-Sahai proofs [17], though the latter only considers the
much simpler case n = 1) can be seen as a mapping of the required equality a ◦ b =
c ◦ 1 to another algebraic domain, with ψ compensating for the use of a randomized
commitment scheme. One gets that ê(A,B)/ê(C,D) is equal to ê(g, g)F (x), where
F (x) = (ra+

∑n
i=1 aix

i) ·(rb+
∑n
i=1 bix

i(n+1))−(rc+
∑n
i=1 cix

i) ·(
∑n
i=1 x

i(n+1))
is the sum of two formal polynomials in x, F (x) = Fcon(x)+Fψ(x), where Fcon(x) =∑n
i=1(aibi − ci)xi(n+2) is a constraint polynomial, spanned by the powers of x from

Λcon = {i(n+ 2) : i ∈ [n]}, and

Fψ(x) = rarb + rb

n∑
i=1

aix
i +

n∑
i=1

(rabi − rc)xi(n+1) +

n∑
i=1

n∑
j=1
j 6=i

(aibj − ci)xi+j(n+1)

is an argument polynomial, spanned by the powers of x fromΛψ = {0}∪[n]∪{i(n+1) :
i ∈ [n]}∪{i+ j(n+1) : i, j ∈ [n]∧ i 6= j}. One coefficient of Fcon(x) corresponds to
one constraint aibi = ci that the honest prover has to satisfy, and is 0 if this constraint
is true. Thus, all coefficients of Fcon are equal to 0 iff the prover is honest.

By using homomorphic properties of the commitment scheme, the prover constructs
the argument ψ = gFψ(x) as ψ = grarb · · · · ·

∏n
i=1

∏n
j=1:i 6=j g

aibj−ci
i+j(n+1). This can be

done, since the prover — who knows how to open the commitments but does not know
the secret x — knows all coefficients rarb, . . ., aibj − ci. He also knows the generators
g, . . ., gi+j(n+1) if the Θ(n2) generators g`, for ` ∈ Λψ , are included to the CRS. Thus,
the CRS has Θ(n2) group elements and the computational complexity of the prover is
Θ(n2) bilinear-group exponentiations. On the other hand, the verifier’s computational
complexity is Θ(1) pairings, since she only has to check Eq. (1).

For the soundness, one needs that when aibi 6= ci for some i ∈ [n], then a satisfying
ψ cannot be computed from the elements gx

`

that are in the CRS; otherwise, a dishonest
prover would be able to compute a satisfying argument. This means that for i ∈ [n],
gx

i(n+2)

should not belong to the CRS. To be certain that this is true, one needs

(a) that gx
`

is in the CRS for values ` ∈ Λψ but if ` ∈ Λcon, then gx
`

does not belong
to the CRS (elements from 2 · Λ \ Λ̂ are allowed),

(b) an appropriate security assumption that states that computing gFψ for Fψ =∑
`∈Λψ µ`x

` is only possible if one knows all values gx
`

for ` ∈ Λψ , and
(c) that Λcon ∩ Λψ = ∅. (This is also a prerequisite for (a).)

One can guarantee (a) by the choice of the CRS. But also (c) is clearly true, since Λcon

and Λψ do not intersect.
To finish off the whole argument, one has to define an appropriate security assump-

tion for (b). Since constructing sublinear NIZK arguments is known to be impossible
under standard assumptions (see Sect. 2), one of the underlying assumptions is a knowl-
edge assumption (PKE assumption, as in [15], see Sect. 5). The whole argument will



become (slightly!) more complex since all commitments and arguments also have to
include a knowledge component.

Groth’s permutation argument is based on a very similar idea and has basically the
same complexities. The only major difference is that if the permutation is a part of the
prover’s statement, then the verifier also has to perform Θ(n) bilinear-group multipli-
cations. Since Groth’s Circuit-SAT argument consists of a very small (< 10) number of
Hadamard product and permutation arguments, then it just inherits the complexities of
the basic arguments, as also seen from Tbl. 1, where, in the basic variation, |C| = n and
thus the CRS has Θ(|C|2) group elements, the argument length is 42 group elements,
the prover’s computational complexity is Θ(|C|2) exponentiations, and the prover’s
computational complexity is dominated by Θ(|C|) bilinear-group multiplications.

Groth’s Circuit-SAT argument has several sub-optimal properties that are all in-
herited from the basic arguments. While it has succinct communication and efficient
verification, its CRS of Θ(|C|2) group elements and prover’s computation of Θ(|C|2)
exponentiations (in the basic variant) seriously limit applicability. Recall that here
n = 2|C| + 1. A smaller problem is the use of different generators (g1, . . . , gn) and
(gn+1, . . . , gn(n+1)) while committing to different elements.

We note that Fcon has n monomials (1 per every constraint aibi = ci that a honest
prover must satisfy). On the other hand, Fψ hasΘ(n2) distinct — since i1+j1(n+1) 6=
i2 + j2(n+ 1) if i1, j1, i2, j2 ∈ [n] and (i1, j1) 6= (i2, j2) — monomials. The number
of those monomials is the only reason why the CRS has Θ(n2) group elements and the
prover has to perform Θ(n2) bilinear-group exponentiations.

We now show how to collapse many of the unnecessary monomials into one, so
that the full argument still remains secure, obtaining a polynomial Fψ(x) that has only
n1+o(1) monomials. First, we generalize the underlying commitment scheme. We still
choose a single x ← Zp and set gi ← gx

i

, but we allow the indexes of n generators
(gλ1

, . . . , gλn), that are used to commit, to actually depend on the concrete argument
— with the main purpose to be able to obtain as small Λψ as possible, while still guar-
anteeing that Fcon = 0 iff the prover is honest, and that Λcon ∩ Λψ = ∅. Assume that
Λ = (λ1, . . . , λn) is an (n, κ)-nice tuple of integers, so λn = maxi λi. Thus,

Com(a; ra) := gra
n∏
i=1

gaiλi = gra+
∑n
i=1 aix

λi
.

The polynomial ra +
∑n
i=1 aix

λi has degree (up to) λn, but it only has (up to) n + 1
non-zero monomials. We now start again with the verification equation Eq. (1), but this
time we assume that all A, B, C and D have been committed by using the same set of
generators (gλ1 , . . . , gλn). Since F (x) = (ra+

∑n
i=1 aix

λi)(rb+
∑n
i=1 bix

λi)−(rc+∑n
i=1 cix

λi)(
∑n
i=1 x

λi), we get that F (x) = Fcon(x) + Fψ(x), where

Fcon(x) =

n∑
i=1

(aibi − ci)x2λi , (2)

Fψ(x) =rarb +

n∑
i=1

(rabi + rbai − rc)xλi +
n∑
i=1

n∑
j=1
j 6=i

(aibj − ci)xλi+λj . (3)



Here, the powers corresponding to nonzero coefficients belong either to the set Λcon =
2 · Λ := {2λi : i ∈ [n]} or to the set Λψ = Λ̂ := {0} ∪ Λ ∪ 2̂Λ, where 2̂Λ :=
{λi + λj : i, j ∈ [n] ∧ i 6= j}.

If the prover is honest (that is, aibi− ci = 0 for all i), then the coefficients aibi− ci
corresponding to the powers in the set 2 · Λ are equal to 0. Therefore, an honest prover
can compute the argument ψ = gFψ(x) as g

∑
`∈Λ̂ µ`x

`

=
∏
`∈Λ̂(g

x`)µ` , where the
coefficients µ` are known to the prover. This means that all elements gx

`

, ` ∈ Λ̂, have
to belong to the CRS, and thus the CRS contains at least |Λ̂| < 2λn group elements.
Recall that in [15], one had to specify Θ(n2) elements in the CRS.

For the soundness, we again need (a–c), as in the case of Groth’s argument, to be
true. One can again guarantee (a) by the choice of the CRS, and one has to define a
reasonable security assumption (PKE assumption) for (b). Finally, achieving (c) is also
relatively easy. Namely, one can guarantee that 0 6∈ 2 ·Λ and Λ∩ 2 ·Λ = ∅ by choosing
Λ to be a set of odd1 integers. It is almost as easy to guarantee that 2 · Λ ∩ 2̂Λ = ∅
as soon as one rewrites this condition as 2λk 6= λi + λj for i 6= j, and notices that
this is equivalent to requiring that no 3 elements of Λ are in an arithmetic progression.
That is, Λ is a progression-free set [25]. Thus, it is sufficient to assume that Λ is a
progression-free set of odd integers.

Recall that the CRS length (and the prover’s computational complexity) depend
on |Λ̂| and thus it is beneficial to have as small |Λ̂| < 2λn possible. This can
be guaranteed by upper bounding λn, that is, by finding as small λn as possible
such that [λn] contains a progression-free subset of odd integers of cardinality n.
To bound λn, we show in Sect. 4 (following a recent breakthrough of Elkin [9])
that any range [N ] = {1, . . . , N} contains a progression-free set of odd integers of
size n = Θ(N(log2N)1/4/22

√
2 log2N ) = N1−o(1), and thus one can assume that

λn = n1+o(1). (One can obtain λn = O(n · 22
√

2(2+log2 n)) by inverting a weaker
version of Elkin’s result.) In the full version, we give another proof of this result that,
while based on Green and Wolf’s exposition [13] of [9], provides more details and is
slightly sharper. In particular, Elkin’s progression-free set is efficiently constructible.

Groth’s permutation argument uses similar ideas for a different choice of A, B,
C, and D, and thus also for a different set Λψ . Unfortunately, if we use it with the
new generalized commitment scheme (that is, with general Λ), we obtain the guar-
antee a%(i) = bi only if Λ is a part of the Moser-de Bruijn sequence [23]. But then
λn = Θ(n2) and one ends up with a CRS of Θ(n2) group elements. We use the follow-
ing idea to get the same guarantees when Λ is an arbitrary progression-free set of odd
integers. We show that if Λ is a progression-free set of odd integers, then Groth’s per-
mutation argument guarantees that a%(i) = TΛ(i, %) · bi, where TΛ(i, %) ≥ 1 is an easily
computable and public integer. We use this result to show that for some separately com-
mitted tuple a∗, a∗%(i) = TΛ(i, %) · bi for i ∈ [n]. We then employ an additional product
argument to show that a∗i = TΛ(%

−1(i), %) · ai for i ∈ [n]. Thus, a%(i) = bi for i ∈ [n].
We obtain basic arguments that only use Θ(λn) = n1+o(1) generators {gx` :

` ∈ Λ̂}. This means that the CRS has n1+o(1) group elements and not Θ(n2) as

1 Oddity is not strictly required. For Λ ∩ 2 · Λ = ∅ to hold, one can take Λ := {(2i + 1)22j :
i, j ≥ 0}, see OEIS sequence A003159. Dealing with odd integers is however almost as good.



in [15]. In both basic arguments, the prover has to compute ψ (which takes Θ(n2)
scalar multiplications or additions in Zp and n1+o(1) bilinear-group exponentiations).
As in [15], the prover’s computation can be optimized even further by using efficient
multi-exponentiation algorithms. The verifier has to only perform Θ(1) bilinear pair-
ings. In the case of the permutation argument, she also has to compute Θ(n) bilinear-
group multiplications, though the multiplications can be done offline if the permutation
is fixed. Thus, the new basic arguments are considerably more efficient than Groth’s.

The soundness of the new product argument is based on two assumptions, a compu-
tational assumption (Λ̂-PSDL, see Sect. 5) and a knowledge assumption (Λ-PKE, see
Sect. 5). Groth [15] used [an2]-PKE (for a constant a) and [an2]-CPDH (which is a pre-
sumably stronger assumption than PSDL). Since Λ,Λψ are small subsets of [an2], then
our assumptions can be expected to be somewhat weaker in general. Finally, the secu-
rity reduction in the proof of the product argument takes time Θ(t(λn)) in our case and
Θ(t(an2)) in Groth’s case, where t(m) is the time to factor a degree-m polynomial.

4 Progression-Free Sets

A set of positive integers Λ = {λ1, . . . , λn} is progression-free [25], if no three ele-
ments of Λ are in an arithmetic progression, that is, λi + λj = 2λk only if i = j = k,
or equivalently, 2̂Λ ∩ 2 · Λ = ∅.

Let r3(N) denote the cardinality of the largest progression-free set that belongs
to [N ]. For any N > 1, the set of integers in [N ] that have no ternary digit equal
to 2 is progression-free. If N = 3k, then there are 2N − 1 such integers, and thus
r3(N) = Ω(N log3 2) = Ω(N0.63). Clearly, this set can be efficiently constructed. As
shown by Behrend in 1946 [3], this idea can be generalized to non-ternary bases, with
r3(N) = Ω(N/(22

√
2 log2N · log1/42 N)). Behrend’s result was improved in a recent

breakthrough by Elkin [9], who showed that r3(N) = Ω(N · log1/42 N/22
√

2 log2N ).
We have included a proof of Elkin’s result in the full version. Our proof is closely
based on [13] but it has a sharper constant inside Ω. Moreover, our proof is much
more detailed than that given in [13]. While both constructions employ the pigeon-
hole principle, Elkin’s methodology can be used to compute his progression-free set
in quasi-linear time N · 2O(

√
logN), see [9]. On the other hand, Bourgain [5] showed

that r3(N) = O(N · (logN/ log logN)1/2), and recently Sanders [24] showed that
r3(N) = O(N · (log logN)5/ logN). Thus, according to Behrend and Elkin, the min-
imal N such that r3(N) = n is N = n1+o(1), while according to Sanders, N = ω(n).

We need the progression-free subset to also consist of odd integers. For this, one
can take Elkin’s set Λ = {λ1, . . . , λn} ⊂ [N ], and then use the set 2 · Λ + 1 =
{2λ1 + 1, . . . , 2λn + 1}. Clearly, if Λ ∈ [n1+o(1)] then also 2 · Λ+ 1 ∈ [n1+o(1)].

Theorem 1. Let rodd3 (N) be the size of the largest progression-free set in [N ] that only
consists of odd integers. For any n, there exists N = n1+o(1), such that rodd3 (N) = n.

5 Cryptographic Tools

In this section, we generalize the PKE assumption from [15] and then define two new
cryptographic assumptions, PDL and PSDL, and prove that PSDL is secure in the



generic group model. After that, we proceed to describe a generalization of Groth’s
knowledge commitment scheme from [15] and prove that it is computationally bind-
ing under the PDL assumption. Groth proved in [15] that his commitment scheme is
computationally binding under the (potentially stronger) CPDH assumption.

Λ-Power (Symmetric) Discrete Logarithm Assumption. Let Λ be an (n, κ)-nice
tuple for some n = poly(κ). We say that a bilinear group generator Gbp is (n, κ)-PDL
secure in group Gt for t ∈ {1, 2}, if for any non-uniform PPT adversary A, Pr[gk :=

(p,G1,G2,GT , ê)← Gbp(1κ), gt ← Gt \ {1}, x← Zp : A(gk; (gx
`

t )`∈{0}∪Λ) = x] is
negligible in κ. Similarly, we say that a bilinear group generator Gbp is Λ-PSDL secure,
if for any non-uniform PPT adversary A,

Pr

[
gk := (p,G1,G2,GT , ê)← Gbp(1κ), g1 ← G1 \ {1},

g2 ← G2 \ {1}, x← Zp : A(gk; (gx
`

1 , g
x`

2 )`∈{0}∪Λ) = x

]
is negligible in κ. A version of P(S)DL assumption in a non pairing-based group was
defined in [12]. Cheon showed in [8] that if n is a prime divisor of p − 1 or p + 1,
then the [n]-PDL assumption can be broken by a generic adversary in O((

√
p/n +√

n) log p) group operations. Clearly, if the Λ-PSDL assumption is hard, then the Λ-
PDL assumption is hard in both G1 and G2. Moreover, if the bilinear group generator is
CPDH secure, then it is also P(S)DL secure. Therefore, by the results of [15], P(S)DL
holds in the generic group model.

Theorem 2. The Λ-PSDL assumption holds in the generic group model for any (n, κ)-
nice tuple Λ given that n = poly(κ). Any successful generic adversary for Λ-PSDL
requires time Ω(

√
p/λn) where λn is the largest element of Λ.

Λ-Power Knowledge of Exponent Assumption (Λ-PKE). Abe and Fehr showed
in [1] that no statistically zero-knowledge non-interactive argument for an NP-
complete language can have a “direct black-box” security reduction to a standard cryp-
tographic assumption unless NP ⊆ P/poly. (See also [11].) In fact, the soundness
of NIZK arguments (for example, of an argument that a perfectly hiding commitment
scheme commits to 0) is often unfalsifiable by itself. Similarly to Groth [15], we will
base our NIZK argument for circuit satisfiability on Λ-PKE, an explicit knowledge as-
sumption. This assumption was proposed by Groth [15] (though only for Λ = [n]) .

Let t ∈ {1, 2}. For two algorithms A and XA, we write (y; z) ← (A||XA)(x) if
A on input x outputs y, and XA on the same input (including the random tape of A)
outputs z. Let Λ be an (n, κ)-nice tuple for some n = poly(κ). The bilinear group
generator Gbp is Λ-PKE secure in group Gt if for any non-uniform PPT adversary A
there exists a non-uniform PPT extractor XA, such that

Pr


gk := (p,G1,G2,GT , ê)← Gbp(1κ), gt ← Gt \ {1}, (α̂, x)← Z2

p,

crs← (gk; (gx
`

t , g
α̂x`

t )`∈{0}∪Λ), (c, ĉ; r, (a`)`∈Λ)← (A||XA)(crs) :

ĉ = cα̂ ∧ c 6= grt ·
∏
`∈Λ

ga`x
`

t





is negligible in κ. That is, if A (given access to crs that for a random α̂ contains both
gx

`

t and gα̂x
`

t iff ` ∈ {0} ∪ Λ) can produce c and ĉ such that ĉ = cα̂, then XA (given
access to crs and to the random coins of A) can produce a tuple (r, (a`)`∈Λ) such that
c = grt ·

∏
`∈Λ g

a`x
`

t . Groth [15] proved that the [n]-PKE assumption holds in the generic
group model; his proof can be straightforwardly modified to the general case.

New Commitment Scheme. We use the following variant of the knowledge commit-
ment scheme from [15] with a generalized choice of generators, defined as follows:

CRS generation: Let Λ be an (n, κ)-nice tuple with n = poly(κ). Define λ0 = 0.
Given a bilinear group generator Gbp, set gk := (p,G1,G2,GT , ê)← Gbp(1κ). Let
g1 ← G1 \ {1}, g2 ← G2 \ {1}, and α̂, x ← Zp. Let t ∈ {1, 2}. The CRS is
ckt ← (gk; (gt,λi , ĝt,λi)i∈{0,...,n}), where gt` = gx

`

t and ĝt` = gα̂x
`

t .
Commitment: To commit to a = (a1, . . . , an) ∈ Znp , the committing party chooses a

random r ← Zp, and defines

Comt(ckt;a; r) := (grt ·
n∏
i=1

gait,λi , ĝ
r
t ·

n∏
i=1

ĝait,λi) .

Importantly, we allow Λ to depend on the concrete application. Let t = 1. Fix a com-
mitment key ck1 that in particular specifies g2, ĝ2 ∈ G2. A commitment (A, Â) ∈ G2

1

is valid if ê(A, ĝ2) = ê(Â, g2). The case t = 2 is dual.

Theorem 3. Let t ∈ {1, 2}. The knowledge commitment scheme is perfectly hiding in
Gt, and computationally binding in Gt under the Λ-PDL assumption in Gt. If the Λ-
PKE assumption holds in Gt, then for any non-uniform PPT A that outputs some valid
knowledge commitments, there exists a non-uniform PPT extractor XA that, given the
input ofA together withA’s random coins, extracts the contents of these commitments.

In the case of all security reductions in this paper, the tightness of the security reduction
depends on the value λn. Clearly, the knowledge commitment scheme is also trapdoor,
with the trapdoor being td = x: after trapdoor-committing A ← Comt(ck;0; r) = grt
for r ← Zp, the committer can open it to (a; r −

∑n
i=1 aix

λi) for any a.

6 New Hadamard Product Argument

Assume that (Gcom, Com) is the knowledge commitment scheme. In an Hadamard prod-
uct argument (in group G1, the case of G2 is dual), the prover aims to convince the ver-
ifier that given commitments A, B and C, he can open them as A = Com1(ck;a; ra),
B = Com1(ck; b; rb), and C = Com1(ck; c; rc), s.t. cj = ajbj for j ∈ [n]. Groth con-
structed an Hadamard product argument [15] with communication of 5 group elements,
verifier’s computation Θ(n), prover’s computation of Θ(n2) exponentiations and the
CRS of Θ(n2) group elements. We present a more efficient argument in Prot. 1. Intu-
itively, the discrete logarithm on basis h = ê(g1, g2) of ê(A,B2)/ê(C,D) = ê(g1, ψ)
is a degree-n formal polynomial in X , which is spanned by {X`}`∈2·Λ∪Λ̂, where

Λ̂ := {0} ∪ Λ ∪ 2̂Λ . (4)



System parameters: Let n = poly(κ). Let Λ = {λi : i ∈ [n]} be a progression-free set of odd
integers, such that λi+1 > λi > 0. Denote λ0 := 0. Let Λ̂ be as in Eq. (4).

CRS generation Gcrs(1κ): Let gk := (p,G1,G2,GT , ê) ← Gbp(1κ). Let α̂, x ← Zp.
Let g1 ← G1 \ {1} and g2 ← G2 \ {1}. Denote gt` ← gx

`

t and ĝt` ← gα̂x
`

t

for t ∈ {1, 2} and ` ∈ {0} ∪ Λ̂. Let D ←
∏n
i=1 g2,λi . The CRS is crs ←

(gk; (g1`, ĝ1`)`∈{0}∪Λ, (g2`, ĝ2`)`∈Λ̂, D). Let ĉk1 ← (gk; (g1`, ĝ1`)`∈{0}∪Λ).
Common inputs: (A, Â,B, B̂, B2, C, Ĉ), where (A, Â) ← Com1(ĉk1;a; ra), (B, B̂) ←
Com1(ĉk1; b; rb), B2 ← g

rb
2 ·

∏n
i=1 g

bi
2,λi

, (C, Ĉ) ← Com1(ĉk1; c; rc), s.t. aibi = ci
for i ∈ [n].

Argument generation P×(crs; (A, Â,B, B̂, B2, C, Ĉ), (a, ra, b, rb, c, rc)): Let I1(`) :=
{(i, j) : i, j ∈ [n] ∧ j 6= i ∧ λi + λj = `}. For ` ∈ 2̂Λ, the prover sets µ` ←∑

(i,j)∈I1(`)(aibj − ci). He sets ψ ← g
rarb
2 ·

∏n
i=1 g

rabi+rbai−rc
2,λi

·
∏
`∈2̂Λ gµ`2` , and

ψ̂ ← ĝ
rarb
2 ·

∏n
i=1 ĝ

rabi+rbai−rc
2,λi

·
∏
`∈2̂Λ ĝµ`2` . He sends ψ× ← (ψ, ψ̂) ∈ G2

2 to the
verifier as the argument.

Verification V×(crs; (A, Â,B, B̂, B2, C, Ĉ), ψ×): accept iff ê(A,B2)/ê(C,D) = ê(g1, ψ)
and ê(g1, ψ̂) = ê(ĝ1, ψ).

Protocol 1: New Hadamard product argument [[(A, Â)]] ◦ [[(B, B̂,B2)]] = [[(C, Ĉ)]]

We need that 2 · Λ and Λ̂ do not intersect. The next lemma is straightforward to prove.

Lemma 1. 1) If Λ is a progression-free set of odd integers, then 2 · Λ ∩ Λ̂ = ∅. 2) If
2 · Λ ∩ Λ̂ = ∅, then Λ is a progression-free set.

Moreover, since Λ̂ ∈ {0, . . . , 2λn}, then by Thm. 1,

Lemma 2. For any value n there exists a choice of Λ such that |Λ̂| = n1+o(1).

We are now ready to state the security of the new Hadamard product argument for
the knowledge commitment scheme. The (knowledge) commitments are (A, Â), (B, B̂)
and (C, Ĉ). For efficiency reasons, we include another element B2 to the Hadamard
product language. We denote the argument in Prot. 1 by [[(A, Â)]] ◦ [[(B, B̂,B2)]] =
[[(C, Ĉ)]]. Since (C, Ĉ) is always a commitment of (a1b1, . . . , anbn) for some value
of rc, we cannot claim that Prot. 1 is computationally sound (even under a knowledge
assumption). Instead, analogously to [15], we prove a somewhat weaker version of
soundness that is however sufficient to achieve soundness of the Circuit-SAT argument.
Note that the last statement of the theorem basically says that no efficient adversary can
output an input to the Hadamard product argument together with an accepting argument
and openings to all commitments and all other pairs of type (y, ŷ) that are present in
the argument, such that aibi 6= ci for some i ∈ [n]. Intuitively, the theorem statement
includes f ′` only for ` ∈ Λ̂ (resp., a` for ` ∈ Λ together with r) since ĝ2` (resp., ĝ1`)
belongs to the CRS only for ` ∈ Λ̂ (resp., ` ∈ {0} ∪ Λ).

Theorem 4. Prot. 1 is perfectly complete and perfectly witness-indistinguishable. If
Gbp is Λ̂-PSDL secure, then a non-uniform PPT adversary has negligible chance
of outputting inp× ← (A, Â,B, B̂, B2, C, Ĉ) and an accepting argument ψ× ←
(ψ, ψ̂) together with a witness w× ← (a, ra, b, rb, c, rc, (f

′
`)`∈Λ̂), s.t. (A, Â) =



Com1(ĉk1;a; ra), (B, B̂) = Com1(ĉk1; b; rb), B2 = grb2 ·
∏n
i=1 g

bi
2,λi

, (C, Ĉ) =

Com1(ĉk1; c; rc), (ψ, ψ̂) = (g
∑
`∈Λ̂ f

′
`x
`

2 , ĝ
∑
`∈Λ̂ f

′
`x
`

2 ), and for some i ∈ [n], aibi 6= ci.

The commitment scheme is defined as in Sect. 5 with respect to the setΛ. The following
proof will make the intuition of Sect. 3 more formal. Note that the tightness of the
reduction depends on the time it takes to factor a degree (2λn + 1)-polynomial.

Proof. Let h ← ê(g1, g2) and F (x) ← logh(ê(A,B2)/ê(C,D)) like in Sect. 3.
WITNESS-INDISTINGUISHABILITY: since the argument ψ× = (ψ, ψ̂) that satisfies the
verification equations is unique, all witnesses result in the same argument, and therefore
the Hadamard product argument is witness-indistinguishable.

PERFECT COMPLETENESS. Assume that the prover is honest. The second verifica-
tion is straightforward. For the first one, due to discussion in Sect. 3, F (x) = Fcon(x)+
Fψ(x), where Fcon(x) and Fψ(x) are as defined by Eq. (2) and Eq. (3). Consider x to be
a formal variable, then F (X) is a formal polynomial of X . This formal polynomial is
spanned by {X`}`∈2·Λ∪Λ̂. If the prover is honest, then ci = ai · bi for i ∈ [n], and thus
F (X) = Fψ(X) is spanned by {X`}`∈Λ̂. Denoting ψ ← grarb2 ·

∏n
i=1 g

rabi+rbai−rc
2,λi

·∏n
i=1

∏n
j=1:j 6=i g

aibj−ci
2,λi+λj

= grarb2 ·
∏n
i=1 g

rabi+rbai−rc
2,λi

·
∏
`∈2̂Λ gµ`2` , we see that clearly

e(g1, ψ) = h. Thus, the first verification succeeds.
WEAKER VERSION OF SOUNDNESS. Assume thatA is an adversary that can break

the last statement of the theorem. We construct an adversaryA′ against the Λ̂-PSDL as-
sumption. Let gk← Gbp(1κ), x← Zp, g1 ← G1 \ {1}, and g2 ← G2 \ {1}. The adver-
saryA′ receives crs← (gk; (gx

`

1 , g
x`

2 )`∈Λ̂) as her input, and her task is to output x. She
sets α̂ ← Zp, crs′ ← (gk; (gx

`

1 , g
α̂x`

1 )`∈{0}∪Λ, (g
x`

2 , g
α̂x`

2 )`∈Λ̂,
∏n
i=1 g

xλi
2 ), and then

sends crs′ to A. Clearly, crs′ has the same distribution as Gcrs(1κ). Both A and A′ set
ckt ← (gk; (gx

`

t , g
α̂x`

t )`∈{0}∪Λ) for t ∈ {1, 2}. Assume thatA returns (inp×, w×, ψ×)
such that the conditions in the theorem statement hold, and V(crs′; inp×, ψ×) accepts.
Here, inp× = (A, Â,B, B̂, B2, C, Ĉ) and w× = (a, ra, b, rb, c, rc, (f

′
`)`∈Λ̂).

If A is successful, (A, Â) = Com1(ĉk1;a; ra), (B, B̂) = Com1(ĉk1; b; rb), B2 =

grb2 ·
∏n
i=1 g

bi
2,λi

, (C, Ĉ) = Com1(ĉk1; c; rc), and for some i ∈ [n], ci 6= aibi. Since
2 · Λ ∩ Λ̂ = ∅, A′ has thus expressed F (X) as a polynomial f(X) where at least for
some ` ∈ 2 · Λ, X` has a non-zero coefficient aibi − ci.

On the other hand, A also outputs (f ′`)`∈Λ̂, s.t. F (x) = logg2 ψ = f ′(x), where all
non-zero coefficients of f ′(X) :=

∑
`∈Λ̂ f

′
`X

` correspond toX` for some ` ∈ Λ̂. Since
Λ is a progression-free set of odd integers and all elements of 2 ·Λ are distinct, then by
Lem. 1, ` 6∈ 2 · Λ. Thus, all coefficients of f ′(X) corresponding to any X`, ` ∈ 2 · Λ,
are equal to 0. Thus f(X) =

∑
`∈Λ̂∪(2·Λ) f`X

` and f ′(X) =
∑
`∈Λ̂ f

′
`X

` are different
polynomials with f(x) = f ′(x) = F (x). Thus,A′ has succeeded in creating a non-zero
polynomial d(X) = f(X)− f ′(X), such that d(x) =

∑
`∈Λ̂∪(2·Λ) d`x

` = 0.
Next, A′ uses an efficient polynomial factorization algorithm [19] in Zp[X] to effi-

ciently compute all< 2λn+1 roots of d(X). For some root y, gx
`

1 = gy
`

1 . The adversary
A′ sets x← y, thus violating the Λ̂-PSDL assumption. ut



The Hadamard product argument is not perfectly zero-knowledge. The problem is
that the simulator knows td = (α̂, x), but given td and the common input she will
not be able to generate ψ×. E.g., she has to compute ψ = grarb2 ·

∏n
i=1 g

rabi+rbai−rc
2,λi

·∏n
i=1

∏n
j=1 g

aibj−ci
2,λi+λj

based on the input, α̂ and x, but without knowing the witness. This
seems to be impossible. Technically, the problem is that due to the knowledge of the
trapdoor, the simulator can, knowing one opening (a, r), produce an opening (a′, r′)
to any other a′. However, here she does not know any openings. Similarly, the permu-
tation argument of Sect. 7 is not zero-knowledge. On the other hand, in the final circuit
satisfiability argument of Sect. 8, the simulator creates all commitments by herself and
can thus properly simulate the argument. By the same reason, the subarguments of [15]
are not zero-knowledge but the final argument (for circuit satisfiability) is.

Let Λ be as described in Thm. 1. The communication (argument size) of Prot. 1 is 2
elements from G2. The prover’s computational complexity is Θ(n2) scalar multiplica-
tions in Zp and n1+o(1) exponentiations in G2. The verifier’s computational complexity
is dominated by 5 bilinear pairings and 1 bilinear-group multiplication. The CRS con-
sists of n1+o(1) group elements, with the verifier’s part of the CRS consisting of only
the bilinear group description plus 5 group elements.

In the Circuit-SAT argument, all ai, bi and ci are Boolean, and thus all n1+o(1)

values µ` can be computed in n(n−1) = Θ(n2) scalar additions (the server also needs
to use other operations like comparisons j 6= i, but they can be eliminated by using
loop unrolling, and λi and λj can be computed by using table lookups), as follows:

1. For ` ∈ 2̂Λ do: µ` ← 0
2. For i = 1 to n do:

– If ai = 0 then for j = 1 to n do: if j 6= i then µλi+λj ← µλi+λj − ci
– Else for j = 1 to n do: if j 6= i then µλi+λj ← µλi+λj + bj − ci

7 New Permutation Argument

In a permutation argument, the prover aims to convince the verifier that for given per-
mutation % ∈ Sn and two commitments A and B, he knows how to open them as
A = Com1(ck;a; ra) and B = Com1(ck; b; rb), such that bj = a%(j) for j ∈ [n]. We
assume that % is a part of the statement. In [15], Groth constructed a permutation argu-
ment, where the prover’s computation isΘ(n2) exponentiations and the CRS hasΘ(n2)
group elements. We now propose a new argument with the CRS of n1+o(1) group ele-
ments. We also improve the prover’s concrete computation, and the argument is based
on a (probably) weaker assumption.

The new permutation argument %([[(A, Ã)]]) = [[(B, B̃)]], see Prot. 2, uses (al-
most) the same high-level ideas as the Hadamard product argument from Sect. 6.
However, the situation is more complicated. Consider the verification equation

ê(g1, ψ
%) = ê(A, g

∑n
i=1 x

λi

2 )/ê(B, g
∑n
i=1 x

2λ%i
−λi

2 ) from [15]. Letting h = ê(g1, g2),
F%(x) := logg2 ψ

% =
∑
i(a%(i) − bi)x

2λ%(i) + ra
∑
i x

λi − rb
∑
i x

2λ%(i)−λi +∑
i a%(i) ·

∑
j 6=i x

λ%(i)+λ%(j) −
∑
i bi ·

∑n
j 6=i x

λi+2λ%(j)−λj . Following Sect. 6, we re-



quire that Λ̃ = Λ∪{2λk−λi}∪2̂Λ∪{λi+2λk−λj : i 6= j} and 2·Λ do not intersect.
Since % is a part of the statement, we replaced %(i) and %(j) with a new element k.

Assume that Λ is a progression-free set of odd integers. Since Λ consists of odd
integers, (Λ∪{2λk−λi})∩2 ·Λ = ∅. Since Λ is a progression-free set, 2̂Λ∩2 ·Λ = ∅.
However, we also need that 2λk∗ 6= 2λk + λi − λj for i 6= j. That is, one can uniquely
represent any non-negative integer a as a = 2λk∗ + λj . (It is only required that any
non-negative integer a has at most one representation as a = 2λk∗ + λj . See the full
version.) The unique sequence Λ = (λi)i∈Z+ (the Moser-de Bruijn sequence [23]) that
satisfies this property is the sequence of all non-negative integers that have only 0 or 1
as their radix-4 digits. Since λn = Θ(n2), this sequence is not good enough.

Fortunately, we can overcome this problem as follows. For i ∈ [n] and a permutation
%, let TΛ(i, %) := |{j ∈ [n] : 2λ%(i) + λj = 2λ%(j) + λi}|. Note that 1 ≤ TΛ(i, %) ≤ n,
and that for fixed Λ and %, the whole tuple TΛ(%) := (TΛ(1, %), . . . , TΛ(n, %)) can be
computed in Θ(n) simple arithmetic operations. We can then rewrite F%(x) as

F%(x) =

n∑
i=1

(a%(i) − TΛ(i, %) · bi)x2λ%(i) + ra

n∑
i=1

xλi − rb
n∑
i=1

x2λ%(i)−λi+

n∑
i=1

a%(i)

n∑
j=1
j 6=i

xλ%(i)+λ%(j) −
n∑
i=1

bi

n∑
j=1
j 6=i

2λ%(i)+λj 6=λi+2λ%(j)

xλi+2λ%(j)−λj , (5)

with Λ̃ being redefined as

Λ̃ = Λ ∪ {2λk − λi} ∪ 2̂Λ ∪ ({λi + 2λk − λj : i 6= j} \ 2 · Λ) . (6)

Since Λ̃∩ 2 ·Λ = ∅, ê(A,D)/ê(B,E%) = ê(g1, ψ
%) convinces the verifier that a%(i) =

TΛ(i, %) · bi for i ∈ [n]. To finish the permutation argument, we let (A∗, Â∗) to be a
commitment to (a∗1, . . . , a

∗
n) := (TΛ(%

−1(1), %) · a1, . . . , TΛ(%−1(n), %) · an), use an
Hadamard product argument to show that a∗i = TΛ(%

−1(i), %) · ai (and thus a∗%(i) =

TΛ(i, %) · a%(i)) for i ∈ [n], and an argument as described above in this section to show
that a∗%(i) = TΛ(i, %) · bi for i ∈ [n]. Therefore, a%(i) = bi for i ∈ [n].

Clearly Λ̂ ∪ Λ̃ = {0} ∪ Λ̃. Since Λ̃ ⊂ {−λn + 1, . . . , 3λn}, then by Thm. 1

Lemma 3. For any n there exists a choice of Λ such that |Λ̃| = n1+o(1).

We are now ready to state the security of the new permutation argument. The
(weaker version of) soundness of this argument is based on exactly the same ideas
as that of the Hadamard product argument.

Theorem 5. Prot. 2 is perfectly complete and perfectly witness-indistinguishable. If
Gbp is Λ̃-PSDL secure, then a non-uniform PPT adversary has negligible chance of
outputting inpperm ← (A, Ã,B, B̂, B̃, %) and an accepting ψperm ← (A∗, Â∗, ψ×,

ψ̂×, ψ%, ψ̃%) together with a witness wperm ← (a, ra, b, rb,a
∗, ra∗ , (f

′
(×,`))`∈Λ̂,

(f ′(%,`))`∈Λ̃), s.t. (A, Ã) = Com1(c̃k1;a; ra), (B, B̂) = Com1(ĉk1; b; rb), (B, B̃) =

Com1(c̃k1; b; rb), (A∗, Â∗) = Com1(ĉk1;a
∗; ra∗), (ψ×, ψ̂×) = (g

∑
`∈Λ̂ f

′
(×,`)

2 ,



System parameters: Same as in Prot. 1, but let Λ̃ be as in Eq. (6).
CRS generation Gcrs(1κ): Let gk := (p,G1,G2,GT , ê) ← Gbp(1κ). Let α̂, α̃, x ← Zp. Let

g1 ← G1 \ {1} and g2 ← G2 \ {1}. Let ĝt ← ĝα̂t and g̃t ← g̃α̃t for t ∈ {1, 2}. Denote
gt` ← gx

`

t , ĝt` ← ĝx
`

t , and g̃t` ← g̃x
`

t for t ∈ {1, 2} and ` ∈ {0} ∪ Λ̃. Let (D, D̃) ←
(
∏n
i=1 g2,λi ,

∏n
i=1 g̃2,λi). The CRS is

crs← (gk; (g1`, ĝ1`, g̃1`)`∈{0}∪Λ, (g2`)`∈{0}∪Λ̃, (ĝ2`)`∈Λ̂, (g̃2`)`∈Λ̃, D, D̃) .

Let ĉk1 ← (gk; (g1`, ĝ1`)`∈{0}∪Λ), c̃k1 ← (gk; (g1`, g̃1`)`∈{0}∪Λ).
Common inputs: (A, Ã,B, B̂, B̃, %), where % ∈ Sn, (A, Ã) ← Com1(c̃k1;a; ra), (B, B̂) ←
Com1(ĉk1; b; rb), and (B, B̃)← Com1(c̃k1; b; rb), s.t. bj = a%(j) for j ∈ [n].

Argument generation Pperm(crs; (A, Ã,B, B̂, B̃, %), (a, ra, b, rb)):
1. Let (T ∗, T̂ ∗, T ∗2 )← (

∏n
i=1 g

TΛ(%−1(i),%)
1,λi

,
∏n
i=1 ĝ

TΛ(%−1(i),%)
1,λi

,
∏n
i=1 g

TΛ(%−1(i),%)
2,λi

).

2. Let ra∗ ← Zp, (A∗, Â∗) ← Com1(ĉk1;TΛ(%
−1(1), %) · a1, . . . , TΛ(%−1(n), %) ·

an; ra∗). Create an argument ψ× for [[(A, Â)]] ◦ [[(T ∗, T̂ ∗, T ∗2 )]] = [[(A∗, Â∗)]].
3. Let Λ̃′% := 2̂Λ∪({2λ%(j)+λi−λj : i, j ∈ [n]∧i 6= j}\2·Λ) ⊂ {−λn+1, . . . , 3λn}.
4. For ` ∈ Λ̃′%, I1(`) as in Prot. 1, and I2(`) := {(i, j) : i, j ∈ [n]∧j 6= i∧2λ%(i)+λj 6=
λi + 2λ%(j) ∧ 2λ%(j) + λi − λj = `}, set

µ%,` ←
∑

(i,j)∈I1(`)

a∗i −
∑

(i,j)∈I2(`)

bi .

5. Let (E%, Ẽ%)← (
∏n
i=1 g2,2λ%(i)−λi ,

∏n
i=1 g̃2,2λ%(i)−λi).

6. Let ψ% ← Dr∗a · E−rb% ·
∏
`∈Λ̃′%

g
µ%,`
2` , ψ̃% ← D̃r∗a · Ẽ−rb% ·

∏
`∈Λ̃′%

g̃
µ%,`
2` ,

Send ψperm ← (A∗, Â∗, ψ×, ψ%, ψ̃%) ∈ G2
1 ×G4

2 to the verifier as the argument.
Verification Vperm(crs; (A, Ã,B, B̂, B̃, %), ψperm): Let E% and (T ∗, T̂ ∗, T ∗2 ) be computed as

in Pperm. If ψ× verifies, ê(A∗, D)/ê(B,E%) = ê(g1, ψ
%), ê(A∗, ĝ2) = ê(Â∗, g2), and

ê(g1, ψ̃
%) = ê(g̃1, ψ

%), then Vperm accepts. Otherwise, Vperm rejects.

Protocol 2: New permutation argument %([[(A, Ã)]]) = [[(B, B̃)]]

ĝ
∑
`∈Λ̂ f

′
(×,`)

2 ), (ψ%, ψ̂%) = (g
∑
`∈Λ̃ f

′
(%,`)

2 , g̃
∑
`∈Λ̃ f

′
(%,`)

2 ), a∗i = TΛ(%
−1(i), %) · ai (for

i ∈ [n]), and for some i ∈ [n], a%(i) 6= bi.

Proof. Denote h ← ê(g1, g2) and F%(x) := logh(ê(A
∗, D)/ê(B,E%)). WITNESS-

INDISTINGUISHABILITY: since argument ψperm that satisfies the verification equations
is unique, all witnesses result in the same argument, and therefore the permutation ar-
gument is witness-indistinguishable.

PERFECT COMPLETENESS. Completeness of ψ× follows from the completeness of
the Hadamard product argument. The third and the fourth verifications are straight-
forward. For the verification ê(A∗, D)/ê(B,E%) = ê(g1, ψ

%), consider F%(x) in
Eq. (5). Consider X as a formal variable, then the right-hand side (and thus also
F%(X)) is a formal polynomial of X , spanned by {X`}`∈2·Λ∪Λ̃. If the prover is hon-
est, then bi = a%(i) for i ∈ [n], and thus F%(X) is spanned by {X`}`∈Λ̃. Defin-
ing ψ% ← (

∏n
i=1 g2,λi)

ra∗ · (
∏n
i=1 g2,2λ%(i)−λi)

−rb ·
∏n
i=1(

∏n
j=1:j 6=i g2,λi+λj )

a∗i ·



∏n
i=1(

∏
j∈I∗2 (i,`)

g2,λi+2λ%(j)−λj )
−bi = Dra∗ · E−rb% ·

∏
`∈Λ̃′%

g
µ%,`
2` , where I∗2 (i, `) :=

{j ∈ [n] : j 6= i∧2λ%(i)+λj 6= λi+2λ%(j)}, we see that the second verification holds.
WEAKER VERSION OF SOUNDNESS. Assume that A is an adversary that can

break the last statement of the theorem. We construct an adversary A′ against
the Λ̃-PSDL assumption. Let gk ← Gbp(1κ), x ← Zp, g1 ← G1 \ {1}, and
g2 ← G2 \ {1}. The adversary A′ receives crs ← (gk; (gx

`

1 , g
x`

2 )`∈{0}∪Λ̃) as
her input, and her task is to output x. She sets α̂ ← Zp, α̃ ← Zp, and crs′ ← (gk;

(gx
`

1 , g
α̂x`

1 , gα̃x
`

1 )`∈{0}∪Λ, (g
x`

2 )`∈{0}∪Λ̃, (g
α̂x`

2 )`∈Λ̂, (g
α̃x`

2 )`∈Λ̃,
∏n
i=1 g

xλi
2 ,

∏n
i=1 g̃

xλi
2 ),

and forwards crs′ to A. Clearly, crs′ has the same distribution as Gcrs(1κ). Both parties
also set ĉk1 ← (gk; (gx

`

1 , g
α̂x`

1 )`∈{0}∪Λ) and c̃k1 ← (gk; (gx
`

1 , g
α̃x`

1 )`∈{0}∪Λ).
Assume that A returns (inpperm, wperm, ψperm) such that the conditions in the

theorem statement hold, and V(crs′; inpperm, ψperm) accepts. Here, inpperm =
(A, Ã,B, B̂, B̃, %) and wperm = (a, ra, b, rb,a

∗, ra∗ , (f
′
(×,`))`∈Λ̂, (f

′
(%,`))`∈Λ̃).

If A is successful, (A, Ã) = Com1(c̃k1;a; ra), (B, B̂) = Com1(ĉk1; b; rb),
(B, B̃) = Com1(c̃k1; b; rb), ψ× verifies, and for some i ∈ [n], a%(i) 6= TΛ(i, %) · bi.
Since ψ× verifies and the Hadamard product argument is (weakly) sound, we have
that (A∗, Â∗) commits to (TΛ(%

−1(1), %) ·a1, . . . , TΛ(%−1(n), %) ·an). (Otherwise, we
have broken the PSDL assumption.) Since 2 ·Λ ∩ Λ̃ = ∅, A′ has expressed F%(X) as a
polynomial f(X) where at least for some ` ∈ 2 · Λ, X` has a non-zero coefficient.

On the other hand,A also outputs (f ′(%,`))`∈Λ̃, s.t. F%(x) = logg2 ψ = f ′%(x), where

all non-zero coefficients of f ′%(X) :=
∑
`∈Λ̃ f

′
(%,`)X

` correspond toX` for some ` ∈ Λ̃.
Since Λ is a progression-free set of odd integers and all elements of 2 · Λ are distinct,
then by the discussion in the beginning of Sect. 7, ` 6∈ 2 · Λ. Thus, all coefficients
of f ′%(X) corresponding to any X`, ` ∈ 2 · Λ, are equal to 0. Thus, f(X) · Xλn =∑
`∈Λ̃∪(2·Λ) f`X

`+λn and f ′%(X) =
∑
`∈Λ̃ f

′
(%,`)X

`+λn are different polynomials with
f(x) = f ′%(x) = F%(x). Thus, A′ has succeeded in creating a nonzero polynomial
d%(X) = f(X) ·Xλn − f ′%(X), such that d%(x) =

∑
`∈Λ̃ d`x

` = 0.
Next, A′ can use an efficient polynomial factorization algorithm [19] in Zp[X] to

efficiently compute all ≤ 4λn + 1 roots of d%(X). For some root y, gx
`

1 = gy
`

1 . The
adversary A′ sets x← y, thus violating the Λ̃-PSDL assumption. ut

Let Λ be as described in Thm. 1. The CRS consists of n1+o(1) group elements. The
argument size of Prot. 2 is 2 elements from G1 and 4 elements from G2. The prover’s
computational complexity is dominated byΘ(n2) scalar additions in Zp and by n1+o(1)

exponentiations in G2. The verifier’s computational complexity is dominated by 12
bilinear pairings and 4n− 2 bilinear-group multiplications.

8 New NIZK Argument for Circuit Satisfiability

In a NIZK argument for circuit satisfiability (Circuit-SAT, well-known to be an NP-
complete language), the prover and the verifier share a circuit C. The prover aims to
prove in non-interactive zero-knowledge that she knows an assignment of input val-
ues that makes the circuit output 1. As in [15], the Circuit-SAT argument will use



System parameters: Define Λ and Λ̂ as in Prot. 1 and Λ̃ as in Prot. 2, but in all cases with n
replaced by 2|C|+ 1. Permutation swap.

CRS generation Gcrs(1κ): Let all other variables (including the secret ones) be defined as in
the CRS generation of Prot. 2, but let crsperm be the CRS of Prot. 2. In addition, let
(D̂,D2) ← (

∏n
i=1 ĝ1,λi ,

∏n
i=1 g2,λi). The CRS is crs ← (crsperm, D̂,D2). Let ck1 ←

(gk; (g1`, ĝ1`, g̃1`)`∈{0}∪Λ).
Common inputs: A satisfiable circuit C, and permutations τ and ζ generated based on C, such

that (L,R, Rn+1,U ,X, Xn+1) is a “satisfying assignment”.
Argument generation P(crs;C, (L,R, Rn+1,U ,X)): Denote Y := (Y1, . . . , Yn) for Y ∈
{L,R,U,X}. The prover does the following.

1. Set r1, . . . , r4 ← Zp, and then compute (lr, l̂r, l̃r) ← Com1(ck1;L,R, Rn+1; r1),
lr2 ← gr12 ·

∏n
i=1 g

Li
2,λi
·
∏n+1
i=1 g

Ri
2,λi+n

, (rl, r̃l) ← Com1(c̃k1;R,L, Rn+1; r1),

(rz, r̂z) ← Com1(ĉk1;R, 0, . . . , 0, 0; r2), (uz, ûz) ← Com1(ĉk1;U , 0, . . . , 0, 0; r3),
(ux, ûx, ũx)← Com1(ck1;U ,X, Xn+1; r4).

2. Create an argument ψ1 for [[(lr, l̂r)]] ◦ [[(lr, l̂r, lr2)]] = [[(lr, l̂r)]], ψ2 for swap([[(rl, r̃l)]]) =
[[(lr, l̂r, l̃r)]], ψ3 for [[(rl, r̃l)]] ◦ [[(D, D̂,D2)]] = [[(rz, r̂z)]], ψ4 for [[(ux, ûx)]] ◦
[[(D, D̂,D2)/(g1,λn , ĝ1,λn , g1,λn)]] = [[(uz, ûz)/(g1,λn , ĝ1,λn , g1,λn)]], ψ5 for
[[(rz, r̂z)]] ◦ [[(lr, l̂r, lr2)]] = [[(D, D̂) · (uz−1, ûz−1)]], ψ6 for τ([[(lr, l̃r)]]) = [[(lr, l̂r, l̃r)]],
and ψ7 for ζ−1([[(ux, ũx)]]) = [[(lr, l̂r, l̃r)]].

3. Send ψ ← (lr, l̂r, l̃r, lr2, rl, r̃l, rz, r̂z, uz, ûz, ux, ûx, ũx, ψ1, . . . , ψ7) to the verifier.
Verification V(crs;C,ψ): The verifier does the following:

– For A ∈ {lr, rz, uz, ux} check that ê(Â, g2) = ê(A, ĝ2).
– Check that ê(g1, lr2) = ê(lr, g2).
– For A ∈ {lr, rl, ux} check that ê(Ã, g2) = ê(A, g̃2).
– Verify all 7 arguments ψ1, . . . , ψ7 with corresponding inputs.

Protocol 3: New NIZK argument for Circuit-SAT

the Hadamard product argument, the permutation argument and a trivial argument for
element-wise sum of two tuples — in our case, all operating in parallel on (2|C|+ 1)-
dimensional tuples, where |C| is the circuit size. Those three arguments can be seen
as basic operations in an NIZK “programming language” for all languages in NP. We
show that a small constant number of such basic operations is sufficient for Circuit-SAT.
The full argument then contains additional cryptographic sugar: a precise definition of
the used CRS, computational/communication optimizations, etc.

The first task is to express the underlying argument as a parallel composition of
some addition, permutation and Hadamard product arguments. These arguments may
include intermediate variables (that will be committed to by the prover) and constants
(that can be online committed to by both of the parties separately). When choosing the
arguments, one has to keep in mind that we work in an asymmetric setting. This may
mean that for some of the inputs to the circuit satisfiability argument, one has to commit
to them both in G1 and G2 (and the verifier has to check that this is done correctly).

The CRS is basically the CRS of the permutation argument. The total argument
consists of commitments to intermediate variables and of all arguments in the program
of this “programming language”. Finally, the verifier has to check that all commitments
are internally consistent, and then verify all used arguments.



Let us now turn to the concrete case of circuit satisfiability. For the sake of simplic-
ity, assume that the circuit C is only composed of NAND gates. Let C have n gates.
Assume that the output gate of the circuit is n, and Un is the output of the circuit.
For every gate j ∈ [n] of C, let the input wires of its jth gate be Lj and Rj , and
let Uj be one of its output wires. We also define an extra value Rn+1 = 1. We let
Xj be other “output” wires that correspond to some Lk or Rk that were not already
covered by Uk (that is, inputs to the circuit, or duplicates of output wires). That is,
(U1, . . . , Un, X1, . . . , Xn+1) is chosen so that for some permutation ζ, (U ,X, Xn+1)
is a ζ-permutation of (L,R, Rn+1), where Y = (Y1, . . . , Yn) for Y ∈ {L,R,U,X}.

More precisely, the prover and the verifier share the following three permutations,
the first two of which completely describe the circuit C. First, τ ∈ S2n+1 is a permu-
tation, such that for any values Li1 , . . . , Lis , Rj1 , . . . , Rjt that correspond to the same
wire, τ contains a cycle i1 → i2 → · · · → is → j1 + n → · · · → jt + n → i1. For
unique wires i, τ(i) = i. Second, ζ ∈ S2n+1 is a permutation that for every input wire
(either Li or Ri−n), outputs an index j ← ζ(i), such that the output wire Uj or Xj−n
is equal to that input wire. Third, swap ∈ S2n+1 is a permutation, with swap(i) = i+n
and swap(i+n) = i for i ∈ [n], and swap(2n+1) = 2n+1. Note that swap = swap−1.

The argument is given by Prot. 3. In every subargument used in Prot. 3, the prover
and the verifier use a substring of crs as the CRS. The corresponding substrings are
easy to compute, and in what follows, we do not mention this issue. Instead of com-
puting two different commitments Comt(ĉkt;a; r) = (grt ·

∏
gait,λi , ĝ

r
t ·

∏
ĝait,λi) and

Comt(c̃kt;a; r) = (grt ·
∏
gait,λi , g̃

r
t ·
∏
g̃ait,λi), we sometimes compute a composed com-

mitment Comt(ckt;a; r) = (grt ·
∏
gait,λi , ĝ

r
t

∏
ĝait,λi , g̃

r
t ·

∏
g̃ait,λi). We assume that the

same value α̂ is used when creating product arguments and permutation arguments.

Theorem 6. Let Gbp be Λ̃-PSDL secure, and Λ-PKE secure in both G1 and G2. Then
Prot. 3 is a perfectly complete, computationally adaptively sound and perfectly zero-
knowledge non-interactive Circuit-SAT argument.

Proof. PERFECT COMPLETENESS: follows from the perfect completeness of the
Hadamard product and permutation arguments.

ADAPTIVE COMPUTATIONAL SOUNDNESS: Let A be a non-uniform PPT adver-
sary that creates a circuit C and an accepting NIZK argument ψ. By the Λ-PKE as-
sumption, there exists a non-uniform PPT extractor XA that, running on the same
input and seeing A’s random tape, extracts all openings. From the (weaker version
of) soundness of the product and permutation arguments and by the Λ̃-PSDL assump-
tion, it follows that the corresponding relations are satisfied between the opened val-
ues. Moreover, by the Λ̃-PSDL assumption, the opened values belong to corresponding
sets Λ̂ and Λ̃. Let (L,R, Rn+1) be the opening of (lr, l̂r), where L = (L1, . . . , Ln)
and R = (R1, . . . , Rn), and let (U1, . . . , Un, X1, . . . , Xn, Xn+1) be the opening of
(ux, ûx). We now analyze the effect of every subargument in Prot. 3.

The successful verification of ê(g1, lr2) = ê(lr, g2) shows that lr2 is correctly
formed. The first argument ψ1 shows that Li, Ri ∈ {0, 1}. The second argument ψ2

shows that (rl, r̃l) commits to (R,L, Rn+1). The third argument ψ3 shows that (rz, r̂z)
commits to (R, 0, . . . , 0, 0) and is thus consistent with the opening of (lr, l̂r). The fourth
argument ψ4 shows that (uz, ûz) commits to (U1, . . . , Un−1, U

′
n, 0, . . . , 0, 0) for some



U ′n. It also shows that Un · 0 = U ′n − 1, and thus U ′n = 1. (The value of Un is not
important to get soundness, since it is not used in any other argument.)

The fifth argument shows ψ5 that the NAND gates are followed. That is, ¬(Li ∧
Ri) = Ui for i ∈ [n− 1]. It also shows that the circuit outputs 1. Really, since (uz, ûz)
commits to (U1, . . . , Un−1, U

′
n = 1, 0, . . . , 0, 0), then (D, D̂) · (uz−1, ûz−1) commits

to (1−U1, . . . , 1−Un−1, 1−1 = 0, 0, . . . , 0, 0). Thus, the Hadamard product argument
verifies only ifLi ·Ri = 1−Ui for i ∈ [n−1], andLn ·Rn = 0, that is, ¬(Ln∧Rn) = 1.

The sixth argument ψ6 shows that if i1, . . . , is, j1 +n, . . . , jt+n correspond to the
same wire, then Li1 = · · · = Lis = Rj1 = · · · = Rjt , that is, the values are internally
consistent with the wires. The seventh argument ψ7 shows that the “input wires” and
“output” wires are consistent.

PERFECT ZERO-KNOWLEDGE: we construct the next simulator S = (S1,S2). The
simulator S1(1κ, n) creates a correctly formed CRS together with a simulation trapdoor
td = (α̂, α̃, x) ∈ Z3

p. The adversary then outputs a statement C (a circuit) together with
a witness (a satisfying assignment)w. The simulator S2(crs;C, td) creates (lr, l̂r, l̃r, lr2),
(rl, r̃l), (rz, r̂z), (uz, ûz) and (ux, ûx) as commitments to (0, . . . , 0). Due to the knowl-
edge of trapdoor td, the simulator can simulate all product and permutation arguments.
More precisely, he uses Li = Ri = Ui = U ′n = 1 to simulate all product and per-
mutation arguments, except in the case of ψ5 where he uses Ui = U ′n = 0 instead.
(Obviously, (rz, r̂z) and (uz, ûz) commit to consistent tuples.)

To show that this argument ψ′′ simulates the real argument ψ, note that ψ is per-
fectly indistinguishable from the simulated NIZK argument ψ′ where one makes trap-
door commitments but opens them to real witnesses Li, Ri when making product and
permutation arguments. On the other hand, also ψ′ and ψ′′ are perfectly indistinguish-
able, and thus so are ψ and ψ′′. ut

Let Λ be chosen as in Thm. 1. The CRS consists of |C|1+o(1) group elements.
The communication (argument length) of the argument in Prot. 3 is 18 elements from
G1 and 21 elements from G2. The prover’s computational complexity is dominated by
Θ(|C|2) simple arithmetical operations in Zp and |C|1+o(1) exponentiations in G. The
verifier’s computational complexity is dominated by 72 bilinear pairings and 8|C| + 8
bilinear-group multiplications.

Moreover, the CRS depends on Λ̂ ∪ Λ̃. Since 0 may or may not belong to Λ̃ (this
depends on the choice of Λ) and Λ ∪ 2̂Λ ⊆ Λ̃, Λ̂ ∪ Λ̃ = {0} ∪ Λ̃. Recalling that
elements of G1 can be represented by 512 bits and elements of G2 can be represented
by 256 bits, the communication (argument length) is 18 · 512 + 21 · 256 = 14 592 bits.
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