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Abstract. We prove that there is no black-box construction of a thresh-
old predicate encryption system from identity-based encryption. Our re-
sult signifies nontrivial progress in a line of research suggested by Boneh,
Sahai and Waters (TCC ’11), where they proposed a study of the rela-
tive power of predicate encryption for different functionalities. We rely
on and extend the techniques of Boneh et al. (FOCS ’08), where they
give a black-box separation of identity-based encryption from trapdoor
permutations.
In contrast to previous results where only trapdoor permutations were
used, our starting point is a more powerful primitive, namely identity-
based encryption, which allows planting exponentially many trapdoors in
the public-key by only planting a single master public-key of an identity-
based encryption system. This makes the combinatorial aspect of our
black-box separation result much more challenging. Our work gives the
first impossibility result on black-box constructions of any cryptographic
primitive from identity-based encryption.
We also study the more general question of constructing predicate en-
cryption for a complexity class F, given predicate encryption for a (po-
tentially less powerful) complexity class G. Toward that end, we rule out
certain natural black-box constructions of predicate encryption for NC1

from predicate encryption for AC0 assuming a widely believed conjec-
ture in communication complexity.

Keywords: Predicate Encryption, Black-Box Reductions, Identity-based
Encryption, Communication Complexity.

1 Introduction

An encryption scheme enables a user to securely share data with other users.
Traditional methods based on Secret-Key Cryptography and Public-Key Cryp-
tography consider the scenarios where a user securely shares data with another
fixed user whose identity (characterized by the possession of the decryption-
key) it knows in advance. In particular, in these schemes, there is a bijection
between the encryption-key and the decryption-key, fixed by the chosen encryp-
tion scheme.
? Part of the work was done while visiting Microsoft Research, India.



As systems and networks grow in complexity, and in particular with the
emergence of the cloud computing, the above viewpoint may be too narrow to
cover many important applications. Often, a user might want to encrypt data
to be shared with a large set of other users based on some common “property”,
or attribute, they satisfy. Membership in this set may not be known to the
encryptor, or may not even be decidable in advance. Furthermore, a user might
want to share data selectively so different users are able to decrypt different parts
of that data. To cater to these scenarios, the notion of Predicate Encryption (or
Attribute-based Encryption) has recently emerged. Predicate encryption was
introduced by Sahai and Waters [31], and further developed in the work of
Goyal et al. [17]. It has been the subject of several recent works, e.g., [11, 19,
24, 28, 10]. Predicate encryption is useful in a wide variety of applications; in
particular, for fine-grained access control. It has also been a useful technical
tool in solving seemingly unrelated problems, e.g., key escrow[15] and user
revocation [5] in Identity-based Encryption (IBE). IBE [32, 8, 12] can be seen as
the most basic form of a predicate encryption, where the predicate corresponds
to a point function.

A predicate encryption scheme is defined in terms of a family F of Boolean
functions (predicates) on a universe A of attributes. Decryption-keys are associ-
ated to a predicate f ∈ F and ciphertexts are labeled with (or are created based
on) an attribute string a ∈ A. A user with a decryption-key corresponding to
f can decrypt a ciphertext labeled with x if and only if f(x) = 1. As argued
by Boneh et al. [10], the key challenge in the study of predicate encryption (or
Functional Encryption in general) is understanding what classes of functionali-
ties F can be supported. If we could support any polynomial time computable
predicate f , then any polynomial-time access control program that acts over a
user’s credentials could be supported [10].

Unfortunately, the current state of the art is far from being able to support
an arbitrary polynomial-time f . Given this, an important direction Boneh et
al. [10] suggested was to understand the relative strengths of predicate encryp-
tion schemes with respect to the functionalities they can support: When does
a scheme for one functionality imply a scheme for another? In the absence of
such a reduction, can we prove that predicate encryption for one functionality
is inherently harder than for another? A meaningful approach to address this
latter question is via black-box separations [18]; see [30, 27] for a comprehensive
survey on the topic. A proof that a cryptographic primitive P1 cannot be con-
structed given black-box access to another primitive P2 (and of course without
incurring any additional assumptions) can be viewed as an indication that P1

is in some sense a stronger primitive than P2. Hence, to construct P1 one may
have to look for more powerful techniques, or stronger assumptions than for P2

(or try non-black-box reductions). Thus, studying these questions would help
us better understand the extent to which techniques for current predicate en-
cryption systems might or might not be useful in obtaining systems for more
general functionalities. The broad goal of this work is to make progress toward
answering these questions.



Since a predicate encryption scheme has an associated family F of Boolean
functions, a natural way to classify such schemes is according to the complexity
class the corresponding family comes from. For example, we can call a scheme
(A,F) an AC0-PE scheme, if every member of F can be computed by a constant-
depth polynomial size circuit (an AC0 circuit) on an attribute string from A.
Hence, a concrete approach to compare predicate encryption schemes is to ask
questions of the kind: Given a predicate encryption scheme for predicates in
complexity class G, can we construct a scheme for predicates in a (potentially
larger) complexity class F in a black-box way? For example, it is well-known that
the circuit class NC1 is strictly larger than AC0. Thus a concrete question is: Is
NC1-predicate encryption provably harder than AC0-predicate encryption with
respect to black-box reductions? A second aspect of our work is to try to relate
(perhaps conjectured) separations among Boolean function complexity classes to
black-box separations among the corresponding predicate encryption schemes.

1.1 Our Results

Our main result is a black-box separation of threshold predicate encryption
(TPE) from identity-based encryption (IBE) schemes. To our knowledge, this
is the first result on the impossibility of constructing a cryptographic primitive
from IBE in a blackbox manner. Recall that IBE can be viewed as the most
basic form of predicate encryption in which the decryption tests exact equality
(in other words, the predicate is a point function). Hence, the first natural step
in the study of the above question is whether IBE can be used to construct
more general predicate encryption systems. Our results show that IBE cannot
be used to construct even a basic system for threshold predicates (introduced by
Sahai and Waters [31]). We believe that the question of IBE vs. more advanced
predicate encryption systems is of special interest. IBE as a primitive is very
well studied [8, 12, 7, 6, 34, 14], and constructions of IBE are now known based
on a variety of hardness assumptions.

Returning to our more general question, we rule out certain “natural” black-
box constructions of predicate encryption for the class NC1 from predicate en-
cryption for the class AC0, assuming a widely believed conjecture in the area
of two-party communication complexity. Given black-box access to a predicate
encryption scheme for (B,G), a natural way to construct a predicate encryption
scheme for a “larger” system (A,F) is to use a a Sharing-Based Construction as
follows. The decryption-key for an f ∈ F is simply the set of decryption keys for
a set S(f) = {g1, . . . , gq} of predicates gi ∈ G from the smaller system. Similarly,
for each attribute a ∈ A, we associate a set S(a) = {α1, . . . , αq} of attributes
from B. To encrypt a message m under an attribute a for the big system, we
generate q shares m1, . . . ,mq of m and encrypt mj under the attribute αj of
the small system. The concatenation of these encrypted shares is the ciphertext
of m under a. To decrypt, we try to decrypt each mj using the decryption keys
of each gi ∈ S(f). The sharing construction ensures that the shares mj that
are successfully decrypted, if any, in this process suffice to recover m. Thus the



sharing-based construction is a rather natural and obvious way to build pred-
icate encryption schemes for more complex functionalities from simpler ones.
Our result shows that such a sharing-based construction is impossible if F is a
family of functions in NC1 and G is any family of functions from AC0, assuming
certain conjectures in communication complexity. It is worth noting that com-
binatorial arguments about sharing-based constructions form a core component
of our main result on (unrestricted) black-box separation of TPE from IBE.

1.2 Techniques

We build upon and extend the techniques of Boneh et al. [9] (and a follow-up
work by Katz and Yerukhimovich [20]) which rule out black-box construction
of IBE from Trapdoor Permutations (TDP). Along the way, we also simplify
several aspects of their proof. Given a black-box construction of TPE from IBE,
our proof proceeds by designing an attack on TPE which succeeds with high
probability (in fact arbitrarily close to the completeness probability of the pur-
ported TPE scheme). Somewhat more formally, we build an oracle O relative
to which a CCA secure IBE exists, but any purported construction of a TPE
relative to this oracle is insecure.

Our analysis of the attack roughly consists of a combinatorial part and a cryp-
tographic part. The combinatorial aspect of our analysis is new and completely
different from that in [9]. While the cryptographic part is similar in structure
to that of [9], we do make several crucial modifications that makes our attack
simpler and analysis cleaner.

A Comparison of the Combinatorial Aspects. At the heart of the proof of [9]
is a combinatorial argument as follows. An IBE system obtained by a black-
box construction from a TDP must embed in its public parameters the public
keys of some permutations of the TDP oracle. The adversary’s main goal is to
collect all the trapdoors corresponding to these permutations. Such trapdoors are
embedded in the decryption keys corresponding to identities in the IBE system.
The main point is that there are only q = poly(κ) many permutations planted
in the public parameters of the IBE, but they must also encode an exponential
number of identities. Therefore, if we look at a sufficiently large set of random
identities and their secret keys, and encrypt and decrypt a random message
under these identities, during at most q of these decryptions we might encounter a
“new” trapdoor (which is planted in the public-key to be used during encryption,
but was not discovered during other decryptions). It follows, if we choose our
identity set S to be of size k ·q (and encrypt and decrypt random messages under

them), and then choose an identity id
$←S at random from those q · k identities,

then with probability at least 1 − 1/k there is no new (undiscovered) trapdoor
left for this identity id. Therefore, whatever is learned during the decryptions of
the encryptions of random messages under the identities S \ {id}, is sufficient to
decrypt a message encrypted under id without knowing its decryption-key.

This combinatorial argument immediately suggest the following attack. Get
decryption-keys for all but a random identity id∗ chosen from a large enough



random set S = id1, . . . , idk·q of identities. Collect the trapdoors learned from
the encryptions of random messages under the identities in S \ id∗, and their de-
cryptions using the corresponding decryption-keys. Try to decrypt the challenge
ciphertext C encrypted under the identity id∗.

In our case, we have a related but more difficult question: what if we start
with a more powerful primitive like an IBE and want to construct another “tar-
get” predicate encryption scheme? Now the intuition behind the combinatorial
argument of [9] completely breaks down. The reason is that in our new setting,
by planting only one (master) public-key of the IBE scheme in the public-key of
the target predicate encryption, the encryption algorithm potentially has access
to an exponential number of permutations (each indexed by an identity) whose
trapdoors can be planted in the decryption-keys. In fact, each decryption-key of
the predicate encryption system might have a unique trapdoor (corresponding
to a unique identity derived from the description of the predicate). Hence, one
can’t hope to learn all trapdoors and use them to decrypt the challenge cipher-
text. Thus, roughly speaking, by moving from a trapdoor permutation oracle
to various forms of PE oracles such as IBE (as the primitive used in the con-
struction), we are allowing the “universe” of trapdoor permutations planted in
the public-key and decryption-keys to be exponentially large (rather than some
fixed polynomial). The latter difference is the main reason behind the complica-
tions in the combinatorial aspect of our problem, because suddenly the regime of
positive results becomes much richer, making the job of proving an impossibility
result much more challenging.

Our proof relies on the collusion-resistance property of the predicate encryp-
tion. The “hope” that an attack exists comes from the following observations:

– The decryption key for each predicate may still consist of only a polynomial
number of IBE decryption-keys.

– Each ciphertext is encrypted using a polynomially large set of identities such
that a decryption-key for at least one of these identities is required to decrypt
the ciphertext. On the other hand, each ciphertext can be decrypted by
keys for an exponential number of different predicates (this follows from the
property of a threshold encryption scheme). Call such predicates “related”.

– This exponentially large set of related predicates must share an IBE decryption-
key since they can decrypt a common ciphertext.

Our attack works by requesting sufficient number of decryption-keys for re-
lated predicates (which would still be unable to decrypt challenge ciphertext).
Since related predicates share IBE decryption-keys, the adversary is able to col-
lect all “useful” IBE decryption-keys. It is not surprising that the above combi-
natorial arguments sound as though they could already be used to attack sharing
based constructions. Indeed, our core combinatorial lemma (Lemma 10) is used
to refute any sharing-based construction of a TPE from an IBE (Corollary 11).

A Comparison of the Cryptographic Aspects. As in [9], turning the combinato-
rial analysis into a full-fledged impossibility result requires non-trivial black-box



separation machinery. For this reason, even though the combinatorial argument
of [9] is relatively simple, the full proof is quite complicated. The explanation
for the complexity of such proofs is that one has to handle all possible construc-
tions using a trapdoor permutation oracle (and not just where, for example, a
decryption-key simply consists of decryption keys for various identities).

Although the overall structure of our proof is similar to that of [9], there
are several differences in the detailed arguments. In fact, we make some crucial
modifications which lead to a more direct attack and cleaner analysis. The first
major modification is that our attacker “directly” learns the heavy queries (fol-
lowing the paradigm of [2, 3]). In [9], the attack proceeds by having steps (such
as several encryptions of a random bit under the challenge identity, repeating
a few steps several times) whose indirect purpose is to learn the heavy queries.
Secondly, since we start with an oracle which roughly provides four functional-
ities (as opposed to the three functionalities of a trapdoor permutation oracle),
we need to modify and adapt the techniques of [9] to the new setting. Apart
from these, there are significant differences in the manner we compare the vari-
ous experiments which we believe makes the analysis cleaner and more general.
The details regarding these can be found in Section 5 and in the full version [16]
where we have deferred most of the proofs due to space constraints.

2 Preliminaries

Notation. For any probabilistic algorithm A, by y ← A(x) we denote the process
of executing A over the input x while using fresh randomness (which we do not
represent explicitly) and getting the output y. By a partial oracle we refer to
an oracle which is defined only for some of the queries it might be asked. By
[x 7→ y] ∈ P we mean that P(x) = y is defined. For a query x and a partial
oracle P, we misuse the notation and denote x ∈ P whenever an answer for x
is defined in P. By Supp(X) we refer to the support set of the random variable
X. For a random variable S whose values are sets, we call an element ε-heavy,
if Pr[x ∈ S] ≥ ε. The view of any probabilistic oracle algorithm A, denoted as
View(A) refers to its input, private randomness, and oracle answers (which all
together determine the whole execution of A).

Definition 1 (Predicate Encryption). A predicate encryption scheme PE
for the predicate set Fκ and attribute set Aκ with completeness ρ consists of four
probabilistic polynomial time algorithms PE = (G,K,E,D) such that for every
predicate f ∈ F, every attribute a ∈ A such that f(a) = 1, and every message
M , if we do the following steps, then with probability at least ρ it holds that
M ′ = M : (i). generate a public-key and a master secret-key (PK,SK)← G(1κ),
(ii). get a decryption-key DKf ← K(SK, f) for the predicate f ∈ F, (iii). encrypt
the message M under the attribute a ∈ A and get C ← E(PK, a,M), and finally,
(iv). decrypt C using the decryption-key DKf and get M ′ ← D(PK,DKf , C).

Definition 2 (Neighbor Sets of Predicates and Attributes). For every
set of predicates F and f ∈ F, and for every set of attributes A and a ∈ A we
define the following terminology:



– N(f) = {a | a ∈ A, f(a) = 1} and similarly N(a) = {f | f ∈ F, f(a) = 1}.
– deg(f) = |N(f)| and deg(a) = |N(a)|.

Since we always work with families of algorithms and sets indexed by a security
parameter κ, when it is clear from the context we might omit the index κ.

Definition 3 (Security of Predicate Encryption). Let PE = (G,K,E,D)
be a predicate encryption scheme with the predicate set F and the attribute set
A. PE is said to be CPA secure if for any PPT adversary Adv participating in
the experiment below, the probability of Adv correctly outputting the bit b is at
most 1/2 + neg(κ):

1. Setup: Generate the keys (PK,SK)← G(1κ) and give PK to Adv.
2. Query Keys: Adv adaptively queries some predicates fi ∈ F for i = 1, 2, . . .

and is given the corresponding decryption-keys DKi ← K(SK, fi).
3. Challenge: Adv submits an attribute a ∈ A and a pair of messages M0 6=

M1 of the same length |M0| = |M1| conditioned on

fi(a) = 0 for every predicate fi whose key DKi is acquired by Adv (1)

and is given C ← E(PK, a,Mb) for a randomly selected b
$←{0, 1}.

4. Adv continues to query keys for predicates subject to condition (1) and
finally outputs a bit.

PE is said to be CCA secure if for any PPT adversary Adv participating in a
modified experiment (explained next), the probability of Adv correctly outputting
the bit b is at most 1/2+neg(κ). The modified experiment proceeds identically as
the above experiment, except that after Step 3, Adv is also allowed to adaptively
query ciphertexts Ci for i = 1, 2, . . . encrypted under the attribute a, with the
condition that Ci 6= C for any i, and he is given the decrypted message M ←
D(DKf , Ci), where DKf ← K(SK, f) is a decryption-key for a predicate f such
that f(a) = 1.

Definition 4 (Identity-based Encryption [32]). An Identity Based Encryp-
tion scheme is a predicate encryption scheme where (1) the predicate and at-
tribute sets are equal A = F = {0, 1}κ (and are called the set of identities), and
(2) for every predicate f ∈ {0, 1}κ and every attribute a ∈ {0, 1}κ we have that
f(a) = 1 if and only if f = a.

Definition 5 (Threshold Predicate Encryption [31]). A Threshold Pred-
icate Encryption with threshold 0 < τ < 1 (or simply a τ -TPE) is a predicate
encryption where both the predicate and the attribute sets are equal to {0, 1}κ and
for any predicate f ∈ {0, 1}κ and any attribute a ∈ {0, 1}κ we have that f(a) = 1
if and only if 〈f, a〉 ≥ τ ·κ where 〈f, a〉 is the inner product of the Boolean vectors
f = (f1, . . . , fκ), a = (a1, . . . , aκ) defined as 〈f, a〉 =

∑
i∈[κ] ai · fi.

The notion of threshold predicate encryption was defined in [31] and is also
known as the fuzzy IBE.



3 Sharing-based Constructions and Impossibility Results

In this section, we describe two intuitive and simple approaches to build a pred-
icated encryption scheme using another predicate encryption scheme as a black-
box. It is interesting that the simpler of the two, the OR-based approach turns
out to be as powerful as the seemingly more general Sharing-based approach.
Even though ruling out constructions using these approaches is a weaker im-
possibility result than an unrestricted black-box separation (as we will do in
Section 5), it seems instructive to refute these natural and general approaches
to black-box reductions among predicate encryption schemes. In fact, our proof
refuting OR-based constructions of TPE from this section forms the combinato-
rial core of our subsequent proof of a general black-box separation in Section 5.
Moreover, the basic approach to building the attack needed in our proof (as well
as that in [9]) of the general black-box separation results seems to benefit by
keeping the sharing-based constructions in mind. In Section 4, we investigate
a new approach to refute sharing-based constructions using (proved or conjec-
tured) separation results in two-party communication complexity. In particular,
we can use conjectures in communication complexity to give evidence that NC1-
predicate encryption is strictly harder than AC0-predicate encryption.

Definition 6. Let (F,A) and (G,B) be two pairs of predicate and attribute sets.
We call S(·) a q-set system for (F,A) using (G,B) if S is a mapping defined over
F∪A such that: (1) For every f ∈ F it holds that S(f) ⊂ G, and for every a ∈ A
it holds that S(a) ⊂ B, and (2) For every x ∈ F ∪ A it holds that |S(x)| ≤ q.

Definition 7 (OR-based Construction). We say there is an OR-based con-
struction with set-size q for the pair of predicate and attribute sets (F = {f1, . . .},
A = {a1, . . .}) using another pair (G = {ϕ1, . . .},B = {α1, . . .}) if there ex-
ists a q-set system S(·) for (F,A) using (G,B) such that: For every f ∈ F
and a ∈ A, if S(f) = {ϕ1, . . . , ϕdf } and S(a) = {α1, . . . , αda}, then f(a) =∨
i∈[df ],j∈[da] ϕi(αj). We call the OR-based construction efficient if the mapping

S(·) is efficiently computable.

The encryption under attribute a of an OR-based construction works by
encrypting a message M independently under every αi ∈ S(a) and concatenating
the corresponding ciphertexts. The decryption key for a predicate f is simply
the set of keys DKj for all j ∈ [df ], where DKj is the decryption key for ϕj .

Lemma 8. Suppose there exists an efficient OR-based construction for (F,A)
using (G,B). Then a secure predicate encryption scheme PE1 = (G1,K1,E1,D1)
for (F,A) with completeness ρ can be constructed (in a black-box way) from any
secure predicate encryption scheme PE2 = (G2,K2,E2,D2) for (G,B) with
completeness ρ.

Clearly, the OR-based construction of Lemma 8 is not the only way that one can
imagine to construct an F-PE from a G-PE. In fact, as noted also by [20] in
the context of using trapdoor permutations, there is a possibility of employing



a more complicated “sharing-based” approach that generalizes the OR-based
construction. The idea is to use a set system S(·) in a similar way to the OR-based
construction, but to encrypt the message M differently: instead of encrypting
the message M da times, first construct some “shares” M1, . . . ,Mda of M , and
then encrypt each Mi using αi. To get the completeness and the security, we
need the following two properties.

– Completeness: For every f ∈ F such that f(a) = 1, the set of indices
IS(a, f) = {j | ∃ϕ ∈ S(f) such that ϕ(αj) = 1} is rich enough that {Mi |
i ∈ IS(a, f)} can be used to reconstruct M .

– Security: For every choice of a∗, f∗, f1, . . . , fk for k = poly(κ) such that
f∗(a∗) = 1 and fi(a∗) = 0 for all i ∈ [k], it holds that CS(a∗, f∗) 6⊆

⋃
j∈[k]

CS(a∗, fj),where CS(a, f) = {αi | i ∈ IS(a, f)}. This is because otherwise
the adversary can acquire keys for f1, . . . , fk and use the sub-keys planted
in them to decrypt enough of the shares of Mi’s and reconstruct M which
is encrypted under the attribute a∗.

Despite the fact that the sharing-based approach is more general than the OR-
based approach, for the case of polynomial sized sets q = poly(κ), we show
that the construction of Lemma 8 is indeed as powerful as any sharing-based
approach:

Lemma 9. There is a sharing based construction for the predicate system F
using G if and only if there exists an OR-based construction.

Note that by proving Theorem 19, we shall rule out an OR-based (and hence
sharing-based) constructions along the way. A special case of the following com-
binatorial lemma, Corollary 11, shows that no OR-based (nor sharing-based)
construction of τ -TPE from IBE exists for any constant 0 < τ < 1. Moreover,
not surprisingly, we will use this lemma in our proof of Theorem 19.

Lemma 10. Let F = A = {0, 1}κ denote the set of attributes and predicates for
τ -TPE for a constant 0 < τ < 1. Also suppose that the following sets of size at
most q = poly(κ) are assigned to F, A, and F × A : S(a) for a ∈ A, S(f) for
f ∈ F, and S(a, f) for (a, f) ∈ A × F. Then, there exists a sampling algorithm
Samp that, given an input parameter ε > 1/ poly(κ), outputs k + 1 = poly(κ)
pairs (f∗, a∗), (f1, a1), . . . , (fk, ak) such that with probability at least 1 − ε over
the randomness of Samp the following holds:

1. f∗(a∗) = 1 and fi(ai) = 1 for all i ∈ [k] (this part holds with probability 1),
2. fi(a∗) = 0 for all i ∈ [k],
3. S(a∗) ∩ S(f∗) ∩ S(a∗, f∗) ⊆

⋃
i∈[k] S(ai, fi).

Moreover, the algorithm Samp chooses its k + 1 pairs without the knowledge of
the set system S(·). Therefore we call Samp an oblivious sampler against the
predicate structure of τ -TPE.

Note that although F = A, the sets S(a) for a ∈ A and S(f) for f ∈ F are
potentially different even if a and f represent the same string. Intuitively, the



set S(a) refers to the set of sub-attributes (or identities in case of using IBE as
the black-box primitive) used during an encryption of a random message under
the attribute a, the set S(f) refers to the set of decryption-keys planted in the
decryption-key of f , and finally S(a, f) refers to the decryption-keys discovered
during the decryption of the mentioned random encryption (under the attribute
a) using the generated key for f .

Proof. Let A be the set of vectors in {0, 1}κ of normalized Hamming weight τ ,
namely A = {a | a = (a1, . . . , aκ) ∈ {0, 1}κ,

∑
i ai = τ · κ}. Also let F be the set

of vectors in {0, 1}κ of normalized Hamming weight τ ′ = τ + 1−τ
2 . Consider a

bipartite graph G with nodes (A,F) and connect a ∈ A to f ∈ F iff f(a) = 1
according to τ -TPE (i.e., the indexes of the nonzero components of a is a subset
of those of f). We will later use the fact that G is a regular graph (on its F side).
For any vertex x in G let N(x) be the set of neighbors of x in the graph G. The
covering-sampler acts as follows: Choose p = poly(κ) and h = poly(κ) to satisfy
q( 1
p + 1

h + (1− 1
h )p) < ε

2 (e.g., this can be done by setting h =
√
p and choosing

p large enough). Choose f∗
$← F at random. Choose a∗, a1, . . . , ap

$← N(f∗) at
random with possible repetition from the neighbors of f∗. For each i ∈ [p], choose

p random neighbors fi1, . . . , fip
$←N(ai) of ai (repetition is allowed). Output the

p2 + 1 pairs: (a∗, f∗), (ai, fij)i∈[p],j∈[p].
Now we prove that with probability at least 1 − ε/2 − neg(κ) > 1 − ε the

output pairs have the properties specified in Lemma 10.
Property (1) holds by construction.
Since 0 < τ < τ ′ < 1 are constants, using standard probabilistic arguments

one can easily show that the probability of fij being connected to a∗ in G (i.e.,
fij(a∗) = 1) is neg(κ) (given a∗, ai are random subsets of f∗, a random superset
fij of ai is exponentially unlikely to pick all the elements of a∗). Thus (2) holds.

The challenging part is to show that (3) holds, i.e., the following: With prob-
ability at least 1− q( 1

p + 1√
p + (1− 1√

p )p) ≥ 1− ε/2 it holds that S(a∗)∩S(f∗)∩
S(a∗, f∗) ⊂ ∪ijS(ai, fij). The proof will go through several claims.

In the following let h =
√
p. For an attribute node a ∈ A of G, define H(a)

to be the set of “heavy” elements that with probability at least 1/h are present
in S(a, f) for a random neighbor f of a, i.e., H(a) = {x : Pr[x ∈ S(a, f) |
f

$←N(a)] > 1/h}. Note that H(a) is not necessarily a subset of S(a).

Claim. Define BE1 to be the bad event “S(a∗) ∩ S(a∗, f∗) 6⊆ H(a∗).” Then,
Pr[BE1] ≤ q/h.

Proof. Since G is regular on its F side, conditioned on a fixed a∗ the distribution
of f∗ is still uniform over N(a∗). Now fix a∗ and fix an element b ∈ S(a∗). If

b is not in H(a∗), then over the random choice of f∗
$← N(a∗), it holds that

Pr[b ∈ S(a∗, f∗)] ≤ 1/h. The claim follows by a union bound over the q elements
in S(a∗). ut

Claim. Define BE2 to be the bad event “there exists a b ∈ S(f∗) such that
b ∈ H(a∗) but for every i ∈ [p], b 6∈ H(ai), i.e., S(f∗)∩H(a∗) 6⊆ ∪iH(ai).” Then,
Pr[BE2] ≤ q/p.



Proof. It is enough to bound BE2 by 1/p for a fixed b ∈ S(f∗) and the claim
follows by union bound over the elements of S(f∗). But when b ∈ S(f∗) is fixed,
we can pretend that a∗ is chosen at random from the sequence a0, . . . , ap after
they are chosen and are fixed. In that case BE2 happens if there is only a unique
j ∈ {0, . . . , p} such that b ∈ H(aj) and a∗ chooses to be aj . The latter happens
with probability at most 1/(p+ 1) < 1/p. ut

Claim. Define BE3 to be the bad event “given neither BE1 nor BE2 happens,
S(a∗) ∩ S(f∗) ∩ S(a∗, f∗) 6⊆ ∪i,jS(ai, fij).” Then, Pr[BE3] ≤ q(1− 1/h)p.

Proof. We assume events BE1 and BE2 have not happened and perform the
analysis. By ¬BE1, we have S(a∗) ∩ S(a∗, f∗) ⊆ H(a∗). Moreover, since ¬BE2

holds, any element b ∈ S(f∗) ∩ H(a∗) will be in H(ai) for at least one i ∈ [p].
Therefore for each j ∈ [p], Pr[b ∈ S(ai, fij)] ≥ 1/h holds by the definition of
heavy sets, and thus b 6∈ ∪jS(ai, fij) can hold only with probability at most
(1 − 1/h)p. By union bound, the probability that there exists a b ∈ S(a∗) ∩
S(f∗) ∩ S(a∗, f∗) such that b 6∈ ∪jS(ai, fij) is bounded by q(1− 1/h)p. ut

From Claims 3, 3, and 3, it follows that (3) fails with probability at most q( 1
p +

1
h + (1 − 1

h )p) < ε
2 . Therefore, the sampled [a∗, f∗, {fij}i∈[p],j∈[p]] will have the

desired properties with probability at least 1 − neg(κ) − ε/2 which finishes the
proof of Lemma 10. ut

Using Lemma 10, it is almost straightforward to prove the following.

Corollary 11. For any constant 0 < τ < 1, there is no OR-based (nor sharing-
based) construction of τ -TPE schemes from IBE schemes.

4 The Communication Complexity Approach

In this section, we show an alternative general approach to refute sharing-based
constructions of predicate encryption schemes using separation results in two-
party communication complexity. In particular, using conjectured separations in
communication complexity, we prove the impossibility of a sharing-based con-
struction of NC1-PE from AC0-PE, thus making some progress toward the
question of separating PE schemes based on the complexity classes the underly-
ing predicates come from. On the other hand, we are currently able to apply this
approach only to sharing-based constructions rather than to general black-box
constructions.

Let (A,F) be a predicate encryption scheme. W.l.o.g. we identify A with
{0, 1}κ and think of F as a family of functions {fb : {0, 1}κ → {0, 1}}b∈{0,1}κ ,
i.e., we assume for simplicity that |F| = 2κ and its members are also indexed by
b ∈ {0, 1}κ. We may abuse this notation and refer to b itself as a member of F.
We can then talk about the communications complexity of F when b ∈ F is given
to Bob and a ∈ A to Alice. We can represent this communication complexity
problem by the {0, 1}-matrix with rows indexed by A and columns by F. With
a little more abuse of notation, we denote this matrix also by F = (fb(a))a,b and



refer to the communication complexity of F. Recall that the essential resource
in communication complexity is the number of bits Alice and Bob need to com-
municate to determine fb(a). Various models such as deterministic, randomized
(public or private coins), nondeterministic, etc., communication complexity can
be defined naturally. For details on such models, we refer to the classic book by
Kushilevitz and Nisan [22], the paper by Babai et al. [1], and the surveys by
Lokam [26] and Lee and Shraibman [23].

To connect communication complexity to OR-based constructions using IBE,
we use the model of Merlin-Arthur (MA) games in communication complexity:

Definition 12 (Merlin-Arthur Protocols [21]). A matrix F is said to have
an MA-protocol of complexity `+ c if there exists a c-bit randomized public-coin
verification protocol Π between Alice and Bob such that

– F(a, b) = 1⇒ ∃w ∈ {0, 1}` Pr[Π((a,w), (b, w)) = 1] ≥ 2/3,
– F(a, b) = 0⇒ ∀w ∈ {0, 1}` Pr[Π((a,w), (b, w)) = 1] ≤ 1/3.

The MA-complexity of F, denoted MA(F), is the minimum complexity of an MA
protocol for the matrix F.

With this definition, the well-known fact (see, for example, [22]) that EQUALITY
has public coin randomized communication complexity of O(1), and our Defini-
tion 7 of OR-construction, the following lemma is easy.

Lemma 13. Suppose there is an OR-based construction of a predicate encryp-
tion scheme (A,F) using an IBE scheme (B,G). Then MA(F) = O(log κ).

Using a result due to Klauck [21] that MA(DISJOINTNESS) = Ω(
√
κ), we can

show

Theorem 14. For some constant 0 < τ < 1, e.g., τ = 1/3, there is no OR-based
(and hence no sharing-based) construction of a τ -TPE scheme from IBE.

To derive separations among stronger predicate encryption schemes based on
sharing constructions, we need to recall definitions of languages and complex-
ity classes in two-party communication complexity, in particular, PHcc and
PSPACEcc.

Complexity classes in two-party communication complexity are defined in
terms of languages consisting of pairs of strings (a, b) such that |a| = |b|. Denote
by {0, 1}2∗ the universe {(a, b) : a, b ∈ {0, 1}∗ and |a| = |b|}. For a language
L ⊆ {0, 1}2∗, we denote its characteristic function on pairs of strings of length κ
by Lκ. The language Lκ is naturally represented as a 2κ× 2κ matrix with {0, 1}
or ±1 entries.

Definition 15. Let l1(κ), . . . , ld(κ) be nonnegative integers such that l(κ) :=∑d
i=1 li(κ) ≤ (log κ)c for a fixed constant c ≥ 0. A language L ⊆ {0, 1}2∗

is in Σcc
d if there exist l1(κ), . . . , ld(κ) as above and Boolean functions ϕ,ψ :

{0, 1}κ+l(κ) −→ {0, 1} such that (a, b) ∈ Lκ if and only if ∃u1 ∀u2 . . . Qdud
(ϕ(a, u)♦ψ(b, u)), where |ui| = li(κ), u = u1 . . . ud, Qd is ∀ for d even and
is ∃ for d odd, and, ♦ stands for ∨ if d is even and for ∧ if d is odd.



– By allowing a bounded number of alternating quantifiers, we get an analog
of the polynomial time hierarchy: PHcc =

⋃
d≥0 Σcc

d .
– By allowing an unbounded, but at most polylog(κ) alternating quantifiers,

we get an analog of PSPACE: PSPACEcc =
⋃
c>0

⋃
d≤(log κ)c Σcc

d .

The following lemma shows a connection between the communication complexity
class PHcc and OR-based constructions using AC0-predicate encryption.

Lemma 16. Suppose a predicate encryption scheme (A,F) is obtained by an
OR-based construction using an AC0-predicate encryption scheme. Then the lan-
guage given by the sequence of matrices {F}κ is in PHcc.

Proof. By hypothesis, for a given fb ∈ F, we have AC0 circuits ϕ1b, . . . , ϕqb
and for a given a ∈ A, we have α1a, . . . , αqa such that fb(a) = ∨i,jϕib(αja).
Knowing fb, Bob can compute the circuit Cb(z) ≡

∨
ij ϕiy(zj), where z =

(z1, . . . , zq), |zj | = |αj |. Knowing a, Alice can compute αa = (α1a, . . . , αqa)
on which Cb needs to be evaluated.We give a protocol with a bounded number
of alternations for F. Let the depth of Cb be d (including the top OR-gate). An
existential player will have a move for an OR gate in Cb and a universal player
will have a move for an AND gate. Their d moves will describe an accepting path
in Cb on αa. For example, assuming AND and OR gates alternate in successive
layers, ∃w1∀w2 · · ·Qdwd γ(Cb, w1, . . . , wd)(αa) describes a path in Cb – start
with the top OR gate and follow the wire w1 to the AND gate below and then
the wire w2 from this gate and so on – ending in a gate γ := γ(...) to witness
the claim that fb(a) = 1. Since Bob knows Cb, he can verify the correctness
of the path w1w2 · · ·wk in the circuit and the type of the gate γ given by the
path. He then sends the labels of the inputs and the type (AND or OR) of the
gate to Alice, who responds with γ(αa). Bob can verify that this will ensure
Cb(αa) = 1. On the other hand, if Cb(αa) = 0, then it is easy to see that the
existential player will not have a winning strategy to pass verification protocol
of Alice and Bob on their inputs a and Cb. It follows that F has a protocol with
at most d alternations and hence {F}κ ∈ PHcc. ut

This lemma enables us to show the impossibility of OR-based constructions of
predicate encryption schemes using AC0-predicate encryption. In particular,

Theorem 17. Suppose PHcc 6= PSPACEcc. Then, there is no OR-based con-
struction of an NC1-PE scheme from any AC0-PE scheme. In particular, there
is an NC1-function family F (derived from so-called Sipser functions [33]) such
that (A,F) does not have an OR-based construction from any AC0-PE scheme.

However, it is a longstanding open question in communication complexity to
separate PSPACEcc from PHcc. Currently it is known that such a separation
holds if certain Boolean matrices can be shown to have high rigidity, a connection
explained in [29, 25].

Corollary 18. Suppose Hadamard matrices are as highly rigid as demanded
in [29, 25]. Then, predicate encryption defined by the parity functions (arising
from Inner Product mod 2 matrix) does not have an OR-based construction from
any AC0-predicate encryption scheme.



5 Separating TPE from IBE

In this section, we prove that there is no general black-box construction of thresh-
old predicate encryption schemes from identity-based encryption schemes.

Theorem 19. Let κ ∈ N be the security parameter. Then, there exists an oracle
O relative to which CCA secure IBE schemes exist, as per Definition 3. However,
for any constant 0 < τ < 1, there exists a query-efficient (i.e., that makes at
most poly(κ) queries to O) adversary Adv that can break even the CPA security
of any τ -TPE scheme relative to O, again as per Definition 3. Moreover, Adv
can be implemented in poly(κ)-time if given access to a PSPACE oracle, and
its success probability can be made arbitrarily close to the completeness of the
τ -TPE scheme.

We will first define our random IBE oracle, OIBE, also denoted by O for
short, (which trivially implies a CCA secure IBE as outlined in Remark 21), and
then break any τ -TPE (with a constant τ) relative to this oracle.

Construction 20 (Randomized oracle O = (g,k, id, e,d)). By Oλ we refer
to the part of O whose answers are λ bits, and O is the union of Oλ for all λ.

– The master-key generating oracle g : {0, 1}λ 7→ {0, 1}λ is a random permu-
tation that takes as input a secret-key sk ∈ {0, 1}λ, and returns a public-key
pk ∈ {0, 1}λ.

– The decryption-key generating oracle k : {0, 1}2λ 7→ {0, 1}λ takes as input a
secret-key sk ∈ {0, 1}λ and an identity α ∈ {0, 1}λ, and returns a decryption-
key dkα ∈ {0, 1}λ. We require k(sk, ·) to be a random permutation over
{0, 1}λ for every sk ∈ {0, 1}λ.

– The identity finding oracle id : {0, 1}2λ 7→ {0, 1}λ takes as input a public-key
pk ∈ {0, 1}λ and a decryption-key dk ∈ {0, 1}λ, and returns the unique α
such that k(sk, α) = dk, where sk = g−1(pk).

– The encryption oracle e : {0, 1}3λ 7→ {0, 1}λ takes as input a public-key
pk ∈ {0, 1}λ, an identity α ∈ {0, 1}λ and a message m ∈ {0, 1}λ, and returns
a ciphertext c ∈ {0, 1}λ. We require e(pk, α, ·) to be a random permutation
over {0, 1}λ for every (pk, α) ∈ {0, 1}2λ.

– The decryption oracle d : {0, 1}3λ 7→ {0, 1}λ takes as input a public-key
pk ∈ {0, 1}λ, a decryption-key dk ∈ {0, 1}λ and a ciphertext c ∈ {0, 1}λ, and
returns the unique m such that e(pk, α,m) = c, where α = id(pk, dk).

By an IBE oracle, we refer to an oracle in the support set of O, Supp(O), and
by a partial IBE oracle we refer to a partial oracle that could be extended to an
oracle in Supp(O).

Remark 21 (CCA secure IBE relative to O). To encrypt a bit b ∈ {0, 1} un-
der identity α and public-key pk, the encryption algorithm extends b to a λ-

bit random string: m = (b, b1, . . . , bλ−1), bi
$← {0, 1} and gets the encryption

c = e(pk, α,m). To decrypt, we decrypt c and output its first bit. By indepen-
dently encrypting the bits of a message m = (m1, . . . ,mn), with n = poly(κ),



and using a standard hybrid argument, one can generalize the scheme to arbi-
trarily long messages. This construction is only CPA secure, where any adversary
has advantage at most 2−Θ(κ). But, this can easily be transformed in a black-
box manner into a CCA secure construction, without incurring any additional
assumptions, using the Fujisaki-Okamoto transform [13] in the random oracle
model [4]. We note that even though O is not exactly a random oracle, for our
purposes it suffices to use one of the sub-oracles of O as a random oracle in the
above transform.

Now we present an attack that aims to break any τ -TPE in an O-relativized
world by asking only poly(κ) queries to the random IBE oracle O, where κ is
the security parameter of the τ -TPE scheme. We prove the query-efficiency and
the success probability of our attack in the full version [16]. Similar to the attack
of [9], our attack can easily be implemented in poly(κ)-time if P = PSPACE4,
and the relativizing reductions can be ruled out by adding a PSPACE oracle
to O.

We first note that any black-box construction of τ -TPE schemes from IBE
schemes can potentially call the oracle Oλ over different values of λ which are
potentially different from the security parameter of the τ -TPE scheme itself.
However, similar to [9], we assume that the τ -TPE scheme asks its queries to Oλ
only for one value of λ. This assumption is purely to simplify our presentation
of the attack and its analysis, and all the arguments below extend to the general
case (of asking queries over any parameter λ > log s) in a straightforward way.

We also assume that λ is large enough in the sense that 2λ > s for an
arbitrarily large s = poly(κ) that can be chosen in the description of the attack.
The reason for the latter assumption is that the adversary can always ask and
learn all the oracle queries to O that are of logarithmic length O(λ) = O(log κ),
simply because there are at most 2O(λ) = poly(κ) many queries of this form.5

Construction 22 (Adv Attacking the Scheme τ-TPEO). The parameters
are as follows. q: the total number of queries asked by the components of the
scheme τ -TPE all together, κ: the security parameter of τ -TPE, ε = 1/ poly(κ)
and s = poly(κ): input parameter to the adversary Adv, λ ≤ poly(κ): the
parameter which determines the output length of the queries asked by the compo-
nents of τ -TPE to the oracle O. It is assumed that 2λ > s for some s = poly(κ)
to be chosen later. Our adversary Adv executes the following.

1. Sampling Predicates and Attributes: Adv executes the sampling algo-
rithm Samp of Lemma 10 with the parameter ε, over the predicate structure
of τ -TPE, to get k+1 pairs (a∗, f∗), {(ai, fi)}i∈[k]. Recall that this sampling
is done only by knowing the predicate structure of τ -TPE and is indepen-
dent of the actual implementation of the scheme. It can be done, for example,
without the knowledge of PK.

4 A good “approximation” of the attack can also be implemented assuming P = NP.
5 In [9] a scheme that asks such queries is called “degenerate” and is handled similarly.



2. Receiving the Keys: Adv receives from the challenger: the public-key PK
and the decryption-keys {DKi}i∈[k], where DKi is the generated decryption-
key for fi. We also assume that DK∗ is generated by the challenger, although
Adv does not receive it. Let V be the view of the algorithms executed by the
challenger so far that generated the keys PK,DK∗,DK1, . . . ,DKk. Let Q(V )
be the partial oracle consisting of the queries (and their answers) specified
in V . By writing in the bold font V, we refer to V as a random variable.

3. Encrypting Random Bits: For all i ∈ [k], Adv chooses a random bit d
$←

{0, 1}, computes the encryption Ci ← E(PK, ai, d), and then the decryption
D(PK,DKi, Ci). Let L0 be the partial oracle consisting of the oracle queries
(and their answers) that Adv observes in this step.

4. Learning Heavy Queries: This step consists of some internal rounds. For
j = 1, 2, . . . do the following. Let Lj be the partial oracle consisting of the
oracle queries (and their answers) that Adv has learned about O till the end
of the j’th round6 of this learning step. Let Vj = (V | Lj ,PK, {DK}i∈[k]) be
the distribution of the random variable V (also including the randomness of
O) conditioned on the knowledge of (Lj ,PK, {DK}i∈[k]). For a partial oracle

P, let P denote its closure7. Now, if there is any query x such that x 6∈ Lj
but Pr[x ∈ Q(Vj)] ≥ ε, Adv asks the lexicographically first such x from the
oracle O, sets Lj+1 = Lj∪(x,O(x)), and goes to round j+1. In other words,
as long as there is any new query x that is ε-heavy to be in the closure of the
queries of the view of the key-generations, Adv asks such a query x. If no
such query exists, Adv breaks the loop and goes to the next step.
(Note that the above and the following steps may require a PSPACE-complete
oracle to be implemented efficiently.)

5. Guessing Challenger’s View: Let L be the partial oracle consisting of the
oracle queries (and their answers) that Adv learned in Steps 3 and 4 (i.e.,
L = L`, where Q(V`) had no ε-heavy queries to be learned). Let Vchal =

(V | L,PK, {DKi}i∈[k]), and sample V ′
$← Vchal. Let SK′ and DK′∗ be in

order, the “guessed” values for the secret-key and the decryption-key of f∗
determined by the sampled V ′. We note that by definition the other keys
PK′, {DK′i}i∈[k] determined by V ′ are the same as the ones that Adv has
received: PK, {DKi}i∈[k].

6. Receiving the Challenge and the Final Decryption: Adv receives
C∗(= EO(PK, a∗, b)) for a random bit b ∈ {0, 1}. Then, Adv uses the oracle
O′ defined below and outputs the decrypted value b′ ← DO

′
(PK,DK′∗, C∗) as

his guess about the bit b.
The Oracle O′: At the beginning of the decryption of Step 6, the partially
defined oracle O′ is equal to L ∪ Q(V ′), namely the learned queries (and

6 Step 3 can be thought of as the 0’th round.
7 Informally, the closure of a partial oracle is a superset consisting of all the queries

(in addition to the partial oracle itself) that are dependent on the queries in the
partial oracle (or its closure), e.g. if the partial oracle contains queries [g(sk) = pk]
and [k(sk, α) = dk] then its closure must also contain the query [id(pk, dk) = α].
Please refer to the full version [16] for a formal definition.



their answers) together with the guessed ones specified in V ′. Afterwards, if
a new query x is asked: (i) if x ∈ O′, return O′(x), otherwise (ii) if x ∈ O′,
then return y = O′(x) and add (x, y) to O′, and finally (iii) if x 6∈ O′, ask x
from O and add (x,O(x)) to O′.

This finishes the description of our attack. We prove the query-efficiency and
the success probability of our attack in the full version [16].
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