
The Knowledge Tightness of Parallel
Zero-Knowledge

Kai-Min Chung?1, Rafael Pass??1, and Wei-Lung Dustin Tseng1

Department of Computer Science, Cornell University, Ithaca, NY, USA.
{chung,rafael,wdtseng}@cs.cornell.edu

Abstract. We investigate the concrete security of black-box zero-
knowledge protocols when composed in parallel. As our main result, we
give essentially tight upper and lower bounds (up to logarithmic factors
in the security parameter) on the following measure of security (closely
related to knowledge tightness): the number of queries made by black-box
simulators when zero-knowledge protocols are composed in parallel. As a
function of the number of parallel sessions, k, and the round complexity
of the protocol, m, the bound is roughly k1/m.
We also construct a modular procedure to amplify simulator-query lower
bounds (as above), to generic lower bounds in the black-box concurrent
zero-knowledge setting. As a demonstration of our techniques, we give a
self-contained proof of the o(logn/ log logn) lower bound for the round
complexity of black-box concurrent zero-knowledge protocols, first shown
by Canetti, Kilian, Petrank and Rosen (STOC 2002). Additionally, we
give a new lower bound regarding constant-round black-box concurrent
zero-knowledge protocols: the running time of the black-box simulator
must be at least nΩ(logn).

Keywords: Zero-Knowledge, Knowledge Tightness, Concrete Security, Concur-
rent Zero-Knowledge Lower Bounds.

1 Introduction

Zero-knowledge interactive proofs, introduced by Goldwasser, Micali and Rackoff
[GMR89] are paradoxical constructions allowing one player (called the prover)
to convince another player (called the verifier) of the validity of a mathematical
statement x ∈ L, while providing no additional knowledge to the verifier. In
addition to being an independent construction of interest, zero-knowledge have

? Chung is supperted by a Simons Foundation Fellowship.
?? Pass is supported in part by a Alfred P. Sloan Fellowship, Microsoft New Faculty

Fellowship, NSF CAREER Award CCF-0746990, AFOSR YIP Award FA9550-10-
1-0093, and DARPA and AFRL under contract FA8750-11-2-0211. The views and
conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the US government.

become an extremely useful tool in construction of numerous cryptographic pro-
tocols.

A fundamental question regarding zero-knowledge protocols is whether their
composition remains zero-knowledge. In theoretical constructions as well as in
practice, a zero-knowledge protocol is sometimes composed in parallel (to amplify
soundness or to improve efficiency, for example). It is well-known that the defi-
nition of zero-knowledge (ZK) is not closed under parallel composition [GK96b].
Nevertheless, we know numerous constructions of constant-round zero-knowledge
protocols that are secure when composed in parallel [FS90,GK96a,Gol02]. As a
result, the subject of ZK with respect to parallel composition is widely considered
closed.

We turn our attention to another fundamental question regarding zero-
knowledge: its knowledge tightness. In its original definition, the zero-knowledge
property is formalized by requiring that the view of any probabilistic polynomial
time (PPT) verifier V in an interaction with a prover can be “indistinguishably
reconstructed” by a PPT simulator S that interacts with no one. Since whatever
V “sees” in the interaction can be reconstructed by the simulator, the interaction
does not yield any knowledge to V that V can already compute by itself. Because
the simulator is allowed to be an arbitrary PPT machine, this traditional notion
of ZK only guarantees that the class of PPT verifiers learn nothing.

To more concretely measure the knowledge gained by a particular verifier,
Goldreich, Micali and Wigderson [GMW91] (see also [Gol01]) put forward the
notion of knowledge tightness: informally, the “tightness” of a simulation is the
ratio of the (expected) running-time of the simulator, divided by the (worst-case)
running-time of the verifier. Thus, in a knowledge-tight ZK proof, the verifier
is expected to gain no more knowledge than what it could have computed in
time closely related to its worst-case running-time. In addition to theoretical
interests, the knowledge tightness of a zero-knowledge protocol is a helpful aid
for setting the security parameter in practice. It is easy to check that the origi-
nal zero-knowledge protocols [GMR89,GMW91,Blu86] all enjoy constant knowl-
edge tightness. The aforementioned protocols secure under parallel composition
[FS90,GK96a,Gol02] also enjoy constant knowledge tightness when executed in
isolation; however, when composed in parallel, the tightness of these protocols
seem increase/loosen linearly (sometimes even quadratically) with respect to
the number of parallel sessions (based on the currently known analysis of their
simulators)!

Since we do want to execute zero-knowledge protocols in parallel (for instance
in the application of secure multi-party computation), a natural question is to
ask: how does the knowledge tightness of a protocol vary when we increase the
number of parallel repetitions?

1.1 Our results

In this work we give essentially tight upper and lower bounds to the above
question. Our results focus on black-box zero-knowledge and “simulator queries”,
which we explain below.

Informally, a protocol is black-box zero-knowledge if there exists a universal
simulator S, called the black-box simulator, such that S generates the view of
any adversarial verifier V ∗ if S is given black-box access to V ∗. Essentially all
known constructions of zero-knowledge (with the notable exception of [Bar01])
and all practical zero-knowledge protocols are black-box zero-knowledge. Given
a black-box simulator S, we focus on bounding the number of black-box queries
made by S to a given adversarial verifier V ∗; we refer to this as the simulator-
query complexity. It is easy to see that the number of queries made by a black-
box simulator is closely related to knowledge tightness; in fact, for the case of
constant round protocols, they are asymptotically equivalent.

We state our main theorems below:

Theorem 1. Let n be the security parameter. For any m = m(n), there exists a
2m+ 7-round black-box zero-knowledge argument Π for all of NP based on one-
way functions, with perfect completeness and negligible soundness error, such
that for any polynomially bounded k = k(n), the parallel composition of k-copies
of the protocol, Πk, remains black-box zero-knowledge with simulator-query com-
plexity O(mk1/m log2 n).

The above theorem can be extended to proofs assuming the existence of collision-
resistant hash-functions. We complement Theorem 1 with a lower bound:

Theorem 2. Let n be the security parameter, L be a language, and m = m(n) ∈
O
(

logn
log logn

)
. Suppose Π is a m(n)-round black-box zero-knowledge argument for

L with perfect completeness and negligible soundness error, and suppose there
exist a polynomially bounded k(n) ≥ n such that the parallel composition of
k-copies of the protocol, Πk, remains black-box zero-knowledge with simulator-
query complexity O(k1/m/(log2 n)). Then, L ∈ BPP.

For protocols with sub-logarithmic number of rounds, Theorem 1 and 2
are tight up to logarithmic factors in the security parameter; essentially, the
simulator-query complexity is asymptotically close to k1/m (in most cases, think
of k as a low polynomial in n). We mention that one can achieve simulator-query
complexity O(m) (independent of k) when m = ω(log n).

Briefly, our results show that the concrete security of constant-round black-
box zero-knowledge protocols actually decays polynomially in the number of
parallel sessions. Fortunately, this decay can be significantly slowed if we consider
protocols with more rounds (even if we simply use a large constant m).

1.2 Related Works

While we are unaware of any past work that explicitly studies the knowledge
tightness of parallelized zero-knowledge protocols, there are numerous related
publications that focus on the composition of zero-knowledge protocols, or on the
concrete security of zero-knowledge simulator. Dwork, Naor and Sahai [DNS04]
introduces the notion of concurrent zero-knowledge protocols; these protocols
must stay zero-knowledge even when composed arbitrarily (a strengthening over

parallel composition). Micali and Pass [MP06] introduces the notion of precision;
in a precise zero-knowledge protocol, the running time of the simulator should
be closely related to the running time of the adversarial verifier, on a view by
view basis1 (a strengthening over knowledge tightness).

Even with these stronger requirements, Pandey et. al. [PPS+08] is able to con-
struct protocols that are simultaneously precise and (black-box) concurrent zero-
knowledge. Note that our results are incomparable with the result of [PPS+08]
for many reasons, one of which being that black-box concurrent zero-knowledge
protocols require logarithmically many rounds [CKPR01], while our setting is
mainly interesting for sub-logarithmic-round protocols. Interestingly, [PPS+08]
actually gives a construction of a family of precise concurrent zero-knowledge
protocols, with trade-offs between round-complexity and precision, much like
our observed trade-off between round-complexity and knowledge tightness for
the case of parallelized zero-knowledge.

1.3 Connection to Concurrent Zero-Knowledge

We also present a connection from simulator-query lower bounds for zero-
knowledge, to round-complexity lower bounds for concurrent zero-knowledge
(cZK). Due to lack of space we postpone the result on concurrent zero-knowledge
to the full version. We briefly discuss the ideas as follows.

We start by describing the common framework for all known black-box zero-
knowledge lower bounds (e.g., [KPR98,Ros00,CKPR01,BL02,Kat08,HRS09]).
Let Π be a protocol for a language L. To show that Π cannot be zero-knowledge
unless the language L is trivial (i.e., L ∈ BPP), we start by constructing a de-
cision procedure for L. Let S be the black-box zero-knowledge simulator of Π,
and let V ∗ be some “hard to simulate” adversarial verifier, and consider the
following decision procedure D: on input x, D(x) accepts if and only if SV

∗
(x)

generates an accepting view of V ∗(x). Usually, the completeness of D follows
easily from the zero-knowledge property; to show that D is sound often requires
more work. Our query-complexity lower bounds (Theorem 2) also follow the same
framework. That is, we construct some adversarial verifier V ∗para that schedules
multiple sessions in parallel, and show that for any zero-knowledge simulator S
with appropriately bounded query-complexity, if x /∈ L, then SV

∗
para(x) cannot

generate an accepting view of V ∗para(x).
Inspired by the work of Canetti, Kilian, Petrank and Rosen [CKPR01], we

next present a modular construction of a concurrent adversarial verifier V ∗conc
whose purpose is to amplify query-complexity lower bounds of more basic veri-
fiers. For example, consider V ∗para, an adversarial verifier that is restricted to par-
allel composition. Our modular construction would take V ∗para as input, and out-
put an adversarial verifier V ∗conc = V ∗conc(V

∗
para) that, among other things, nests

multiple incarnations of V ∗para in a way that takes full advantage of the concurrent

1 For example, to achieve precision 2, if the simulator S generates a view of V ∗ and
the running time of V ∗ on that view is T , then the simulator S must have run in
time 2T .

scheduling. Under appropriate parameters, our analysis would conclude that for
any zero-knowledge simulator S with polynomially bounded query-complexity,
if x /∈ L, then SV

∗
conc(x) cannot generate an accepting view of V ∗conc(x) (recall

again that this is the key step for most zero-knowledge lower bounds).
To demonstrate our framework, we re-prove the result of [CKPR01] — a

o(log n/ log log n) round-complexity lower bound for black-box concurrent zero-
knowledge (the currently best known round-complexity lower bound); we believe
the resulting analysis is quite clean. We also give a second lower bound concern-
ing constant-round cZK protocols:

Theorem (Informal). Let L be a non-trivial language, and let Π be a constant-
round black-box concurrent zero-knowledge protocol with a potentially possibly
super-polynomial time simulator. Then the simulator must run in time nΩ(logn).

Incidentally, Pass and Venkitasubramaniam [PV08] do construct constant-
round black-box concurrent zero-knowledge protocols for all of NP in the model
where both the simulator and the adversarial verifier runs in quasi-polynomial
time npoly(logn).

We also find our modular framework satisfying on a philosophical level: it
serves as an framework in which lower bounds for restricted compositions of
zero-knowledge (in this example parallel composition) can be transformed into
lower bounds for zero-knowledge in the fully concurrent setting. A similar and
celebrated example occurs in the work of Goldreich [Gol02], where it is shown
that constructions of zero-knowledge protocols secure under parallel composition
directly leads to constructions of concurrent zero-knowledge protocols secure in
the timing model.

2 Preliminaries

We use N to denote the natural numbers {0, 1, . . .}, [n] to denote the set {1, . . . , n},
and |x| to denote the length of a string x ∈ {0, 1}∗. By ngl(n), we mean a function
negligible in n (i.e., 1/nω(1)). We assume familiarity with indistinguishability.

Interactive Protocols. An interactive protocol Π is a pair of interactive Turing
machines, (P, V), where V is probabilistic polynomial time (PPT). P is called
the prover, while V is called the verifier. 〈P, V 〉 (x) denotes the random variable
(over the randomness of P and V) representing V ’s output at the end of the
interaction on common input x. If additionally V receives auxiliary input z, we
write 〈P (x), V (x, z)〉 to denote V ’s output. We assume WLOG thatΠ starts with
a verifier message and ends with a prover message, and say Π has k rounds if the
prover and verifier each sends k messages alternately. A full or partial transcript
of Π is a sequence of alternating verifier and prover messages, (v1, p1, . . .), where
v denotes verifier messages and p denotes prover messages.

We may compose an interactive proof in parallel. Let Πk = (P k, V k) be the
parallel composition of k copies of Π; that is, each prover and verifier message
in Πk is just concatenation of k independent copies of the corresponding message

in Π. Upon completion, V k accepts if and only if all k sessions are accepted by
V . We note that an adversarial verifier may choose to abort in one session but
not another.

Zero Knowledge Protocols In the setting of zero knowledge, we consider an adver-
sarial verifier that attempts to “gain knowledge” by interacting with an honest
prover. An adversarial verifier V ∗ is a probabilistic polynomial time machine
that, on common input x and auxiliary input z, interacts with the prover P . Let
ViewP

V ∗(x, z) be the random variable that denotes the view of V ∗ in an inter-
action with P (this includes the random coins of V ∗ and the messages received
by V ∗).

A black-box simulator S is a probabilistic polynomial time machine that
is given black-box access to V ∗ (written as SV

∗
). Formally, S fixes the random

coins r of V ∗ a priori, and S is allowed to specify a valid partial transcript
τ = (v1, p1, . . . , pi) of V ∗r , and query V ∗r for the next verifier message vi+1. Here,
τ is valid if it is consistent with V ∗r , i.e., each verifier message vj in τ is what
V ∗r would have responded given the previous prover messages p1, . . . , pj−1 and
the fixed random tape r. Note that S is allowed to “rewind” V ∗ by querying V ∗

with different partial transcripts that shares a common prefix.
Intuitively, an interactive proof is zero-knowledge (ZK) if the view of any

adversarial verifier V ∗ can be generated by a simulator. The formal definition
follows.

Definition 3 (Black-Box Zero-Knowledge [GMR89,GO94]). Let Π =
〈P, V 〉 be an interactive proof (or argument) for a language L. Π is black-
box zero-knowledge if there exists a black-box simulator S such that for every
common input x, auxiliary input z and every adversary V ∗, SV

∗(x,z)(x) runs
in time polynomial in |x|, and the ensembles {ViewP

V ∗(x, z)}x∈L,z∈{0,1}∗ and

{SV∗(x,z)(x)}x∈L,z∈{0,1}∗ are computationally indistinguishable as a function of
|x|.

Other Primitives. In our construction of zero-knowledge arguments we use a few
other primitives including Witness-Indistinguishable (WI) Proofs [FS90], Proofs
of Knowledge (POK) [FS90,BG02], and Special-Sound (SS) Proofs [CDS94]. Due
to lack of space, we refer the readers to the full version of this paper for a more
detailed description of these primitives.

3 Construction

We define a zero-knowledge argument ParallelZK in Section 3.1, and show
that it satisfies Theorem 1 in Section 3.2.

3.1 The Protocol

Our ZK argument ParallelZK (also used in [PV08,PTV10]) is a slight variant
of the precise ZK protocol of [MP06], which in turn is a generalization of the

Feige-Shamir protocol [FS89]. The protocol for language L ∈ NP proceeds in
three stages, given a security parameter n, a common input statement x ∈
{0, 1}n, and a round-parameter m:

Stage Init: The verifier picks two random strings r1, r2 ∈ {0, 1}n and sends
their images c1 = f(r1), c2 = f(r2) through a one-way function f to the
prover. The verifier then acts as the prover in m parallel instances of a 4-
round witness indistinguishable and special sound proof of knowledge (WI
and SS-POK) of the NP statement “c1 or c2 is in the image set of f” (a
witness here would be a pre-image of c1 or c2). All but the last two messages
of each SS-POK is exchanged in this stage; we denote their partial transcripts
by (α1,α2, . . . ,αm).

Stage 1: m rounds of message exchanges occur in Stage 1. In the jth round,
the prover sends βj , a random second last message of the jth SS-POK, and
the verifier replies with the last message γj of the proof. These m rounds are
called slots. Slot i is convincing if the verifier produces an accepting proof
(i.e., the transcript (αi, βi, γi) is accepting). If there is ever an unconvincing
slot, the prover aborts the whole session.

Stage 2: The prover provides a 4-round witness indistinguishable proof of knowl-
edge (WI-POK) of knowledge of the statement “x ∈ L, or one of c1 or c2 is
in the image set of f”.

Completeness and soundness follows directly from the proof of Feige and
Shamir [FS89]; in fact, the protocol is an instantiation of theirs. Intuitively, to
cheat in the protocol a prover must “know” an inverse to c1 or c2 (because Stage
2 is an argument of knowledge), which requires the prover to invert the one-
way function f (it is shown in [FS90] that Stage Init and Stage 1 of the protocol
cannot aid the prover in inverting f). A formal description of protocol ParallelZK
is shown in Figure 1.

Remark 4. We note that here we use multiple slots to improve the knowledge
tightness of parallel zero knowledge, whereas previously, multiple slots was typi-
cally used to achieve concurrent zero knowledge and ω(log n) slots were consid-
ered. In contrast, we show that in the context of parallel zero knowledge, using
even constant number of slots improves the knowledge tightness significantly. In-
deed, both our simulation technique and its analysis presented in the next section
are new, where we rewind each slot to resolve all sessions in parallel (as opposed
to previous works that focused on one session at a time).

3.2 The Simulator

To show that protocol Π = ParallelZK satisfies Theorem 1, given any poly-
nomially bounded k = k(n), we need to construct a black-box zero-knowledge
simulator S = Sk for protocol Πk (ParallelZK repeated k times in parallel).
On a very high-level, our simulator follows that of Feige and Shamir [FS90]:
after fixing the SS-POK prefixes in Stage Init, the simulator rewinds one of the
“slots” in Stage 1 (the last two messages of the SS-POKs). If the verifier responds

Common Input: an instance x of a language L with witness relation RL.
Auxiliary Input for Prover: a witness w, such that (x,w) ∈ RL(x).
Stage Init:

V uniformly chooses r1, r2 ∈ {0, 1}n.
V → P: c1 = f(r1), c2 = f(r2).
V ↔ P: Exchange in parallel (interactively) all but the last two messages

α1, . . . ,αm of m WI and SS-POKs on common input (c1, c2) with respect
to the witness relation:

RL′(c1, c2) = {r : f(r) = c1 or c2}

Note that V acts as the prover in these SS-POK’s.
Stage 1: For j = 1 to m, exchange the ith “slot”

P → V: The second last message βi of the ith SS-POK.
V → P: The last message γi of the ith SS-POK.
P aborts if (αi, βi, γi) is not a valid SS-POK.

Stage 2:
P↔ V: a 4-round computational-WI proof of knowledge from P to V on common

input (c1, c2, x) with respect to the witness relation:

RL′∨L(c1, c2, x) = {(r, w) : r ∈ RL′(c1, c2) or w ∈ RL(x)}

Fig. 1. ParallelZK: a ZK argument for NP with round parameter m.

with two convincing slots, the simulator uses the special-soundness property to
extract a “fake witness” r such that f(r) = c1 or c2, and uses this fake witness
to simulate Stage 2 of the protocol.

Given an adversarial verifier V ∗ (for protocol Πk) and a common input x ∈
{0, 1}n, the simulator SV

∗
(x) does the following:

1. The simulator S interacts with V ∗, following the honest prover strategy,
until the end of Stage 1. We call this the reference simulation.

2. The simulator S attempts to resolve all k parallel sessions in the reference
simulation by extracting a fake witness r from the SS-POKs for each non-
aborting session; aborted sessions are automatically considered resolved (and
no fake witnesses are needed). To do so, S repeats the following step (called
a rewinding pass) as many times as necessary, until all sessions are resolved.

3. A rewinding pass. For each slot i, the simulator rewinds the reference
simulation back to the beginning of slot i, sends V ∗ a fresh random message
β′i, and receives a new reply γ′i (of course this is done in parallel for all
k sessions). Note that for each unresolved session j, S already knowns an
accepting transcript (αi, βi, γi) of SS-POK from the reference simulation.
If session j does not abort during slot i in this rewinding pass, then S
learns another accepting transcript (αi, β

′
i, γ
′
i) of SS-POK. In this case, S

can resolve the session j by extracting a fake witness using the special-sound
property.

4. S completes the reference simulation using extracted fake witnesses to sim-
ulate the Stage 2 proof (only needed in each parallel session that did not

abort). S outputs the view of V ∗ on the reference simulation and this com-
pletion.

For simplicity, we assume that for sessions that did not abort in the reference
simulation, the extraction of fake witnesses always succeeds whenever S receives
an accepting slot in a rewinding pass (i.e., we assume that S never sends the
same value for β twice). This assumption can be made without loss of generality
by the following modifications of the simulation strategy.

– Let the simulator S performs at most 2n rewinding passes. If there exist
any unsolved sessions j after 2n rewinding passes, S resolves the session by
brute force, i.e., by directly inverting the one-way function f to obtain a fake
witness of length n. This modification increases the running time (but not
the number of queries) of S by at most a poly(n) factor (multiplicatively),
and makes sure that S makes at most poly(2n) queries to V ∗.

– Let the final verifier challenge in the SS-POK have length |β| = n2. In this
case, the probability of S ever querying V ∗ with the same value of β twice
is poly(2n) · 2−n2

= 2−Ω(n2), definitely negligible in n.

We now show two lemmas regarding S that together show that ParallelZK
is zero-knowledge when composed in parallel.

Lemma 5. S runs in expected polynomial time, and makes O(mk1/m log2 n)
queries in expectation.

Lemma 6. On common input x ∈ L, the output of S is indistinguishable from
the real view of V ∗.

We give a sketch of proof of Lemma 6 first, and then prove Lemma 5 by
bounding the expected number of rewinding passes before S extracts all necessary
fake witnesses.

Proof (Proof Sketch of Lemma 6). The output of S up to the end of Stage 1
(i.e., the reference simulation) is identical to the view of V ∗, because S follows
the honest prover strategy. The output of S in Stage 2 of the protocol is com-
putationally indistinguishable from the view of V ∗ because the Stage 2 proof is
witness indistinguishable. Formally, this can be shown with a hybrid argument
where we incrementally exchange each of the k parallel Stage 2 proofs from using
“fake witnesses” r such that f(r) = c1 or c2 (the simulator strategy), to a real
witnesses w for x ∈ L (the honest prover strategy).

Proof of Lemma 5. We proceed to prove Lemma 5 by bounding the expected
number of rewinding passes in an execution of S. Let R be a random variable
that denotes the number of rewinding passes. We will show that:

E[R] = E[# rewinding passes] ≤ O(k1/m · log2 n).

This then implies Lemma 5 because outside of rewinding passes, SV ∗(x) makes
only O(m) queries to V ∗ and runs in polynomial time.

Before presenting our analysis for the general case of m slots, we revisit the
classical analysis for the case of single slot for intuition.

The case of single slot. The analysis is very simple. For every j ∈ [k], let Rj
denote the number of rewinding passes to resolve session j, and let pj be the
probability that session j does not abort during the single slot. Recall that
session j is resolved if it aborts in the reference simulation, and otherwise, the
simulator needs to rewind the slot several times until session j does not abort
again. Hence, the expected number of rewinding passes to resolve session j is

E[Rj] = (1− pj) · 0 + pj ·
1

pj
= 1.

By linearity of expectation, the expected number of rewinding passes is

E[R] =
∑
j

E[Rj] = k ≤ O(k · log2 n).

We note that the above simple analysis is tight. Consider the case where
during the slot, each session aborts independently with probability (1− 1/k). It
is not hard to see that in this case, with constant probability, at least one session
does not abort during the slot, and the simulator needs to rewind k times in
expectation to resolve the survival session. Therefore, the expected number of
rewinding passes is Ω(k).

In fact, it is instructive to note that the following natural generalization of
the above example is essentially the worse-case example for the general case of
m slots: during each slot i ∈ [m], each survival session j aborts independently
with probability (1−k−1/m). In this case, each session does not abort during the
m slots with probability (k−1/m)m = 1/k, and hence with constant probability,
at least one session survives after m slots. Resolving the survival session requires
k1/m/m rewinding passes in expectation, and hence the expected number of
rewinding passes is Ω(k1/m/m).

We note that although in the above example, each session aborts during each
slot independently, in general, the aborting probability of each session at each
slot can depends arbitrarily on the history and correlated arbitrarily.

The general case of m slots. To analyze the expected number of rewinding
passes, we define the following [0, 1]-valued random variables based on the refer-
ence simulation generated in Step 1. Let hi denote the partial transcript of the
reference simulation before slot i. For every slot i ∈ [m] and session j ∈ [k], we
define random variable pi,j as follows.

– If session j is already aborted at the end of slot i, then we define pi,j , 1.
– Otherwise, we define pi,j to be the conditional probability

pi,j , Pr[session j does not abort during slot i | hi].

For intuition, pi,j is essentially the probability that S can resolve session j
by rewinding slot i. Now consider the best slot for each session — the slot with
the highest pi,j value (this is the slot that S wants to rewind). We record this
value as

p∗j = max
i
pi,j

Note that for a session j that aborts in the reference simulation, we have p∗j = 1,
indicating that sessions j is already resolved and matching the above intuition.
Finally, the number of rewinding passes depends heavily on the worst session —
the session with the worst p∗j value (the “worst best slot”). We record this value
as the critical probability :

p∗ = min
j
p∗j .

To see how the critical probability p∗ plays an important role in the expected
number of rewinding passes, note that on one hand, S needs roughly 1/p∗ rewind-
ing passes to resolve the worse-case session; on the other hand, the chance of
having a reference simulation with small critical probability (say, p∗ ≤ p) is rare
(at most pm). Therefore, to upper bound E[R], we define the following events,
which partition the probability space according to the critical probability. For
every t ∈ N, let

αt
def
=

(
1

2t · k1/m

)
– Let A0 be the event that p∗ ≥ α0 = k−1/m, and for every t ∈ N, let At be

the event that
αt ≤ p∗j < αt−1.

Similarly for every session j ∈ [k],

– Let A0,j be the event that p∗j ≥ α0 = k−1/m, and for every t ∈ N, let At,j
be the event that

αt ≤ p∗j < αt−1.

We can now express the expectation of the number of rewinding passes as follows.

E[R] =
∑
t≥0

Pr[At] · E[R | At]

≤ Pr[A0] · E[R | A0] +
∑
t≥1

 k∑
j=1

Pr[At,j]

 · E[R | At],

where the last inequality follows by At ⊆ ∪jAt,j (which follows from definition).
We proceed to bound each term. For A0, we use trivial bound Pr[A0] ≤ 1. For
general t ≥ 1 and every j ∈ [k], we first observe that when At,j happens, session
j does not abort all of its m slots in the reference simulation (since otherwise,
p∗j = 1). This happened despite the fact that each slot i in session j in the
reference simulation could have only survived (not aborted) with probability
pi,j ≤ αt−1. Thus,

Pr[At,j] ≤ αmt−1 =

(
1

2t−1 · k1/m

)m
=

1

2m(t−1) · k
,

and,
k∑
j=1

Pr[At,j] ≤ k ·
1

2m(t−1) · k
=

1

2m(t−1) .

It remains to bound E[R | At], which is given in the follow lemma.

Lemma 7. For every t ≥ 0, we have

E[R | At] ≤ O
(

2t · k1/m · log2 n
)
.

We apply Lemma 7 to upper bound E[R] first.

E[R] ≤ E[R | A0] +
∑
t≥1

1

2m(t−1) · E[R | At]

≤ O
(
k1/m · log2 n

)
+
∑
t≥1

2t

2m(t−1) ·O
(
k1/m · log2 n

)
≤ O

(
k1/m · log2 n

)
.

This completes the proof of Lemma 5.

Proof (Proof of Lemma 7). The event At means that in the reference simulation,
for every non-aborting session j, there exists a useful slot i ∈ [m] such that

Pr[session j is not aborted after slot i | hi] = pi,j ≥ αt.

Therefore, in each rewinding pass, the simulator S may learn an (additional)
accepting transcript of SS-POK in session j with probability at least αt, allowing
it to extract a fake witness.

Fix a non-aborting session j, and define

q =

(
10 · log2 n

αt

)
= O

(
2t · k1/m · log2 n

)
,

Because the rewinding passes are independent, we have

Pr[session j is resolved after q rewinding passes] = 1− (1− αt)q ≥ 1− ngl(n).

Since there are at most k survival sessions, by the union bound,

Pr[all sessions are resolved after q rewinding passes] ≥ 1− ngl(n).

In other words, every q rewinding passes can solve all the sessions with proba-
bility at least 1− ngl(n). It follows that

E[R | At] ≤ (1− ngl(n)) · q + ngl(n) (1− ngl(n)) · 2q + · · ·

≤ O(q) = O
(

2t · k1/m · log2 n
)
.

4 Lower Bound

The proof of Theorem 2 follows a well-known framework (e.g., [GK96b,CKPR01]).
Let S be a black-box zero-knowledge simulator for Πk = (P k, V k) that makes
less than q = O(k1/m/ log2 n) queries, and let V k∗ be a particular adversarial
verifier to be specified later. We define D, a BPP decision procedure for L by

combining S and V k∗: on input instance x, D(x) accepts if and only if SV
k∗

(x)
outputs an accepting view of V k∗ (i.e., all k sessions of V k∗ accept). Using the
zero-knowledge property, it is easy to show (see for example [GK96b]) that if
the modified protocol Πk∗ = (P k, V k∗) is complete for L (based on our choice
of V k∗), then D is complete for L as well. The main effort of the proof is to
show that D is sound; this relies both on the choice of V k∗ and the fact that S
makes less than q queries to V k∗. We discuss our choice of V k∗ in Section 4.1,
and analyze the soundness of D in Section 4.2.

4.1 The Random Termination Verifier V k∗

In this section, we define a verifier V k∗ for the parallelized protocol with two
goals in mind: the protocol Πk∗ = (P k, V k∗) should be complete (so that D
is complete), and V k∗ should be sound against any rewinding simulator S that
makes less than q queries to V k∗ (so that D is sound).

Just as [CKPR01], we define V k∗ to follow the honest verifier strategy V k

with one extra property: random termination.2 Whenever the prover P k or the
rewinding simulator S makes a query to V k∗, V k∗ determines, with independent
and fresh randomness,3 whether or not to terminate immediately and accept with
probability ρ ∈ [0, 1], a parameter to be specified later; this is done independently
for each of the k parallel sessions (i.e., one session may be terminated while other
sessions continue). Due to this independence among parallel sessions, we often
treat V k∗ as k machines, (V ∗1 , . . . , V

∗
k), each responsible for making the decision

to terminate and generating the verifier messages for one session. Note that
the fresh randomness is only used to decide whether to terminate or not; V k∗

generates protocol messages using its default random tape that is kept the same
between rewinds (as expected by following the honest verifier strategy).

Clearly, Πk∗ = (P k, V k∗) is still complete. It remains to show that V k∗ is

“sound” against the rewinding S; that is, on input x /∈ L, SV
k∗

is unlikely to

2 The term “random termination” was first used by Haitner [Hai09], but the random
termination verifier we considered already appeared in the earlier work of [CKPR01].

3 We use a well-known technique (see for example [GK96b,CKPR01]) to generate fresh
independent randomness on the fly for each query from the simulator S, despite the
fact that S may rewind V k∗ between queries and force V k∗ to use the same random
tape. Let H be a family of q-wise independent hash-functions, and let V k∗ sample
one hash-function h← H in the very beginning. Then whenever V k∗ receives a query
(from P k or S), V k∗ applies h to the current protocol transcript (the sequence of
messages exchanged in the protocol so far) and use the output as a fresh random
tape. Since S makes at most q queries to V k∗, the output distribution of the hash-
function is truly uniformly random.

generate an accepting transcript of V k∗. From now on we drop the common
input x /∈ L. Intuitively, by randomly terminating, V k∗ can better protect its
randomness against S’s rewinds (when V k∗ terminates, S learns nothing about
V k∗’s fixed random tape), thus ensuring soundness. To make this intuition more
concrete, suppose for example that S made q queries τ1, . . . , τq to V k∗, and
without loss of generality outputs the view of V k∗ on a subset of size m of those
queries4, T = {τi1 , . . . , τim}. Further suppose that there exists a parallel session
j ∈ [k] such that V k∗ does not terminate on the queries in T , but terminates on
all remaining queries. Then intuitively, S’s rewinding does not help S convince
V k∗ in session j, and the soundness of the original protocol Π should imply that
V k∗ rejects with overwhelming probability in session j (and therefore rejects
overall).

The core of our proof is to show that, with high probability, for every subset
of size m of queries T = {τi1 , . . . , τim} made by S, there exists a session j ∈ [k]
with overwhelming probability such that rewinds are “not helpful” for session j
with respect to T in the above manner. We make this possible by setting the
termination probability to ρ = (1− 1/q).

We now state the formal lemmas. Let n be the security parameter and L be

a language. Suppose there exists a m(n) ∈ O
(

logn
log logn

)
-round argument Π =

(P, V) for L with perfect completeness and negligible soundness error. For any
polynomially bounded k(n) ≥ n, let S be a black-box zero-knowledge simulator
of the parallelized protocol Πk = (P k, V k) that makes at most

q = k1/m/(log2 n)

queries, and let V k∗ be a random termination verifier of the parallelized protocol
with termination probability

ρ =

(
1− 1

q

)
=

(
1− 1

k1/m
· (log2 n)

)
.

(These parameters passes the following sanity checks: q is polynomially bounded
and q ≥ m — the simulator queries V k∗ at least once for each round of the
protocol. It is also useful later to know that

(
q
m

)
≤ qm ≤ k.) Then:

Lemma 8. On input x ∈ L, D(x) accepts with probability 1, i.e., SV
k∗

(x) out-
puts an accepting view of V k∗ with probability 1− ngl(n).

Lemma 9. On input x /∈ L, the probability that SV
k∗

(x) generates an accepting
view of V k∗ is negligible, i.e., D has negligible soundness error.

We sketch the proof of Lemma 8 now, and give the proof of Lemma 9 in the
next section.
4 Without loss of generality, we may assume that before S outputs a view of V k∗,
S first queries V k∗ with the messages in the view (if S hasn’t already). This may
increase the number of queries by m, and thus weaken the resulting lower bound
from q to q−m. Nevertheless, this does not change our lower bound since q = ω(m)
in Theorem 2.

Proof (Proof Sketch). Using the zero-knowledge property, the output of S is
indistinguishable from the view of V k∗ in an execution with P k. Therefore it is
enough to show that

〈
P k, V k∗

〉
(x) accepts with probability 1. In each parallel

session j ∈ [k], V ∗j accepts by definition if it decides to terminate in some protocol
round. Otherwise, Vj∗ is identical to V and would still accept with probability 1
because the original protocol Π = (P, V) has perfect completeness.

4.2 Soundness of D

Proof (Proof of Lemma 9). We prove Lemma 9 with a reduction. Suppose for the
sake of contradiction that S convinces V k∗ on some input x /∈ L with probability
more than 1/p(n) for some polynomial p. Using S, we construct a cheating prover
P ∗ for the original protocol Π = (P, V) that convinces V with non-negligible
probability.

Before we start, assume without loss of generality that S makes exactly q
queries, and that before S outputs a view of V k∗, S would first query V k∗ on
all previous messages in the view. For technical convenience, we let V k∗ make
a fresh decision to terminate for each query and each session, even if V k∗ has
already terminated previously in the same session. I.e., regardless of history or
message content, for each query and each parallel session, V k∗ always terminates
independently with probability ρ.

Our P ∗ is a natural extension of the classic reduction of [GK96b] — P ∗

guesses a session j0 ∈ [k] and m indices T0 = {i1, . . . , im} ⊆ [q] uniformly at
random, and interacts with an outside honest V by internally simulating an
interaction of (S, V k∗) with V embedded in session j0, queries τi1 , . . . , τim of
V k∗. In comparison, the idea of guessing a random query subset is exactly as
in [GK96b]. The difference is that the reduction in [GK96b] is for single session
protocols, and in contrast, we reduce from parallel protocols to single session
protocols. Hence, our reduction P ∗ guesses a random session as well.

In more details, P ∗ runs S and V k∗ internally. It simulates k − 1 sessions of
V k∗ honestly (except V ∗j0). When simulating V ∗j0 for the ith query where S queries
τi, P

∗ first simulates (with fresh randomness) V ∗j0 ’s decision on termination. If
V ∗j0 decides to terminate but i ∈ T0 or if V ∗j0 does not terminate but i /∈ T0, P ∗

aborts (in both these cases, the termination decision of V ∗j0 is incompatible with
P ∗’s choice of queries to forward). If the forwarded queries (index set T0) are not
“consistent” (e.g., if they query for the same round of the protocol more than
once, or the query contains inconsistent transcript), P ∗ aborts as well. Note that
if P ∗ does not abort, then V k∗ is perfectly simulated (even in session j0).

Now consider the following best case scenario. Suppose that at the end of the
simulation, S successfully outputs an accepting view of V k∗. Moreover, suppose
that the accepting view consists exactly of the queries in index set T0 (this au-
tomatically guarantees that the forwarded queries are consistent), and suppose
that P ∗ does not abort (i.e., termination decisions are compatible with the for-
warded queries). Then, P ∗ will have successfully convinced the outside honest
V . The rest of the proof is devoted to show that this best case scenario occurs
with noticeable probability (roughly 1/(p · k2)).

Let T ⊂ [q] denote an index set {i1, . . . , im} of size m. For an index set
T ⊂ [q] and a session j ∈ [k], we define A(T, j) to be the event that, on session
j, V k∗ terminates session j on query τi iff i /∈ T . Referring back to our intuition
earlier, A(T, j) denotes the event that for session j, S’s rewinds are not helpful
with respect to the queries indexed by T . If event A(T, j) holds, and S uses the
queries indexed by T to form an accepting view of V k∗, and P ∗ guesses both
T0 = T and j0 = j in the beginning, then P ∗ will have successfully convinced
the outside honest V .

We claim that by the setting of parameters, we have

Pr[∀T ⊂ [q],∃j ∈ [k] s.t. A(T, j)] ≥ 1− ngl(n) (1)

where ngl(n) denotes a negligible quantity in n. In words, with overwhelming
probability, for every possible index set T of size m that S may use to output a
view of V k∗, there exists a session j such that S’s rewinds are not helpful with
respect to the queries indexed by T .

Before proving (1), we first use the claim to show that P ∗ convinces V with
noticeable probability. Recall that S outputs an accepting view of V k∗ with
probability 1/p. By a union bound, we have

Pr[(S outputs accepting view of V k∗) ∧ (∀T ⊂ [q],∃j ∈ [k] s.t. A(T, j))]

≥ (1/p)− ngl(n).

Note that when the above event holds, there exist a unique index T̂ of m queries
used by S to form an accepting view of V k∗, and there exists a session ĵ ∈ [k]
such that A(T̂ , ĵ) holds. As mentioned earlier, if P ∗ guesses j0 = ĵ and T0 =
T̂ correctly, P ∗ will have successfully convinced V . Since P ∗ guesses j and T
uniformly at random and independent of the interaction between S and V k∗, we
have

Pr[P ∗ convinces V]

≥ Pr[(S convinces V k∗) ∧ (∀T ⊂ [q],∃j ∈ [k] s.t. A(T, j))

∧ (P ∗ guesses T̂ and ĵ correctly)]

≥ (1/p− ngl(n))

k ·
(
q
m

) ≥ 1

p · k2
,

where in the last line we used
(
q
m

)
≤ qm ≤ k. This contradicts to the fact that

Π has negligible soundness error and completes our analysis.
It remains to show (1). By definition, each session j terminates on each query

τi with probability exactly ρ, independent from any other session or query. Hence,
for any session j and index set T of size m, the probability that event A(T, j)
holds is

Pr[A(T, j)] = ρq−m · (1− ρ)m ≥
(

1− 1

q

)q
·
(

1

q

)m
≥ Ω

(
1

k
· (log2m n)

)
.

It follows that

Pr[∃j ∈ [k] s.t. A(T, j)] ≥ 1−
(

1−Ω
(

1

k
· (log2m n)

))k
≥ 1− e−Ω(log2m n).

Finally, by a union bound, we have

Pr[∀T ⊂ [q],∃j ∈ [k] s.t. A(T, j)] ≥ 1− e−Ω(log2m n) ·
(
q

m

)
≥ 1− ngl(n),

as claimed.

As with most lower bounds for black-box zero-knowledge, a careful reading
reveals that Theorem 2 also applies to more liberal definitions of zero-knowledge,
such as ε-zero-knowledge and zero-knowledge with expected polynomial time
simulators. Additionally, note that the proof of Lemma 9 never assume that S is
a zero-knowledge simulator, and works just as well for any PPT oracle machine
S.

Remark 10. By examining the technical inner workings of the proof of Canetti,
Kilian, Petrank and Rosen [CKPR01] (which also uses a random termination
verifier), we discovered that part of their analysis implicitly presents a lower
bound for the number of queries made by black-box simulators for parallel zero-
knowledge protocols. Compared with Theorem 2 and our analysis, the result of
[CKPR01] establishes a weaker bound (and is arguably more complicated); this
is not surprising, since establishing a parallel lower bound was not their goal.

Specifically, [CKPR01] implicitly establishes a logω(1)(k) lower bound on the
number of simulator queries, whereas we were able to establish a lower bound of
k1/m/(log2 n). Nevertheless, we believe that by adapting our parameters (which
may seem strange for their setting), their analysis could be strengthened to match
our lower bounds (we have not verified all the details, however).

Acknowledgments

We thank to Iftach Haitner and Johan H̊astad for useful discussion in the early
stage of this research.

References

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In FOCS
’01, pages 106–115, 2001.

[BG02] Boaz Barak and Oded Goldreich. Universal arguments and their applica-
tions. In Computational Complexity, pages 162–171, 2002.

[BL02] Boaz Barak and Yehuda Lindell. Strict polynomial-time in simulation and
extraction. In STOC ’02, pages 484–493, 2002.

[Blu86] M. Blum. How to prove a theorem so no one else can claim it. Proc. of the
International Congress of Mathematicians, pages 1444–1451, 1986.

[CDS94] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial
knowledge and simplified design of witness hiding protocols. In CRYPTO
’94, pages 174–187, 1994.

[CKPR01] Ran Canetti, Joe Kilian, Erez Petrank, and Alon Rosen. Black-box concur-
rent zero-knowledge requires ω̃(logn) rounds. In STOC ’01, pages 570–579,
2001.

[DNS04] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge.
J. ACM, 51(6):851–898, 2004.

[FS89] Uriel Feige and Adi Shamir. Zero knowledge proofs of knowledge in two
rounds. In CRYPTO, pages 526–544, 1989.

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding
protocols. In STOC, pages 416–426, 1990.

[GK96a] Oded Goldreich and Ariel Kahan. How to construct constant-round zero-
knowledge proof systems for NP. Journal of Cryptology, 9(3):167–190, 1996.

[GK96b] Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge
proof systems. SIAM Journal on Computing, 25(1):169–192, 1996.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof systems. SIAM Journal on Computing,
18(1):186–208, 1989.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing
but their validity for all languages in NP have zero-knowledge proof systems.
J. ACM, 38(3):691–729, 1991.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge
proof systems. Journal of Cryptology, 7:1–32, 1994.

[Gol01] Oded Goldreich. Foundations of Cryptography — Basic Tools. Cambridge
University Press, 2001.

[Gol02] Oded Goldreich. Concurrent zero-knowledge with timing, revisited. In
STOC ’02, pages 332–340, 2002.

[Hai09] Iftach Haitner. A parallel repetition theorem for any interactive argument.
In FOCS ’09, pages 241–250, 2009.

[HRS09] Iftach Haitner, Alon Rosen, and Ronen Shaltiel. On the (im)possibility of
Arthur-Merlin witness hiding protocols. In TCC ’09, pages 220–237, 2009.

[Kat08] Jonathan Katz. Which languages have 4-round zero-knowledge proofs? In
Theory of Cryptography, pages 73–88, 2008.

[KPR98] Joe Kilian, Erez Petrank, and Charles Rackoff. Lower bounds for zero knowl-
edge on the internet. In FOCS ’98, pages 484–492, 1998.

[MP06] Silvio Micali and Rafael Pass. Local zero knowledge. In STOC ’06, pages
306–315, 2006.

[PPS+08] Omkant Pandey, Rafael Pass, Amit Sahai, Wei-Lung Dustin Tseng, and
Muthuramakrishnan Venkitasubramaniam. Precise concurrent zero knowl-
edge. In EUROCRYPT ’08, pages 397–414, 2008.

[PTV10] Rafael Pass, Wei-Lung Dustin Tseng, and Muthuramakrishnan Venkitasub-
ramaniam. Eye for an eye: Efficient concurrent zero-knowledge in the timing
model. In TCC, pages 518–534, 2010.

[PV08] Rafael Pass and Muthuramakrishnan Venkitasubramaniam. On constant-
round concurrent zero-knowledge. In TCC ’08, pages 553–570, 2008.

[Ros00] Alon Rosen. A note on the round-complexity of concurrent zero-knowledge.
In CRYPTO ’00, pages 451–468, 2000.

