
Collisions are not Incidental: A Compression
Function Exploiting Discrete Geometry

Dimitar Jetchev1, Onur Özen1, and Martijn Stam2

1 Laboratory for Cryptologic Algorithms, EPFL, Switzerland
2 Department of Computer Science, University of Bristol, UK

Abstract. We present a new construction of a compression function
H : {0, 1}3n → {0, 1}2n that uses two parallel calls to an ideal primitive
(an ideal blockcipher or a public random function) from 2n to n bits.
This is similar to the well-known MDC-2 or the recently proposed MJH
by Lee and Stam (CT-RSA’11). However, unlike these constructions,
we show already in the compression function that an adversary limited
(asymptotically in n) to O(22n(1−δ)/3) queries (for any δ > 0) has disap-
pearing advantage to find collisions. A key component of our construction
is the use of the Szemerédi–Trotter theorem over finite fields to bound
the number of full compression function evaluations an adversary can
make, in terms of the number of queries to the underlying primitives.
Moveover, for the security proof we rely on a new abstraction that re-
fines and strenghtens existing techniques. We believe that this framework
elucidates existing proofs and we consider it of independent interest.

1 Introduction

Ever since the initial efforts to turn a blockcipher into a hash function, a major
drawback of using blockcipher-based compression functions producing a digest
size equal to the block-length is that the digest size is too small to produce a hash
function meeting today’s security requirements. For example, AES, operating
on 128 bits, limits collision resistance to at most 264 operations/queries. As a
remedy, double-length compression functions and corresponding double-length
hash functions have been introduced (e.g. [3–5]): A design that outputs 2n bits
(while making several calls to a blockcipher with n-bit blocks) could potentially
provide collision resistance up to roughly 2n blockcipher evaluations.

In this work, we are interested in the construction of a provably collision-
resistant (beyond 2n/2 queries) compression function from 3n to 2n bits making
two parallel calls to an ideal primitive from 2n to n bits (either a public random
function– PuRF–or an ideal blockcipher with n-bit blocks and n-bit keys). Our
motivation is a natural one: All existing designs in this class fall short. There is no
proof, or the proof is not known to extend to the blockcipher case; (non-trivial)
collision resistance is only provided in the iteration; the primitive calls need to

a
f1b

c f2⊗

⊗ A Z

n
n

n

n

n

2n

Fig. 1. Our compression function Hf1,f2 : {0, 1}3n → {0, 1}2n illustrated (see
Construction 1 for the details).

be made in sequence; or the number of calls is higher. Yet known impossibility
bounds [11,12,15] give no reason why such a construction should not be possible.

Our Contribution. We provide a construction (see Fig. 1), for which we prove
that any adversary limited (asymptotically in n) to O(22n(1−δ)/3) queries (for
any δ > 0) has disappearing advantage to find collisions. To the best of our
knowledge, this is the first design of its kind offering collision resistance beyond
2n/2 queries. Our construction has two key innovative components (see Fig. 1):
a preprocessing function Cpre that transforms the 3n-bit input into a pair of
2n-bit strings that are passed as inputs to the two ideal primitive calls; and a
postprocessing function Cpost that combines the two outputs of the ideal prim-
itives and the 3n-bit input into the 2n-bit output of the compression function.
Initially, we will concentrate on the PuRF scenario; details for the more compli-
cated ideal-cipher model follow later (Section 6). In either case, we work in the
ideal-primitive model (giving separate proofs for each scenario).

A major technical hurdle in the proof of collision resistance is that the stan-
dard proof techniques turn out to be insufficient. For concreteness, consider an
adversary that adaptively makes three queries trying to create a collision. Cus-
tomarily, one would upper bound the probability pi (for i = 1, 2, 3) that an
adversary causes a collision on the ith query, say with Bi = 1/4 each; taking a
union bound leads to an overall bound 3/4. Our first abstraction is a game hop
where we allow an adversary to choose its success probability pi directly, rather
than computing it based on which query to some primitive is being made. By
requiring pi ≤ Bi this leads to the same overall winning bound 3/4, achieved by
a greedy adversary. However, this abstraction allows us to phrase and study dif-
ferent scenarios as well (relevant for our collision resistance proof), for instance
one where we only set a global requirement

∑
i pi ≤ 1/2. Now potentially each of

the pi values could be 1/2 itself, so using
∑
iBi would lead to an overall bound

of 3/2 (which is vacuous for a probability), yet intuitively no adversary should
be able to do better than 1/2. A further complication arises when we require
the adversary to obtain a success at least twice. While it is easy to deal with
non-adaptive adversaries, properly taking care of adaptive adversaries is non-

2

trivial. We provide the abstraction and solutions to the problems just described
in Section 3. We believe this framework to be of independent theoretical interest.

The main innovation of our design is the choice for Cpre: the 3n-bit input
is transformed into a pair of an affine line on F2

2n and a point on that line.
Hence, any given valid input pair to the underlying ideal primitives corresponds
to an incidence between a point and a line in the affine plane F2

2n over the finite
field F2n . We then use a classical result of discrete geometry, the Szemerédi–
Trotter theorem over finite fields, to bound the number of incidences between a
set of q lines and a set of q points on F2

2n , namely by roughly q3/2.

The postprocessing is inspired by the Rogaway–Steinberger construction [10],
where a special type of F2n linear map is used. However, we add the product
of the two primitive-outputs to the inputs to this linear map. This turns out to
be crucial for our collision resistance proof. In Section 5 we prove that the best
strategy for any collision-finding adversary is (close to) maximizing the number
of the aforementioned point-line incidences (in Cpre). Our proof uses the newly
developed techniques given in Section 3 to deal with adaptive adversaries.

Putting the pieces together, we achieve the claimed collision resistance of
already at the compression function level. We also prove (everywhere) preimage
resistance up to O(2(1−δ)n) queries (for arbitrary δ > 0). From an efficiency
perspective, our construction makes two parallel calls to distinct primitives, each
with 2n-bit inputs. The overhead consists of a number of xors (to implement
the matrix-multiplication) plus, more significantly, two full (F2n) finite field
multiplications: one during the preprocessing and one during the postprocessing.

2 Preliminaries

Primitive-Based Compression Functions. A compression function is a map
H : {0, 1}tn → {0, 1}sn, where n is an integer (the block-length, which in an
asymptotic setting typically takes the role of the security parameter) and t >
s > 0 are integer parameters. A compression function is primitive-based if it
is computed by a program making calls to a finite number of specified oracles
(primitives). We use superscripts to denote oracle access. For integers c and n, let

Func(cn, n) denote the set of all maps {0, 1}cn → {0, 1}n and let f
$← Func(cn, n)

denote that f is sampled uniformly at random from all elements in Func(cn, n).
Then we call f a public random function (PuRF) and we refer to a compression
function making oracle calls to f as PuRF-based. For given input W we denote
the resulting digest as Hf (W). More generally, when there are r independently

sampled primitives f1, . . . , fr
$← Func(cn, n) we write Hf1,...,fr (W).

Similarly, let Block((c− 1)n, n) denote the set of all blockciphers having
(c− 1)n-bit key and operating on n-bit blocks. In other words, Block((c− 1)n, n)
is the set of all maps E : {0, 1}(c−1)n × {0, 1}n → {0, 1}n, such that for any
key K ∈ {0, 1}(c−1)n, E(K, ·) is a permutation on the set {0, 1}n. (Note that
(c− 1)n + n = cn, so that one can interpret E ∈ Func(cn, n) as well.) For
a blockcipher E, we denote its inverse by D, so for all K ∈ {0, 1}(c−1)n and

3

X ∈ {0, 1}n we have that D(K,E(K,X)) = X. When E
$← Block((c− 1)n, n)

is chosen uniformly at random we call it an ideal cipher and refer to a compres-
sion function HE (or more generally, HE1,...,Er when there are r independently

sampled blockciphers E1, . . . , Er
$← Block((c− 1)n, n)) as blockcipher-based. The

definitions and the illustrations below are provided in the PuRF-based setting;
the blockcipher-based case is analogous, where we assume that oracle access to
E implicitly implies access to its inverse D as well.

We study single-layer compression functions. This means that the oracle
calls can be made in parallel and the output of the compression function is
computed based on the results of these calls, as well as on the input itself.
Formally, let Cpre

i : {0, 1}tn → {0, 1}cn for i = 1, . . . , r, and Cpost : {0, 1}tn ×
({0, 1}n)r → {0, 1}sn, be pre and postprocessing functions, respectively. Given
a tn-bit input W , compute output Z = Hf1,...,fr (W) as follows: for i = 1, . . . , r,
let xi ← Cpre

i (W) and yi ← fi(xi); the output is then Z ← Cpost(W, y1, . . . , yr).

Security Notions. An adversary is an algorithm (typically modelled as an in-
teractive Turing machine) that uses its oracle access to the underlying primitives
of the compression function in order to ‘break’ some well-defined property. We
will limit ourselves to (everywhere) preimage resistance and collision resistance,
and consider information-theoretic adversaries only; our sole resource of interest
is the number of queries made to their oracles (adversaries are considered com-
putationally unbounded). Without loss of generality, adversaries are assumed
not to repeat queries nor to query an oracle outside of its specified domain.

When, for some l ∈ {1, . . . , r}, an adversary makes an fl-query obtaining
Y = fl(X), we will append (l,X, Y) to the query history Q (which is initialized
empty). For preimage and collision resistance, adversarial success can be deter-
mined based on the query history Q only, which we formalize using the yield
set (Definition 1) and which we exploit by dropping the explicit sampling of the
primitives fi and the queries Q for experiments. We partition Q in Q[1] . . .Q[r]
depending on which of the primitives was called and, although technically ele-
ments of Q are triples, we assume that the context suffices to determine which
of the r primitives was used. For i ≤ |Q|, we let Qi denote the first i elements
of Q. Occasionally, we abuse notation by writing X ∈ Q or Y ∈ Q.

Definition 1. Let Hf1,...,fr be a primitive-based compression function and let
Q be a set of queries (with answers) to the underlying primitives, then the yield
set yieldset(Q) is the set of all pairs (W,Z) such that Z = Hf1,...,fr (W) and all
queries necessary for the evaluation of the compression function at W are in Q.
We refer to the cardinality of yieldset(Q) as the yield and denote it by yield(Q).
Additionally, we define yield(q) = maxQ yield(Q) where |Q[i]| ≤ q. (Note that
since Q incorporates the primitives’ answers, the maximum implicitly includes
a maximization over the choice of the underlying primitives.)

Definition 2 (Collision resistance). Let Hf1,...,fr be a primitive-based com-
pression function. For a given Q and Z ∈ {0, 1}sn, define

coll(Q) ≡ ∃Z,W 6=W ′(W,Z), (W ′, Z) ∈ yieldset(Q) .

4

The collision-finding advantage of an adversary A is defined as

Advcoll
H (A) = Pr

[
f1...fr

$← Func(cn, n),Q ← Af1...fr : coll(Q)
]
.

Similarly, define Advcoll
H (q) = maxA Advcoll

H (A), where the maximum is taken over
all adversaries A making at most q queries to each of the underlying primitives.

Definition 3 (Everywhere preimage resistance). Let Hf1,...,fr be a primitive-
based compression function. For a given Q and Z ∈ {0, 1}sn, define

epreZ(Q) ≡ ∃W ′(W ′, Z) ∈ yieldset(Q) .

The everywhere preimage-finding advantage of an adversary A is defined as

Advepre
H (A) = max

Z∈{0,1}sn

{
Pr
[
f1...fr

$← Func(cn, n),Q ← Af1...fr : epreZ(Q)
]}

.

We also define Advepre
H (q) = maxA Advepre

H (A), where the maximum is taken over
all adversaries A making at most q queries to each of the r primitives.

3 Probabilistic Analysis of Adaptive Adversaries

Most of the security proofs in the literature for compression and hash functions
rely on the same principle. Consider the game depicted in Fig. 2, where the ad-
versary has access to some underlying primitive f() and tries to set a predicate
E that is defined for all collections of query-response pairs. We are primarily in-
terested in monotone predicates E, that once set cannot be ‘unset’ by additional
queries. A predicate E is monotone if and only if for all Q ⊆ Q′ it holds that
E(Q)⇒ E(Q′). Additionally, we impose non-triviality of the predicate meaning
that the predicate is not set from the outset (i.e. E(∅) = false). For collision
resistance, one should read coll (Definition 2) for E and for preimage resistance
epreZ (Definition 3). Note that coll and epreZ are always monotone and that, for
our construction, both coll and epreZ are non-trivial.

Bounding an advantage is then tantamount to bounding Pr [E(Q)], where
the probabilities are taken over the randomness of f and the coins of A, if any.
In the following, we show how we can analyse such events in a stepwise approach
to determine useful upper bounds.

There is a distinction between adaptive and non-adaptive adversaries. The
latter are required to commit to a fixed set of queries at the very beginning
of the game. In the information-theoretic setting, it is customary (and WLOG)
to consider deterministic adversaries only. Consequently, maximizing over all
q-query (non-adaptive) adversaries becomes equivalent to maximizing over all
possible query sets of cardinality q. This considerably simplifies proofs. For in-
stance, when providing a proof in the ideal-cipher model (using a union bound),
for a non-adaptive adversary every response can be considered fully random,
whereas for an adaptive adversary previous queries to the cipher might influence
the outcome slightly.

5

ExpE-ad(A):
Let i← 0,Q0 ← ∅
While i < q do

i← i+ 1
xi ← A(Qi−1)
yi ← f(xi)
Qi ← Qi−1 ∪ {(xi, yi)}

Return E(Qq).

ExpE-na(A):
(x1, . . . , xq)← A()
Let i← 0,Q0 ← ∅
While i < q do

i← i+ 1
yi ← f(xi)
Qi ← Qi−1 ∪ {(xi, yi)}

Return E(Qq).

ExpE,F(A):
Let i← 0,Q0 ← ∅
While i < q do

i← i+ 1
xi ← A(Qi−1)
yi ← f(xi)
Qi ← Qi−1 ∪ {(xi, yi)}

Return E(Qq) ∧ ¬F(Qq).

Fig. 2. Standard adaptive (ExpE-ad(A)) and non-adaptive (ExpE-na(A)) security
games for predicate E, as well as the flagged experiment ExpE,F(A).

Related work. Maurer [7] (see also Pietrzak [8]) developed a methodology to
equate adaptive and non-adaptive adversaries in certain cases. While it is possi-
ble to phrase our game from Fig. 2 in their framework, for many of our winning
predicates adaptive adversaries do have an advantage over non-adaptive adver-
saries. Instead we opt for a more direct approach, where we primarily take our
inspiration from existing hash-function security proofs. Henceforth, unless stated
otherwise, we will consider adaptive adversaries only (and consequently drop the
“ad” suffix in naming experiments and advantages).

The straightforward approach. The standard way of dealing with adaptive
adversaries, as exemplified for instance by the security proofs [1, 2, 13] for the
PGV compression functions [9], is the following. Suppose an adversary makes
q queries. These are necessarily made in sequence, so denote with Qi the set
of query-responses after i queries have been made (where i ∈ {0, . . . , q}). The
overall winning probability can then be stated as a sum of the probability of
winning on the ith step, where these ‘stepwise’ probabilities are only taken over
the choice of yi. This makes derivation of the overall bound relatively easy (even
when taking into account the accompanying maximization).

Proposition 1. Let E be a monotone non-trivial predicate. Then the advantage
of any (adaptive) adversary A playing ExpE(A) (see Fig. 2) is bounded by

AdvE(A) ≤
q∑
i=1

max
Qi−1s.t.¬E(Qi−1)

max
xi

Pr [E(Qi) | Qi−1 ∧ xi] .

Using an auxiliary flag. Although easy, the standard approach has the dis-
advantage that for many more involved constructions, the maximum probalities
can get too large. This is typically due to the maximum being attained only for
relatively obscure values for Qi, values that themselves are extremely unlikely
to occur. To weed out these unwanted cases, the analysis is often enhanced by
splitting the monotone predicate into a set of auxiliary events. For some positive
integer k, let E1, . . . ,Ek be predicates such that (for all Q) E(Q)⇒

∨k
i Ei(Q),

then a union bound implies Pr [E] ≤
∑k
i Pr [Ei]. Several examples of proofs using

auxiliary events can be found in the realm of double-length hash functions [6,14].

6

ExpB(A):
Let i← 0

While i < q do
i← i+ 1
pi ← A()
if 0 ≤ pi ≤ Bi then

with probability pi return true

Return false .

ExpBΣ (A):
Let i← 0
While i < q do

i← i+ 1
pi ← A()

if 0 ≤
∑i
j=1 pj ≤ BΣ then

with probability pi return true

Return false .

Fig. 3. Game-playing interpretation of the adaptive security game (where B =
(B1, . . . Bq)) and our refined abstract flagging game.

The events Ei(Q) themselves are usually composed as the conjunction of a
monotone event and a negated monotone event. In the simplest scenario, consider
a second (non-trivial) monotone predicate F. If we define E1 = E ∧ ¬F and
E2 = F then E ⇒ E1 ∨ E2 is satisfied. To bound Pr [E2] = Pr [F] we can use
Proposition 1; for Pr [E1] = Pr [E ∧ ¬F] Proposition 2 shows how the use of the
predicate F effectively allows us to consider a more restricted class of Qi.

Proposition 2. Let E be a non-trivial monotone predicate and let F be an arbi-
trary auxiliary non-trivial monotone predicate. Then the advantage of (adaptive)
adversary A setting E ∧ ¬F is bounded by

Pr [E ∧ ¬F] ≤
q∑
i=1

Pr [E(Qi) | ¬E(Qi−1) ∧ ¬F(Qi−1)] ≤
q∑
i=1

Bi ,

where Bi = maxQi−1s.t.¬E(Qi−1)∧¬F(Qi−1) maxxi Pr [E(Qi) | Qi−1 ∧ xi].

An alternative interpretation. We now make a far bigger step, removing
most of the underlying mechanics of the original game. Instead of letting the
adversary output elements xi and then determining by virtue of yi whether
the adversary wins this round, we directly bound the latter probability. That
is, in experiment ExpB(A) we let the adversary output a probabilities pi and
imagine that E is set with probability pi. To avoid this game becoming vacuous
(namely if the adversary would output some pi = 1) we put bounds Bi and B′i
on the adversary’s success probability. These bounds correspond to the actual
game: they are the highest possible success probabilities any adversary in any
run can achieve in round i. These probabilities are reminiscent of the conditional
probabilities used in the derivation from the standard approach and indeed we
can formalize this relationship. Since in ExpB(A) a straightforward application
of the union bound leads to an overall upper bound of the winning probability
of
∑q
i=1Bi, we can recover Proposition 2.

Lemma 1. Consider games ExpE,F and ExpB and subject to

Bi = max
Qi−1 s.t. ¬E(Qi−1)∧¬F(Qi−1)

max
xi

Pr [E(Qi)] . Then,

7

for all adversaries A, there exists an adversary A′ s.t. AdvE,F(A) ≤ AdvB(A′).

3.1 A More Refined Approach

In ExpB(A) instead of the guards 0 ≤ pi ≤ Bi for all i, we could have used

0 ≤
∑i
j=1 pj ≤

∑i
j=1Bj as well. With a seemingly minor modification, this leads

to another, different game where instead of bounding step-specific by
∑i
j=1Bj ,

we always use the same bound BΣ , as in the game ExpBΣ(A) (Fig. 3).

Proposition 3. For any adversary A, it holds that AdvBΣ(A) ≤ BΣ.

Usage. The ExpBΣ game captures a special kind of condition that one can en-
counter in the ExpE,F game. For any given Q, we can a posteriori determine
the probabilities of success by taking Qi−1 and xi from Q and then looking
at the probability that a freshly drawn yi causes a E. The overall a posteriori
probability of some Q is the sum (over i) of these probabilities. The maximum
attainable probability this way determines BΣ , as formalized in Lemma 2. Of
note here is the observation that for certain games the BΣ obtained here is much
smaller than the

∑q
i=1Bi one would obtain from application of Lemma 1. Very

broadly speaking (and with some abuse of notation), it is the difference between
maxQ {

∑
i pi(Q)} and

∑
i maxQ {pi(Q)}.

Lemma 2. Consider the game ExpE,F. For any given Q, define

pi(Q) =

{
0, if E(Qi−1) ∨ F(Qi−1) or |Q| < i

Pr [yi ← f(xi) : E(Qi−1 ∪ {(xi, yi)}) | Qi−1] otherwise

and let BΣ = maxQ
∑q
i=1 pi(Q). Then for all adversaries A there exists an

adversary A′ such that AdvE,F(A) ≤ AdvBΣ(A′).

3.2 Counting Successes

In the previous games we considered a predicate E(Q) that could either be true

or false . In other words, we were interested in at least one success occurring. In
some scenarios, counting the number of succcesses is more appropriate. To this
end, let ctr be a function such that ctr(Q) ∈ N and ctr(Qi)− ctr(Qi−1) ∈ {0, 1}
for all possible Qi. For future reference, define the event hit(Qi) = true iff
ctr(Qi) = ctr(Qi−1) + 1. In the new game AdvBΣ

κ (A), the predicate E(Q) is set
if and only if ctr(Qq) > κ.

Proposition 4. For any non-adaptive adversary AdvBΣ
κ (A) ≤

(
q

k+1

) (
BΣ
q

)k+1

.

Note that for κ = 0 we retrieve the result of the preceding section given that(
q
1

) (
BΣ
q

)1

= BΣ and it might be tempting to think that for larger κ adaptivity

can be argued away. This however is not the case, an adaptive adversary does

8

have an increased advantage playing AdvBΣ,B
′

κ when compared to a non-adaptive
one. Nonetheless, we conjecture that the bound just derived is sufficiently loose
to apply to adaptive adversaries as well.

Conjecture 1. For any adaptive adversary AdvBΣ
κ (A) ≤

(
q

k+1

) (
BΣ
q

)k+1

.

Proposition 5. For any adaptive adversary AdvBΣ
κ (A) ≤ (BΣ)

κ+1
.

4 A New Double-Length Compression Function

In this section, we introduce a new compression function (Construction 1, see
also Fig. 1) H : {0, 1}3n → {0, 1}2n that makes parallel calls to two random
functions f1, f2 : {0, 1}2n → {0, 1}n. For notational convenience, we often write
the input W ∈ {0, 1}3n as (a, b, c) ∈ ({0, 1}n)3 and identify {0, 1}n with F2n .

Construction 1. Let f1, f2 : {0, 1}2n → {0, 1}n be two distinct and indepen-
dently sampled PuRFs. Define Hf1,f2 : {0, 1}3n → {0, 1}2n to be a single-layer
compression function using the preprocessing function Cpre : F3

2n → (F2
2n)2 de-

fined by Cpre = (Cpre
1 , Cpre

2), where

Cpre
1 (a, b, c) = (a, b) and Cpre

2 (a, b, c) = (c, ac+ b)

and the postprocessing function Cpost : F5
2n → F

2
2n

Cpost(a, b, c, y1, y2) = A ·
(
a c y1 y2 y1y2

)T
, where A =

(
ω11 ω12 ω13 ω14 ω15

ω21 ω22 ω23 ω24 ω25

)
is a matrix (over F2n) satisfying certain non-degeneracy conditions (see Table 1).

Design rationale. In the security proofs, we abstract as best as we can the
properties required of Cpre and Cpost. In practice, we recommend using the

matrix (cf. Table 1) A =

(
1 1 0 0 1
0 0 1 1 0

)
. Note that in the context of iterating the

compression function, one needs to specify which input blocks represent the mes-
sage block and which ones represent the state or chaining variable. Our security
results are independent of this choice. The choice may, however, significantly
affect the efficiency of the design.

Incidence-Based Preprocessing. For a single-layer construction, the prepro-
cessing function Cpre fully determines the relationship between the queries made
to the primitive on one hand, and the compression function evaluations this en-
ables on the other. Our search is therefore for a preprocessing function Cpre

such that yield(q) does not grow too fast as a function of q. In particular, we are
interested in whether we can find a Cpre that has good behaviour for q < 22n

as well. It turns out, we can do well by exploiting results from incidence geome-
try. We note the following theorem that is a finite field version of a theorem of
Szemerédi and Trotter over the reals (see, e.g. [16] for an elementary proof).

9

Theorem 2. Let F be a finite field and P (resp. L) be a set of points (resp. lines)
in F2. Let I(P,L) = {(p, `) | (p, `) ∈ P × L and p ∈ `}. Then

|I(P,L)| ≤ min
(
|P ||L|1/2 + |L|, |L||P |1/2 + |P |

)
.

Let (a, b), (c, d) ∈ F2
2n denote the query pairs made to f1 and f2, respectively.

We call a query pair (a, b)–(c, d) compatible if and only if ((a, b), (c, d)) is in
the image of Cpre. In addition, a query (a, b) is called (c, d)-compatible or vice
versa if the pair (a, b)–(c, d) is compatible. For the preprocessing function Cpre

from Construction 1, a pair (a, b)–(c, d) is compatible if and only if d = ac+ b is
satisfied. Finally, a preprocessing function Cpre satisfies the completion property
if and only if (i) (a, b) and c (ii) (c, d) and a uniquely determines a compatible
query pair (a, b)–(c, d) for any a, b, c, d ∈ F2n .

Proposition 6. The preprocessing function Cpre from Construction 1 has the
completion property and yield(q) ≤ q3/2 + q.

Proof. We remark that the completion property can be algebraically verified.
To determine the yield, we interpret the (a, b) as the line y = ax + b in F2

2n

and (c, d) as a point in F2
2n . This renders bounding the yield an immediate

consequence of Theorem 2. To finish the proof, note that the sets Q[1] and
Q[2] correspond to the lines L and the points P , respectively, and |I(Q[2],Q[1])|
counts exactly the number of compression function inputs whose mapping can
be completely determined by the given queries. Specifying |Q[1]| = |Q[2]| = q
yields the proposition statement. ut

Non-linear Matrix-Style Postprocessing. Our postprocessing is clearly in-
spired by the use of F2n -matrices by Rogaway and Steinberger [10], but with the
crucial difference that we add the non-linear term y1y2. Omitting this non-linear
term is fatal for security. For the fully-linear version an adaptive adversary can
force its evaluated digest to lie (uniformly) on a prespecified set of size 2n. In
contrast, for our construction, the adversary’s control is significantly reduced.

Security Claims. We state our security claims for collision and (everywhere)
preimage resistance in Theorems 3 and 4, respectively. A sketch of our collision
resistance proof is given in Section 5. We refer to the full version for proofs of
Theorem 4, Corollaries 1 and 2.

Theorem 3. Let Hf1,f2 be a single-layer compression function defined by Cpost

given in Construction 1 where Cpre : F3
2n → (F2

2n)2 is any function that satisfies
the completion property. Let k, µ, γ > 0 and λ ≥ 3 be integers and let κ = kλ+µ.
Then

Advcoll
H (q) ≤ κY

2n
+
q(γ2 + 1)

2n−1
+

(
q
γ

)
2(γ−1)n−1

+ 22n

(
Y

2n

)k+1

+

(
q
µ

)
2(µ−1)n−1

+

(
q
λ

)
2(λ−2)n−1

.

Corollary 1. Let Hf1,f2 be the compression function given in Construction 1.
For every δ > 0 and q = 22n(1−δ)/3, one has Advcoll

H (q) = o(1) as n→∞.

10

Theorem 4. Let Hf1,f2 be a single-layer compression function defined by Cpost

given in Construction 1 and an arbitrary Cpre that satisfies the completion prop-
erty. For any integer κ > 1, one has

Advepre
H (q) ≤ 2n+1

(
q

κ

)(
1

2n−1

)κ
+

q

2n−1
+

κq

2n−1
.

Corollary 2. Let Hf1,f2 be the compression function given in Construction 1.
Then for all δ > 0 and q = 2n(1−δ), it holds that Advepre

H (q) = o(1) as n→∞.

5 Proof of Collision Resistance (Theorem 3)

5.1 Overall Strategy

Let A be a collision-finding adversary making at most q queries to each of the
public random functions f1 and f2 (without loss of generality, we assume that
the adversary makes exactly q queries to both). Our goal is to bound Advcoll

H (A),
in particular Pr[coll(Q)], where Q is adaptively generated by A. We slightly
abuse notation and use Q (and derived symbols such as Qi) interchangeably as
a random variable (when it is the direct result of playing the collision game), or as
a dummy variable (e.g. when we want to quantify over all possible instantiations),
where the context makes the precise meaning clear. In all cases we can use the
global parameter q for the number of f1 and f2 queries and Y = yield(q).

To bound the probability of an adversary finding a collision, we first look at
the probability that any specific query completes the collision: fix i and consider
the event coll(Qi)∧¬coll(Qi−1). Here we call query i fresh and we say it causes
a collision. For concreteness, suppose the ith query is an f1-query (a, b) (the case
for an f2-query (c, d) is analogous), then the first observation is that it adds a
new point to the yield set for every (a, b)-compatible pair (c, d) that was already
in Qi−1. Now the ith query can cause a collision in two different ways:

Case I Two compatible and colliding pairs (a, b)–(c, d) and (a′, b′)–(c′, d′) are
formed with the triple {(a′, b′), (c, d), (c′, d′)} ⊆ Qi−1 (where (a, b) 6= (a′, b′)).

Case II Two distinct compatible and colliding pairs exist with (a, b) = (a′, b′)
and {(c, d), (c′, d′)} ⊆ Qi−1, where (c, d) 6= (c′, d′).

We associate the events collI(Q) and collII(Q) with these two cases; it follows
that coll(Q) ≡ (collI(Q) ∨ collII(Q)). The probability of finding a collision at the
ith step depends strongly on the number of compatible queries already in Qi−1;
we denote this number by (random variable) ni. While we know (by design)

that
∑2q
i=1 ni ≤ yield(q) , a straightforward union bound fails to take this into

account properly: Because potentially ni ≈ q, naive bounding of
∑2q
i=1 ni would

be quadratic in q (which is typically much larger than yield(q)). Dealing with this
in case of non-adaptive adversaries is straightforward (as such an adversary needs
to commit to the ni values in advance), but requires a more careful treatment
in the case of adaptive adversaries. To bound the probability of collI(Q), we

11

additionally condition on not having too many collinear output points. For an
integer κ > 0, badcl[κ](Q) is set if and only if Q leads to more than κ collinear
output points in F2

2n . The reason for collinearity will become evident shortly.

An Overview of the Proof. We start with the observation, for any Q, that

coll(Q) ≡ (collI(Q) ∨ collII(Q)) ≡ (collI(Q) ∧ ¬collII(Q)) ∨ collII(Q) ,

where the expression (collI(Q) ∧ ¬collII(Q)) is equivalent to(
collI(Q) ∧ ¬collII(Q) ∧ ¬badcl[κ](Q)

)
∨
(
collI(Q) ∧ ¬collII(Q) ∧ badcl[κ](Q)

)
.

Using the trivial implications for the above statements, we reach

coll(Q)⇒
(
collI(Q) ∧ ¬badcl[κ](Q)

)︸ ︷︷ ︸
E1

∨
(
¬collII(Q) ∧ badcl[κ](Q)

)︸ ︷︷ ︸
E2

∨ collII(Q)︸ ︷︷ ︸
E3

. (1)

The idea of our proof is to find separate upper bounds for the probability of the
events Ei for i = 1, 2, 3 and then use the union bound the finalize the proof in
Corollary 3 (i.e.

∑3
i=1 Pr[Ei] provides the overall upper bound). An upper bound

for Pr[E1] is given in Lemma 7 (corresponding to the term κY/2n in Theorem 3).
An upper bound for Pr[E3] is established in Lemma 8, which corresponds to the
term qγ2/2n−1 + qγ/2(γ−1)n−1 from Theorem 3. Finally, we explain where the
bounds for Pr[E2] (i.e. the remaining terms from Theorem 3) come from. We
use Proposition 9 to establish an implication that leads to an upper bound for
Pr[E2]. Moreover, several auxiliary events, which are defined and investigated
in Sections 5.2 and 5.4, are required to finalize the bound Pr[E2]: The upper
bound for the auxiliary events are given in Lemmas 3, 4, 5 and 9.

On the Matrix A Used in Cpost. In the following, we consider a general
matrix A (see Construction 1) over F2n for the proof of Theorem 3. The condi-
tions on the entries of the matrix A required throughout the paper, as well as
where they are used, are provided in Table 1. (Note that the probability that a
randomly selected matrix A satisfies our criterion is close to one.)

Output Lines. By assumption, we know that an f1-query (a, b) can only com-
plete a collision using an already present compatible f2-query (c, d). Let (a, b)
be an f1-query and let (c, d) be a preceding (a, b)-compatible f2-query with
y2 = f2(c, d). The output Cpost(a, b, c, y1, y2) of the compression function on
input (a, b, c) then lies on the line (in F2

2n)

L1:c,d,y2;a :


(
aω11 + cω12 + y2ω14

aω21 + cω22 + y2ω24

)
︸ ︷︷ ︸

offset

+y1

(
ω13 + y2ω15

ω23 + y2ω25

)
︸ ︷︷ ︸

slope

| y1 ∈ F2n

 , (2)

where we get the actual output point for (a, b, c) by setting y1 = f1(a, b). The
randomness of f1 results in a random point on L1:c,d,y2;a. Note that the line
cannot be degenerate (see condition C1 in Table 1), i.e. it has nonzero slope.

12

The Condition Where used Reference

(Theorem 3) (Section 5)

C1: ω13ω25 6= ω15ω23 (S) Non-degeneracy of L1:-lines (2)
(N) Non-parallel P1:-partitions Lemma 4

C2: ω14ω25 6= ω15ω24 (S) Non-degeneracy of L2:-lines (3)
(N) Non-parallel P2:-partitions Lemma 4

C3: ω11 6= 0 ∧ ω21 6= 0 (N) Non-degeneracy of P1:-partitions Lemma 3
C4: ω12 6= 0 ∧ ω22 6= 0 (N) Non-degeneracy of P2:-partitions Lemma 3

C5: ω15 6= 0 ∧ ω25 6= 0 (N) Nonlinearity of Cpost Construction 1

Table 1. Quick recap of the properties of the entries of A (see Construction 1)
used in the proof of Theorem 3. (N) denotes that the condition is necessary,
whereas (S) denotes it is sufficient.

Similarly, let (c, d) be an f2-query and let (a, b) be a preceding (c, d)-compatible
f1-query. The output of the compression function on (a, b, c) lies on the line:

L2:a,b,y1;c :

{(
aω11 + cω12 + y1ω13

aω21 + cω22 + y1ω23

)
+ y2

(
ω14 + y1ω15

ω24 + y1ω25

)
| y2 ∈ F2n

}
. (3)

This time the output point is obtained by setting y2 = f2(c, d). Again, the
randomness of f2 results in a random point on L2:a,b,y1;c. We note that this time
non-degeneracy follows from ω14ω25−ω24ω15 6= 0 (see condition C2 in Table 1).
Now it is easy to see why we do not want too many collinear points: It would
ease the collision-finding considerably due to the above output lines.

5.2 Partitions, Bunches and Some Auxiliary Events

Partitions and Bunches. Suppose that an f2-query (c, d) results in y2 =
f2(c, d). By the completion property, we obtain, for each a ∈ F2n , a unique b
such that (a, b) is (c, d)-compatible. Now we recall that if we query f1(a, b), the
resulting yield point lies on the line L1:c,d,y2;a. From Equation (2) of L1:c,d,y2;a, it
follows that the slope of these lines is fixed (because (c, d) and y2 are fixed) and
independent of a; hence by ranging over all possible a ∈ F2n we achieve a set of
(parallel) lines. This is what we call a partition (partitions due to an f1-query is
defined analogously): P1:c,d,y2 = {L1:c,d,y2;a | a ∈ F2n} . The opposite notion to a
partition is a bunch: For all preceding and (a, b)-compatible (cj , dj) ∈ Q, for some
integer j ≥ 1, the bunch of interest is the collection of lines (for y2:j = f2(cj , dj))

B1:(a,b)(Q) =
{
L1:cj ,dj ,y2:j ;a | (cj , dj , y2:j) ∈ Q ∧ (cj , dj) compatible with (a, b)

}
.

(We also write B1:i if the ith query is an f1-query (a, b).) The answer y1 = f1(a, b)
specifies a point on each of these lines to be added to the yield set; we refer to
this as realizing the bunch. For the record, B2:(c,d)(Q) is defined analogously.

Degenerate Partitions. We have seen that a partition contains a set of parallel
lines. If different choices of a lead to different lines, the lines compatible to

13

(c, d) necessarily partition the output plane (justifying our terminology). It is
possible however that regardless of the a values, we end up with identical lines
(though with a different parametrization). In such a case, a partition collapses
to a single line and we speak of a degenerate partition. A degenerate partition
causes problems in our proof, because it allows an adversary to create many
collinear points (by ranging over a). Let baddp(Q) denote the event that Q gives
rise to a degenerate partition (either via different a or c values).

Lemma 3. Let Q be generated adaptively, then Pr [baddp(Q)] ≤ q/2n−1 , and if
ω11ω23 6= ω13ω21, ω12ω24 6= ω14ω22, ω11ω25 = ω15ω21 and ω12ω25 = ω15ω22 , then
Pr [baddp(Q)] = 0 .

Parallel Partitions. We now define another bad event, parallel partitions, that
can potentially help a collision-finding adversary create collinear points. We have
seen that, once answered, a single f2-query (c, d) determines a well-defined slope
for the partition P1:c,d,y2 . If two or more distinct partitions (of the same type)
have the same slope, we call the partitions parallel. The number of parallel
partitions is tightly related to a standard occupancy problem. Consequently,
avoiding parallel partitions altogether is not realistic, yet we can put reasonable
bounds on too much parallelism occurring. We define badpp[µ](Q) to be the event
that Q results in more than µ parallel partitions (of identical type).

Lemma 4. Let Q be generated adaptively. Then, for any integer µ > 0,

Pr
[
badpp[µ](Q)

]
≤

(
q
µ

)
2(µ−1)n−1

.

Local Collinearity. Now we discuss another auxiliary event, local collinearity,
that is used in our collinearity analysis. Suppose an f1-query results in y1 =
f1(a, b). We associate with this query-response pair a point (a, y1) ∈ F2

2n . Let
badlc[λ](Q) be the event that there exist at least λ pairs of f1-queries (ai, bi)
with distinct ai values, such that the associated points (ai, y1:i) are collinear or,
alternatively, that there exist at least λ pairs of f2-queries (ci, di) with distinct
ci values, such that the points (ci, y2:i) are collinear.

Lemma 5. Let Q be generated adaptively. Then, for any integer λ > 0,

Pr
[
badlc[λ](Q)

]
≤

(
q
λ

)
2(λ−2)n−1

.

Target Local Collinearity. For local collinearity, we are interested in any λ
associated points being collinear, without worrying about which line they are
on. However, in an upcoming case we are only interested in points all lying on
a line with a pre-specified slope (the offset of the line is not fixed in advance).
Let badslc[γ](Q) be the event that Q[1] or Q[2] leads to more than γ associated
points collinear with pre-specified, non-vertical slope.

Lemma 6. Let Q be generated adaptively. Then, for any integer γ > 0,

Pr
[
badslc[γ](Q)

]
≤

(
q
γ

)
2(γ−1)n−1

.

14

5.3 Bounding Collisions: Focusing on Pr[E1] and Pr[E3]

Lemmas 7 and 8 provide an upper bound for Pr[E1] and Pr[E3], respectively.

Lemma 7. Let i be a positive integer that satisfies i ≤ q and Let Qi−1 be arbi-
trary query list satisfying ¬badcl[κ](Qi−1) (for some positive integer κ). Then

Pr[E1] = Pr[collI(Q) ∧ ¬badcl[κ](Q)] ≤ κY

2n
.

Proof (Sketch). We start by noticing that Pr[E1] ≤ Pr[collI(Q)|¬badcl[κ](Q)].
Each of the ni compatible elements together with the ith query, defines a line
such that the random answer to the ith query will determine which point will
be added to the yield set. The condition ¬badcl[κ](Qi−1) implies that on each
of these lines, there are at most κ previous yield points. Since the underlying
primitive is a random function, the answer is fully random and for a given line,
one of the previous yield points is hit with probability at most κ/2n. A union
bound over the ni lines gives the bound niκ/2

n. To obtain the overall bound,
we exploit our refined game AdvBΣ

κ (A) to determine the
∨

expression. Here we

use the above to determine BΣ = κY/2n as
∑2q
i=1 ni ≤ Y (Proposition 3). ut

We now bound the probability of finding an instantaneous collision with a fresh
query, first given that ¬badslc[γ](Qi−1) holds. Then we finalize our bound for
Pr [collII(Q)] using Proposition 2 along with Lemma 6.

Lemma 8. Let i be a positive integer that satisfies i ≤ q and let Q be generated
adaptively. Then, for any integer γ > 0,

Pr[E3] = Pr [collII(Q)] ≤ qγ2

2n−1
+ Pr

[
badslc[γ](Q)

]
.

5.4 Bounding Overall Collinearity: Bounding Pr[E2]

We now bound Pr[E2]. The main technical difficulty is to properly separate the
randomness of the f1- and f2-queries. In order to do this in the adaptive setting,
we use a method that we call bunching. For a fixed i, suppose that the ith query
is an f1-query (a, b). Recall that for the f1-query (a, b), the bunch B1:i consists
of the lines L1:cj ,dj ,y2:j ;a for the ni compatible preceding f2-queries (cj , dj) (with
y2:j = f2(cj , dj) for j = 1, . . . , ni). The answer y1 = f1(a, b) adds a single point
to the yield set for each compatible f2-query (cj , dj). These ni new points lie on
the lines L1:cj ,dj ,y2:j ;a, thereby realizing the bunch B1:i. We refer to the set of
freshly added points inside a bunch as a constellation that we denote by

C1:i(Q) = {Hf1,f2(a, b, cj) | (cj , dj) ∈ Qi−1 ∧ (cj , dj) compatible with (a, b)} .

In order to determine the maximum collinearity within the yield set, we estimate
(i) the probability of too much collinearity occurring within a single constellation
(Proposition 8) and (ii) the probability of too many constellations being collinear

15

(Lemma 9). Here, a set of constellations is collinear if we can choose a point from
each constellation in the set such that all chosen yield points are collinear. If we
know that at most λ points are collinear within a single constellation, and at
most k constellations are collinear, we can conclude that at most κ = kλ points
are collinear overall. This is formalized in the proposition below, taking into
account an additional technicality.

Proposition 7. Let k, λ, µ > 0 be fixed integers, κ = kλ+µ and let badint[λ](Q)
be the event that there exists a constellation having more than λ collinear points.
Define badext[k](Q) to be the event that there exists a line ` passing through more
than k constellations whose bunches do not contain `. Then (for arbitrary Q)

badcl[κ](Q)⇒
(
badint[λ](Q) ∨ badext[k](Q) ∨ badpp[µ](Q)

)
.

Proposition 8 is used to decompose the event badint[λ](Q) into two events.

Proposition 8. For arbitrary Q, if (integer) λ ≥ 3 then(
¬collII(Q) ∧ badint[λ](Q)

)
⇒

(
baddp(Q) ∨ badlc[λ](Q)

)
.

To bound collinearity between constellations, we first consider collinearity with
a given line ` in the output plane. We are interested in bounding the probability
that at least k constellations are incident to `. For a line `, integer k and query
history Q, let bad`−hit[k](Q) be the following event: there exist at least k con-
stellations whose corresponding bunches do not contain ` that are incident to `.
Recall that badext[k](Q) is the event that there exists a line ` passing through
more than k constellations whose bunches do not contain `.

Lemma 9. Let ` be given and let Q be generated adaptively. Then

Pr
[
bad`−hit[k](Q)

]
≤
(
Y

2n

)k+1

and Pr
[
badext[k](Q)

]
≤ 22n

(
Y

2n

)k+1

.

Proof (Sketch). Let ctr`−hit(Q) be the number of constellations that are incident
to `, again restricted to those constellations whose corresponding bunch does not
contain `. Clearly, the event bad`−hit[k](Q) is equivalent to ctr`−hit(Q) ≥ k. Note
that for any i, we have ctr`−hit(Qi)− ctr`−hit(Qi−1) ∈ {0, 1} since constellation i
can be counted at most once (namely if it is incident to `). Let hit`−hit(i) be the
event that the bunch Bi upon realization is incident to `. Suppose that ` 6∈ Bi and
that Bi consists of ni lines (each containing an output point). Since ` intersects
each line in a bunch in at most one point, we obtain that Pr [hit`−hit(i)] ≤ ni/2n.

Due to yield restrictions,
∑2q
i=1 ni ≤ Y . The lemma statement follows from

applying Proposition 4 with BΣ = Y/2n. The statement for Pr
[
badext[k](Q)

]
follows from the union bound over all lines `. ut

Proposition 9. Let k, λ, and µ be positive integers with λ ≥ 3 and κ = kλ+µ.
Then, for arbitrary Q,

Pr[¬collII(Q) ∧ badcl[κ](Q)] ≤ Pr[F(Q)] ,where

Pr [F(Q)] ≤ Pr[badext[k](Q)] + Pr[badpp[µ](Q)] + Pr[badlc[λ](Q)] + Pr[baddp(Q)] .

16

Finishing the Proof. The following corollary wraps up what we have discussed
so far and finishes the proof of Theorem 3 with the help of earlier obtained bounds
(Lemmas 3, 4, 5, 7, 8, and 9).

Corollary 3. Let Q be generated adaptively, then for F(Q) given in Prop. 9

Pr [coll(Q)] ≤ Pr[collI(Q) ∧ ¬badcl[κ](Q)] + Pr [collII(Q)] + Pr [F(Q)] .

6 Blockcipher-Based Instantiation

A näıve replacement of the underlying PuRFs in Construction 1 with ideal block-
ciphers leads to a weaker security due to the availability of the decryption queries
(see the full version for the justification). However, adding a layer of “Davies–
Meyer” suffices for our purposes. Note that there is no need to change Cpre; the
only modification is in Cpost (the proofs are given in the full version).

Construction 5. Let E1, E2 : {0, 1}n×{0, 1}n → {0, 1}n be two fixed randomly
(and independently) chosen blockciphers. Define a single-layer compression func-
tion HE1,E2 : {0, 1}3n → {0, 1}2n by Cpre : F3

2n → (F2
2n)2 from Construction 1

and Cpost : F5
2n → F

2
2n

Cpost(a, b, c, y1, y2) = A · (a, c, a+ y1, c+ y2, (a+ y1)(c+ y2))
T
, where

A is a matrix satisfying certain non-degeneracy conditions.3

Theorem 6. Let HE1,E2 be given as in Construction 5 where Cpre : F3
2n →

(F2
2n)2 is an arbitrary function that satisfies the completion property. Let k, µ, γ >

0 and λ ≥ 3 be integers. Then, for κ = kλ+ µ, Advcoll
H (q) is upper bounded by

κY + 2qγ2 + 4q

2n − q +
4
(
q
γ

)
(2n − q)(γ−1)

+ 22n

(
Y

2n − q

)k+1

+
4
(
q
µ

)
(2n − q)(µ−1)

+
4
(
q
λ

)
(2n − q)(λ−2)

.

Theorem 7. Let HE1,E2 be given as in Construction 5 where Cpre : F3
2n →

(F2
2n)2 is an arbitrary function that satisfies the completion property and let

κ > 1 be an integer. Then

Advepre
H (q) ≤ 2n+2

(
q

κ

)(
2

2n − q

)κ
+

2q

2n − q
+

2κq

2n − q
.

7 Acknowledgments

This work was initiated while the third author was at EPFL. It has been sup-
ported in part by the European Commission through the ICT programme under
contract ICT-2007-216676 ECRYPT II. The first two authors are supported by
a grant of the Swiss National Science Foundation, 200021-122162. We thank
anonymous reviewers of TCC’12 and Tom Shrimpton for their useful comments.

3 We note that we require extra conditions on the entries of A to make our proofs
work; yet these are minor and can be easily satisfied, e.g. the proposed matrix A.

17

References

1. Black, J., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-
based hash-function constructions from PGV. In: Yung, M. (ed.) Advances in
Cryptography—Crypto’02. LNCS, vol. 2442, pp. 320–335. Springer, Heidelberg
(2002)

2. Black, J., Rogaway, P., Shrimpton, T., Stam, M.: An analysis of the block-cipher-
based hash functions from PGV. Journal of Cryptology 23(4), 519–545 (2010)

3. Brachtl, B., Coppersmith, D., Hyden, M., Matyas, S., Jr., Meyer, C., Oseas, J.,
Pilpel, S., Schilling, M.: Data authentication using modification detection codes
based on a public one-way encryption function. U.S. Patent No 4,908,861 (1990)

4. Hirose, S.: Some plausible constructions of double-length hash functions. In: Rob-
shaw, M.J. (ed.) FSE’06. LNCS, vol. 4047, pp. 210–225. Springer, Heidelberg (2006)

5. Lai, X., Massey, J.L.: Hash function based on block ciphers. In: Rueppel, R.A. (ed.)
Advances in Cryptography—Eurocrypt’92. LNCS, vol. 658, pp. 55–70. Springer,
Heidelberg (1992)

6. Lucks, S.: A collision-resistant rate-1 double-block-length hash function. In: Bi-
ham, E., Handschuh, H., Lucks, S., Rijmen, V. (eds.) Symmetric Cryptography.
No. 07021 in Dagstuhl Seminar Proceedings, Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, Dagstuhl,
Germany (2007), http://drops.dagstuhl.de/opus/volltexte/2007/1017

7. Maurer, U.M.: Indistinguishability of random systems. In: Knudsen, L. (ed.) Ad-
vances in Cryptography—Eurocrypt’02. LNCS, vol. 2332, pp. 110–132. Springer,
Heidelberg (2002)

8. Pietrzak, K.: Indistringuishability and Composition of Random Systems. Ph.D.
thesis, ETH Zurich (2005)

9. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers: A
synthetic approach. In: Stinson, D. (ed.) Advances in Cryptography—Crypto’93.
LNCS, vol. 773, pp. 368–378. Springer, Heidelberg (1993)

10. Rogaway, P., Steinberger, J.: Constructing cryptographic hash functions from fixed-
key blockciphers. In: Wagner [17], pp. 433–450

11. Rogaway, P., Steinberger, J.: Security/efficiency tradeoffs for permutation-based
hashing. In: Smart, N.P. (ed.) Advances in Cryptography—Eurocrypt’08. LNCS,
vol. 4965, pp. 220–236. Springer, Heidelberg (2008)

12. Stam, M.: Beyond uniformity: Better security/efficiency tradeoffs for compression
functions. In: Wagner [17], pp. 397–412

13. Stam, M.: Blockcipher-based hashing revisited. In: Dunkelman, O. (ed.) FSE’09.
LNCS, vol. 5665, pp. 67–83. Springer, Heidelberg (2009)

14. Steinberger, J.: The collision intractability of MDC-2 in the ideal-cipher model.
In: Naor, M. (ed.) Advances in Cryptography—Eurocrypt’07. LNCS, vol. 4515,
pp. 34–51. Springer, Heidelberg (2007)

15. Steinberger, J.P.: Stam’s collision resistance conjecture. In: Gilbert, H. (ed.) Ad-
vances in Cryptography—Eurocrypt’10. LNCS, vol. 6110, pp. 597–615. Springer,
Heidelberg (2010)

16. Tao, T.: The Szemerédi-Trotter theorem and the cell decom-
position (2009), http://terrytao.wordpress.com/2009/06/12/

the-szemeredi-trotter-theorem-and-the-cell-decomposition/

17. Wagner, D. (ed.): Advances in Cryptography—Crypto’08, LNCS, vol. 5157.
Springer, Heidelberg (2008)

18

http://drops.dagstuhl.de/opus/volltexte/2007/1017
http://terrytao.wordpress.com/2009/06/12/the-szemeredi-trotter-theorem-and-the-cell-decomposition/
http://terrytao.wordpress.com/2009/06/12/the-szemeredi-trotter-theorem-and-the-cell-decomposition/

	Collisions are not Incidental: A Compression Function Exploiting Discrete Geometry
	Dimitar Jetchev, Onur Özen, and Martijn Stam

