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Abstract. At Eurocrypt 2010, Freeman proposed a transformation from
pairing-based schemes in composite-order bilinear groups to equivalent
ones in prime-order bilinear groups. His transformation can be applied
to pairing-based cryptosystems exploiting only one of two properties of
composite-order bilinear groups: cancelling and projecting. At Asiacrypt
2010, Meiklejohn, Shacham, and Freeman showed that prime-order bilin-
ear groups according to Freeman’s construction cannot have two prop-
erties simultaneously except negligible probability and, as an instance
of implausible conversion, proposed a (partially) blind signature scheme
whose security proof exploits both the cancelling and projecting proper-
ties of composite-order bilinear groups.

In this paper, we invalidate their evidence by presenting a security proof
of the prime-order version of their blind signature scheme. Our secu-
rity proof follows a different strategy and exploits only the projecting
property. Instead of the cancelling property, a new property, that we call
translating, on prime-order bilinear groups plays an important role in the
security proof, whose existence was not known in composite-order bilin-
ear groups. With this proof, we obtain a 2-move (i.e., round optimal)
(partially) blind signature scheme (without random oracle) based on the
decisional linear assumption in the common reference string model, which
is of independent interest.

As the second contribution of this paper, we construct prime-order bi-
linear groups that possess both the cancelling and projecting properties
at the same time by considering more general base groups. That is, we

take a rank n Zp-submodule of Zn2

p , instead of Zn
p , to be a base group

G, and consider the projections into its rank 1 submodules. We show
that the subgroup decision assumption on this base group G holds in
the generic bilinear group model for n = 2, and provide an efficient
membership-checking algorithm to G, which was trivial in the previous
setting. Consequently, it is still open whether there exists a cryptosys-
tem on composite-order bilinear groups that cannot be constructed on
prime-order bilinear groups.



1 Introduction

Since Boneh, Goh, and Nissim [10] introduced composite-order bilinear groups in
2005, they have been used to solve many challenging problems in cryptography.
Cryptographic systems using composite-order bilinear groups mostly utilize one
of two properties, called cancelling and projecting, which Freeman [17] identified.
(Though Freeman named two properties recently, these properties were already
used before.) The security of almost all crypto systems using composite-order
bilinear groups is based on the subgroup decision assumption, introduced by
Boneh, Goh, and Nissim [10], or its variants.

Recently, some literature has aimed at constructing mathematical structures
using prime-order bilinear groups with properties similar to (or richer than)
composite-order bilinear groups [32, 24, 17, 19]. In particular, Freeman [17] pro-
posed two product groups of prime-order bilinear groups with separately defined
bilinear maps. He showed that two proposed product groups satisfy the sub-
group decision assumption (in the sense that given g, it is infeasible to determine
whether g is in a subgroup or the whole product group), and each product group
with a bilinear map satisfies cancelling and projecting, respectively. One direct
benefit of this approach is efficiency improvements of group operations and pair-
ing computations. Loosely speaking, in bilinear groups of composite order, the
group order N must be infeasible to factor so that group operations and pairing
computations are less efficient than those of bilinear groups of prime order for
the same security level. See [17, 19] for detailed efficiency comparison between
composite-order groups and prime-order groups.

On the other hand, Meiklejohn, Shacham, and Freeman [30] gave a nega-
tive result, that is, an evidence of the limitation of constructing in some class
of bilinear groups with both the cancelling and projecting properties, which is
constructed on prime-order bilinear groups. To impart meaning to their result,
they also proposed a round optimal blind signature scheme in composite-order
bilinear groups whose security proof exploits both the cancelling and projecting
properties of the composite-order bilinear group.1 Their round optimal blind
signature scheme is of independent interest since it is the first practical scheme
of this type based on static assumptions (not based on q-type assumptions) in
the common reference string model. They left two open questions: (1) whether
the instantiation in prime-order groups of their round optimal blind signature
scheme is provably secure or insecure, and (2) whether their limitation result
can be applied to a wider class of bilinear groups constructed from prime-order
groups.

In this paper, we answer both questions. We propose a (partially) blind sig-
nature scheme in a prime-order bilinear group setting. The proposed scheme can
be considered as an adapted version of the scheme in [30] to the prime-order
group setting. However, we prove the one-more unforgeability of the proposed

1 The scheme in [30] itself does not use cancelling and projecting. Only the proof of
security uses both cancelling and projecting properties. Thus, the authors do not rule
out the existence of different proof strategy.
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scheme by using a completely different strategy from [30]. Our proof does not
require the cancelling property, and instead we use another property, that we
call translating, on prime order groups. Informally, the translating property is
that given g1, g

a
1 ∈ G1, g2 ∈ G2, where G1 and G2 are distinct subgroups of

G, there exists a map T outputting ga2 . The translating property is used, in
an essential way, to prove the one-more unforgeability of the proposed scheme.
With this proof, we obtain a round optimal (partially) blind signature scheme
(without relying on the random oracle heuristic) based on the decisional linear
assumption in the common reference string model, which is of independent in-
terest. Our blind signature scheme is more efficient than [30]. For example, our
scheme has a shorter signature size (six elements in the prime-order group vs.
two elements in the composite-order group). Moreover, the security of our blind
signature scheme does not rely on the factoring assumption. (The blindness of
the signature scheme in [30] based on the subgroup hiding assumption, which
requires that the factorization of group order N is infeasible.)

As the second contribution, we show that there exists a more general class of
bilinear groups than Meiklejohn, Shacham, and Freeman considered, and some
of theses can be both cancelling and projecting. That is, we take a rank n Zp-
submodule of Zn2

p , instead of Znp , to be a base group G, and consider the projec-
tions into its rank 1 submodules. In this case, we should carefully consider group
membership tests of a subgroup. We provide an efficient membership-checking
algorithm to G, which was trivial in the previous setting, and we show that the
subgroup decision assumption on this base group G holds in the generic bilinear
group model for n = 2. Consequently, it is still open as to whether there exists
a cryptosystem on composite-order bilinear groups that cannot be constructed
on prime-order bilinear groups.

We note that although we construct a structure satisfying both cancelling and
projecting, our construction can not be applied directly to the scheme in [30]
to transform it to prime-order setting. The proof of [30] uses a property of
composite-order group such that two subgroups’ order are relatively prime, and
our construction does not support such property so that we could not apply our
construction to the round optimal blind signature scheme in [30].

Related Work: Blind Signatures. Since Chaum [11, 12] introduced the con-
cept of blind signatures in 1982, it has been studied extensively [6, 1, 7, 8, 16,
28, 31, 25, 5, 18, 4, 2, 21, 30, 3, 20] because of its numerous applications, such as
electronic voting [13] and electronic cash [14]. Blind signatures are interactive
protocols between a user and a signer. In blind signatures, informally, the user
can obtain a signature (signed by the signer) on a message (chosen by the user)
without revealing the message to the signer that is signed during the protocol;
that is, the signer learns nothing about the message after finishing the protocol.

In particular, round optimal (i.e., 2-move) blind signature schemes have re-
ceived attention since the round complexity is an important measurement of ef-
ficiency in the computer network, and round optimal blind signature schemes di-
rectly imply that they are concurrently secure. In the random oracle model, there
are elegant round optimal blind signatures by Chaum [12] and Boldyreva [8].
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Without relying on the random oracle heuristic, there is an approach using gen-
eral NIZKs for NP, and its security depends on the assumption that a common
reference string exists [16, 5]. Very recently, Garg et al. proposed the first round
optimal blind signature in the standard model (without random oracle and a
setup assumption such as a common reference string) [20]. These approaches
without random oracle, however, are not as efficient as an approach, in which
we are interested, using a bilinear map [9, 10].

In recent years several efficient round optimal blind signatures [18, 4, 2, 30, 3]
have been proposed in the common reference string model, using a bilinear map,
by combining signature schemes with efficient NIWI proofs [23, 22, 24]. These
approaches using a bilinear map either rely on q-type dynamic assumptions [18,
4, 2, 3] or working on the composite-order group [30]. Though there is an anal-
ysis of a family of q-type dynamic assumptions by Cheon [15], the security of
q-type assumptions still remains obscure. (q-type assumptions used in the above
schemes hold in the generic group model [35] and these can be strong evidence
for believing such assumptions. However, we believe that as the next step, con-
structing schemes without relying on such strong assumptions is an encouraging
research approach.) In [30], a round optimal blind signature scheme based on
static assumptions (not on q-type assumptions) using composite-order groups is
proposed.

2 Notations and Definitions

Throughout this paper, we use notation ⊕ for the internal direct product: for
an abelian group G, we write G = G1 ⊕ G2 when G1 and G2 are subgroups of
G and G1 ∩G2 = {1G} for the identity 1G of G. In this case, every element g in
G can be uniquely written by g = g1 · g2 for some g1 ∈ G1 and g2 ∈ G2, where
· is a group operation in G, and will be omitted sometimes. We use notation

x
$← A. If A is a group G, then it means that an element x is randomly chosen

from G, and if A is an algorithm, then it means that A outputs x. [i, j] denotes
a set of integers {i, · · · , j}. We denote an abelian group generated by g1, · · · , gn
by 〈g1, · · · , gn〉.

We give formal definitions of bilinear group generators, and properties and
cryptographic assumptions defined on the bilinear group.

Definition 1 We say that G(·, ·) is a bilinear group generator if it takes as
input a security parameter λ and a positive integer n ≥ 1, and it outputs a tuple

(G,Gi, H,Hi, Gt, e, σ| i ∈ [1, n])
$← G(λ, n), where G, H, Gt are finite abelian

groups, Gi and Hi are cyclic subgroups of G and H of same order, respectively,
such that G = ⊕i∈[1,n]Gi and H = ⊕i∈[1,n]Hi, and e : G × H → Gt is a non-
degenerate bilinear map, that is, it satisfies

Bilinearity: e(g1g2, h1h2) = e(g1, h1)e(g1, h2)e(g2, h1)e(g2, h2)
for g1, g2 ∈ G and h1, h2 ∈ H,

Non-degeneracy: for g ∈ G, if e(g, h) = 1 for any h ∈ H, then g = 1,
for h ∈ H, if e(g, h) = 1 for any g ∈ G, then h = 1,
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and σ is additional information for group membership-check. Moreover, we as-
sume that group operations, random samplings, and membership-checks in each
group, and computation of e can be efficiently performed (i.e. polynomial-time
in λ).

We do not exclude the case that G = H. When G = H, we say that G is a
symmetric bilinear group generator.

Definition 2 We say that an algorithm G1 is a bilinear group generator of
prime order if G1(λ) = G(λ, 1), and G1 outputs groups G,G1, H,H1, Gt of prime
order p and a map e. Then, G = G1, H = H1. We denote the three distinct
groups G,H,Gt by G,H,Gt, respectively, and a bilinear map e by ê.

Now, we provide definitions of two properties, called cancelling and projecting,
which are introduced by Freeman [17].

Definition 3 A bilinear group generator G is cancelling if e(gi, hj) = 1t when-
ever gi ∈ Gi, hj ∈ Hj, and i 6= j, where 1t is the identity of Gt.

Definition 4 A bilinear group generator G is projecting if there exist subgroups
G′ ⊂ G, H ′ ⊂ H, and G′t ⊂ Gt, and non-trivial2 homomorphisms π : G → G,
π̄ : H → H, and πt : Gt → Gt such that

1. G′ ⊂ ker(π), H ′ ⊂ ker(π̄), and G′t ⊂ ker(πt).

2. πt(e(g, h)) = e(π(g), π̄(h)) for ∀g ∈ G and ∀h ∈ H.

If G is a symmetric bilinear group generator, that is, G = H, then set G′ = H ′

and π = π̄.

To prove the security of the proposed blind signature scheme, we need two
widely-known assumptions, the Computational Diffie-Hellman assumption, and
k-Linear assumption which is introduced by Hofheinz and Kiltz and Shacham [26,
34], in the bilinear group setting.

Definition 5 Let G1 be a bilinear group generator of prime order. We define the
advantage of an algorithm A in solving Computational Diffie-Hellman (CDH)
problem in G, denoted by AdvCDHPG

A,G1 , is to be

Pr
[
A(G,H,Gt, e, g, g

a, gb)→ gab : (G,H,Gt, e)
$← G1, g

$← G, a, b,
$← Zp

]
.

We say that G satisfies Computational Diffie-Hellman (CDH) assumption in G
if for any PPT algorithm A, AdvCDHPG

A,G1 is a negligible function of λ.

2 The non-triviality does not appear in the original definition [17]. Without this, how-
ever, every bilinear group can be projecting by using the trivial homomorphisms.
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Definition 6 Let G1 be a bilinear group generator of prime order and k ≥ 1.
We define the advantage of an algorithm A in solving the k-Linear problem in
G, denoted by Advk-LinG

A,G1 , is to be

∣∣∣Pr
[
A(G,H,Gt, e, g, ui, u

ai
i , g

b, h for i ∈ [1, k])→ 1 :

(G,H,Gt, e)
$← G1, g, ui

$← G, h
$← H, ai

$← Zp for i ∈ [1, k], b
$← Zp

]
−Pr

[
A(G,H,Gt, e, g, ui, u

ai
i , g

b, h for i ∈ [1, k])→ 1 :

(G,H,Gt, e)
$← G1, g, ui

$← G, h
$← H, ai

$← Zp for i ∈ [1, k], b =
∑
i∈[1,k] ai

]∣∣∣.
Then, we say that G satisfies the k-Linear assumption in G if for any PPT
algorithm A, the advantage of A Advk-LinG

A,G1 is a negligible function of λ.

We can analogously define the CDH assumption and the k-Linear assumption in
H. The 1-Linear assumption in G is the DDH assumption in G and the 2-Linear
assumption in G is the decisional linear assumption in G.

Next, we provide the definition of the subgroup decision assumption, adapted
from [17] to fit our purpose.

Definition 7 Let G be a bilinear group generator. We define the advantage of an
algorithm A in solving the (n, k)-subgroup decision problem on the left, denoted
by AdvSDAL

A,G , is to be∣∣∣Pr
[
A(G,G′, H,H ′, Gt, e, σ, g)→ 1 :

(G,Gi, H,Hi, Gt, e, σ)
$← G(λ, n), G′ := ⊕i∈[1,k]Gi, H ′ := ⊕i∈[1,k]Hi, g

$← G
]

−Pr
[
A(G,G′, H,H ′, Gt, e, σ, g

′)→ 1 :

(G,Gi, H,Hi, Gt, e, σ)
$← G(λ, n), G′ := ⊕i∈[1,k]Gi, H ′ := ⊕i∈[1,k], g′

$← G′
]∣∣∣.

We say that G satisfies the (n, k)-subgroup decision assumption on the left
if for any PPT algorithm A, its advantage AdvSDAL

A,G is a negligible function in
λ.

We analogously define the (n, k)-subgroup decision assumption on the right.

Definition 8 We say that a bilinear group generator G(·, ·) satisfies the (n, k)-
subgroup decision assumption if G(·, n) satisfies both the (n, k)-subgroup decision
assumptions on the left and on the right.

We will often omit (n, k) term, if it is clear in the context.

3 Round-Optimal Blind Signature in Prime-Order group

3.1 Symmetric Bilinear Group with Projecting Pairing

We construct a symmetric bilinear group generator with the projecting property.
(The symmetric bilinear groups mean that G = H, and Gi = Hi in our definition
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of bilinear groups.) We borrow some notations from Freeman’s paper [17]. Let G
be a group, g, g1, · · · , gn be elements in G, −→α = (a1, · · · , an) be a vector in Znp ,

and M = (mij) be an n× n matrix. We denote g
−→α := (ga1 , · · · , gan) ∈ Gn and

(g1, · · · , gn)M := (
∏
i∈[1,n] g

mi1
i , · · · ,

∏
i∈[1,n] g

min
i ). We can see that (g

−→α )M =

g(
−→αM). We newly define some notations useful to explain product groups. Let

G = ⊕i∈[1,n]Gi and H = ⊕j∈[1,n]Hj , where Gi and Hj are cyclic groups of same
order. Let e(Gi, Hj) be a set {e(gi, hj)|gi ∈ Gi, hj ∈ Hj}; hence e(Gi, Hj) is a
cyclic group since Gi and Hj are cyclic groups. In particular, when Gi and Hj

have prime order p, e(Gi, Hj) is a cyclic group of order p or 1.
Now, we construct a symmetric bilinear group generator GSP (λ, 3), which

is a generalization of Groth and Sahai’s instantiation based on the decisional
linear assumption [24], and is also a symmetric version of Freeman’s asymmetric
bilinear group generator with the projecting property [17].

1. G1(λ)
$→ (p,G,Gt, ê).

2. Set G = G3, Gt = G9
t .

3. Choose linearly independent vectors −→x 1,
−→x 2,
−→x 3 ∈ Z3

p, and set G1 = 〈g−→x 1〉,
G2 = 〈g−→x 2〉 and G3 = 〈g−→x 3〉. Then, G = G1 ⊕G2 ⊕G3.

4. Define a map e : G×G→ Gt by

= e((g1, g2, g3), (h1, h2, h3))(
ê(g1, h1)1/2, ê(g1, h2)1/2, ê(g1, h3)1/2, ê(g2, h1)1/2, ê(g2, h2)1/2, ê(g2, h3)1/2,

ê(g3, h1)1/2, ê(g3, h2)1/2, ê(g3, h3)1/2
)

·
(
ê(g1, h1)1/2, ê(g2, h1)1/2, ê(g3, h1)1/2, ê(g1, h2)1/2, ê(g2, h2)1/2, ê(g3, h2)1/2,

ê(g1, h3)1/2, ê(g2, h3)1/2, ê(g3, h3)1/2
)
.

Then, e(g
−→x , g

−→y ) = ê(g, g)1/2(
−→x⊗−→y )+1/2(−→y ⊗−→x ), where ⊗ is a tensor product

(Kronecker product) of two 3-dimensions vectors.
5. For i ∈ [1, 3], define maps πi : G→ G and πt,i : Gt → Gt by

πi(g) = gM
−1UiM and πt,i(gt) = g

(M−1UiM)⊗(M−1UiM)
t , respectively,

where M is a 3 × 3 matrix having −→x i as its i-th row, Ui is a 3 × 3 matrix
with 1 in the (i, i) entry and zeroes elsewhere, and ⊗ is a tensor product
of matrices: For `1 × `2 matrix A = (ai,j) and `3 × `4 matrix B = (bi,j),
A⊗ B is a `1`3 × `2`4 matrix whose (i, j)-th block is equal to ai,jB, where
we consider A ⊗ B as `1 × `2 blocks. Then, πi is a projection such that for
g1 ∈ G1, g2 ∈ G2, g3 ∈ G3, πi(g1g2g3) is equal to gi.

6. Output (p,G,G1, G2, G3, Gt, e, π1, π2, π3, πt,1, πt,2, πt,3).

We provide a useful lemma to understand the structure of the image of e.

Lemma 1 The image of e generated by GSP is equal to ⊕1≤i≤j≤3e(Gi, Gj), and
each e(Gi, Gj)’s order is p.

7



We provide the proof of Lemma 1 in the full version of this paper. Non-degeneracy
of e is directly coming from the lemma 1. (That is, e(g, h) 6= 1t for any non-
identity elements g, h ∈ G. If not, the image is not equal to ⊕1≤i≤j≤3e(Gi, Gj).)
The bilinear property of e can be easily checked from the bilinear property of the
tensor product. Further, GSP satisfies the projecting property: Let G′ = G2⊕G3,
G′t = ⊕2≤i≤j≤3e(Gi, Gj), π = π1, and πt = πt,1, where G′, G′t, π, and πt are de-
fined in the definition 4. Then, G′ ⊂ ker(π) and G′t ⊂ ker(πt), and e, π, πt satisfy
the following commutative property.

πt(e(g
−→x , g

−→y )) = e(π(g
−→x ), π(g

−→y )).

We can check this commutative property as follows:

πt(e(g
−→x , g

−→y ))

= πt,1(e(g
−→x , g

−→y ))

= πt,1(ê(g, g)1/2(
−→x⊗−→y )+1/2(−→y ⊗−→x ))

= (ê(g, g)1/2(
−→x⊗−→y )+1/2(−→y ⊗−→x ))(M

−1UiM)⊗(M−1UiM)

= ê(g, g)1/2(
−→x⊗−→y )((M−1UiM)⊗(M−1UiM))+1/2(−→y ⊗−→x )((M−1UiM)⊗(M−1UiM))

= ê(g, g)1/2(
−→xM−1UiM)⊗(−→y M−1UiM)+1/2(−→y M−1UiM)⊗(−→xM−1UiM)

= e(g(
−→xM−1UiM), g(

−→y M−1UiM))

= e((g
−→x )M

−1UiM , (g
−→y )M

−1UiM )

= e(π1(g
−→x ), π1(g

−→y )) = e(π(g
−→x ), π(g

−→y )).

The fifth equality comes from the property of the tensor product such as (A ⊗
B)(C ⊗D) = (AC)⊗ (BD), where A and B are matrices having ` columns and
C and D are matrices having ` rows for some `. (We can consider a vector as a
matrix having one row.)

In contrast to the composite order bilinear group, our product group of prime
order group has an additional property, we name translating and define as follow.

Definition 9 A bilinear group generator G is (i, j)-translating if there exists
efficiently computable (that is, polynomial time in λ) maps Ti,j : G2

i ×Gj → Gj
defined by (gi, g

a
i , gj) 7→ gaj and T̄i,j : H2

i ×Hj → Hj defined by (hi, h
a
i , hj) 7→ haj

for an integer a ∈ Z. If G is a symmetric bilinear group generator, then set
T̄i,j = Ti,j.

We show that the above GSP construction satisfies translating property.

Theorem 1 GSP (λ, 3) satisfies translating property for all i, j ∈ [1, 3].

Proof. We first construct T3,1. Given ga3 and a 3× 3 matrix M defined as in the
description of GSP , we can compute ga1 without knowing a as follows:

(ga3 )M
−1

= ((g
−→x 3)a)M

−1

= (ga
−→e 3M )M

−1

= ga
−→e 3 = (1, 1, ga),

(ga, 1, 1)M = (ga
−→e 1)M = ga

−→x 1 = ga1 ,

where −→e i is the canonical i-th vector in Z3
p, for example, −→e 1 = (1, 0, 0). We can

construct other Ti,j analogously. �
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Moreover, GSP satisfies (3, 2)-subgroup decision assumption when the under-
lying group generator G1 satisfies the decisional linear assumption.

Lemma 2 If G1 satisfies the decisional linear assumption, then GSP satisfies
the (3, 2)-subgroup decision assumption.

We relegate the proof of Lemma 2 in the full version of this paper.

Remark 1. Note that GSP does not satisfy the cancelling property since e(Gi, Gj)
is not equal to {1t} for i 6= j (Lemma 1).

3.2 Construction

The abstract of our scheme looks very similar to the Meiklejohn et al.’s con-
struction in the composite order bilinear group [30]. We slightly changed the
Meiklejohn et al.’s construction to adapt in the prime order bilinear group set-
ting.

(Partially) blind signature schemes in the common reference model consist of
five (interactive) algorithms: Setup, KeyGen, User, Signer, and Verify. We provide
the formal definition of (partially) blind signature schemes, and concurrently
security, in the full version of this paper. We follow the security definition of [30],
which is slightly stronger than [6], by allowing the adversary to choose the public
key in the blindness definition. As a definition of the blind signature, [30] is
modified from [27]; (1) it strengthens the blindness game to allow the adversary
to generate the public key, and (2) it weakens the one-more unforgeability game
to require that the messages (instead of pairs of message and signature) must
all be distinct.3

The proposed partially blind signature scheme for a message space M =
{0, 1}m is as follows.4:

• Setup(λ): GSP (λ, 3)
$→ (p,G,G1, G2, G3, Gt, e, πi, πt,i). Choose g, u′, u1, · · · ,

um, v1 · · · , vm
$← G, h1

$← G1 and h2
$← G2. Define

CRS = (p,G,Gt, e, g, u
′, u1, · · · , um, v1, · · · , vm, h1, h2).

• KeyGen(CRS): Choose g′
$← G. Set A = e(g, g′). The public key is PK = {A},

and the secret key is SK = {g′}.
• User(CRS,PK, info,Msg): Let info be an m0 bits string and Msg be an m−
m0 bit string. We write info bitwise as b0 · · · bm0

and Msg as bm0+1 · · · bm.

For i ∈ [m0 + 1,m], pick random integers ti,1, ti,2, si,1, si,2, ri, r
′
i

$← Zp, and

3 This weakened definition is necessary if the output signature can be re-randomized.
[30]’s partially blind signature and ours are in the case.

4 For large message spaces, we can use a collision resistance hash function first.
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compute

ci = (ui)
bih

ti,1
1 h

ti,2
2 , di = (vi)

bih
si,1
1 h

si,2
2 ,

θi,1 = u
bisi,1
i (vbi−1i h

si,1
1 h

si,2
2 )ti,1hri2 , θi,2 = u

bisi,2
i (vbi−1i h

si,1
1 h

si,2
2 )ti,2h−ri1 ,

θi,3 = u
(bi−1)si,1
i (vbii h

si,1
1 h

si,2
2 )ti,1h

r′i
2 , θi,4 = u

(bi−1)si,2
i (vbii h

si,1
1 h

si,2
2 )ti,2h

−r′i
1 .

Let
−→
θ i = (θi,1, · · · , θi,4), and send req = {(ci, di,

−→
θ i)}i∈[m0+1,m] to the

signer and save state = {(ti,1, ti,2)}i∈[m0+1,m].

• Signer(CRS, SK, info, req): Write req = {(ci, di,
−→
θ i)}i∈[m0+1,m] and info =

b1 · · · bm0 . For each i ∈ [m0 + 1,m], verify ci is a commitment of 0 or 1 by
checking that

e(ci, div
−1
i )

?
= e(h1, θi,1)e(h2, θi,2) and e(ciu

−1
i , di)

?
= e(h1, θi,3)e(h2, θi,4).

If for some i the above equation does not hold, abort the protocol and output
⊥. Otherwise, compute

c =

u′ ∏
i∈[1,m0]

ubii

 ∏
i∈[m0+1,m]

ci

 ,

choose a random integer r
$← Zp, compute

K1 = g′cr, K2 = g−r, K3,1 = h−r1 , K3,2 = h−r2 ,

send (K1,K2,K3,1,K3,2) to the user, and output success and info.
• User(state, (K1,K2,K3,1,K3,2)): Write state = {(ti,1, ti,2)}i∈[m0+1,m]. Check

that
e(K3,1, g)

?
= e(K2, h1) and e(K3,2, g)

?
= e(K2, h2).

If one of two above equations is fail to hold, then abort the protocol and
output ⊥. Otherwise, unblind the signature by computing

S1 = K1 · (
∏

i∈[m0+1,m]

K
ti,1
3,1 K

ti,2
3,2 ) and S2 = K2.

Check the validity of the signature (S1, S2) by running Verify. If it outputs
accept, then go to the next step. Otherwise, abort the protocol and output

⊥. Finally re-randomize the signature by picking a random s
$← Zp and

computing

S′1 = S1 · (u′
∏

i∈[1,m]

ubii )s and S′2 = S2 · g−s.

Output the signature sig = (S′1, S
′
2), info, and success.

• Verify(CRS,PK, info,Msg, sig): Write PK = {A}, info = b1 · · · bm0
,Msg =

bm0
· · · bm, and sig = (S1, S2). Check that

e(S1, g) · e(S2, u
′
∏

i∈[1,m]

ubii )
?
= A.

If the above equality holds, then output accept. Otherwise, output fail.

10



In the first procedure of the user, ci and di are GS-commitment to bi, and
−→
θ i

is GS-proof that bi satisfies the equation bi(bi − 1) = 0 so that bi = 0 or bi = 1.

More precisely, when bi and b′i are openings of ci and di, respectively,
−→
θ i is a

proof that bi(b
′
i − 1) = 0 and (b′i − 1)bi = 0. Then, (bi = 0 or b′i = 1)

∧
(bi = 1 or

b′i = 0) so that bi = b′i = 0 or bi = b′i = 1. We provide three theorems to prove
the security of the proposed (partially) blind signature scheme.

Theorem 2 The above blind signature is correct.

Theorem 3 If G1 satisfies the decisional linear assumption, then the above blind
signature satisfies blindness.

The proof of Theorem 2 and 3 are similar to the previous ones [30]. We provide
the proof in the full version of this paper.

Theorem 4 If G1 satisfies the the CDH assumption, then the above blind sig-
nature is one-more unforgeable.

Due to space constraints, we leave the proof of Theorem 4 to the full version
of this paper. Instead, we briefly explain our idea to prove the one-more unforge-
ability, and the reason why we cannot apply the Meiklejohn et al. proof strategy
to the proposed scheme. At the end of the interaction, the user obtains a Waters-
signature, which is existentially unforgeable based on the CDH assumption. If
the user obtains only a Waters signature, then the proposed scheme is, loosely
speaking, also one-more unforgeable. However, the user obtains not only a Wa-
ters signature (of the form g′(u

∏
i∈[1,m] u

bi
i )r and g−r for message b1 · · · bm), but

also some additional information, that is, it eventually gets

g′(u
∏

i∈[1,m]

ubii )r(
∏

i∈[m0+1,m]

h
ti,1
1 h

ti,2
2 )r, g−r, h−r1 , and h−r2

for some (unknown and uniformly distributed) r ∈ Zp, and ti,1, ti,2, and bi cho-

sen by itself. Therefore, we should show that h−r1 , h−r2 , and (
∏
i∈[m0,m] h

ti,1
1 h

ti,2
2 )r

will not be helpful for the user to break the one-more unforgeability. In [30], a
pairing e satisfies the cancelling property, and orders of subgroups are relatively
prime so that each part contained in each subgroup in a signature scheme is
independent. [30] essentially utilized this independence. If, in our scheme, the
G1 ⊕G2 part and G3 part were independent, the user could not obtain any ad-
ditional information about the part in G3 from the above information. (Since all
information other than a Waters signature, which the user gets at the end of the
protocol, is related to h1 and h2, which are elements in G1⊕G2, this information
will not be helpful for forging the Waters signature in the G3 part.) Hence, the
one-more unforgeability of the scheme can be reduced to the existential unforge-
ability of the Waters signature (in G3 in the case of our scheme). However, we
cannot apply this Meiklejohn et al. proof strategy to our scheme since our bilin-
ear map e does not have the cancelling property and each subgroup has the same
order p. Instead, we prove the one-more unforgeability using a completely differ-
ent strategy. Our simulation basically follows the simulation for the existential
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unforgeability of the Waters signature, and at the same time simulates directly
additional information h−r1 , h−r2 , and (

∏
i∈[m0+1,m] h

ti,1
1 h

ti,2
2 )r. It seems hard to

simulate (
∏
i∈[m0+1,m] h

ti,1
1 h

ti,2
2 )r since ti,1 and ti,2 are chosen by the user and r

is usually not known to the simulator during the simulation. (r is usually of the
form Ra + S for some unknown a and constants R and S, where a is given by
the form ga.) We circumvent this obstacle by using the projecting property and
the translating property mentioned in section 3.1. To simulate this additional
information, the simulator first extracts the message, that is, recovers b1 · · · bm
by computing logπ1(ui)π1(ci) = bi, and second computes πj(ci/u

bi
i ) = h

ti,j
j and

if bi = 0,

{
π3(θ−1i,1 ) = π3(vi)

ti,1

π3(θ−1i,2 ) = π3(vi)
ti,2 ,

if bi = 1,

{
π3(θi,3) = π3(vi)

ti,1

π3(θi,4) = π3(vi)
ti,2 .

Though π3(vi)
ti,j is contained in G3, we can change it to be of the form h

ati,j
j for

some unknown a by using the translating property mentioned in section 3.1 when
vi contains a in the exponent. The simulator can generate (

∏
i∈[m0+1,m] h

ti,1
1 h

ti,2
2 )r

by using h
ti,j
j and h

ati,j
j .

Remark 2. The decisional linear assumption implies the CDH assumption. (The
decisional linear assumption implies the computational linear assumption, and
the computational linear assumption implies the CDH assumption. Reductions
are quite straightforward.)

Remark 3. In the user’s first procedure, the GS-commitment and proof appear
to have redundant parts. It would be more natural to change them to

ci = (ui)
bih

ti,1
1 h

ti,2
2 , θi,1 = (u2bi−1i h

ti,1
1 h

ti,2
2 )ti,1hri2 , θi,2 = (u2bi−1i h

ti,1
1 h

ti,2
2 )ti,2h−ri1 ,

and it can be verified by e(ci, ciu
−1
i )

?
= e(h1, θi,1)e(h2, θi,2). This commitment

and proof is GS commitment and proof for bi ∈ {0, 1}. However, we note that
in this case, we could not prove the one-more unforgeability based on the CDH
assumption. We only proved the one-more unforgeability based on the decisional
linear assumption and augmented CDH assumption. (Augmented CDH assump-

tion roughly says that given g, ga, gb, ga
2

, it is infeasible to compute gab.) To

avoid requiring ga
2

, in the simulation, that is, to prove the one-more unforge-
ability based on the CDH assumption, we modified the commitment and the
proof to the current form.

4 Bilinear Group: Both Cancelling and Projecting

4.1 Interpreting Limitation Result in [30]

In [30], the authors consider the cases that the bilinear group generator G(λ, n)
is defined as follows:

1. (p,G,H,Gt, ê)
$← G1(λ)

12



2. G = Gn, H = Gn, and Gt = Gmt for some positive integer m.
3. a bilinear map e : G×G→ Gt is defined by

e((g1, · · · , gn), (h1, · · · , hn)) = (· · · , e((g1, · · · , gn), (h1, · · · , hn))(`), · · · )
= (· · · ,

∏
i,j∈[1,n] ê(gi, hj)

e
(`)
ij , · · · ),

where e
(`)
ij ∈ Zp for all i, j ∈ [1, n] and ` ∈ [1,m].

The authors showed that e can be both the cancelling and projecting only with
negligible probability when e is defined as the above. In the above G construction,
to generate a rank n Zp-module,G is defined as Gn. In the proof for the limitation
result ([30, Proposition 6.4 and Theorem 6.5]), the authors used, in an essential
way, the fact that a rank n Zp-module is of the form Gn.

We can, however, also define, in a different way, a rank n Zp-module G.

First generate a rank n′(> n) Zp-module G̃, and then define G as a rank n

Zp-submodule of G̃. For example, define G̃ = G4 and

G = 〈(ga1 , gb1 , gc1 , gd1), (ga2 , gb2 , gc2 , gd2), (ga3 , gb3 , gc3 , gd3)〉,

where {(ai, bi, ci, di)}i∈[1,3] is a set of linearly independent vectors in Z4
p. Then, G

is a rank 3 Zp-submodule of a rank 4 Zp-module G̃. This example is not included
in the case of the above G construction. In this example, we should argue about
the membership check of G since any group should be easy to check for its
membership to be used for cryptographic applications. If there is no additional
information, the membership check of G is infeasible since it is equivalent to
the decisional 3-linear problem. However, we should not rule out this case when
some additional information for membership check is given. Our construction is
exactly such a case.

4.2 Our Construction

First, we give an instructive intuition of our construction. To construct a bilinear
group generator with projecting, we should consider the order of image of a
bilinear map, which should be larger than prime p.5 We start from a bilinear
group generator with the cancelling property [17]. We consider n different bilinear
group generators (of rank n) with cancelling property. Let G(i) = ⊕j∈[1,n]Gij
(rank n Zp-module), H(i) = ⊕j∈[1,n]Hij (rank n Zp-module) and ēi (bilinear
map) be the output of i-th bilinear group generator. Let Gij = 〈gij〉 that is a
rank 1 Zp-submodule of a rank n Zp-module. Let Gj be 〈(g1j , · · · , gnj)〉, which
is a rank 1 Zp-submodule of a rank n2 Zp-module (n direct product of n Zp-
modules). Define Hj similarly, and define G = ⊕j∈[1,n]Gj and H = ⊕j∈[1,n]Hj .

We define a map e by using bilinear maps ēi defined over each G(i) × H(i) as
follows:

e((g1, · · · , gn), (h1, · · · , hn)) = (ē1(g1, h1), · · · , ēn(gn, hn)),

5 If the image of a bilinear map is prime p, it cannot satisfy projecting property [30].
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where gi ∈ G(i) and hi ∈ H(i). This construction also satisfies the cancelling
property. If we can control the basis of the image of e so that the order of image
is not prime p, then we may obtain the projecting property.

For vectors Γ = (−→α 1, · · · ,−→α n) = (α11, · · · , αnn) and Λ = (
−→
β 1, · · · ,

−→
β n) =

(β11, · · · , βnn) ∈ Zn2

p , and a group element g ∈ G, we define a notation Γ ◦Λ :=

(−→α 1 ·
−→
β 1, · · · ,−→α n ·

−→
β n) ∈ Znp , where −→α j ’s and

−→
β j ’s are vectors in Znp , and

−→α j ·
−→
β j =

∑
`∈[1,n] αj`βj`. Now, we describe our construction GCP .

1. Take a security parameter and a positive integer n as inputs, run G1, and
obtain (p,G,H,Gt, ê).

2. Choose generators g and h at random from G and H, respectively.
3. Choose X1, · · · , Xn and D from GLn(Zp) at random. Define Di ∈Matn(Zp)

be a diagonal matrix having D’s i-th column vector as its diagonal. Define
Yi by Di(X

−1
i )t.

4. Let
−→
ψ ij be the i-th row of Xj and

−→
φ ij be the i-th row of Yj . Let Ψi =

(
−→
ψ i1, · · · ,

−→
ψ in) and Φi = (

−→
φ i1, · · · ,

−→
φ in). Then, define Gi by a cyclic sub-

group in Gn2

generated by 〈gΨi〉, and define Hi by a cyclic group in Hn2

generated by 〈hΦi〉.
5. Define G and H by the internal direct product of Gi’s and Hi’s, respectively.

That is, G = ⊕i∈[1,n]Gi ⊂ Gn2

, and H = ⊕i∈[1,n]Hi ⊂ Hn2

. Define Gt by
Gnt .

6. Define a map e : G×H → Gt as follows:

e(gΓ , hΛ) := (
∏

`∈[1,n]

ê(gα1` , hβ1`), · · · ,
∏

`∈[1,n]

ê(gαn` , hβn`)) = ê(g, h)Γ◦Λ,

for any Γ = (α11, · · · , αnn) and Λ = (β11, · · · , βnn).
7. Take a basis of 〈Ψ1, · · · , Ψn〉⊥ at random, say {Ψ̂1, · · · , Ψ̂n2−n}, and take a

basis of 〈Φ1, · · · , Φn〉⊥ at random, say {Φ̂1, · · · , Φ̂n2−n}, where the notation
〈Γ1, · · · , Γn〉⊥ means a set of all orthogonal vectors to 〈Γ1, · · · , Γn〉. Define

σ := (ê, {hΨ̂1 , · · · , hΨ̂n2−n}, {gΦ̂1 , · · · , gΦ̂n2−n}).

8. Output (G,G1, · · · , Gn, H,H1, · · · , Hn, Gt, e, σ).

In the description of GCP each Gi and Hi is defined to be rank 1, as Zp-
submodules of Gn2

, and for i 6= j, Gi ∩ Gj = Hi ∩Hj = {1Gn2 }, where 1Gn2 is

the identity of Gn2

. Therefore, in the step 5, G = ⊕i∈[1,n]Gi and H = ⊕i∈[1,n]Hi

are well-defined and rank n Zp-submodules of Gn2

.

4.3 Cancelling, Projecting, and Translating

It is straightforward to check that e is a non-degenerate bilinear map. We show
that e satisfies cancelling, projecting and translating.
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Theorem 5 Let (G = ⊕i∈[1,n]Gi, Gi, H = ⊕i∈[1,n]Hi, Hi, Gt, e, σ) be the output
of the above GCP . Then, e is both cancelling and projecting.

Proof. Let X1, · · · , Xn, Y1, · · · , Yn and D be generated in the step 3 of Section
4.2. These satisfy the following three conditions.

(1) X` and Y` are in GLn(Zp) for ` ∈ [1, n].
(2) For ` ∈ [1, n] each X` · Y >` is a diagonal matrix with a diagonal d`.
(3) D = (d1 · · ·dn), that is, the i-th column vector of D is di.

From the condition (1) we can see that Ψi’s are linearly independent and Φi’s
are linearly independent and so G = ⊕i∈[1,n]Gi and H = ⊕i∈[1,n]Hi are well-
defined. The condition (2) guarantees that e is a cancelling bilinear map: For

i 6= j, Ψi◦Φj := (
−→
ψ i1·
−→
φ j1, · · · ,

−→
ψ in·
−→
φ jn) = 0 and so e(gΨi , hΦj ) = e(g, h)Ψi◦Φj =

(1Gt , · · · , 1Gt) is equal to the identity of the product group (Gt)n. The third
condition (3) implies that {Ψi ◦Φi}i∈[1,n] is a set of linearly independent vectors

in Znp ; hence, any pair of groups e(Gi, Hi) = 〈e(g, h)Ψi◦Φi〉 = 〈(g, h)(di1,··· ,din)〉
has no common element except the identity so that Im(e) = ⊕i∈[1,n]e(Gi, Hi) =
Gt. We can consider natural projections πi : G → Gi, π̄i : H → Hi, and
πt,i : Gt → e(Gi, Hi). We can construct these projections, in a similar way as
the construction of the projections in the subsection 3.1. We leave the details to
the full version of this paper. Let G′ = ⊕[2,n]Gi, H

′ = ⊕[2,n]Hj , G
′
t = e(G′, H ′),

π = πi, π̄ = π̄i, and πt = πt,i. Then, e satisfies the definition 4. �

Theorem 6 GCP (λ, n) satisfies translating property for all i, j ∈ [1, n].

Proof. We will construct T3,1. We can construct other Ti,j and T̄i,j similarly.
Given g3, ga3 and n×n matrices Xi defined as in the description of GCP , we can
compute ga1 without knowing a as follows:

Parse ga3 as (gΨ3)a = ((g
−→
ψ 31)a, · · · , (g

−→
ψ 3n)a), and compute

for j ∈ [1, n], ((g
−→
ψ 3j )a)X

−1
j = (ga

−→e 3Xj )X
−1
j = ga

−→e 3 = (1, 1, ga, · · · , 1),

(ga, 1, · · · , 1)Xj = (ga
−→e 1)Xj = ga

−→
ψ 1j ,

then (ga
−→
ψ 11 , · · · , ga

−→
ψ 1n) = (gΨ1)a = ga1 .

where −→e i is the canonical i-th vector in Znp , for example, −→e 1 = (1, 0, 0, · · · , 0).
�

We show that anyone knowing σ can test membership of elements in G and
H (membership test for Gt is trivial) in the full version. Finally, we should show
that G satisfies the subgroup decision assumption, but it is not easy to prove that
G satisfies the subgroup decision for any n. Instead, in the full version we give a
proof that, for n = 2, G satisfies the (2, 1)-subgroup decision assumption in the
generic bilinear group model [35] (that is, we assume that the adversary should
access the oracles for group operations of G, H, Gt and pairing computations
for ê, where G1 → (p,G,H,Gt, ê)). Though we give a proof for the case n = 2,
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we are positive that GCP satisfies the subgroup decision assumption for n > 2.
For n > 2, there are several variables, particularly in σ, we should consider for
the subgroup decision assumption, so these make it hard to prove for the case
n > 2, even in the generic bilinear group model.6

5 Conclusions and Further Work

In this paper, we answered two open questions left by Meiklejohn, Shacham, and
Freeman. First, we showed that the security of the Meiklejohn et al.’s (partial)
blind signature can be proved in the prime-order bilinear group setting.7 Second,
we showed that there exist bilinear group generators that are both cancelling and
projecting in the prime-order bilinear group setting.

The proof of the Meiklejohn-Shacham-Freeman blind signature scheme, and
the Lewko-Waters identity-based encryption scheme [29] essentially use the fact
that orders of subgroups are relatively prime as well as the projecting and/or
cancelling properties. For each scheme, the adapted version in prime-order bi-
linear groups is proposed, with a different security proof strategy, in this paper
and [29], respectively. It would be interesting to find a general procedure to
transform such schemes using relatively prime orders in composite-order groups
to schemes in prime-order groups.

We proposed a new mathematical framework with both cancelling and pro-
jecting in a prime-order bilinear group setting, and gave the proof that the (2, 1)
subgroup decision assumption holds in the generic bilinear group model when
n = 2. This research leaves many interesting open problems. We ask if the
subgroup decision assumption holds when n > 2, and if the subgroup decision
assumption can be reduced to the simple assumption such as the (decisional)
k-linear assumption. We did not find good cryptographic applications of this
framework. It would be interesting to design cryptographic schemes based on the
proposed framework. We expect that this research will provide other directions
for our primitive question: whether there exists a cryptosystem on composite-
order bilinear groups that cannot be constructed on prime-order bilinear groups.

Acknowledgements The first author is grateful to MinJae Seo for his useful
comments on an early draft of this paper. We are grateful to anonymous reviewers
in TCC 2012 for their valuable comments. The second author was supported by
the National Research Foundation of Korea (NRF) grant funded by the Korea
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6 All variables in σ is public, so to show that GCP satisfies the subgroup decision
assumption, the simulator should simulate σ in the proof.

7 We modified their scheme slightly to prove its security under the CDH assumption.
We remark that, however, the security of the direct instantiation of their scheme in
the prime-order bilinear group can also be proven secure under the decisional linear
assumption and the augmented CDH assumption, which is stronger than the CDH
assumption.
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