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Abstract. Two central notions of Zero Knowledge that provide strong,
yet seemingly incomparable security guarantees against malicious veri-
fiers are those of Statistical Zero Knowledge and Resettable Zero Knowl-
edge. The current state of the art includes several feasibility and im-
possibility results regarding these two notions separately. However, the
question of achieving Resettable Statistical Zero Knowledge (i.e., Reset-
table Zero Knowledge and Statistical Zero Knowledge simultaneously)
for non-trivial languages remained open. In this paper, we show:
– Resettable Statistical Zero Knowledge with unbounded prover: un-

der the assumption that sub-exponentially hard one-way functions
exist, rSZK = SZK. In other words, every language that admits a
Statistical Zero-Knowledge (SZK) proof system also admits a Re-
settable Statistical Zero-Knowledge (rSZK) proof system. (Further,
the result can be re-stated unconditionally provided there exists a
sub-exponentially hard language in SZK). Moreover, under the as-
sumption that (standard) one-way functions exist, all languages L
such that the complement of L is random self reducible, admit a
rSZK; in other words: co-RSR ⊆ rSZK.

– Resettable Statistical Zero Knowledge with efficient prover: efficient-
prover Resettable Statistical Zero-Knowledge proof systems exist for
all languages that admit hash proof systems (e.g., QNR, QR, DDH,
DCR). Furthermore, for these languages we construct a two-round
resettable statistical witness-indistinguishable argument system.

The round complexity of our proof systems is Õ(log κ), where κ is the
security parameter, and all our simulators are black-box.

1 Introduction

The notion of a Zero-Knowledge (ZK, for short) Proof System introduced by
Goldwasser, Micali and Rackoff [19] is central in Cryptography. Since its intro-
duction, the concept of a ZK proof has been extremely influential and useful
for many other notions and applications (e.g., multi-party computation [18],
CCA encryption [27]). Moreover, the original definition has been then extended
under several variations, trying to capture additional security guarantees. Well
known examples are the notions of non-malleable ZK [14] introduced by Dolev,



Dwork and Naor, which concerns security against man-in-the-middle attacks, of
ZK arguments introduced by Brassard, Chaum and Crepeau [4] where sound-
ness is guaranteed only with respect to probabilistic polynomial-time adversarial
provers, and of concurrent ZK [16] introduced by Dwork, Naor and Sahai, which
concerns security against concurrent malicious verifiers. Another important vari-
ant is that of Statistical Zero Knowledge [19,3,33], where it is guaranteed that
a transcript of a proof will remain zero knowledge even against computationally
unbounded adversaries.

An important model of security against malicious verifiers, known as Reset-
table Zero-Knowledge, was introduced by Canetti, Goldreich, Goldwasser and
Micali in [5]. In this setting, the malicious verifier is allowed to reset the prover,
and make it re-use its randomness for proving new theorems. Indeed, one of
the main motivations for studying resettable ZK was to understand the conse-
quences of re-using limited randomness on the zero-knowledge property. In [5], it
was shown that computational zero-knowledge for all of NP is possible even in
this highly adversarial setting. Although resettable zero knowledge has received
considerable attention since its inception (see for example [1,24,13,39,12,8,35]),
almost all the work has been focused on the computational setting.

In this work, we continue the line of research on resettable ZK by investigat-
ing the question of resettability when the zero-knowledge property is required
to be statistical, i.e., Resettable Statistical Zero Knowledge. This model con-
strains the prover strategy severely: not only should the prover somehow re-use
its limited randomness, it must do so in a way that makes the transcript of the
proof statistically secure. Known solutions in the setting of computational reset-
table ZK involve converting prover’s bounded randomness to unbounded pseudo-
randomness by using pseudo-random functions (PRF). However, this approach
fails in our case, as an unbounded adversary can break the PRF and gain critical
information, breaking zero knowledge. In this paper, we develop a new technique
to handle this problem. Using this technique, we study resettable statistical zero
knowledge in the form of following two distinct questions.

– Do there exist efficient-prover resettable statistical ZK proofs? This question
is motivated by practical applications of resettable ZK, for example, in smart
cards. If a prover is to be implemented in a small device like a smart card,
it is essential that the prover strategy is polynomial-time.

– What languages in SZK have resettable statistical ZK proofs? The class
SZK is the class of problems which admit statistical zero-knowledge proofs.
This question is purely theoretical in nature, and tries to ascertain the diffi-
culty of achieving resettability where statistical zero-knowledge already ex-
ists. In this setting we consider prover’s which are forced into giving multi-
ple proofs using the same limited random coins. This work can be thought
of a natural extension of the recent work on Concurrent Statistical Zero-
Knowledge (cSZK) [25,30].
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1.1 Our Contribution

In this paper we address the above questions and present the following results.
We stress that our techniques may be of independent interest.

Resettable Statistical Zero Knowledge with efficient prover. We show the exis-
tence of efficient-prover resettable statistical ZK proof systems for all languages
in SZK that admit hash proof systems [10] (e.g., Quadratic Non-Residuosity
(QNR), Decisional Diffie-Hellman (DDH), Decisional Composite Residuosity
(DCR)). Therefore, our techniques show that efficient-prover resettable statisti-
cal ZK proof systems also exist for non-trivial languages (like DDH) where each
instance is associated to more than one witness, where intuitively reset attacks
are harder to deal with.4 Furthermore, using our techniques, for these languages
we also construct a two-round resettable statistical witness-indistinguishable ar-
gument system.

Resettable Statistical Zero Knowledge with unbounded prover. We show that
if a family of sub-exponentially hard one-way functions exists then rSZK =
SZK, i.e., all languages that admit a statistical ZK proof systems also admit a
resettable statistical ZK proof system. If there exists an SZK language L which
is (worst-case) sub-exponentially hard for all input length5 then rSZK = SZK
without any additional assumptions, as it already implies the existence of sub-
exponentially hard one-way functions [29]. Informally, a sub-exponentially hard
one-way function is a one-way function that is secure against sub-exponential
(2κ

ε

for some 0 < ε < 1) size circuits. Moreover, we show that if a family of
(standard) one-way functions exists (or, if there are languages which are hard
on the average and admit statistical zero-knowledge proofs [29]) then co-RSR ⊆
rSZK. Our results are achieved through a novel use of instance-dependent (ID,
for short) commitment schemes, a new simulation technique, and a coin-tossing
protocol that is secure under reset attacks that we build on top of a new ID
commitment for all SZK.

Our simulators are black-box and the round complexity of all our construc-
tions is Õ(log κ) which is optimal considering the lower bounds achieved so far
for black-box concurrent ZK [6,26].

We stress that since the very introduction in [5] of the notion of resettable ZK,
our results are the first in establishing Resettable Statistical Zero Knowledge. We

4 When there are multiple witnesses that can prove membership of an instance in
a language, in a reset attack we allow the adversarial verifier to force the prover
to reuse the same randomness for proving the same instance but using a different
witness. We therefore achieve a stronger definition of resettability than the one used
in previous work.

5 If there exists a language L ∈ SZK such that for infinite sequence of input lengths,
the worst-case decision problem for L is sub-exponentially-hard, Ostrovsky showed
that there exists a non-uniform sub-exponentially hard one-way functions for that
sequence of input length [29].
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finally leave open an interesting question of proving that SZK = rSZK uncon-
ditionally or under relaxed complexity-theoretic assumptions and of establishing
whether resettable statistical ZK arguments are achievable for all NP.

As a final note, we remark upon the complexity of the verifiers in our proto-
cols. Historically, the notion of SZK was developed with bounded verifiers (and
unbounded distinguishers), for example, see [3,37]. Moving in the same direc-
tion, we obtain our results in this model, where the verifiers are computationally
bounded. In subsequent literature on SZK, the stronger notion of statistical
zero-knowledge against unbounded verifiers was developed. In this scenario, the
notion of resettability seems hard to achieve: unbounded verifiers can compute
statistical correlations on the fly by making multiple reset queries to the prover.
We leave the question of constructing such protocols or showing impossibility in
a setting with unbounded verifiers as an open problem for future work.

1.2 Technical Difficulties and New Techniques

We begin by asking the general question: “Why is the problem of constructing re-
settable statistical zero-knowledge proof systems hard?” The problem lies in the
fact that the prover has limited randomness and can be reset. Therefore, prover’s
messages are essentially a deterministic function of the verifier’s messages, and
the verifier can probe this function by resetting the prover and thereby obtaining
information that might be useful for an unbounded distinguisher. We highlight
the issues by demonstrating why existing techniques fail. The most well studied
way of achieving resettable computational zero-knowledge proofs [5], is by using
a pseudorandom function. In particular, very informally, using this technique the
prover applies a pseudorandom function on the common input and the verifier’s
first messages (this message is called the determining message), which fixes all
future messages of verifier, and uses the output as its random tape. Now, when
the verifier resets and changes its determining message, prover’s random tape
changes, and thus, intuitively, the verifier does not gain any advantage by re-
setting the prover. However, for our goal of obtaining resettable statistical zero
knowledge, this approach is not sufficient. In fact, intuitively, any protocol (as
far as we know) in which there exists a message computed using both the wit-
ness and the randomness, where the randomness is fixed but the witnesses could
change with theorem statements, can not be statistically “secure” in presence of
reset attacks. Indeed, an adversarial verifier could interact multiple times with
provers that use a fixed randomness but different statements and witnesses. This
information can be used by an unbounded distinguisher to establish certain cor-
relations among the values used in different executions, ultimately breaking the
statistical ZK property. Because of these restrictions, previously known tech-
niques, which were sufficient for resettable [5,1] and statistical ZK [25,20,21]
independently, turn out to be insufficient for achieving both of them simultane-
ously.

In light of the intuition above resettable statistical ZK for non-trivial lan-
guages at first sight might be considered impossible to achieve. But, on the
contrary we develop a new technique that overcomes the above problems. We
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demonstrate this new technique by first considering a toy version of our proto-
col. The protocol consists of three phases. In the first phase the verifier sends
a “special” instance-dependent non-interactive (ID, for short) commitment of a
random string m to the prover. (In this commitment, if the prover is lying and
x 6∈ L, then m will be undefined, while if x ∈ L, then m will be unique.) The
second phase consists of a PRS preamble [32]. Very roughly, in the PRS preamble
the verifier commits to random shares of m, which are opened depending on the
provers challenges. Finally, the prover is required to send m to the verifier. The
prover can obtain m by extracting it from the commitment either efficiently us-
ing a witness in case of efficient-prover proofs, or running in exponential time in
case of unbounded-prover proofs. We stress that when the theorem being proved
is true the message m that can be extracted is unique.

First, the protocol just described has the following property: every message
sent by the prover is public coin6 except its last message, which is uniquely de-
termined by the first message of the verifier (we use [5] terminology and refer
to it as the determining message). Most importantly, no message depends on
the witness of the prover. It is this property that allows a simulator to generate
a transcript that is statically close to the transcript generated in the interac-
tion with a real prover. An honest prover uses a pseudorandom function on the
common input and the determining message and uses the output as its random
tape. A simulator can sample the messages from the same distribution as the
real prover. Finally, the simulator will be able to obtain m by using rewinding
capabilities, through a variation of a PRS rewinding strategy [32]. The need for
the variation arises from the fact that a simulator that uses pseudo-random coins
does not gain anything by rewinding (i.e., after a rewind it would re-send the
same message). We deal with this problem by having the simulator use pseu-
dorandom coins for some messages while using pure random coins for others.
We elaborate on this in § 4. This toy version, described above, illustrates the
key ideas that we use in achieving simultaneously both resettable and statisti-
cal zero knowledge. To transform our toy version into a full proof system, for
even the most basic languages that we consider in this paper, we need an extra
instance-dependent primitive. But we defer this discussion to § 3 and § 5.

Second, our protocol also has the property that if the theorem is false then
the prover has almost no chance (in the information-theoretic sense) of sending
an accepting last message. This follows from the fact that the ID commitment
from verifier is statistically hiding. This property guarantees soundness.

Unfortunately, the above ideas are insufficient to prove that rSZK = SZK.
This is because statistically hiding non-interactive ID commitments, introduced
by Chailloux, Ciocan, Kerenidis and Vadhan [7] for SZK are “honest-sender.” To
force the sender into using purely random coins we need a coin-flipping protocol
secure against resetting senders. For this coin-flipping protocol an ID commit-
ment scheme which is computationally binding with respect to a resetting sender
for instances in the language and statistically hiding for instances not in the lan-
guage, suffices. We will use some techniques introduced by Barak, Goldreich,

6 Looking ahead, we will use a pseudorandom function to generate these messages.
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Goldwasser and Lindell in [1] on top of a previous result of Ong and Vadhan [28]
for obtaining such an ID commitment scheme.

However the more subtle problem arises in the use of pseudorandom func-
tions. To obtain security against reset attacks, the coin-flipping message played
by the receiver of the commitment must be computed by using a pseudoran-
dom function. This again turns out to be insufficient for our analysis since the
use of the pseudorandom function does not guarantee that the outcome of the
coin-flipping protocol is a uniform string to be used in the honest-sender non-
interactive ID commitment scheme. In order to solve this additional problem,
we use sub-exponentially hard pseudorandom functions (constructed from sub-
exponentially hard one-way functions). These stronger primitives have the addi-
tional property that they are secure against sub-exponential size circuits. This
technique is referred to as complexity leveraging, and has been previously used in
various applications (e.g., [5,23,2,11,9,31,38]). However, we stress that in all our
constructions, the simulator runs in expected polynomial time, and the above
assumptions play a role only inside our security proof.

Before concluding this section, we point out an important difference between
our approach and ideas developed by Micciancio, Ong, Sahai and Vadhan in [25],
where the authors give unconditional constructions of concurrent statistical zero-
knowledge proofs for many non-trivial problems. Like their construction we use
similar ID commitments but our general approach and overall protocol is dif-
ferent from their approach. In [25], a compiler is constructed that (using ID
commitments) provides a generic way to construct statistical zero-knowledge
protocols. But, as pointed earlier, such a compiling technique along with stan-
dard resettability techniques [5] is not sufficient for us. Therefore, we develop our
zero-knowledge protocol from scratch. This is needed because obtaining resetta-
bility along with statistical zero knowledge is different and (as pointed earlier)
harder than obtaining concurrent statistical zero knowledge. We further note
that in fact our techniques imply that SZK = cSZK unconditionally. We refer
the reader to the full version [17] for further discussion on this.

Road map. We start by giving some preliminary definitions in § 2. We use three
ID primitives in this paper. We elaborate on those in § 3. In § 4 we construct a
resettable statistical ZK proof secure against partially honest verifiers. Then in
§ 5 we remove this limitation for certain classes of languages. In § 6, we construct
the proof system that works for all language in SZK.

2 Notation and Tools

We say that a function is negligible in the security parameter κ if it is asymptoti-
cally smaller than the inverse of any fixed polynomial. Otherwise, the function is
said to be non-negligible in κ. We say that an event happens with overwhelming
probability if it happens with a probability p(κ) = 1 − ν(κ) where ν(κ) is a
negligible function of κ. In this section, we provide an overview of the primitives
used in this paper. Formal definitions can be found in the full version [17].
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Resettable/Statistical Zero Knowledge. In this paper we consider resettable [5]
and statistical [19,3,33] notions of zero-knowledge. The notion of resettability
requires that a protocol remains zero-knowledge even if the verifier can reset
the prover. The notion of statistical zero knowledge provides security guarantees
against unbounded distinguishers. This paper constructs resettable statistical
zero-knowledge proof systems. In other words we try to achieve both the reset-
tability and the statistical guarantees simultaneously.

PRS Preamble from [32]. A PRS preamble is a protocol between a committer C
and a receiver R that consists of two main phases, namely: 1) the commitment
phase, and 2) the challenge-response phase.

Let k be a parameter that determines the round-complexity of the protocol.
Then, in the commitment phase, very informally, the committer commits to
a secret string σ and k2 pairs of its 2-out-of-2 secret shares. The challenge-
response phase consists of k iterations, where in each iteration, very informally,
the committer “opens” k shares, one each from k different pairs of secret shares
as chosen by the receiver.

The goal of this protocol is to enable the simulator to be able to rewind
and extract the “preamble secret” σ with overwhelming probability. In the con-
current setting, rewinding can be difficult since one may rewind to a time step
that precedes the start of some other protocol [16]. However, as it has been
demonstrated in [32], there is a fixed “time-oblivious” rewinding strategy that
the simulator can use to extract the preamble secrets from every concurrent
cheating committer, except with negligible probability. Moreover this works as
long as k = Ω̃(log κ) for some positive ε. We refer to this as the PRS rewinding
strategy or the PRS simulation strategy. We refer the reader to [32] for more
details.

Sub-exponentially hard one-way functions. A sub-exponentially hard one-way
function is a one-way function that is hard to invert even by sub-exponential (2κ

ε

for some 1 > ε > 0) size circuits. They imply the existence of sub-exponentially
hard pseudorandom functions. We stress that we need this assumption only for
proving that SZK = rSZK.

3 Instance-Dependent Commitments and Proofs

In this section we construct three instance-dependent primitives, that we use in
this paper: (1) a non-interactive instance-dependent commitment scheme, (2) an
interactive instance-dependent commitment scheme, and finally (3) an instance-
dependent argument system.

Non-Interactive Instance-Dependent Commitment Scheme. An important tool
that we will re-define, construct and use in our proof systems, is that of “spe-
cial” non-interactive instance-dependent (ID, for short) commitment schemes. A
commitment scheme allows one party (referred to as the sender) to commit to
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a value while keeping it hidden, with the ability to reveal the committed value
later. Commitments also have the property that once the sender commits to a
value, it can not change its mind later. This property is refereed to as the binding
property. In certain settings, commitment schemes for which these properties are
not required to hold simultaneously, suffice. Such schemes are parameterized by
a value x and a language L and either the binding or the hiding property holds
depending upon the membership of x in L. These schemes are referred to as
ID commitment schemes [7]. Typically, the ID commitment schemes that have
been considered in the literature require hiding property to hold when x ∈ L
and binding property to hold otherwise. We actually need the reverse properties,
i.e., we need hiding property when x 6∈ L and binding property otherwise.

In particular we consider an ID commitment scheme with further special
properties. We require that the commitment scheme be statistically binding for
x ∈ L and statistically hiding otherwise. In other words we want binding and
hiding properties to hold against unbounded adversaries. Also we require that
our ID commitment scheme be secure against a resetting sender. This always
holds when the commitment scheme is non-interactive. All the non-interactive ID
commitments that we consider are statistically hiding. So to simplify notation we
refer to a non-interactive instance-dependent commitment scheme with perfect
(binding holds with probability 1) binding and statistical hiding as a perfect
non-interactive ID commitment. Similarly, we refer to a non-interactive instance-
dependent commitment scheme with statistical binding and statistical hiding as
a statistical non-interactive ID commitment.

Since the commitment is statistically binding, when x ∈ L, the committed
value can always (with overwhelming probability) be extracted in exponential
time. Extractability instead becomes tricky when the extractor has to run in
polynomial time. We will call an ID commitment scheme efficiently extractable
if when x ∈ L then there exists an extractor that takes as input a witness for
the membership of x in L and the commitment, and outputs in polynomial-time
the committed message.

It turns out that perfect non-interactive ID commitment schemes are actually
known to exist for all languages in co-RSR [22,36,34]. co-RSR is the class
of languages such that the complement of each of these languages is random
self-reducible. Another class of languages that is amenable to our techniques is
the class of languages that are in SZK and that admit a hash proof system.
Observing that these languages imply instance-dependent primitives that are
analogous to ID commitments described above, we get efficient-prover resettable
statistical ZK proof systems for this interesting class. In particular, for DDH
(the language that consists of all Diffie-Hellman quadruples and that admits two
different witnesses for proving the membership of a quadruple to the language),
we give a separate ID commitment scheme highlighting how our techniques work
with multiple witnesses.

We notice that for the whole SZK we only know a weak form of statisti-
cal non-interactive ID commitment scheme where statistical binding holds with
respect to honest senders only. The details have been provided in the full version.
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We will denote the extractable perfect (or, statistical) non-interactive ID
commitment scheme by COM. The commitment function for a value x and
language L will be denoted by CL,x. Also we use the notation CL,x(m; r) for
the function used to generate the commitment to message m ∈ {0, 1}`0 using
random coins r ∈ {0, 1}`1 . The extractability property of these commitments is
very important for our constructions.

Interactive ID Commitment Scheme. We use an interactive ID commitment
scheme COML,x = (Sx, Rx), where Sx and Rx are the sender and the receiver
respectively, with common input x. This ID commitment scheme is computation-
ally binding against a resetting sender when the instance x is in the language,
and is statistically hiding otherwise. Very roughly, we construct such a scheme
by using the constant-round public-coin ID commitment scheme of [28]. This
scheme has statistical binding and statistical hiding properties. We make it se-
cure under resetting senders by having the receiver determine its messages by
applying a pseudo-random function (similarly to Proposition 3.1 in [1]) to the
transcript so far. Because of this, the statistical binding property is degraded to
computational7 binding. We stress that unlike the non-interactive ID commit-
ment described earlier, we will not need any extractability from these commit-
ments. We obtain this new ID commitment scheme for all of SZK under the
assumption that one-way functions exist. The details have been provided in the
full version.

Instance-Dependent Argument System 〈PrsSWIx,VrsSWIx〉. We will need an
instance-dependent argument system 〈PrsSWIx, VrsSWIx〉 where PrsSWIx and
VrsSWIx are the prover and the verifier respectively, with common inputs x and
a statement ξ. When8 x is in the language, we want that 〈PrsSWIx,VrsSWIx〉 be
a resettably sound argument of knowledge for NP. In this case, very roughly,
〈PrsSWIx,VrsSWIx〉 has the additional property that the soundness holds even
when the prover can reset the verifier. If instead x is not in the language then
〈PrsSWIx,VrsSWIx〉 must be statistical witness indistinguishable. We construct
this argument system by instantiating Blum’s Hamiltonicity protocol with the
constant-round public-coin ID commitment scheme of [28]. We make it resettably
sound by using a pseudorandom function [1]. Details, definition and construc-
tions are given in the full version.

7 However, looking ahead we note that, computational binding will be sufficient for our
applications since the role of the sender will be played by a polynomially bounded
party.

8 In general, in proof systems when an ID commitment is used, it is parameterized by
the theorem statement ξ being proven. In our case the ID commitment is actually
parameterized by a different value x. Looking ahead, x would be the theorem state-
ment of an interactive proof system that uses the sub-protocol 〈PrsSWIx,VrsSWIx〉
to prove the NP statement ξ.
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4 Resettable Partially Honest-Verifier Statistical Zero
Knowledge

We aim at constructing a resettable statistical zero-knowledge proof system. We
start by building a simpler protocol which is resettable statistical zero knowledge
only against a restricted class of adversarial verifiers. In subsequent sections, we
build upon this simpler protocol to achieve our general results. The adversarial
verifiers that we consider here are restricted to “act honestly” but only in a
limited manner. We call such verifiers partially honest. As pointed out in § 3, we
use a non-interactive ID commitment scheme. Looking ahead, in our protocol this
commitment is used by the verifier to commit to certain messages. A partially
honest verifier is required to behave honestly when computing the commitment
function, using pure randomness to commit to messages. Besides this it can
cheat in any other way. We state this restriction more concretely after we have
described the protocol.

We begin by construction a concurrent statistical zero-knowledge proof sys-
tem secure against such partially honest adversaries, and then transform it into
a resettable statistical zero-knowledge proof system under the same restricted
class of adversarial verifiers.

Concurrent Partially Honest-Verifier SZK. We start by informally describing
the protocol cpHSZK of Fig. 1. It consists of three phases. The first phase, called
the Determining Message Phase, consists of the verifier sending a commitment to
a string m to the prover. We use the extractable non-interactive ID commitment
scheme described earlier. The second phase is roughly a PRS preamble [32]
and we refer to it as the PRS Phase. Note that some commitments are made
in the PRS preamble, but we lump these with the commitment to m, in the
Determining Message Phase itself. Finally the prover sends to the verifier the
value m. This is referred to as the Final Message. An adversarial verifier, denoted
by V ∗, is called a partially honest verifier if it generates the non-interactive ID
commitments of the Determining Message Phase “honestly.” This requires that
these ID commitments are: (1) “well-formed” and (2) have unique9 openings
(except with negligible probability).

We begin by briefly sketching why cpHSZK is a concurrent statistical zero-
knowledge proof system for L. Full details of the proof are in the full version.
Completeness follows from binding property of COM: when x ∈ L, the commit-
ments in the Determining Message Phase are statistically binding with unique
openings with overwhelming probability. Thus, the prover can extract the unique
message m and make the verifier accept in the Final Message Phase. For sound-
ness, note that when x /∈ L, the commitments in the first phase are statistically
hiding. Thus, m committed to in the Determining Message Phase is informa-
tion theoretically hidden from a cheating prover (also shares received during the

9 It follows from the description in the full version, that a perfectly non-interactive
ID commitment always has a unique opening. On the other hand an honest sender
statistical non-interactive ID commitment, has a unique opening with overwhelming
probability, for honest senders only.
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Common Input: x ∈ L ∩ { 0, 1 }n, k = ω(log κ) and n = poly(κ), for a security
parameter κ..
Secret Input to P : Witness w such that (x,w) ∈ RL (not needed in case of
unbounded prover).

1. Determining Message (V → P ) V chooses message m randomly from
{ 0, 1 }`0 , and computes α = CL,x(m; ρ0) for some random ρ0 ∈ {0, 1}`1 . For
1 ≤ i ≤ k and 1 ≤ j ≤ k, V randomly chooses σ0

i,j and σ1
i,j such that

σ0
i,j ⊕ σ1

i,j = m. For each (i, j, b), where 1 ≤ i ≤ k, 1 ≤ j ≤ k and b ∈
{ 0, 1 }, V randomly chooses ρbi,j ∈ {0, 1}`1 computes the commitment αb

i,j :=
CL,x(σb

i,j ; ρ
b
i,j). Finally, V sends all the commitments α, α0

1,1, α
1
1,1, . . . , α

1
k,k to

the prover.
2. PRS Phase (V ⇔ P ) For 1 ≤ l ≤ k:

(a) P sends bl chosen randomly in {0, 1}k to V .

(b) Let bil be the ith bit of bl. V sends the openings of α
b1l
l,1, . . . , α

bkl
l,k.

(c) If the opening sent by the verifier is invalid, then P sends ABORT to
verifier, and aborts the protocol.

3. Final Message (P → V ) P runs the extractor associated to the ID com-
mitment of the Determining Message Phase. If the extractor aborts then P
aborts, else P sends the output of the extractor m′ to V , who accepts if
m′ = m.

Fig. 1. Concurrent Partially Honest-Verifier Statistical Zero-Knowledge Proof System:
cpHSZK.

preamble do not give any information), and therefore, it can convince the verifier
only with negligible probability.

To argue zero knowledge, we use the rewinding strategy of [32]. Using the
PRS rewinding strategy we can construct a simulator that obliviously rewinds
the verifier and is guaranteed (except with negligible probability) to obtain the
openingm committed to in the Determining Message Phase, before the end of the
PRS Phase for every session (except with negligible probability) initiated by the
cheating verifier. Once the cpHSZK simulator knows the message m committed
in the Determining Message Phase, it can play it back to the verifier in the Final
Phase.

Note that to prove zero knowledge, we crucially use the fact that the verifier
is partially honest. First, we need that the commitment sent by the verifier are
correctly formed. This is to make sure that the commitments are done in accor-
dance with the specifications for the first message of PRS preamble. Secondly,
we need that these commitments have unique openings with overwhelming prob-
ability. If, for example, verifier’s commitment to m in the Determining Message
Phase has two openings, then the simulation would fail. Indeed, an unbounded
prover unable to decide which is the right opening, would always abort while the
simulator would still extract some message from the PRS Phase and send that
to the verifier in the Final Phase. The case of an efficient prover instead would
result in extracting a message that could depend on the witness used, while
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the one obtained by the simulator would not depend on the witness, therefore
potentially generating a distinguishable deviation in the transcript.

Resettable Partially Honest-Verifier SZK. We now exploit a key property of
cpHSZK and transform it into a resettable statistical zero-knowledge proof sys-
tem secure against partially honest verifiers. We note that the final message of
cpHSZK depends only on the first message of the verifier. In particular, it de-
pends neither on the random tape of the prover, nor on its witness. Also messages
of the prover in the PRS phase are just random strings. Thus, very informally,
an adversarial verifier can not obtain any advantage by resetting the prover, as
after every reset, the verifier will get the same message back in the final round.
This is a crucial fact that allows us to achieve resettability.

Common Input: x ∈ L ∩ { 0, 1 }n, k = ω(log κ), n = poly(κ) for a security
parameter κ.
Secret Input to P : Witness w such that (x,w) ∈ RL (not needed in case of
unbounded prover).

1. Determining Message Same as in Fig. 1.
2. PRS Phase (V ⇔ P ) P chooses a random seed s, and sets ω =

fs(x, α, α0
1,1, . . . , α

1
k,k). Now P divides ω into k blocks of k-bits each, i.e.,

ω = ω1 ◦ . . . ◦ ωk. For 1 ≤ l ≤ k,
(a) P sends ωl to V .
(b) Same as Fig. 1 Step 2b.
(c) Same as in Fig. 1 Step 2c.

3. Final Message Same as in Fig. 1.

Fig. 2. Resettable Statistical Partially Honest Verifier Zero-Knowledge Proof System
rpHSZK.

The transformed protocol, called rpHSZK (Fig. 2), is the same as cpHSZK,
except for one difference: in the PRS Phase, instead of sending random challenges
in Step 2(a), the prover uses pseudorandom challenges. The prover chooses a
random seed s for selecting a function from a PRF family { fs }s∈{0,1}∗ , and sets
ω as the output of fs() evaluated on the message received during the Determining
Message Phase. The prover uses this ω as its random tape for the PRS phase. A
modification of the PRS simulation where the simulator uses both pseudorandom
and random messages during the preamble, along with other known tricks [5]
allows us to prove that this protocol is a resettable statistical zero-knowledge
proof system with respect to partially honest verifiers.
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5 Resettable Statistical ZK from Perfect Non-Interactive
ID Commitments

In this section we consider languages that admit perfect non-interactive ID com-
mitments and we construct a resettable statistical ZK proof system which is
secure against all malicious verifiers.

Let L be a language that admits a perfect non-interactive ID commitment
scheme. We extend the proof system rpHSZK for L to handle arbitrary malicious
verifiers. The main idea is to enforce “partially honest behavior” on the malicious
verifier. We recall that the partially honest restriction on a verifier required that
the verifier generates commitments honestly. More specifically, we required that
these commitments have unique openings and are correctly constructed. A fully
malicious verifier however can deviate and compute commitments that do not
have the prescribed form. Therefore, the only concern we have is to make sure
that commitments are correctly generated. We enforce this by modifying rpHSZK
and adding an extra step to it. This step requires that the verifier proves to the
prover that shares constructed in Step 1 (as part of the Determining Message)
are correct. If this proof is accepted then the prover can conclude that the first
message of the verifier is indeed honestly generated and the malicious verifier
is forced into following the desired partially honest behavior. In our protocol
the verifier uses an instance-dependent argument system 〈PrsSWIx,VrsSWIx〉
such that: when x ∈ L, 〈PrsSWIx,VrsSWIx〉 is a resettably sound argument
of knowledge, while when x 6∈ L, 〈PrsSWIx,VrsSWIx〉 is statistically witness
indistinguishable. Since the protocol is resettably sound the malicious verifier
can not go ahead with incorrect commitments even when it can reset the prover.
For the protocol see Fig. 3.

Application to co-RSR and hash proof systems. Languages in co-RSR and
DDH have perfect non-interactive ID commitment schemes. Thus, from the
discussion above, it follows that these languages have resettable statistical zero-
knowledge proofs. For languages in SZK that admit hash proof systems, a minor
modification of our resettable statistical zero-knowledge protocol suffices. The
details are provided in the full version [17].

6 Resettable Statistical ZK for all Languages in SZK

In this section we construct the general proof system which is actually resettable
statistical zero knowledge for all languages that have a statistical zero knowledge
proof. Just like in previous section, we start with a resettable partially honest
verifier statistical ZK proof system. But we look at all languages in SZK and
construct a resettable statistical ZK proof system which is secure against all
malicious verifiers.

Let L be a language that admits an honest sender statistical non-interactive
ID commitment scheme COM. We extend the proof system rpHSZK for L to
handle arbitrary malicious verifiers. The main idea is to enforce “partially honest
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Sub-protocol: 〈PrsSWIx,VrsSWIx〉 is a resettably sound argument of knowledge
when x ∈ L and a statistical witness indistinguishable argument when x 6∈ L.
Common Input: x ∈ L ∩ { 0, 1 }n, k = ω(log κ), n = poly(κ) for a security
parameter κ.
Secret Input to P a: Witness w such that (x,w) ∈ RL (not needed in case of
unbounded prover).

1. Determining Message: Same as in Fig. 2.
2. Proof of Consistency: (V ⇔ P ) V and P run 〈PrsSWIx,VrsSWIx〉, where

V plays the role of PrsSWIx, and P plays the role of VrsSWIx. V proves to P
knowledge of m,σb

i,j , ρ0, ρ
b
i,j for 1 ≤ i, j,≤ k, b ∈ { 0, 1 }, such that:

(a) α = CL,x(m, ρ0), and,
(b) αb

i,j = CL,x(σb
i,j ; ρ

b
i,j) for each 1 ≤ i, j ≤ k and b ∈ { 0, 1 }, and,

(c) σ0
i,j ⊕ σ1

i,j = m for 1 ≤ i, j ≤ k.
3. PRS Phase: Same as in Fig. 2.
4. Final Message: Same as in Fig. 2.

a P aborts the protocol in case any proof from the verifiers does not accept or
some message is not well formed.
Notice that P uses two different seeds for the PRF f (one in Step 2 and the
other one in Step 3).

Fig. 3. Resettable Statistical Zero-Knowledge from Perfect Non-Interactive ID Com-
mitments: rSZK.

behavior” on the malicious verifier. We recall that the partially honest restric-
tion on a verifier required that the verifier uses COM to generate commitments
honestly. More specifically, we required that these commitments are correctly
constructed and have unique openings. The first requirement can be handled
in a way just like in previous section, i.e. by having the verifier prove to the
prover that shares constructed in Step 1 (as part of the Determining Message)
are correct. We use the ID argument system 〈PrsSWIx,VrsSWIx〉 to achieve this.
The problem of uniqueness is more tricky, and we discuss that next.

The difficulty lies in the fact that the statistical non-interactive ID commit-
ment scheme for all languages in SZK [7], only works with respect to honest
senders. Indeed, if the sender chooses the randomness for the commitment uni-
formly, then, with overwhelming probability, the computed commitment has a
unique valid opening. However a malicious sender could focus on a set of neg-
ligible size, B, of bad random strings r, such that CL,x(m; r) does not have a
unique opening. If a malicious verifier (that plays as sender of this commitment
scheme) is able to pick random strings from B, then the real interaction and the
simulation can be easily distinguished. In the real protocol, the prover tries to
invert the commitment α, finds it does not have a unique opening, and aborts.
In the simulation, the simulator extracts some message m from the PRS phase,
and sends m as the final message. As the simulator is polynomially bounded,
it can not detect if the commitment has a unique opening or not. To use this
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commitment scheme, we must somehow ensure that the verifier does not use bad
randomness for its commitments. We do this by adding a special coin-flipping
subprotocol at the beginning of the protocol. However, because of reset attacks,
the coin-flipping subprotocol introduces several technical problems.

We begin by describing our coin-flipping protocol. The coin-flipping protocol
requires a commitment scheme such that computational binding holds against
resetting senders when x ∈ L and statistical hiding holds when x 6∈ L. We use
the interactive ID commitment scheme COML,x = (Sx, Rx). The coin flipping
proceeds as follows: first the verifier commits to a random string r1. Let the
transcript of the interactive commitment be c. Then prover applies the sub-
exponentially hard PRF fs(c) and obtains r2 that is sent to the verifier. The
randomness that the verifier will use for the non-interactive ID commitment
is r1 ⊕ r2. For technical reasons, the verifier also needs to prove knowledge of
r1 after it has committed to r1. We use the interactive ID argument system
〈PrsSWIx,VrsSWIx〉 for this.

Next we highlight the reasons behind the use of sub-exponentially hard pseu-
dorandom (PRF) functions for our construction. Let α be the statistical non-
interactive ID commitment of some message m sent by the verifier. There are
two ways in which α might not have a unique opening. In the first case, a mali-
cious V ∗, after looking at prover’s response r2, might use an opening of c such
that r1 ⊕ r2 ∈ B. This however would violate the computational binding of the
interactive ID commitment scheme secure against resetting senders used in the
coin flipping, thus this event occurs with negligible probability. The second case
is more subtle. It might be possible that performing reset attacks, the verifier
can study the behavior of the PRF, and then can be able to succeed in obtaining
that r1 ⊕ r2 ∈ B with non-negligible probability (even though the polynomial-
time V ∗ does not know the two openings). In this case, we can not construct
a polynomial-time adversary that breaks fs, as we can not efficiently decide if
r ∈ B. This is where we need the sub-exponential hardness of the one-way func-
tion and in turn of the PRF. As |B| is only 2` while the size of the set of all
random strings is 2L, where l = o(L), we can give the entire set B as input to the
sub-exponential size circuit that aims at breaking the PRF. The circuit can now
check if the string r is a bad string or not, by searching through its input. Notice
that one can give as input to the circuit the whole B for each of the polynomial
number of statements (since for each x there can be a different B) on which the
reset attack is applied. This sub-exponential size circuit has still size o(L) and
breaks the PRF which contradicts the sub-exponential hardness of the PRF.

Completeness follows from the fact that when x ∈ L, with overwhelming
probability, the commitment α in the determining message will have a unique
opening. Thus, the prover will be able to extract the committed message and
send it as the final message to the verifier, that will accept.

Statistical resettable zero knowledge property of our protocol also follows the
same argument. Indeed, when x ∈ L even a resetting verifier can not cheat during
the proofs in Steps 1(c) and 3. Moreover, the above discussion about the security
of the coin-flipping protocol implies that a resetting adversarial verifier is forced
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into following partially honest behavior when computing the non-interactive ID
commitments.

Finally, we look at soundness. Note that when x /∈ L non-interactive ID
commitments are statistically hiding and the protocol 〈PrsSWIx,VrsSWIx〉 is
statistical WI in Steps 1(c) and 3. Also note that only a single share is revealed in
the PRS phase. From this it follows that the prover’s view when verifier commits
message m is statistically close to its view when verifier commits to m′, where
m 6= m′. Thus, the probability that it replies with the correct final message is
negligible. The complete protocol and proof appear in the full version [17].

7 2-Round Statistical Witness Indistinguishability

In this section, we highlight the applicability of our techniques, and construct
a simple two-round resettable statistical witness-indistinguishable argument for
languages that have efficiently extractable perfectly binding instance-dependent
commitment schemes. As discussed before, this class contains, in particular, all
languages that admit hash proof systems. We note that all results in this section
hold in the stronger model of statistical zero-knowledge where the verifier is
computationally unbounded.

Informally, the two-round WI argument consists of the verifier committing
to a randomly chosen message m using the instance-dependent commitment
scheme for that language. The prover, using the witness and the efficient extrac-
tor, extracts a message m′ from the commitment and sends it to the verifier.
The verifier accepts if m = m′. Intuitively, as long as verifier’s commitment is
well-formed, this protocol is a perfect WI, as irrespective of the witness and ran-
domness, the prover always extracts the same message (in fact, prover’s strategy
is deterministic). Thus, the only complication is to ensure that verifier’s com-
mitment is well-formed in a round efficient manner. We enforce this by making
the verifier provide a non-interactive WI proof (i.e., a one-round ZAP [21,15])
of “well-formedness” in the first round.

For lack of space, details of the protocol and proof of security can be found
in the full version of this paper.
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