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Abstract. The (decisional) learning with errors problem (LWE) asks
to distinguish “noisy” inner products of a secret vector with random
vectors from uniform. The learning parities with noise problem (LPN)
is the special case where the elements of the vectors are bits. In recent
years, the LWE and LPN problems have found many applications in
cryptography.

In this paper we introduce a (seemingly) much stronger adaptive assump-
tion, called “subspace LWE” (SLWE), where the adversary can learn the
inner product of the secret and random vectors after they were projected
into an adaptively and adversarially chosen subspace. We prove that, sur-
prisingly, the SLWE problem mapping into subspaces of dimension d is
almost as hard as LWE using secrets of length d (the other direction is
trivial.)

This result immediately implies that several existing cryptosystems whose
security is based on the hardness of the LWE/LPN problems are prov-
ably secure in a much stronger sense than anticipated. As an illustrative
example we show that the standard way of using LPN for symmetric
CPA secure encryption is even secure against a very powerful class of
related key attacks.

1 Introduction

The (search version of the) learning with errors problem (LWE) is specified by
parameters £,¢ € N and an error distribution x over Z,. It asks to find a secret
vector s € Zf; given any number of “noisy” inner products of s with random
vectors. Formally, these products are samples from a distribution A, ¢(s) over

Zf;“ which is defined by sampling a uniform r & Zf; and an error e < Y, and
outputting (r,r'.s + e) (where multiplications and additions are all modulo g.)

An important special case of this problem is Regev’s LWE problem [Reg05]
where y is a so called discrete Gaussian distribution and ¢ is polynomial or
exponential in a security parameter. Another important case is the learning
parities with noise problem (LPN) where ¢ = 2.

The decisional version of the LWE problem asks to distinguish samples of the
form A, ,(s) from uniform (which might be easier than to actually output s as
required by the search version of the problem). The decisional LWE problem has
been proven polynomially equivalent to the search version if ¢ is a polynomial
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size prime [Reg05], and in particular for LPN [BFKL94,KS06]. In this paper we
will always consider the decisional version of the problem, and we also only prove
the main result for the case where ¢ is prime.

Regev’s LWE. The LWE problem has proven to be extremely useful to con-
struct cryptographic schemes. One reason is its versatility, pretty much any
cryptographic primitive known to date can be based on LWE. Another reason is
its hardness. The best known algorithms against Regev’s LWE (where  is a dis-
crete Gaussian and ¢ = poly(f)) need time and space 2°) [BKWO00] to recover
s € Zg,l and unlike for most other assumptions on which public-key crypto can
be based, no faster quantum algorithms for the problem are known. But most
strikingly, Regev’s LWE is as hard as worst-case (standard) lattice assumptions
[Reg05,Pei09].

An incomplete list of cryptosystems whose security can be reduced to LWE
is public-key encryption secure against chosen plaintext [Reg05,KTX08,PVW0S|
and chosen ciphertext attacks [PWO08,Pei09], circular-secure encryption [ACPS09],
identity-based encryption [GPV08,CHKP10,ABB10a,ABB10b], oblivious trans-
fer [PVWO8], collision-resistant hash functions [PR06,LMPRO08] and public-key
identification schemes [Lyu08,Lyu09].

LPN. The learning parity with noise (LPN) problem [BFKL94,BKW00,Kea93|
is the special case of the LWE problem where ¢ = 2 (i.e. we work over bits) and
the error distribution is the Bernoulli distribution for some constant parameter
7,0 < 7 < 1/2, denoted Ber,, and defined as Pr[z = 1 ; z « Ber;] = 7. The
LPN problem is closely related to the problem of decoding random linear codes,?
a well studied question in coding theory. The LPN problem seems less versatile
than the general LWE problem, and so far only “minicrypt” primitives (i.e.
primitives known to be equivalent to one-way functions) were constructed under
the LPN assumption. Alekhnovich [Ale03] constructs a public-key encryption
scheme from a relaxed LPN assumption where the error 7 is not constant but
upper bounded as a function of £ as 7 = O(1/+/).

The Appeal of the LPN problem comes from the fact that LPN based schemes
can be extremely efficient, just requiring relatively few bit-level operations to
compute an inner product of two bit-vectors. Constructions from LPN include
PRGs [FS96], encryption schemes [GRS08,ACPS09] and public-key authentica-
tion schemes [Ste94], but by far most work has been done on efficient LPN based
secret-key authentication schemes which we’ll discuss in more detail in Section 4.

Subspace LWE. The LWE problem has been shown to be very robust with
respect to leakage. Distinguishing LWE samples remains hard even if we the ad-

! This is slightly better than a trivial brute-force search which takes time = 2¢°89 =
20108 ) 1yt only linear space.

2 The only difference is that in the decoding problem one is given a fixed number of
samples (typically a small multiple of the length of the secret), whereas in the LPN
problem the adversary can ask for arbitrary many samples.



versary can learn a function f(s) about the secret s as long as f(.) is compressing
[AGV09] or hard to invert [DKL09,DGK*10,GKPV10]. In this paper we show
that the LWE problem is also very robust to tampering with the secret vector s
and the randomness vector r (albeit not with the noise e.)

We define a (seemingly) much stronger adaptive version of LWE which we
call “Subspace LWE”, or SLWE for short. In the SLWE problem the adversary
is not restricted to just ask for samples r,r".s + e from A, ,(s) as in LWE, but
has access to a more powerful oracle which she can query adaptively. The oracle
takes as input the description of two affine mappings ¢, ¢s : Zf; — Zg and
outputs a sample

r, 6. (r) ¢s(s) +e where r & Zf; , €4 X

An affine mapping ¢, : Zg — Zf; (similarly ¢s) is given by a matrix and a vector
o =X, € ngz,xr € Zf;] and its evaluation is defined as

¢r(r) =X,r + X,

Without additional restrictions, the SLWE problem as just defined is easy to
break. By choosing the input to the oracle appropriately,® one can e.g. learn
samples of the form s[i] + e , e + x (s[i] denotes the ith element of s.) For
distributions x as used in LPN or Regev’s LWE one can efficiently learn s]i]
(and thus the entire s) from just a few such samples.

We prove that the SLWE problem (using secrets in Zg and error distribution
X) is almost as hard as the standard (g, x, d)-LWE problem with secrets of length
d < /¢ if the adversary is restricted in the sense that she is only allowed to query
¢r, s which “overlap” in an d + ¢ (or more) dimensional subspace where 6 € N
is a statistical security parameter. Formally this means X|.X, must have rank
at least d + §. We call this the (g, x,¢,d + §)-SLWE problem. Let us mention
that the other direction — showing that (g, x, ¢, d)-SLWE is at most as hard as
(¢, x,d)-LWE — is trivial.

The precise statement of our result asserts that for any ¢,d,d € N,d+ 0 </,
the (q, x, £, d+ 6)-SLWE problem is at most an additive term 2/¢°*! easier than
the standard (g, x, d)-LWE problem. For large fields, where ¢ is superpolynomial,
2/q°*1 is negligible already for 6 = 0. For small fields, in particular the important
case ¢ = 2 as used in LPN, we must choose some § to be a statistical security
parameter.

The above formulation of SLWE is somewhat redundant, in the sense that
an adversary who is restricted to always choose ¢, to be the identity function, is
as powerful (i.e. can learn exactly the same distribution from the SLWE oracle)
as the adversary described above. We chose to explicitly allow the adversary to
choose affine mappings for the randomness and the secret separately, as for the
applications it is sometimes more convenient to think of the adversary being able
to apply a mapping to the secret key (like in the setting of related key attacks

3 Set X, = X5 = 0% and X, X the zero matrix with a single one in the ¢th diagonal
element. The oracle will output r,r[i]s[i] + e, the last element is s[i] + e if r[i] = 1.



we’ll discuss), or to the randomness (e.g. to show that LWE is hard, even if the
randomness comes from a bit-fixing source.)

When ¢ is not Prime. Our reduction from SLWE to LWE assumes that ¢ is
prime, as we use the fact that Z, is a field and Z" is a vector space.* We believe
that the proof of the reduction can be adapted to the case where ¢ is composite.

The case where ¢ is prime covers the cryptographically most interesting cases
of LPN and Regev’s LWE. Also the reduction from the search to decision version
of LWE [Reg05] only works for prime ¢ (of polynomial size.) But the case where
q is not prime has found cryptographic applications too. In particular, the case
where ¢ = p° for a prime p and e > 1 has been used in the construction of
an encryption scheme with circular security [ACPS09]. The case where ¢ is a
product of distinct, small primes has been used in [Pei09].

Applications of SLWE. In Section 4 we’ll discuss some applications of the
SLWE problem. In particular, the fact that SLWE is equivalent to LWE implies
stronger security notions — like security against related-key attacks — that one
can give for existing schemes whose security is reduced to the LWE problem.
In subsequent work, the hardness of SLPN has been used to construct efficient
authentication schemes and even MACs from LPN. These schemes differ signif-
icantly from previous schemes which all were extensions of the Hopper-Blum
protocol.

Outline. In Section 2 we first define the LWE and the new subspace LWE
(SLWE) problem. In Section 3 we state and prove our main technical result
(Theorem 1) which bounds the hardness of the SLWE problem in terms of the
hardness of he standard LWE problem. In Section 4 we describe in more detail
some applications of this result which were already mentioned in the introduc-
tion.

2 Hard Learning Problems

2.1 Notation

We denote the set of integers modulo an integer ¢ > 1 by Z,. We will use normal,
bold and capital bold letters like z, x, X to denote single elements, vectors and
matrices over Zq, respectively. For x € Zg, |x| = ¢ denotes the length and
wt(x) denotes the Hamming weight of the vector x, i.e. the number of indices
i € {1,...,|x|} where x[i] # 0. For v € Z5* we denote with ¥ its inverse, i.e.
v[i] = 1 — vl[i] for all i. For a distribution x, = <+ x denotes sampling a value

x with distribution x. For a set S, z & S denotes sampling a value = with the
uniform distribution over S.

4 The fact that Zg" is a vector space is e.g. used in the proof of Lemma 1.



X v, X v : For two vectors v € Z5 and x € Zf;, we denote with x|, the vector
(of length wt(v)) which is derived from x by deleting all the bits x[i] where
vii] = 0. If X € Zf;xm is a matrix, then X, € Zyt(v)xm denotes the
submatrix we get by deleting the ith row if v[i] = 0.

Xy, Xy : For x, X, v as in the previous item, x, denotes the vector where the
ith entry is x[i] A v[i]. Think of x, as x where all entries of x where v is 0
are set to 0. X, denotes the matrix X where the ith row is set to all 0 if
v[i] =0.

2.2 The (Subspace) LWE Problem.

The (search version of the) learning with errors (LWE) problem is specified by
parameters £,¢ € N and an error distribution x over Z,. It asks to find a secret
vector s € Zf; given any number of “noisy” inner products of s with random
vectors.

Formally, let A, ((s) be the distribution over Zf;“ where a sample is given
by

(r,rT.s+e) « A, 4(s) where r & 78 e X

q )
Let U;" denote the uniform distribution over Zy* and U, = Uql. The decisional
LWE problem asks to distinguish samples from A, ¢(s) with a uniform s from
a random oracle (outputting U™ samples.) For any s, Ay, «(s) is the same as
the uniform distribution U, f“. It will be convenient for the proof to think of the

random oracle as outputting samples from Ay, ¢(s) for some random s instead
of UL,
q

Definition 1 (Decisional Learning with Errors Problem (LWE)). The
(decisional) (g, x,t)-LWE problem is (t,Q, ) hard if for every distinguisher D
running in time t and making @Q oracle queries,

Pr[s &z o D2 <1 —pr[s &z DWer® <] < (1)

241
Pr[DYs "  =1]

Usually one defines the LWE problem by considering a distinguisher who gets a
polynomial number of samples as input and not access to an oracle (which doesn’t
take inputs anyway.) We use this oracle based definition so it is more similar to
the SLWE problem we define below, where the oracle does take adaptively chosen
inputs.

An affine projection ¢ : Z — Z{ is given by a matrix/vector tuple X €
nge, x € Zg and defined as ¢(v) L XTy +x.

For s € Zg” and affine projections ¢, = [X;,x,], ¢s = [Xs,xs] we define the

distribution I'y ¢ 4(s, ¢y, ¢s) oOver Zf;“ UL as

L« Deeals,ér¢s)  if rank(X[X,) <d



and
(v, ¢ (r)".¢s(s) + €]« I oals,¢r,ds) where Tt & Z§ ; €45 X

otherwise. With I' ¢ q(s,.) we denote the oracle which on input ¢,, ¢s outputs
a sample of I'y ¢ 4(s, dr, ds).

Definition 2 (Subspace Learning with Errors Problem (SLWE)). The
(decisional) (q, x, ¢, d)-SLWE problem is (t,Q,e) hard if for every distinguisher
D running in time t and making Q oracle queries,

[Prls &z o phvest) —1] —Pr[s & 7 Dl 1] <o (2)

Note that by definition the Iy, ¢4(s.,) oracle outputs L if the input satisfies
rank(X]X,) < d and a uniform sample U/™! otherwise. In particular, like
Ay, ¢(s), the output distribution of Iy, ¢ 4(s.,) is independent of s.

3 The Hardness of SLWE

Theorem 1 below is the main technical result stating that the SLWE problem
mapping into subspaces of dimension d is almost as hard as the standard LWE
problem with secrets of length d. But let’s first look at the (easy) other direction
as stated by Claim 1 below.

Claim 1 ((q, x,¢,d)-SLWE at most as hard as (g, x,d)-LWE)
If (q,x,¢,d)-SLWE is (s,t,€) hard then (q,x,d)-LWE is (s',t,€) hard where s’ =
s — poly(t, ).

Proof (of Claim). To prove this claim we will show how, for any error distribution
X', one can efficiently generate (g, x’,d)-LWE samples which have distribution
Ay a(s') (for some uniform s’ € Z¢) given access to a (g, x’,¢,d)-SLWE oracle
I g.4(s,.) (for some uniform s € Zg.) We do so without known knowing the
distribution x’ or s.

Given such a transformation, we then can use any distinguisher D who breaks
the (g, x, d)-LWE assumption with advantage € as defined in eq.(1), to break the
(g, x,%,d)-SLWE assumption as in eq.(2) with the same advantage by simply
transforming the SLWE samples (where the oracle uses either the error distri-
bution x' = x or X' = U[f“, but we don’t know which) to LWE samples (with

the same unknown error distribution x’) before forwarding them do D.

Let v & 1)]0=4. To generate samples as described above, query I ¢ .4(s,.)

so it outputs samples A, 4(s") where s’ € Zg consists of, say, the first d elements
of s € Zf;, ie. s’ := s|y. This can be done by making ¢ queries X;, X,,xs, X,
to Iy ea(s,.) where x; = x, = 0° and X, = X, is 1 in the first d diagonal
entrios and 0 everywhere else. The output of the SLWE oracle on these queries
are samples of the form

r,(X,r +x,.)" (X s+ x,)+e where e+ x', r & Zg

rIv S|v



from which we then get an A,/ 4(s}v) sample r |y, I'Ivs¢V + e by replacing r with
r)v. Note that these samples have the right distribution, which means s}, and
the ¢ r}y’s are uniformly random as required. This is easy to see recalling that
s and the ¢ r’s are uniform. a

In the proof of Theorem 1, we’ll need the following simple technical Lemma:

Lemma 1. For q,d,§ € N, let A(q,d,d) denote the probability that a random

matric in ng+6)Xd has rank less than d, then

2
ot

A(g,d,d) <

Proof. Assume we sample the d columns of a matrix M € ngH)Xd one by one.

For ¢ = 1,...,d let E; denote the event that the first ¢ columns are linearly

independent, then
Pr[-FE;|E;i_1] = =

as = F; happens iff the ith column (sampled uniformly from a space of size ¢?+9)
falls into the space (of size ¢'~!) spanned by the first i — 1 columns. We get

further

d
o 2
A(g,d,0) = Pr[~Eg) <Y Pr[=E|E;i 1] =) ¢~ < e
=1 =1

Theorem 1 ((q, x,¢,d)-SLWE almost as hard as (¢, x,d)-LWE).
Forq,d,o,¢ € N. If the (g, x, d)-LWE problem is (s, t, €) hard, then the (q, x, ¢, d+
0)-SLWE problem is (s',t,€") hard where

2.
r I __
S —S*poly(g,t) € —E‘i’W

Proof (of Theorem 1). To prove the theorem we will show how to sample out-
puts of an SLWE oracle Iy s 4+5(8,.) for some uniformly random § € Zg and
adversarially chosen inputs, given only standard LWE samples A, 4(s) for some
uniform s € Zg. This sampling is done without knowing s or the error distribu-
tion .

Given such a transformation, we then can use any distinguisher D who breaks
the (¢, x,%,d + §)-SLWE assumption with advantage e to break the standard
(¢, x,d)-LWE assumption with the same advantage, minus the probability that
the transformation will fail (which, unlike in the previous claim, is non-zero.)

Recall that an LWE sample A,/ 4(s € Z%) is of the form

r,r'.s+e where e« X' rﬁZg (3)



For X,, X, € ngg, Xg, X € Zg, we’ll show how to transform such a sample
into a an SLWE sample I'y/ s a15(8, [ Xy, Xr, X, X,]). If rank(XT.X,) < d+§ this
sample is simply |, so from now one we assume that this rank is at least d + 9,
in this case the sample has the form

t,(X, .t +x)".(X,.8+x%,)+e where e« Y & Y (4)

In our transformation, the SLWE secret § € Zf; is defined as a function of the
LWE secret s € Zg as follows

REZXT bl7! s§=Rs+b (5)

Note that we only know R, b (which we sampled), but will not get § as we don’t
know s. Also note that § is uniformly random as it is blinded with a uniform
b. Define the set £ C Zf;, which is the set of solutions to a system of linear
equations, as

L={y : yXI X, R=r" —x] X, R}. (6)

If X[.X,.R has rank at least d, then £ is not empty as the linear equation
considered in eq.(6) is (over)defined (we will bound the probability that the
rank is d later.) In this case the LWE sample is transformed into an SLWE
sample as

N ~ 8
r,r's4e — trls+zt+e where ©<&L (7)
—_—— —_———
LWE Sample (3) SLWE Sample (4)

and the z is computed from known values as
-y (f'T.XI + xI).Xs.b + (X0 +x,) " x,

It follows from the three claims below that this sampling gives the right distri-
bution.

Claim. T T & XT.X,.R has rank > d then ¢ Eris uniformly random (given

xsvxTvx;r?X;‘ra R7b)

Proof (of Claim). Fix some t € Z§ of weight wt(t) = d such that T4 has full
rank. Such a t exists as T has rank d.
By eq.(6), T & [ is a random solution to the equation

PT=r" —x X, R
or equivalently (using £.T = £¢.T ¢ + £ 3. T 5)
P Tyg =1 —x) X, R—13.T 5 8
Fii. T =1 —x,.X,. t 7T g (8)
Now sampling a random r can be done as follows. First sample r g & Zé‘d

uniformly. The remaining d positions r ¢ € Zg are then uniquely determined by
r and given by the solution to the equation ().



As T4 is a full rank square matrix eq.(8) defines a bijection between r |4 and
r. As r is chosen uniformly at random, also ¢ is uniformly random. Thus the
entire r is uniform as claimed. a

Claim. The #,r'.s + z + e as sampled in (7) is an SLWE sample for secret 8,
randomness T and error e.

Proof (of Claim).

X, .t 4x,.) (X6 4+%x,)+ e (SLWE sample)

r,
r, (X,.r + XT)T(XS.é) + (Xt +x) x, +e

I

®)

)

(

(

(X, &+ %) (Xs.(Rs + b)) + (X8 +x,) .x, + e

LETXT +x)(XRes) + (37X +x7). Xob + (X8 +x,) T.x, +e

z

r
r

—~
=

Zirs+tzte
O

We have shown how to simulate an SLWE oracle I'y/ s q15(8,.) from standard
LWE samples A, 4(s). This simulation goes well as long as we never get a query
containing X, X where rank(X].X,) > d+J (so the sample is not just 1) but
where rank(X].X.R) < d (in this case £ can be empty.) The following claims
bounds the probability of this happening.

Claim. Consider any X € Z£** with rank(X) > d + 4, then (with A as defined
in Lemma 1)

Prlrank(X.R) < d : R & 2% < A(g, d, )

Proof (of Claim). Since the matrix X has rank at least d 4+ J, without loss of
generality, we can assume that the first d+ ¢ rows of X are linearly independent.
Since R is a random matrix, the upper (d+0) x d submatrix of X.R is a random

matrix in ZédH)Xd and (by definition) such a matrix has rank strictly less than
d with probability at most A(g,d,d). Thus X.R has rank strictly less than d
with at most the same probability. ad

Using the union bound, we can upper bound the probability that for any of
the t queries the matrix X = X[.X, chosen by the distinguisher D will satisfy

rank(X.R) < d by
2.t

This error probability is thus an upper bound on the gap of the success probabil-
ity ¢ of D (in breaking SLWE) and the success probability € we get in breaking
LWE using the transformation.

Above we ignored the fact that D can choose its queries, and thus the matrix
X = X!.X,, adaptively. To show that adaptivity does not help in picking an X



where X.R has rank < d we must show that the view of D is independent of
R (except for the fact that so far no query was made where rank(X.R) < d.)
To see this first note that § = s.R + b is independent of R as it is blinded
with a uniform b. In fact, the only reason we use this blinding is to enforce this
independence. The r are independent as they are uniform given R as shown in
the first Claim in the proof of this theorem. ad

4 Applications

In this section we discuss some consequences and applications which use the fact
that the new subspace LWE problem is as hard as the classical LWE problem.

4.1 Security against Related Key Attacks

Theorem 1 implies that many existing schemes whose security is based on the
standard LWE/LPN assumption are secure against attacks not anticipated by
the designers of the schemes.

As an illustrative example below we discuss the simple construction of sym-
metric CPA secure secure encryption from LPN [GRS08]. We show that this
simple scheme is not only CPA secure, but it’s even secure against powerful
related key-attacks. The scheme from [GRSO08] is defined as follows

Public Parameters:
— Constants 0 <7< 05,5 >0,¢eN.
— An error correcting code E : Z' — Z% , D : ZY — 7%, where D can
correct up to (7 + )¢ errors.

Key Generation: KG(¢) samples and outputs s & Z5.

Encryption: Enc(K,m) samples R & ngn, e & Ber” and outputs the ci-
phertext (R,R7.s ® e ® E(m)).
Decryption: Dec(K, (R, z)) outputs D(z & RT.s).

Correctness. To see that this scheme is correct, note that on input a correctly
generated ciphertext (R,R”.s @ e @ E(m)), the decryption algorithm outputs
D(e®E(m)), which is equal to m unless the error vector e has weight more than
(T 4+ 6)¢. As the bits of e are i.i.d. with each bit being one with probability 7,
the probability of e having such high weight can be upper bounded (using the
Chernoff bound) by an exponentially small probability 277 (for some v > 0
which depends on 7, 4).

CPA Security. Recall that an encryption scheme is IND-CPA secure if no
efficient adversary A can win the following game with probability noticeably
better than 1/2:

1. We sample a key s & 7% and a bit b & {0,1}.



2. A gets access to an oracle Ency(s,.) where

— Ency(s,m) = Enc(s,m) (encrypt m)

— Enci(s,m) = Enc(s, 0™!) (encrypt dummy message)
3. A outputs ' and wins if b =¥'.

The IND-CPA security of the [GRS08] encryption scheme follows quite easily
from the LPN assumption, i.e. the fact that samples (R,R'.s + e) are pseudo-
random.

RKA Security. Classical security notions, like IND-CPA security, model the
encryption scheme as a “black-box”, where an adversary can only observe the le-
gitimate input-output behavior of the scheme. Unfortunately, in the last decade
it became evident that such idealized models fail to capture many real-world
attacks where an adversary can attack an actual physical implementation of the
scheme. An important example is direct leakage from the secret state, typically
by side-channel attacks or malware. To deal with this issue, in the last years
many “intrusion-resilient” and “leakage-resilient” schemes have been proposed
[ISW03,MR04,Dzi06,DP07,DP08,ADW09,Pie09,CDD*07,KV09,DW09,DKL09)].

But the key can also leak indirectly, for example due to key-dependent mes-
sages [BRS03,HK07,BHHO08,HU08,ACPS09,BHHI10,BG10,ABBC10]. Here, as
the name suggest, one considers a setting where the encrypted message can de-
pend on the secret key. Another important setting are related-key attacks (RKA).
In an RKA attack on an encryption scheme the adversary can not only ask for en-
cryptions under the secret key s, but also under “related” keys. RKA attacks were
first considered by Biham [Bih94] and Knudsen [Knu92], and were extensively
studied in the last decade [Luc04,BDK06,BDK08,FKL"00,JD04,ZZWF07,BC10].
Bellare and Kohno [BKO03] initiated a formal study of RKA attacks. All this
works consider RKA security of deterministic primitives, usually block-ciphers.

Very recently [AHI11] initiated a formal study of RKA security for prob-
abilistic encryption [GM84]. As in [BK03], they define RKA with respect to
related-key-deriving functions (RKD) &@. ¢-RKA-IND-CPA security of an en-
cryption scheme is then defined almost like standard IND-CPA security, but
where the adversary can additionally apply any function ¢ € @ to the secret key
s, i.e.

1. We sample a key s & 7% and a bit b & {0,1}.
2. A gets access to an oracle Enc{ (s, .,.) where

— Encd(s,m, ¢ € #) = Enc(¢4(s), m) (encrypt m)

— Enc{(s,m, ¢ € &) = Enc(¢(s),0™!) (encrypt dummy message)
3. A outputs b’ and wins if b = ¥'.

In [AHI11] it is shown that [GRS08] is #®-RKA-IND-CPA secure where &% is
the class of XOR relations. This class contains, for every A € Z&, the function
da(s) se A

This is an interesting class of relations as (1) it captures realistic RKA and
(2) many existing schemes (mostly block-ciphers) have actually been shown to



be insecure against #®-RKA. Unfortunately #®-RKA security does not imply
any security in the realistic scenario where an adversary can not only flip, but
set some of the bit of the secret key. Neither does it cover the case where the
adversary can exchange the position of the key bits.

Using Theorem 1 we can show that the scheme is in fact secure against a
much more powerful class of “affine relations”, which as special cases contains
the relations just mentioned. Let @3 be the class which contains the functions

dxx(s) =XTsox
for every X € 75 x € Z4 where rank(X) > d.

Proposition 1. Under the (decisional) (1,¢,d)-SLPN assumption® (which by
Theorem 1 is equivalent to the standard LPN assumption), the encryption scheme
from [GRS08] is P2 -RKA-IND-CPA secure.

Proof. For any ¢ € &3 samples of the from R, RT.¢(s) + e are pseudorandom

aff aff
by assumption. So the outputs of both Encgd (s,.,.) and Encfd (s,.,.) are pseu-
dorandom and thus indistinguishable. a

@ is a very powerful class of relations, and captures many realistic settings. It
contains P, but also the class of relations 5 C @fff which allows to overwrite
all but d bits of the input, and the class P*™ C @8“ which allows to permute
the key bits.® Previous to our work no scheme was known to be provably secure
against 3, or even just for one of the special cases &t (for d > 0) or @Pe™.
In fact, no deterministic encryption scheme can be secure against #P*'™, and no

“natural”” deterministic scheme can be secure against @5t

4.2 Weak Randomness and New Constructions

The RKA security example from the previous section used the fact that an
adversary can apply any affine function to the LWE secret. There are also natural
implications from the fact that she can apply a mapping to the randomness r. For
example, it implies that LWE is hard, even if the randomness r used to generate
the samples r's+e is not uniform, but comes from a bit-fixing source [CGH*85].
Let us stress that the (comparably small) amount of randomness necessary to
sample the error e must be uniform.

Theorem 1 not only has implications for existing constructions, but in sub-
sequent work has inspired completely new constructions, most notably the au-
thentication schemes and message authentications codes proposed in [KPC*11].

® This is the (2, Ber,, £, d)-SLWE problem as given in Definition 2.

6 grem B2 as it only contains ¢x x where x = 0° and X is a (full rank) permutation
matrix.

" We need that every bit of the secret key is relevant, i.e. Enc(s, m) # Enc(s’, m) with
good probability for s # s'.
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