
Non-Interactive CCA-Secure Threshold
Cryptosystems with Adaptive Security:

New Framework and Constructions

Benôıt Libert1 ? and Moti Yung2

1Université catholique de Louvain, ICTEAM Institute (Belgium)
2 Google Inc. and Columbia University (USA)

Abstract. In threshold cryptography, private keys are divided into n
shares, each one of which is given to a different server in order to avoid
single points of failure. In the case of threshold public-key encryption,
at least t ≤ n servers need to contribute to the decryption process. A
threshold primitive is said robust if no coalition of t malicious servers can
prevent remaining honest servers from successfully completing private
key operations. So far, most practical non-interactive threshold cryp-
tosystems, where no interactive conversation is required among decryp-
tion servers, were only proved secure against static corruptions. In the
adaptive corruption scenario (where the adversary can corrupt servers
at any time, based on its complete view), all existing robust threshold
encryption schemes that also resist chosen-ciphertext attacks (CCA) till
recently require interaction in the decryption phase. A specific method
(in composite order groups) for getting rid of interaction was recently
suggested, leaving the question of more generic frameworks and con-
structions with better security and better flexibility (i.e., compatibility
with distributed key generation).

This paper describes a general construction of adaptively secure robust
non-interactive threshold cryptosystems with chosen-ciphertext security.
We define the notion of all-but-one perfectly sound threshold hash proof
systems that can be seen as (threshold) hash proof systems with publicly
verifiable and simulation-sound proofs. We show that this notion gener-
ically implies threshold cryptosystems combining the aforementioned
properties. Then, we provide efficient instantiations under well-studied
assumptions in bilinear groups (e.g., in such groups of prime order).
These instantiations have a tighter security proof and are indeed com-
patible with distributed key generation protocols.

Keywords. Threshold cryptography, adaptive corruptions, public-key
encryption, chosen-ciphertext security, non-interactivity, robustness.

? This author acknowledges the Belgian Fund for Scientific Research (F.R.S.-F.N.R.S.)
for his “Chargé de Recherches” fellowship and the BCRYPT Interuniversity Attrac-
tion Pole.

1 Introduction

Threshold cryptography [22, 23, 12] avoids single points of failure by splitting
keys into n > 1 shares which are held by servers in such a way that at least t
out of n servers should contribute to private key operations. In (t, n)-threshold
cryptosystems, an adversary breaking into up to t − 1 servers should not jeop-
ardize the security of the system.

Chosen-ciphertext security [45] (or IND-CCA for short) is widely recognized
as the standard security notion for public-key encryption. Securely distributing
the decryption procedure of CCA-secure public key schemes has proved to be a
challenging task. As discussed in, e.g., [49, 25], the difficulty is that decryption
servers should return their partial decryption results, called “decryption shares”,
before knowing whether the incoming ciphertext is valid or not and partial de-
cryptions of ill-formed ciphertexts may leak useful information to the adversary.

The first solution to this problem was put forth by Shoup and Gennaro [49]
and it requires the random oracle model [5], notably to render valid cipher-
texts publicly recognizable. In the standard model, Canetti and Goldwasser [15]
gave a threshold variant of the Cramer-Shoup encryption scheme [16]. Unfor-
tunately, their scheme requires interaction among decryption servers to obtain
robustness (i.e., ensure that no coalition of t − 1 malicious servers can prevent
uncorrupted servers from successfully decrypting) as well as to render invalid
ciphertexts harmless. The approach of [15] consists in randomizing the decryp-
tion process in such a way that partial decryptions of invalid ciphertexts are
uniformly random and thus meaningless to the adversary. To avoid the need to
jointly generate randomizers at each decryption, shareholders can alternatively
store a large number (i.e., proportional to the expected number of decryptions)
of pre-shared secrets, which does not scale well. Cramer, Damg̊ard and Ishai
suggested [20] a method to generate randomizers without interaction but it is
only efficient for a small number of servers.

Other threshold variants of Cramer-Shoup were suggested [1, 40] and Abe no-
tably showed [1] how to achieve optimal resilience (namely, guarantee robustness
as long as the adversary corrupts a minority of t < n/2 servers) in the Canetti-
Goldwasser system [15]. In the last decade, generic constructions of CCA-secure
threshold cryptosystems with static security were put forth [24, 52].

Non-Interactive Schemes. As an application of the Canetti-Halevi-Katz
(CHK) paradigm [18], Boneh, Boyen and Halevi [8] came up with the first fully
non-interactive robust CCA-secure threshold cryptosystem with a security proof
in the standard model: in their scheme, decryption servers can generate their
decryption shares without any communication with other servers. Their scheme
takes advantage of bilinear maps to publicly check the validity of ciphertexts,
which considerably simplifies the task of proving security in the threshold set-
ting. In addition, the validity of decryption shares can be verified in the same
way, which provides robustness. Similar applications of the CHK methodology
to threshold cryptography were studied in [13, 36].

Recently, Wee [52] defined a framework allowing to construct non-interactive

2

threshold signatures and (chosen-ciphertext secure) threshold cryptosystems in
a static corruption model. He left as an open problem the extension of his frame-
work in the scenario of adaptive corruptions.

Adaptive Corruptions. Most threshold systems (including [49, 15, 24, 25, 8])
have been analyzed in a static corruption model, where the adversary chooses
which servers it wants to corrupt before the scheme is set up. Unfortunately,
adaptive adversaries – who can choose whom to corrupt at any time, as a func-
tion of their entire view of the protocol execution – are known (see, e.g., [19])
to be strictly stronger. As discussed in [15], properly dealing with adaptive cor-
ruptions often comes at some substantial expense like a lower resilience. For
example, the Canetti-Goldwasser system can be proved robust and adaptively
secure when the threshold t is sufficiently small (typically, when t = O(n1/2))
but supporting an optimal number of faulty servers is clearly preferable.

Assuming reliable erasures, Canetti et al. [14] devised adaptively secure pro-
tocols for the distributed generation of discrete-logarithm-based keys and DSA
signatures. Their techniques were re-used later on [3] in proactive [44] RSA sig-
natures. In 1999, Frankel, MacKenzie and Yung [26, 27] independently showed
different methods to achieve adaptive security in the erasure-enabled setting.

Subsequently, Jarecki and Lysyanskaya [34] eliminated the need for erasures
and gave an adaptively secure variant of the Canetti-Goldwasser threshold cryp-
tosystem [15] which appeals to interactive zero-knowledge proofs but is designed
to remain secure in concurrent environments. Unfortunately, their scheme re-
quires a fair amount of interaction among decryption servers. Abe and Fehr [2]
showed how to dispense with zero-knowledge proofs in the Jarecki-Lysyanskaya
construction so as to prove it secure in (a variant of) the universal composability
framework but without completely eliminating interaction from the decryption
procedure. As in most threshold variants of Cramer-Shoup, hedging against in-
valid decryption queries requires an interactive (though off-line) randomness
generation phase for each ciphertext, unless many pre-shared secrets are stored.

Recently, the authors of this paper showed [39] an adaptively secure vari-
ant of the Boneh-Boyen-Halevi construction [8] using groups of composite order
and the dual system encryption approach [50, 38] that was initially applied to
identity-based encryption [48, 10]. The scheme of [39] is based on a very spe-
cific use of the Lewko-Waters techniques [38], which limits its applicability to
composite order groups and makes it hard to combine with existing adaptively
secure distributed key generation techniques. Also, the concrete security of this
initial scheme is not optimal as its security reduction is related to the number
of decryption queries made by the adversary. To solve these problems, we need
a new approach and different methods to analyze the security of schemes.

Our contribution. Motivated by an open question raised by Wee [52] and
the limitations of [39], we define a general framework for constructing robust,
adaptively secure and fully non-interactive threshold cryptosystems with chosen-
ciphertext security. Our goal is to have simple and practical client/server pro-
tocols, as advocated in [49][Section 2.5], and even avoid the off-line interactive
randomness generation stage which is usually needed in threshold versions of

3

Cramer-Shoup.
To this end, we also appeal to hash proof systems (HPS) [17] and take advan-

tage of the property that, in security reductions using the techniques of [16, 17],
the simulator knows the private keys, which is convenient to answer adaptive
corruption queries. Indeed, when the reduction has to reveal the internal state
of dynamically-corrupted servers, it is not bound to a particular set of available
shares since it knows them all. At the same time, we depart from [15] in that the
validity of ciphertexts is made publicly verifiable – which eliminates the need
to randomize the decryption operation – using non-interactive proofs satisfying
some form of simulation-soundness [46]: in the security reduction, the simulator
should be able to generate a proof for a possibly false statement but the adver-
sary should be unable to do it on its own, even after having seen a fake proof.

To this end, we define the notion of all-but-one perfectly sound threshold
hash proof systems that can be seen as (threshold) hash proof systems [17] with
publicly verifiable proofs (as opposed to designed-verifier proofs used in tradi-
tional HPS [17]). More precisely, each proof is associated with a tag, in the same
way as ciphertexts are associated with tags in [41, 36]. Real public parameters
are indistinguishable from alternative parameters that are generated in an all-
but-one mode, which is only used in the security analysis. In the latter mode,
non-interactive proofs are perfectly sound on all tags, except for a single specific
tag where some trapdoor makes it possible to simulate proofs for false state-
ments. While our primitive bears similarities with Wee’s extractable hash proof
systems [51, 52] (where hash proof systems are also associated with tags), it is
different in that no extractability property is required and proofs are always used
as proofs of membership.

Using all-but-one perfectly sound threshold hash proof systems, we generi-
cally construct adaptively secure robust non-interactive threshold cryptosystems
with optimal resilience. An additional benefit of this approach is to provide a
better concrete security as the security proof requires a constant number of game
transitions whereas, in [39], the number of games is proportional to the number
of decryption queries.

Then, we show three concrete instantiations using number theoretic assump-
tions in bilinear groups. The first one uses groups whose order is a product of
two primes (whereas three primes are needed in [39]). Our second and third
schemes rely on the Groth-Sahai proof systems [31] in their instantiations based
on the Decision Linear [9] and symmetric eXternal Diffie-Hellman assumptions
[47]. The latter two constructions operate over bilinear groups of prime order,
which allows for a significantly better efficiency than composite order groups (as
discussed in [28]) and makes them much easier to combine with known adaptively
secure discrete-log-based distributed key generation protocols. For example, in
the erasure-free setting, the protocols of [34, 2] can be used so as to eliminate the
need for a trusted dealer at the same time as the reliance on reliable erasures.

4

2 Background and Definitions

2.1 Definitions for Threshold Public Key Encryption

A non-interactive (t, n)-threshold encryption scheme is a set of algorithms with
these specifications.

Setup(λ, t, n): given a security parameter λ and integers t, n ∈ poly(λ) (with
1 ≤ t ≤ n) denoting the number of decryption servers n and the threshold t,
this algorithm outputs (PK,VK,SK), where PK is the public key, SK =
(SK1, . . . , SKn) is a vector of private-key shares and VK = (V K1, . . . , V Kn)
is a vector of verification keys. Decryption server i is given the private key
share (i, SKi). For each i ∈ {1, . . . , n}, the verification key V Ki will be used
to check the validity of decryption shares generated using SKi.

Encrypt(PK,M): is a randomized algorithm that, given a public key PK and
a plaintext M , outputs a ciphertext C.

Ciphertext-Verify(PK,C): takes as input a public key PK and a ciphertext
C. It outputs 1 if C is deemed valid w.r.t. PK and 0 otherwise.

Share-Decrypt(PK, i, SKi, C): on input of a public key PK, a ciphertext C
and a private-key share (i, SKi), this (possibly randomized) algorithm out-
puts a special symbol (i,⊥) if Ciphertext-Verify(PK,C) = 0. Otherwise,
it outputs a decryption share µi = (i, µ̂i).

Share-Verify(PK, V Ki, C, µi): takes in PK, the verification key V Ki, a ci-
phertext C and a purported decryption share µi = (i, µ̂i). It outputs either
1 or 0. In the former case, µi is said to be a valid decryption share. We adopt
the convention that (i,⊥) is an invalid decryption share.

Combine(PK,VK, C, {µi}i∈S): given PK, VK, C and a subset S ⊂ {1, . . . , n}
of size t = |S| with decryption shares {µi}i∈S , this algorithm outputs either
a plaintext M or ⊥ if the set contains invalid decryption shares.

Chosen-ciphertext security. We use a game-based definition of chosen-
ciphertext security which is akin to the one of [49, 8] with the difference that the
adversary can adaptively decide which parties it wants to corrupt.

Definition 1. A non-interactive (t, n)-Threshold Public Key Encryption scheme
is secure against chosen-ciphertext attacks (or IND-CCA2 secure) and adaptive
corruptions if no PPT adversary has non-negligible advantage in this game:

1. The challenger runs Setup(λ, t, n) to obtain PK, a vector of private key
shares SK = (SK1, . . . , SKn) and verification keys VK = (V K1, . . . , V Kn).
It gives PK and VK to the adversary A and keeps SK to itself.

2 The adversary A adaptively makes the following kinds of queries:

- Corruption query: A chooses i ∈ {1, . . . , n} and obtains SKi. No more
than t− 1 private key shares can be obtained by A in the whole game.

- Decryption query: A chooses an index i ∈ {1, . . . , n} and a ciphertext C.
The challenger replies with µi = Share-Decrypt(PK, i, SKi, C).

3. The adversary A chooses two equal-length messages M0,M1 and obtains
C? = Encrypt(PK,Mβ) for some random bit β R← {0, 1}.

5

4. A makes further queries as in step 2 but is not allowed to make decryption
queries on C?.

5. A outputs a bit β′ and is deemed successful if β′ = β. As usual, A’s advantage
is measured as the distance Adv(A) = |Pr[β′ = β]− 1

2 |.

Consistency. A (t, n)-Threshold Encryption scheme provides decryption con-
sistency if no PPT adversary has non-negligible advantage in a three-stage game
where stages 1 and 2 are identical to those of Definition 1 with the difference
that the adversary A is allowed to obtain all private key shares (alternatively,
A can directly obtain SK at the beginning of the game). In stage 3, A out-
puts a ciphertext C and two t-sets of decryption shares Γ = {µ1, . . . , µt} and
Γ ′ = {µ′1, . . . , µ′t}. The adversary A is declared successful if

1. Ciphertext-Verify(PK,C) = 1.

2. Γ and Γ ′ only consist of valid decryption shares.

3. Combine(PK,VK, C, Γ) 6= Combine(PK,VK, C, Γ ′).

We note that condition 1 prevents an adversary from trivially winning by out-
putting an invalid ciphertext, for which distinct sets of key shares may give
different results. This definition of consistency is identical to the one of [49, 8]
with the difference that A can adaptively corrupt servers.

2.2 Hardness Assumptions in Composite Order Groups

In one occasion, we appeal to groups (G,GT) of composite order N = p1p2,
where p1 and p2 are primes, with a bilinear map e : G×G→ GT (i.e., for which
e(ga, hb) = e(g, h)ab for any g, h ∈ G and a, b ∈ ZN). In the notations hereafter,
for each i ∈ {1, 2}, Gpi stands for the subgroup of order pi in G.

Definition 2 ([11]). In a group G of composite order N , the Subgroup Deci-
sion (SD) problem is given (g ∈ Gp1 , h ∈ G) and η, to decide whether η ∈ Gp1
or η ∈R G. The Subgroup Decision assumption states that, for any PPT
distinguisher D, the SD problem is infeasible.

2.3 Assumptions in Prime Order Groups

We also use bilinear maps e : G × Ĝ → GT over groups of prime order p. We
will work in symmetric pairing configurations, where G = Ĝ, and sometimes in
asymmetric configurations, where G 6= Ĝ.

In the symmetric setting (G,GT), we rely on the following assumption.

Definition 3 ([9]). In a group G of prime order p, the Decision Linear
Problem (DLIN) is to distinguish the distributions (g, ga, gb, gac, gbd, gc+d) and
(g, ga, gb, gac, gbd, gz), with a, b, c, d, z R← Zp. The Decision Linear Assump-
tion is the intractability of DLIN for any PPT distinguisher D.

6

The problem amounts to deciding if vectors ~g1 = (ga, 1, g), ~g2 = (1, gb, g)
and ~g3 = (gac, gbd, gδ) are linearly dependent (i.e., if δ = c+ d) or not.

In asymmetric bilinear groups (G, Ĝ,GT), we assume the hardness of the De-

cision Diffie-Hellman (DDH) problem in G and Ĝ. This implies the unavailabil-

ity of efficiently computable isomorphisms between Ĝ and G. This assumption
is called Symmetric eXternal Diffie-Hellman (SXDH) assumption. Given

vectors ~u1 = (g, h), ~u2 = (ga, hc) in G2 or Ĝ2, the SXDH assumption asserts the
infeasibility of deciding whether ~u1 and ~u2 are linearly dependent (i.e., whether
a = c mod p).

3 All-But-One Perfectly Sound Threshold Hash Proof
Systems

Let C, K and K′ be sets and let V ⊂ C be a subset. Let also R be a space where
random coins can be chosen. We mandate that V, K, K′ and R be of exponential
size in λ, where λ ∈ N is a security parameter. In addition, C, V and C\V should
be efficiently samplable and we also require the set K to form a group for some
binary operation, which is denoted by � hereafter.

An all-but-one perfectly sound threshold hash proof system for (C,V,K,K′,R)
is a tuple of algorithms (SetupSound,SetupABO,Sample,Prove,SimProve,Verify,
PubEval,SharePrivEval,ShareEvalVerify,Combine) of efficient algorithms with the
following specifications.

SetupSound(λ, t, n): given a security parameter λ ∈ N and integers t, n ∈
poly(λ), this algorithm outputs a public key pk, a vector of private key shares
(sk1, . . . , skn) and verification keys (vk1, . . . , vkn).

SetupABO(λ, t, n, tag?): takes as input a security parameter λ ∈ N, integers
t, n ∈ poly(λ) and a tag tag?. It outputs a public key pk, private key shares
(sk1, . . . , skn), the corresponding verification keys (vk1, . . . , vkn) as well as a
simulation trapdoor τ . It is important that τ be independent of {ski}ni=1.

Sample(pk): is a probabilistic algorithm that takes as input a public key pk. It
draws random coins r R← R and outputs an element Φ ∈ V along with the
random coins r that will serve as a witness explaining Φ as an element of V.

Prove(pk, tag, r, Φ): takes in a public key pk, a tag tag, an element Φ ∈ V and
the random coins r ∈ R that were used to sample Φ. It generates a non-
interactive proof πV that Φ ∈ V.

SimProve(pk, τ, tag, Φ): takes as input a public key pk and a simulation trapdoor
τ produced by SetupABO(λ, t, n, tag?), a tag tag and an element Φ ∈ C. If
tag 6= tag?, the algorithm outputs ⊥. If tag = tag?, the algorithm produces
a simulated NIZK proof πV that Φ ∈ V.

Verify(pk, tag, Φ, πV): takes as input a public key pk, a tag tag, an element Φ ∈ C
and a purported proof πV . It outputs 1 if and only if πV is deemed as a valid
proof that Φ ∈ V ⊂ C.

PubEval(pk, r, Φ): takes as input a public key pk, an element Φ ∈ V and the
random coins r ∈R R such that (r, Φ) ← Sample(pk). It outputs a value
K ∈ K, which is called public evaluation of Φ.

7

SharePrivEval(pk, ski, Φ): is a deterministic algorithm that takes in a public key
pk, a private key share ski and an element Φ ∈ C. It outputs a value Ki ∈
K′, called private evaluation share and a proof πKi that Ki was evaluated
correctly.

ShareEvalVerify(pk, vki, Φ,Ki, πKi): given a public key pk, a verification key
vki, an element Φ ∈ C, a private evaluation share Ki ∈ K′ and its proof πKi

,
this algorithm outputs 1 if πKi

is considered as a valid proof of the correct
evaluation of Ki. Otherwise, it outputs 0.

Combine(pk, Φ, {(Ki, πKi
)}i∈S): takes as input a public key pk, an element

Φ ∈ C and a set of t pairs {(Ki, πKi
)}i∈S , where S ⊂ {1, . . . , n}, each

one of which consists of a private evaluation share Ki ∈ K′ and its proof
πKi . If ShareEvalVerify(pk, vki, Φ,Ki, πKi) = 0 for some i ∈ S, it outputs ⊥.
Otherwise, it outputs a value K ∈ K.

We also define this algorithm which is implied by the above ones but will be
convenient to use.

PrivEval(pk, {ski}i∈S , Φ): given a public key pk, a set of private key shares
{ski}i∈S where S is an arbitrary t-subset of {1, . . . , n}, and an element Φ ∈ C,
this algorithm outputs the result of Combine(pk, Φ, {(Ki, πKi

)}i∈S) where
(Ki, πKi

)← SharePrivEval(pk, ski, Φ) for each i ∈ S.

The following properties are required from these algorithms and the sets
(C,V,K,K′,R).

(Setup indistinguishability): For any integers (λ, t, n) with 1 ≤ t ≤ n and any
tag tag?, the output of SetupSound(λ, t, n) is computationally indistinguish-
able from the outputs (pk, {ski}ni=1, {vki}ni=1) of SetupABO(λ, t, n, tag?).

(Correctness and Public Evaluability on V): For any (pk, {ski}ni=1, {vki}ni=1)
returned by SetupSound or SetupABO, if (r, Φ) R← Sample(pk) (and thus
Φ ∈ V), it holds that:

1. For any i ∈ {1, . . . , n}, if (Ki, πKi
) ← SharePrivEval(pk, ski, Φ), the pri-

vate evaluation share Ki ∈ K′ is uniquely determined by (pk, vki) and Φ.
Moreover, the proof πKi

satisfies ShareEvalVerify(pk, vki, Φ,Ki, πKi
) = 1.

2. For any t-subset S ⊂ {1, . . . , n}, combining the corresponding private
evaluation shares allows recomputing the public evaluation of Φ: namely,
PubEval(pk, r, Φ) = PrivEval(pk, {ski}i∈S , Φ).

(Universality): For any (pk, {ski}ni=1, {vki}ni=1) produced by SetupSound or
SetupABO and any Φ ∈ C\V, for any subset S̄ ⊂ {1, . . . , n} of size |S̄| = t−1,
the statistical distance

∆[
(
pk, {vki}ni=1, {ski}i∈S̄ , Φ,PrivEval(pk, {ski}ti=1, Φ)

)
,(

pk, {vki}ni=1, {ski}i∈S̄ , Φ,K
)
],

where K R← K, should be negligible.

8

(All-But-One Soundness): For all integers (λ, t, n) such that 1 ≤ t ≤ n, any
tag tag? and any outputs (pk, {ski}ni=1, {vki}ni=1, τ) of SetupABO(λ, t, n, tag?),
these conditions are satisfied.

1. For any tag 6= tag?, proofs are always perfectly sound. Namely, if a proof
πV satisfies Verify(pk, tag, Φ, πV) = 1 for some Φ ∈ C, then it necessarily
holds that Φ ∈ V.

2. For any Φ ∈ C, the trapdoor τ allows generating as simulated a proof
πV ← SimProve(pk, τ, tag?, Φ) such that Verify(pk, tag?, Φ, πV) = 1 (note
that πV is a proof for a false statement if Φ ∈ C\V). Moreover, if Φ ∈ V,
the simulated proof πV should be perfectly indistinguishable from a real
proof (i.e., that would be generated by Prove using a witness r ∈ R of
the fact that Φ ∈ V).

(Simulatability of Share Proofs): For all (λ, t, n) with 1 ≤ t ≤ n, any tag
tag?, any outputs (pk, {ski}ni=1, {vki}ni=1, τ) of SetupABO(λ, t, n, tag?) and
any Φ ∈ C, the proofs πKi obtained as (Ki, πKi)← SharePrivEval(pk, ski, Φ)
should be simulatable using the trapdoor τ instead of {ski}ni=1. Using τ and
(pk, {vki}ni=1, Φ), an efficient algorithm S should be able to produce simulated
proofs πKi

that are perfectly indistinguishable from real proofs.

(Consistency): For all (λ, t, n) with 1 ≤ t ≤ n, any output (pk, {(vki, ski)}ni=1) of
SetupSound(λ, t, n), given (pk, {(vki, ski)}ni=1), it should be computationally
infeasible to come up with a triple (tag, Φ, πV) as well as two distinct t-sets
Γ = {(Ki1 , πKi1

), . . . , (Kit , πKit
)} and Γ ′ = {(K ′j1 , π

′
Kj1

), . . . , (K ′jt , π
′
Kjt

)},
with ik, jk ∈ {1, . . . , n} for each k ∈ {1, . . . , t}, such that the following
three conditions are satisfied: (i) Verify(pk, tag, Φ, πV) = 1; (ii) for each
k ∈ {1, . . . , t}, it holds that ShareEvalVerify(pk, vkik , Φ,Kik , πKik

) = 1 and
ShareEvalVerify(pk, vkjk , Φ,K

′
jk
, π′Kjk

) = 1; (iii) Γ and Γ ′ result in distinct

combinations: Combine(pk, Φ, Γ) 6= Combine(pk, Φ, Γ ′).

(Subset Membership Hardness): membership in C should be easy to check
but membership in V should not. Moreover, this should hold even if τ is
given. Namely, for all integers (λ, t, n) such that 1 ≤ t ≤ n, any tag tag?

and any outputs (pk, {ski}ni=1, {vki}ni=1, τ) of SetupABO(λ, t, n, tag?), for any
PPT distinguisher D, it must hold that:

AdvSM(D) = |Pr[D(C,V, C1, τ) = 1|C1
R← C\V]

− Pr[D(C,V, C0, τ) = 1|C0
R← V]| ∈ negl(λ).

In the definition of the subset membership hardness property, the trapdoor τ
should not carry any side information helping the distinguisher. For this reason,
the latter receives τ as part of its input.

9

4 Adaptively Secure Robust Non-Interactive
CCA2-Secure Threshold Cryptosystems from
All-But-One Perfectly Sound Threshold Hash Proof
Systems

Let us assume sets (C,V,K,K′,R) for which we have an all-but-one perfectly
sound threshold hash proof systemΠABO-THPS = (SetupSound,SetupABO,Sample,
Prove,SimProve,Verify,PubEval,SharePrivEval,ShareEvalVerify,Combine) that sat-
isfies the conditions specified in Section 3. We assume that messages are in K.
The generic construction of CCA2-secure threshold cryptosystem goes as follows.

Keygen(λ, t, n): given integers λ, t, n ∈ N, choose a one-time signature scheme
Σ = (Gen,Sig,Ver), generate (pk, {ski}ni=1, {vki}ni=1) ← SetupSound(λ, t, n)
and output (PK,SK,VK), where the vectors of private key shares and ver-
ification keys are defined as SK = (sk1, . . . , skn) and VK = (vk1, . . . , vkn),
respectively. The public key is PK = (pk, Σ).

Encrypt(M,PK): to encrypt a message M ∈ K using PK = (pk, Σ),

1. Generate a one-time signature key pair (SSK,SVK)← Σ.Gen(λ).
2. Choose r R← R, compute (r, Φ) ← Sample(pk, r) and blind the message

as C0 = M � PubEval(pk, r, Φ).
3. Generate a proof πV ← Prove(pk,SVK, r, Φ) that Φ ∈ V with respect to

the tag SVK.
4. Output C = (SVK, C0, Φ, πV , σ), where σ = Σ.Sig(SSK, (C0, Φ, πV)).

Ciphertext-Verify
(
PK,C

)
: parse the ciphertext C as C = (SVK, C0, Φ, πV , σ)

and PK as (pk, Σ). Return 1 if it holds that Σ.Ver
(
SVK, (C0, Φ, πV), σ

)
= 1

and Verify(pk,SVK, Φ, πV) = 1. Otherwise, return 0.

Share-Decrypt(SKi, C): given SKi = ski and C = (SVK, C0, Φ, πV , σ), re-
turn (i,⊥) if it turns out that Ciphertext-Verify

(
PK,C

)
= 0. Otherwise,

compute a pair (Ki, πKi)← SharePrivEval(pk, ski, Φ) and return µi = (i, µ̂i)
where µ̂i = (Ki, πKi

).

Share-Verify
(
PK, V Ki, C, (i, µ̂i)

)
: parse C as (SVK, C0, Φ, πV , σ). If µ̂i = ⊥

or if µ̂i cannot be properly parsed as a pair (Ki, πKi
), return 0. Otherwise,

return 1 if ShareEvalVerify(pk, vki, Φ,Ki, πKi
) = 1 and 0 otherwise.

Combine(PK,VK, C, {(i, µ̂i)}i∈S): parse C as (SVK, C0, Φ, πV , σ). Return ⊥
if there exists i ∈ S such that Share-Verify

(
PK,C, (i, µ̂i)

)
= 0 or if

Ciphertext-Verify
(
PK,C

)
= 0 . Otherwise, compute the combined value

K = Combine(pk, Φ, {(Ki, πKi)}i∈S) ∈ K, which unveils M = C0 �K−1.

We observe that there is no need to bind the one-time verification key SVK
to the ciphertext components (C0, Φ, πV) in any other way than by using it as a
tag to compute the non-interactive proof πV . Indeed, if the adversary attempts
to re-use parts (C?0 , Φ

?, π?V) of the challenge ciphertext and simply replaces the
one-time verification key SVK? by a verification key SVK of its own, it will be

10

forced to compute a proof πV that correspond to the same Φ? as in the challenge
phase but under the new tag SVK. Our security proof shows that this is infea-
sible as long as ΠABO-THPS satisfies the properties of setup indistinguishability
and all-but-one soundness.

The consistency property of the threshold encryption scheme is trivially im-
plied by that of ΠABO-THPS and we focus on proving its IND-CCA security. In
the threshold setting, adaptive security is achieved by taking advantage of the
fact that, in security reductions using hash proof systems, the simulator typically
knows the private key and can thus answer adaptive queries at will. At the same
time, invalid ciphertexts are harmless as they are made publicly recognizable
due to the use of non-interactive proofs of validity: as long as these proofs are
perfectly sound in all decryption queries, the simulator is guaranteed not to leak
too much information about the particular private key it is using.

The main problem to solve is thus to make sure that only the simulator can
simulate a fake proof in the challenge phase and this is where the all-but-one
soundness property is handy.

Theorem 1. The above threshold cryptosystem is IND-CCA secure against adap-
tive corruptions assuming that: (i) ΠABO-THPS is an all-but-one perfectly sound
hash proof system; (ii) Σ is a strongly unforgeable one-time signature.

Proof. The proof is given in the full version of the paper. ut

5 Instantiations

5.1 Construction in Groups of Composite Order N = p1p2

The construction relies on a hash proof system in a group G of composite order
N = p1p2 and it is conceptually close to the one in [33] (notably because it builds
on a log p2-entropic hash proof system, as defined in [37]). The public key includes
group elements (g,X = gx) in the subgroup Gp1 of order p1 and the sets C and
V are defined to be G and Gp1 , respectively. The sampling algorithm returns

Φ = gr ∈ Gp1 for a random exponent r R← ZN , which allows publicly evaluating
H(Xr) = H(Φx) using a pairwise independent hash function H : G → {0, 1}`.
Since the public key is independent of x mod p2, for any Φ ∈ G that has a
non-trivial component of order p2, the “hash value” Φx has exactly log p2 bits
of min-entropy and the leftover hash lemma implies that H(Φx) is statistically
close to the uniform distribution in {0, 1}` when ` is sufficiently small.

In order to turn the scheme into an all-but-one perfectly sound threshold
HPS, we need a mechanism that proves membership in the subgroup Gp1 and
guarantees the perfect soundness of proofs of membership for all tags tag ∈ ZN
such that tag 6= tag?. To this end, we use additional public parameters (u, v) ∈
G2 and a tag-dependent group element utag · v will serve as a common reference
string to generate a non-interactive proof that Φ ∈ Gp1 . Membership in Gp1
can be non-interactively proved using a technique that can be traced back to
[30]. The proof consists of a group element πSD ∈ G satisfying the equality

11

e(Φ, utag ·v) = e(g, πSD), which ensures that Φ ∈ Gp1 as long as utag ·v has a Gp2
component. In the public parameters produced by SetupABO, the value utag · v
thus has to be in G\Gp1 for any tag 6= tag? in such a way that generating fake
proofs that Φ ∈ Gp1 is impossible. At the same time, utag

? · v should be in Gp1
so that fake proofs can be generated for tag?.

SetupSound(λ, t, n): choose a group G of composite order N = p1p2 for large
primes pi > 2l(λ) for each i ∈ {1, 2} and for some polynomial l : N → N.
Then, conduct the following steps

1. Pick g R← Gp1 , u, v R← G, x R← ZN and set X = gx ∈ Gp1 .

2. Choose a random polynomial P [X] ∈ ZN [X] of degree t − 1 such that
P (0) = x. For each i ∈ {1, . . . , n}, compute Yi = gP (i) ∈ Gp1 .

3. Select a pairwise independent hash function H : G → {0, 1}`, where
` ≤ l(λ) − 2λ. Note that the range K = {0, 1}` of H forms a group for
the bitwise exclusive OR operation � = ⊕.

4. Define private key shares (sk1, . . . , skn) as ski = P (i) ∈ ZN for each i = 1
to n. The vector (vk1, . . . , vkn) is defined as vki = Yi ∈ Gp1 for each i and
the public key consists of pk =

(
(G,GT), N, g,X, u, v,H

)
. In addition,

we have (C,V,K,K′,R) = (G,Gp1 , {0, 1}`,G,ZN).

SetupABO(λ, t, n, tag?): is like SetupSound with the difference that, instead of
being chosen uniformly in G, v is defined as v = u−tag

? · gα for some random
α R← ZN . The algorithm also outputs the simulation trapdoor τ = α ∈ ZN .

Sample(pk): parse the public key pk as
(
(G,GT), N, g,X, u, v,H

)
. Choose r R←

ZN , compute Φ = gr ∈ Gp1 and output the pair (r, Φ) ∈ ZN ×Gp1 .

Prove(pk, tag, r, Φ): parse pk as
(
(G,GT), N, g,X, u, v,H

)
and return ⊥ if Φ 6=

gr. Otherwise, compute and return πSD = (utag · v)r.

SimProve(pk, τ, tag, Φ): return ⊥ if tag 6= tag? or if Φ 6∈ G. Otherwise, use the
simulation trapdoor τ = α ∈ ZN to compute and output πSD = Φα.

Verify(pk, tag, Φ, πSD): return 1 iff (Φ, πSD) ∈ G2 and e(Φ, utag · v) = e(g, πSD).

PubEval(pk, r, Φ): on input of the public key pk =
(
(G,GT), N, g,X, u, v,H

)
,

return ⊥ if (r, Φ) 6∈ ZN ×G. Otherwise, output K = H(Xr) ∈ {0, 1}`.
SharePrivEval(pk, ski, Φ): return ⊥ if Φ 6∈ G. Otherwise, compute and return

(Ki, πKi
), where Ki = Φski = ΦP (i) and πKi

= ε is simply the empty string.

ShareEvalVerify(pk, vki, Φ,Ki, πKi
): if Ki 6∈ G, vki 6∈ G or πKi

6= ε, return 0.
Otherwise, return 1 if e(g,Ki) = e(Φ, vki). In any other situation, return 0
(the proof πKi

is ignored in this instantiation since, given key vki = Yi, the
private evaluation share Ki is directly verifiable).

Combine(pk, Φ, {(Ki, πKi
)}i∈S): return ⊥ if there exists an index i ∈ S such

that ShareEvalVerify(pk, vki, Φ,Ki, πKi
) = 0. Otherwise, compute and output

K = H(
∏
i∈S K

∆i,S(0)
i) = H(Φx) ∈ K.

Theorem 2. The above construction is an all-but-one perfectly sound threshold
hash proof system if the SD assumption holds in G. (The proof is given in the
full version of the paper).

12

When the above all-but-one perfectly sound threshold hash proof system
is plugged into the generic construction of Section 4, the resulting threshold
cryptosystem bears resemblance with the scheme in [39], which makes use of
groups whose order is a product of three primes. However, it is more efficient and
its security proof is completely different as the dual system encryption approach
[50] is not used here.

5.2 Construction in Prime Order Groups

This section presents an all-but-one threshold hash proof system based on the
DLIN assumption in prime order bilinear groups. The public key comprises
elements (g, g1, g2, X1, X2) ∈ G5, where X1 = gx1

1 · gz, X2 = gx2
2 · gz and

(x1, x2, z) are part of the private key. The sets C and V ⊂ C consist of C = G3

and V = {(Φ1, Φ2, Φ3) = (gθ11 , g
θ2
2 , g

θ1+θ2) | θ1, θ2 ∈ Zp}, respectively. For any

Φ = (Φ1, Φ2, Φ3) ∈ V, the public evaluation algorithm computes Xθ1
1 ·X

θ2
2 , which

can be privately evaluated as Φx1
1 · Φ

x2
2 · Φz3.

As in the previous instantiation, we append to elements Φ ∈ V a non-
interactive proof of their membership of V (i.e., a proof that (g, g1, g2, Φ1, Φ2, Φ3)
is a linear tuple) and, in this case, the proof is obtained using the Groth-Sahai
techniques. However, we cannot simply combine them with a DLIN-based hash
proof system in the obvious way. The reason is that, using parameters produced
by SetupABO and under the special tag tag?, SimProve must be able to compute
a fake non-interactive proof of the statement Φ ∈ V for an element Φ 6∈ V. At
the same time, we should make sure that, for any tag such that tag 6= tag?,
it will be impossible to simulate such proofs. To solve this problem, we need a
form of one-time simulation soundness [46] which can be possibly obtained from
Groth’s simulation-sound non-interactive proofs [29] or a more efficient variant
suggested by Katz and Vaikuntanathan [35]. However, the specific language that
we consider allows for even more efficient constructions: it is actually possible to
build on the Groth-Sahai proofs essentially without any loss of efficiency.

The solution is as follows. After having sampled a tuple Φ = (Φ1, Φ2, Φ3) ∈ V,
the sampler generates his proof using a Groth-Sahai CRS that depends on tag.
Algorithm SetupABO produces parameters in the fashion of the all-but-one tech-
nique [7]: the tag-based CRS is perfectly WI on the special tag tag? (which allows
generating NIZK proofs for this tag) and perfectly sound for any other tag, which
makes it impossible to convincingly prove false statements on tags tag 6= tag?.
Malkin, Teranishi, Vahlis and Yung [42] used a similar idea of message-dependent
CRS in the context of signatures. A difference with [42] is that we do not need
to extract witnesses from adversarially-generated proofs and only use them as
proofs of membership.

Interestingly, the same technique can be applied to have a more efficient
simulation-sound proof of plaintext equality in the Naor-Yung-type [43] cryp-
tosystem in [35][Section 3.2.2]: the proof can be reduced from 60 to 22 group
elements and the ciphertext size is decreased by more than 50%.

13

SetupSound(λ, t, n): Choose a group G of prime order p > 2λ with generators
g, g1, g2, f1, f2

R← G.

1. Choose x1, x2, z
R← Zp and set X1 = gx1

1 gz, X2 = gx2
2 gz. Define the

vectors ~g1 = (g1, 1, g) and ~g2 = (1, g2, g). Then, pick ξ1, ξ2
R← Zp and

define ~g3 = ~g1
ξ1 · ~g2

ξ2 .
2. Choose φ1, φ2

R← Zp and define vectors ~f1 = (f1, 1, g), ~f2 = (1, f2, g) and

~f3 = ~f1

φ1 · ~f2

φ2 · (1, 1, g).
3. Choose random polynomials P1[X], P2[X], P [X] ∈ Zp[X] of degree t− 1

such that P1(0) = x1, P2(0) = x2 and P (0) = z. For each i = 1 to n,

compute Yi,1 = g
P1(i)
1 gP (i), Yi,2 = g

P2(i)
2 gP (i).

4. Define shares SK = (sk1, . . . , skn) as ski = (P1(i), P2(i), P (i)) ∈ (Zp)3

for each i ∈ {1, . . . , n}. Verification keys VK = (vk1, . . . , vkn) are defined
as vki = (Yi,1, Yi,2) ∈ G2 for each i ∈ {1, . . . , n} and the public key is

pk =
(

(G,GT), g, ~g1, ~g2, ~g3, ~f1, ~f2, ~f3, X1, X2

)
.

As for the sets (C,K,K′,R), they are defined as C = G3, K = K′ = G
and R = (Zp)2, respectively. The subset V ⊂ C consists of the language

(Φ1, Φ2, Φ3) ∈ G3 for which there exists θ1, θ2 ∈ Zp such that Φ1 = gθ11 ,

Φ2 = gθ22 and Φ3 = gθ1+θ2 .

SetupABO(λ, t, n, tag?): is like SetupSound with the following differences.

1. In step 1, ~g3 is set as ~g3 = ~g1
ξ1 ·~g2

ξ2 ·(1, 1, g)−tag
?

so that ~g3 6∈ span(~g1, ~g2).

2. In step 2, the vectors (~f1, ~f2, ~f3) are chosen so as to have ~f3 = ~f1

φ1 · ~f2

φ2

.
3. The algorithm also outputs the trapdoor τ = (ξ1, ξ2, φ1, φ2) ∈ (Zp)4.

Sample(pk): choose θ1, θ2
R← Zp, compute Φ = (Φ1, Φ2, Φ3) = (gθ11 , g

θ2
2 , g

θ1+θ2)
and output

(
(θ1, θ2), Φ

)
.

Prove
(
pk, tag, (θ1, θ2), Φ

)
: parse pk as

(
(G,GT), g, ~g1, ~g2, ~g3, ~f1, ~f2, ~f3, X1, X2

)
.

Parse Φ as (Φ1, Φ2, Φ3). Define1 ~gtag = ~g3·(1, 1, g)tag and use gtag = (~g1, ~g2, ~gtag)
as a Groth-Sahai CRS to generate a NIZK proof that (g, g1, g2, Φ1, Φ2, Φ3) is

a linear tuple. More precisely, generate commitments ~Cθ1 , ~Cθ2 to exponents

θ1, θ2 ∈ Zp (in other words, compute ~Cθi = ~g θi
tag · ~g1

ri · ~g2
si with ri, si

R← Zp
for each i ∈ {1, 2}) and a proof π(θ1,θ2) that they satisfy

Φ1 = gθ11 , Φ2 = gθ22 , Φ3 = gθ1+θ2 . (1)

The whole proof πLIN for (1) consists of ~Cθ1 , ~Cθ2 and π(θ1,θ2) (see the full
version of the paper for details about the generation of this proof) and
requires 12 elements of G.

SimProve(pk, τ, tag, Φ): parses pk as above, τ as (ξ1, ξ2, φ1, φ2) ∈ (Zp)4 and Φ
as (Φ1, Φ2, Φ3) ∈ G3. If tag 6= tag?, return ⊥. Otherwise, the commitments
~Cθ1 ,

~Cθ2 and the proof πLIN must be generated for the Groth-Sahai CRS

1 We assume that tags are non-zero. This can be enforced by having Prove and Verify
output ⊥ when tag = 0.

14

gtag? = (~g1, ~g2, ~gtag?), where ~gtag? = ~g3 · (1, 1, g)tag
?

= ~g1
ξ1 · ~g2

ξ2 , which is a
Groth-Sahai CRS for the witness indistinguishability setting.

1. Using the trapdoor (ξ1, ξ2), simulate proofs for multi-exponentiation
equations (see the full version of the paper for details as to how such

proofs can be simulated). That is, generate ~Cθ1 ,
~Cθ2 as commitments to

0 and compute π(θ1,θ2) as a simulated proof that relations (1) hold.

2. Output πLIN = (~Cθ1 ,
~Cθ2 , π(θ1,θ2)) that consists of perfectly hiding com-

mitments and simulated NIZK proofs which, on the CRS (~g1, ~g2, ~gtag?),
are distributed as real proofs.

Verify(pk, tag, Φ, πLIN): parse pk and Φ as above. Also, parse the proof πLIN

as (~Cθ1 ,
~Cθ2 , π(θ1,θ2)) ∈ G12. Then, compute ~gtag = ~g3 · (1, 1, g)tag and use

gtag = (~g1, ~g2, ~gtag) as a Groth-Sahai CRS to verify πLIN. If the latter is
deemed as a valid proof for the relations (1), return 1. Otherwise, return 0.

PubEval
(
pk, (θ1, θ2), Φ

)
: parse pk and Φ as above. Return ⊥ if (Φ1, Φ2, Φ3) 6=

(gθ11 , g
θ2
2 , g

θ1+θ2). Otherwise, compute and return K = Xθ1
1 ·X

θ2
2 ∈ K.

SharePrivEval(pk, ski, Φ): parse ski as (P1(i), P2(i), P (i)) ∈ (Zp)3 and return ⊥
if Φ 6∈ G3. Otherwise, return (Ki, πKi), where Ki = Φ

P1(i)
1 Φ

P2(i)
2 Φ

P (i)
3 ∈ K′

and πKi = (~CP1 ,
~CP2 ,

~CP , π
′
Ki

) ∈ G15 is a proof consisting of commitments
~CP1

, ~CP2
, ~CP to exponents P1(i), P2(i), P (i) ∈ Zp and a proof π′Ki

that these
satisfy the equations

Ki = Φ
P1(i)
1 · ΦP2(i)

2 · ΦP (i)
3 , Yi,1 = g

P1(i)
1 gP (i), Yi,2 = g

P2(i)
2 gP (i). (2)

The perfectly binding commitments ~CP1
, ~CP2

, ~CP and the proof π′Ki
are gen-

erated using the vectors f = (~f1, ~f2, ~f3) as a Groth-Sahai CRS (in such a way

that ~CP1 = ~f3

P1(i)
· ~f1

rP1 · ~f2

sP1 , for some rP1 , sP1

R← Zp, for example).

ShareEvalVerify(pk, vki, Φ,Ki, πKi
): parse vki as (Yi,1, Yi,2) ∈ G2 and return ⊥

if (Ki, πKi
) cannot be parsed as a tuple in G × G15. Otherwise, parse πKi

as πKi
= (~CP1

, ~CP2
, ~CP , π

′
Ki

) ∈ G15 and return 1 if π′Ki
is a valid proof for

equations (2). In any other situation, return 0.

Combine(pk, Φ, {(Ki, πKi
)}i∈S): return ⊥ if there is an index i ∈ S for which

ShareEvalVerify(pk, vki, Φ,Ki, πKi
) = 0. Otherwise, compute

K =
∏
i∈S

K
∆i,S(0)
i = Φx1

1 · Φ
x2
2 · Φz3 ∈ K.

Theorem 3. The above construction is an all-but-one perfectly sound threshold
hash proof system assuming that the DLIN assumption holds in G. (The proof
is given in the full version of the paper.)

The proof πLIN takes 6 group elements whereas ~Cθ1 ,
~Cθ2 require 3 group

elements each. If the scheme is instantiated using Groth’s one-time signature
[29] (which relies on the discrete logarithm assumption), SVK and σ demand 3

15

and 2 group elements, respectively. The whole ciphertext C thus consists of 21
group elements. Concretely, if each element has a representation of 512 bits, at
the 128-bit security level, the ciphertext overhead amounts to 10240 bits.

From a computational standpoint, assuming that a multi-exponentiation with
two base elements has roughly the same cost as a single-base exponentiation,
the sender has to compute 19 exponentiations in G (we include the cost of
generating SVK which incurs three exponentiations in Groth’s one-time signature
[29]). As for the verifier’s workload, the validity of a ciphertext can be checked
by computing a product of 12 pairings (which is more efficient than naively
evaluating 12 individual pairings) using batch verification techniques as in [6].

In the full version of the paper, we show an even more efficient instantiation
based on the Symmetric eXternal Diffie-Hellman assumption in prime order
groups: only 6 pairing evaluations suffice to check πV .

Acknowledgements

We thank the anonymous reviewers and Carla Ràfols for useful comments.

References

1. M. Abe. Robust Distributed Multiplicaton with out Interaction. In Crypto’99,
LNCS 1666, pp. 130–147, 1999.

2. M. Abe, S. Fehr. Adaptively Secure Feldman VSS and Applications to Universally-
Composable Threshold Cryptography. In Crypto’04, LNCS 3152, pp. 317–334,
2004.

3. J. Almansa, I. Damg̊ard, J.-B. Nielsen. Simplified Threshold RSA with Adaptive
and Proactive Security. In Eurocrypt’06, LNCS 4004, pp. 593–611, 2006.

4. P. Barreto, M. Naehrig. Pairing-Friendly Elliptic Curves of Prime Order. In
SAC’05, LNCS 3897, pp. 319–331, 2005.

5. M. Bellare, P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In ACM CCS, pp. 62–73, 1993.

6. O. Blazy, G. Fuchsbauer, M. Izabachène, A. Jambert, H. Sibert, D. Vergnaud.
Batch Groth-Sahai. In Applied Cryptography and Network Security (ACNS’10),
LNCS 6123, pp. 218–235, 2010.

7. D. Boneh, X. Boyen. Efficient Selective-ID Secure Identity-Based Encryption With-
out Random Oracles. In Eurocrypt’04, LNCS 3027, pp. 223–238, 2004.

8. D. Boneh, X. Boyen, S. Halevi. Chosen Ciphertext Secure Public Key Threshold
Encryption Without Random Oracles. In CT-RSA’06, LNCS 3860, pp. 226–243,
2006.

9. D. Boneh, X. Boyen, H. Shacham. Short group signatures. In Crypto’04, LNCS
3152, pp. 41–55, 2004.

10. D. Boneh, M. Franklin. Identity-Based Encryption from the Weil Pairing. In
SIAM J. of Computing 32(3), pp. 586–615, 2003. Earlier version in Crypto’01,
LNCS 2139, 2001.

11. D. Boneh, E.-J. Goh, K. Nissim. Evaluating 2-DNF formulas on ciphertexts.
In Theory of Cryptography Conference – TCC 2005, LNCS 3378, pp. 325–341.
Springer, 2005.

16

12. C. Boyd. Digital Multisignatures. In Cryptography and Coding (H.J. Beker and
F.C. Piper Eds.), Oxford University Press, pp. 241–246, 1989.

13. X. Boyen, Q. Mei, B. Waters. Direct Chosen Ciphertext Security from Identity-
Based Techniques. in ACM CCS’05, pp. 320–329, 2005.

14. R. Canetti, R. Gennaro, S. Jarecki, H. Krawczyk, T. Rabin. Adaptive Security for
Threshold Cryptosystems. In Crypto’99, LNCS 1666, pp. 98–115, 1999.

15. R. Canetti, S. Goldwasser. An Efficient Threshold Public Key Cryptosystem Secure
Against Adaptive Chosen Ciphertext Attack. In Eurocrypt’99, LNCS 1592, pp. 90–
106, 1999.

16. R. Cramer, V. Shoup. A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In Crypto’98, LNCS 1462, pp. 13–25, 1998.

17. R. Cramer, V. Shoup. Universal Hash Proofs and a Paradigm for Adaptive Chosen
Ciphertext Secure Public-Key Encryption. In Eurocrypt’02, LNCS 2332, pp. 45–64,
2002.

18. R. Canetti, S. Halevi, J. Katz. Chosen-Ciphertext Security from Identity-Based
Encryption. In Eurocrypt’04, LNCS 3027, pp. 207–222, 2004.

19. R. Cramer, I. Damg̊ard, S. Dziembowski, M. Hirt, T. Rabin. Efficient Multi-Party
Computations Secure Against an Adaptive Adversary. In Eurocrypt’99, LNCS
1592, pp. 311–326, 1999.

20. R. Cramer, I. Damg̊ard, Y. Ishai. Share Conversion, Pseudorandom Secret-Sharing
and Applications to Secure Computation. In TCC’05, LNCS 3378, pp. 342–362,
2005.

21. I. Damg̊ard. Towards Practical Public Key Systems Secure Against Chosen Ci-
phertext Attacks. In Crypto’91, LNCS 576, pp. 445–456 1991.

22. Y. Desmedt. Society and Group Oriented Cryptography: A New Concept. In
Crypto’87, LNCS 293, pp. 120–127, 1987.

23. Y. Desmedt, Y. Frankel. Threshold Cryptosystems. In Crypto’89, LNCS 435, pp.
307–315, 1989.

24. Y. Dodis, J. Katz. Chosen-Ciphertext Security of Multiple Encryption. In TCC’05,
LNCS 3378, pp. 188–209, 2005.

25. P.-A. Fouque, D. Pointcheval. Threshold Cryptosystems Secure against Chosen-
Ciphertext Attacks. In Asiacrypt’01, LNCS 2248, pp. 351–368, 2001.

26. Y. Frankel, P. MacKenzie, M. Yung. Adaptively-Secure Distributed Public-Key
Systems. In ESA’99, LNCS 1643, pp. 4–27, 1999.

27. Y. Frankel, P. MacKenzie, M. Yung. Adaptively-Secure Optimal-Resilience Proac-
tive RSA. In Asiacrypt’99, LNCS 1716, pp. 180–194, 1999.

28. D. Freeman. Converting Pairing-Based Cryptosystems from Composite-Order
Groups to Prime-Order Groups. In Eurocrypt’10, LNCS 6110, pp. 44–61, 2010.

29. J. Groth. Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In Asiacrypt 2006, LNCS 4284, pp. 444–459, 2006.

30. J. Groth, R. Ostrovsky, A. Sahai. Perfect non-interactive zero knowledge for NP. In
Eurocrypt’06, volume 4004 of Lecture Notes in Computer Science, pages 339–358.
Springer, 2006.

31. J. Groth, A. Sahai. Efficient non-interactive proof systems for bilinear groups. In
Eurocrypt’08, LNCS 4965, pp. 415–432, 2008.

32. J. H̊astad, R. Impagliazzo, L. Levin, M. Luby. A pseudorandom generator from
any one-way function. SIAM Journal on Computing, vol. 28(4), pp. 1364–1396,
1999.

33. D. Hofheinz, E. Kiltz. The Group of Signed Quadratic Residues and Applications.
In Crypto’09, LNCS 5677, pp. 637–653, 2009.

17

34. S. Jarecki, A. Lysyanskaya. Adaptively Secure Threshold Cryptography: Introduc-
ing Concurrency, Removing Erasures. In Eurocrypt’00, LNCS 1807, pp. 221–242,
2000.

35. J. Katz, V. Vaikuntanathan. Round-Optimal Password-Based Authenticated Key
Exchange. In TCC’11, LNCS 6597, pp. 293–310, 2011.

36. E. Kiltz. Chosen-ciphertext security from tag-based encryption. In TCC’06, LNCS
3876, pp. 581–600, 2006.

37. E. Kiltz, K. Pietrzak, M. Stam, M. Yung. A New Randomness Extraction Paradigm
for Hybrid Encryption. In Eurocrypt’09, LNCS 5479, pp. 590–609, 2009.

38. A. Lewko, B. Waters. New Techniques for Dual System Encryption and Fully
Secure HIBE with Short Ciphertexts. In TCC 2010, LNCS 5978, pp. 455–479,
2010.

39. B. Libert, M. Yung. Adaptively Secure Non-Interactive Threshold Cryptosystems.
In ICALP 2011, LNCS 6756, pp. 588–600, 2011.

40. P. MacKenzie. An Efficient Two-Party Public Key Cryptosystem Secure against
Adaptive Chosen Ciphertext Attack. In PKC’03, LNCS 2567, pp. 47–61, 2003.

41. P. MacKenzie, M. Reiter, K. Yang. Alternatives to non-malleability: Definitions,
constructions, and applications. In TCC’04, LNCS 2951, pp. 171–190. Springer,
2004.

42. T. Malkin, I. Teranishi, Y. Vahlis, M. Yung. Signatures resilient to continual
leakage on memory and computation. In TCC’11, LNCS 6597, pp. 89–106, 2011.

43. M. Naor, M. Yung. Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In STOC’90, ACM Press, 1990.

44. R. Ostrovsky, M. Yung. How to Withstand Mobile Virus Attacks. In 10th ACM
Symp. on Principles of Distributed Computing (PODC’91), 1991.

45. C. Rackoff, D. Simon. Non-Interactive Zero-Knowledge Proof of Knowledge and
Chosen Ciphertext Attack. In Crypto’91, LNCS 576, pp. 433–444, 1991.

46. A. Sahai. Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen-
Ciphertext Security. In FOCS’99, pp. 543–553, 1999.

47. M. Scott. Authenticated ID-based Key Exchange and remote log-in with simple
token and PIN number. Cryptology ePrint Archive: Report 2002/164.

48. A. Shamir. Identity-Based Cryptosystems and Signature Schemes. In Crypto’84,
LNCS 196, pp. 47–53, 1984.

49. V. Shoup, R. Gennaro. Securing Threshold Cryptosystems against Chosen Ci-
phertext Attack. In J. of Cryptology, 15(2), pp. 75–96, 2002. Earlier version in
Eurocrypt’98, LNCS 1403, pp. 1–16, 1998.

50. B. Waters. Dual System Encryption: Realizing Fully Secure IBE and HIBE under
Simple Assumptions. In Crypto’09, LNCS 5677, pp. 619–636, 2009.

51. H. Wee. Efficient Chosen-Ciphertext Security via Extractable Hash Proofs. In
Crypto’10, LNCS 6223, pp. 314–332, 2010.

52. H. Wee. Threshold and Revocation Cryptosystems via Extractable Hash Proofs.
In Eurocrypt’11, LNCS 6632, pp. 589–609, 2011.

18

