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Abstract. Verifiable random functions (VRFs) are pseudorandom func-
tions with the additional property that the owner of the seed SK can
issue publicly-verifiable proofs for the statements “f(SK , x) = y”, for
any input x. Moreover, the output of VRFs is guaranteed to be unique,
which means that y = f(SK , x) is the only image that can be proven
to map to x. Despite their popularity, constructing VRFs seems to be a
challenging task and only a few constructions based on specific number-
theoretic problems are known. Basing a scheme on general assumptions
is still an open problem. Towards this direction, Brakerski et al. showed
that verifiable random functions cannot be constructed from one-way
permutations in a black-box way.
In this paper we continue the study of the relationship between VRFs and
well-established cryptographic primitives. Our main result is a separation
of VRFs and adaptive trapdoor permutations (ATDPs) in a black-box
manner. This result sheds light on the nature of VRFs and is interesting
for at least three reasons:

– First, the separation result of Brakerski et al. gives the impression
that VRFs belong to the “public-key world”, and thus their rela-
tionship with other public-key primitives is interesting. Our result,
however, shows that VRFs are strictly stronger and cannot be con-
structed (in a black-box way) form primitives like e.g., public-key en-
cryption (even CCA-secure), oblivious transfer, and key-agreement.

– Second, the notion of VRFs is closely related to weak verifiable ran-
dom functions and verifiable pseudorandom generators which are
both implied by TDPs. Dwork and Naor (FOCS 2000) asked whether
there are transformation between the verifiable primitives similar to
the case of “regular” PRFs and PRGs. Here, we give a negative
answer to this problem showing that the case of verifiable random
functions is essentially different.

– Finally, our result also shows that unique signatures cannot be in-
stantiated from ATDPs. While it is well known that standard sig-
nature schemes are equivalent to OWFs, we essentially show that
the uniqueness property is crucial to change the relations between
primitives.
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1 Introduction

Verifiable random functions (VRF) were introduced by Micali, Rabin, and Vad-
han [1]. VRFs are random functions with the additional property that they
provide a proof verifying the input-output relationships. Formally, a VRF is
defined by a key pair (SK ,PK ) such that: the secret seed SK allows the evalu-
ation of the function y←F (SK , x) on any input x and the generation of a proof
π. This proof is publicly verifiable i.e., given the public key PK one can effi-
ciently verify (using π) that the statement “F (SK , x) = y” holds. For security,
VRFs must satisfy two properties: pseudorandomness and uniqueness. Roughly
speaking, pseudorandomness states that the function looks random at any input
x for which no proof has been issued. Uniqueness guarantees that for any x,
there exists only one image y for which a valid proof can be produced (even for
maliciously chosen public keys).

In some sense a VRF can be seen as the public-key equivalent of a pseudoran-
dom function. This fascinating primitive has many applications, both theoretical
and practical: 3-rounds resettable zero-knowledge [2], non-interactive lottery sys-
tems and micropayment schemes [3], a verifiable transaction escrow scheme [4],
and updatable zero-knowledge sets [5]. However, despite their popularity, con-
structing VRFs seems to be challenging. In particular, only a few schemes are
known so far, e.g., [1,6,7,8,9,10] (see Section 1.3 for a brief description of these
works). Furthermore, all known schemes are based on specific number-theoretic
problems such as RSA or different assumptions relying on bilinear maps. Con-
structing a VRF based on general assumptions is still an open problem.

In modern cryptography, almost all cryptographic primitives base their se-
curity on unproven computational assumptions that are considered reasonable
by the community3. In particular, the existence of one-way functions (OWF) is
one of the major open problems in cryptography. A common methodology for
proving the security of a cryptographic primitive, and for better understanding
its relation to other primitives, are black-box reduction techniques that can be
described as follows. Let P and Q be two primitives. A construction of P from Q
is black-box if the primitive P has only oracle access to Q (i.e., P does not have
access to the code of this primitive, but can evaluate it). A security reduction
of P to Q is black-box if for any (efficient) adversary A that breaks P there
exists an (efficient) algorithm S that has black-box access to A and breaks Q.
This approach has been extensively formalized by Reingold et al. who gave dif-
ferent “flavors” of black-box reductions depending on the “degree” of black-box
access [11].

Black-box constructions and black-box proofs give clearly a limited view on
the relation between the different primitives as no conclusions beyond the black-
box access can be made. Nevertheless, the approach is well established as most
of the cryptographic proofs are black-box and it is strong enough to show that
many cryptographic primitives, such as pseudorandom functions, digital signa-

3 If one makes exception of a few cases that are proven secure in an information-
theoretic sense.



tures, private-key encryption, are equivalent to the existence of one-way functions
(OWFs), which is considered to be one of the most basic assumptions. On the
other hand, other primitives (e.g., public-key encryption) are believed to exist
only under stronger assumptions (e.g., the existence of trapdoor permutations).
Though such primitives and/or assumptions look different, it might be possible
that many of them are related or even equivalent. Therefore, identifying the min-
imal assumptions on which one can base the security of a primitive is considered
one of the most important goals for a better and deeper understanding of the
cryptography world.

On the negative side, Impagliazzo and Rudich introduced a methodology
for proving separations between primitives in the sense of black-box construc-
tions, e.g., proving that Q does not imply P in a black-box way [12]. In their
work they ruled out any black-box construction of key-agreement protocols (KA)
from one-way functions. Gertner et al. show that the breakthrough result of Im-
pagliazzo and Rudich can be seen as defining two separated worlds in which
the cryptographic primitives can be divided: the “private cryptography” world
that contains all those primitives that are equivalent to OWFs, and private-key
encryption; the “public cryptography” world that contains harder primitives
such as trapdoor permutations, public-key encryption (PKE), KA and oblivious
transfer (OT) [13].

It is worth to mention that another methodology, called meta-reductions, for
separating primitives in a black-box sense is known. Since we do not follow this
approach, we refer the reader to e.g., [14,15,16].

1.1 Our results

We investigate the relationship between verifiable random functions and well-
studied cryptographic primitives. The first step towards this goal was recently
given by Brakerski, Goldwasser, Rothblum, and Vaikuntanathan who separated
VRFs from one-way permutations [17]. The authors introduce the notion of weak
verifiable random functions (wVRFs) that can be seen as the public key ana-
logue to weak-PRFs: pseudorandomness only holds with respect to randomly
chosen inputs. Moreover, they construct wVRFs from (enhanced) trapdoor per-
mutations and show that wVRFs are essentially equivalent to non-interactive
zero knowledge proof (NIZK) systems in the common reference string model. In
the private key setting, it is well known that “regular” PRFs can be constructed
from weak PRFs in a black-box way [18,19]. Thus, a natural direction to study
the relation between the primitives is to build a VRF out of any wVRF.

Another work that is closely related to this topic is the study of verifiable
pseudorandom generators (VPRGs) due to Dwork and Naor [20]. Roughly speak-
ing, a VPRG is a pseudorandom generator that allows the owner of the seed to
prove the correctness of subsets of the generated bits while the other bits re-
main indistinguishable from random. Dwork and Naor constructed VPRGs from
trapdoor permutations. Again, in the case of “regular” PRFs we know how to
turn a PRG into a PRF in a black-box way [21]. Dwork and Naor left open the



question if a similar transformation can be found in the public key setting [20],
namely:

Is it possible to construct a VRF from VPRGs and/or weak-VRFs in a
black-box way?

In this paper, we give a negative answer to this question and, more generally,
we show that no black-box constructions of VRFs from (enhanced) trapdoor
permutations exist.

Theorem 1 (informal) There exists no black-box reduction of verifiable ran-
dom functions to trapdoor permutations.

Our result is actually more general than the above indicates; it separates the
weaker primitive of verifiable unpredictable functions (VUFs) from the stronger
primitive of adaptive trapdoor functions. The difference between VRFs and
VUFs is that in the latter the output should be unpredictable instead of pseu-
dorandom. Therefore, VUFs can also be seen as “unique signatures”, where, for
every public key, each message can have at most one valid signature4.

Adaptive trapdoor functions (ATDFs), recently introduced by Kiltz, Mohas-
sel, and O’Neill in [22], are essentially strictly stronger than trapdoor functions
as the adversary is given access to an inversion oracle.

Implications of our Result. Our result sheds light on the nature of VRFs
and explains why this primitive seems so hard to construct. First, given the
separation result of Brakerski et al., one can naturally think of VRFs as though
they belong to the “public cryptography” world. Then, if we consider the rela-
tionship between VRFs and the other public-key primitives, our result highlights
that VRFs are much stronger as they cannot be implied by most of the primitives
in this world: basically everything which is implied by TDPs, e.g. semantically-
secure public-key encryption, oblivious transfer, key-agreement. Moreover, since
ATDPs imply CCA-secure PKE [22], then VRFs are separated even from it.
On the positive side we observe that we can obtain a construction of VRFs
from identity-based encryption with unique key derivation following the idea of
Abdalla et al. [9]5. Combining this positive result with our impossibility result
confirms the impossibility result of IBE from TDPs [23].

Second, our result points out the hardness of achieving the uniqueness prop-
erty in the context of digital signatures: While signature schemes are equivalent
to OWFs, unique signatures cannot be instantiated from (adaptive) TDPs in a
black-box way.

Finally, since both weak-VRFs and VPRGs are implied by TDPs, our result
rules out the possibility of constructing VRFs from weak-VRFs and/or VPRGs
4 At this stage, it is interesting to observe unique and deterministic signatures are

two distinct primitives. Consider for example the signature σ = σ′‖0 where σ′ is
deterministic and the verification algorithm ignores the last bit. Then it is obvious
that uniqueness could be easily violated by flipping the last bit.

5 Precisely, the unique key derivation algorithm immediately implies a VUF, which
can then be turned into a VRF using the original idea of Micali, Rabin and Vadhan.



(in a black-box way). Thus, it seems that there is no hope that the approaches
used in the private key world to build PRFs from weak-PRFs and PRGs can
be adopted to the case of the public verifiable primitives. This shows that the
verifiable analogous of these primitives are essentially different.

1.2 Overview of the Techniques

Our starting point is the so-called “two oracles” technique of Hsiao and Reyzin
[24]. The main idea of this technique is to construct two oracles, say O and B,
such that O is used in the constructions, whereas both oracles O and B can
be accessed by the adversaries. This approach is slightly weaker than the single
oracle technique because it “only” rules out fully-black-box reductions (instead
of any black-box reduction).

Our Oracles. In our case the oracle O is an ideal random trapdoor permutation
oracle that is modeled as a triple of random functions (g, e, d) such that: g(·)
maps trapdoors to public keys; e(ek, ·) is a random permutation for every public
key ek and d(td, ·) is the inverse of e(ek, ·) when g(td) = ek. Due to the fact
that O is truly random, O is secure even in the sense of adaptive trapdoor
permutations. The oracle B is designed to break any black-box construction of
VUF based on O.

Therefore, the core of our separation theorem is the definition of the weak-
ening oracle B. The proof then consists of two main parts:

(i) showing an efficient adversary that can break the unpredictability of the
VUF by making a polynomial number of queries to B;

(ii) showing an ATDP construction that is secure against any adversary that
makes at most polynomially-many oracle queries.

The design of B is rather technical. In particular, the main difficulty is to
prevent an attacker from exploiting B to break the one-wayness of the ATDP. A
näıve construction would be an oracle that takes as input a VUF public key and
returns y∗←F (SK , x∗), i.e., the evaluation of the function on a random point x∗.
This oracle would clearly break the unpredictability of the VUF, but it would
also be too strong. Consider, for instance, an adversary A that is given as input
a public key ek∗ of a trapdoor permutation and that is challenged to invert it on
a random point b∗. Now, A might encode (ek∗, b∗) into PK in such a way that
the evaluation of F (SK , x∗) requires to invert b∗. But then the attacker would
learn all informations about b∗’s inverse. To prevent these “dangerous” queries
we modify B such that it takes as input a certain number of triples (xi, yi, πi),
where πi is a valid proof for “F (SK , xi) = yi”. The idea follows from the intuition
that the attacker can encode b∗ (and ek∗) into PK in only two ways:

(i) F (SK , ·) needs to invert b∗ on a large fraction of the inputs,
(ii) F (SK , ·) needs to invert b∗ only on a negligible fraction of the inputs.

Now, suppose that A encodes b∗ into PK as defined in the first case. In order
to query the oracle, A has to provide valid proofs. But if A can compute all



proofs, then the attacker must already know b∗’s inverse. Otherwise, if b∗ is
encoded into PK as described in the second case, then the probability that
evaluating F (SK , x∗) on a random input x∗ requires to invert b∗ is negligible.
Hence, returning y∗ does not reveal any useful informations to A. Although this
idea seems very promising, it raises another issue. In fact A might overcome this
limitation by choosing all the xi’s from the small fraction that does not require
to invert b∗. We solve this issue by defining a two-steps oracle B = (B1,B2) such
that B1 chooses the values xi’s and B2 is the actual oracle as described above,
such that it works properly only if the inputs xi’s are chosen by B1.

Finally, an important detail towards the definition of B is that it simulates
the run of FO(SK , x∗) using a different oracle O′ and a different secret key
SK ′ such that SK ′ still corresponds to PK under O′. The idea is that, if O′ is
close enough to O (as it should be the case while trying to break the VUF), then
evaluating FO

′
(SK ′, x∗) produces the same output as FO(SK , x∗). On the other

hand, with high probability O and O′ are not close when an ATDP adversary
invokes B.

1.3 Other Related work

Verifiable Random Functions. Goldwasser and Ostrovsky introduce the no-
tion of unique signatures (calling them invariant signatures) and they show that
in the common random string model they are equivalent to non-interactive zero-
knowledge proofs [25]. Later, Micali, Rabin and Vadhan formally define VRFs
and propose a construction (in the plain model) [1]. The authors follow two main
steps: (1) they construct a verifiable unpredictable function (VUF) based on the
RSA problem and then (2) they show a generic transformation to convert a VUF
into a VRF using the Goldreich-Levin theorem [26] (that extracts one random
bit from polynomially-many unpredictable bits). The hope of this two-steps ap-
proach is that a VUF should be easier to realize than a VRF, but the second
step is very inefficient. Finally, Lysyanskaya proposes a VUF relying on a strong
version of the Diffie-Hellman assumption [6].

The subsequent works suggest direct and (more) efficient constructions of
VRFs without relying on the Goldreich-Levin transformation. Dodis suggests
an instantiation on the sum-free generalized DDH assumption [7], and Dodis
and Yampolskiy give a construction based on the bilinear Diffie-Hellman inver-
sion assumption [8]. Abdalla, Catalano, and Fiore show the relationship between
VRFs and a certain class of identity-based encryption schemes [9]. Moreover, the
authors propose a construction based on the weak bilinear Diffie-Hellman inver-
sion assumption. All the schemes mentioned so far share the limitation of sup-
porting only a small domain (i.e., of superpolynomial size). The only exception
is the recent scheme by Hohenberger and Waters, who give the first construction
having a large input space [10]. Another closely related work is one of Dodis and
Puniya who construct NIZK from verifiable random permutations (VRPs), that
are the verifiable analog of pseudorandom permutations [27]. The author also
show how to convert a VRF into a VRP.



Black-Box Separations. After the seminal result of Impagliazzo and Rudich
many follow up works studied the relation between different primitives, such as,
e.g., [13,28,29,30,23,23,31,32]. We discuss these works in the full version [14].

2 Preliminaries

Adaptive Trapdoor Permutations. Adaptive trapdoor permutations (AT-
DPs) are defined similar to a trapdoor permutation, but in the security definition
the adversary is provided with an oracle that inverts the function on arbitrary
images (except on the challenge value). A formal definition is given in [22,14].

Verifiable Random Functions. Verifiable random functions (VRF) are similar
to pseudorandom functions, but differ in two main aspects: Firstly, the output of
the function is publicly verifiable, i.e., there exists an algorithm Π that returns
a proof π which shows that y is the output of the function on input x. Secondly,
the output of the function is unique, i.e., no two images (and proofs) exist that
verify under the same preimage.

Definition 1 (Verifiable Random Functions). A family of functions F =
{fs : {0, 1}n(λ) → {0, 1}m(λ)}s∈{0,1}seed(λ) is a family of Verifiable Random Func-
tions if there exists a tuple of algorithms (KG,F,Π, V ) with the following func-
tionalities:

KG(1λ) outputs a pair of keys (PK ,SK ).
F (SK , x) is a deterministic algorithm that evaluates fs(x).
Π(SK , x) is an algorithm that outputs a proof π related to x.
V (PK , x, y, π) outputs 1 if π is a valid proof for “fs(x) = y”, else it outputs 0.

A tuple (KG,F,Π, V ) is said to be a VRF if it satisfies the following properties:

Domain Range Correctness For all values x ∈ {0, 1}n(λ), over the choices
of (PK ,SK ), we have that F (SK , x) ∈ {0, 1}m(λ) holds with all but negligible
probability.

Completeness For all x ∈ {0, 1}n(λ) if Π(SK , x) = π and F (SK , x) = y then
V (PK , x, y, π) outputs 1 with overwhelming probability (over the choices of
(PK ,SK ) and the coin tosses of V ).

Uniqueness There exist no values (PK , x, y1, y2, π1, π2), unless with negligible
probability over the coin tosses of V , such that for distinct y1 and y2 it holds
that V (PK , x, y1, π1) = V (PK , x, y2, π2) = 1.

Pseudorandomness For all PPT adversaries A = (A1,A2) we require that
the probability A succeeds in the experiment pseudofA is at most 1

2 + negl(λ),
where the experiment is defined in Figure 1.

Verifiable unpredictable functions (VUF) are similar to VRFs, except that un-
predictability must hold instead of pseudorandomness:

Definition 2 (Verifiable Unpredictable Functions). A tuple (KG,F,Π, V )
is a verifiable unpredictable function if the probability that any PPT adversary A
succeeds in the experiment predictfA, defined in Figure 1, is at most negligible.



Experiment pseudofA
(PK ,SK )←KG(1λ);

(x∗, state)←AFunc(SK ,·)
1 (PK )

b
$← {0, 1};

y0←F (SK , x); y1
$← {0, 1}m(λ)

b′←AFunc(SK ,·)
2 (state, yb)

Output 1 iff b′ = b
and x∗ was not asked
to the Func(SK , ·) oracle.

Experiment predictfA
(PK ,SK )←KG(1λ);

(x∗, y∗)←AFunc(SK ,·)(PK )
Output 1 iff y∗ = F (SK , x∗) and

x∗ was not asked
to the Func(SK , ·) oracle.

Fig. 1. This Figure show the experiment of pseudorandomness and unpredictability. In
both experiments the oracle Func(SK , ·) computes F (SK , ·) and Π(SK , ·) and returns
their output.

3 The Black-Box Separation

We first give a high-level overview of the main ideas of our proof before going
into the details afterwards. Our starting point is the “two oracles” separation
technique of Hsiao and Reyzin [24]. In the context of VRFs, we have to construct
two oracles O and B relative to which ATDPs exist while VUFs do not. In
particular, the constructions are restricted to have black-box access only to O,
while the adversary may access both O and B.

The core of our separation are the two oracles, O and B. The oracle O =
(g, e, d) realizes a random trapdoor permutation (we give a formal definition in
Section 3.2). The second oracle is a weakening oracle such that relative to 〈O,B〉
a secure construction of adaptive trapdoor permutations exists while any given
candidate (and correct) VUF construction (KGO, FO, ΠO, V O) is insecure6. To
prove this result, we build an adversary that wins the unpredictability game
with non-negligible probability. Since the description of the oracle B is rather
technical, we first describe the high-level intuitions that guides us to the design
of B.

3.1 Towards the definition of B

Towards the definition of such B, the main difficulty is to design an oracle that is
strong enough to help predicting a value of the VUF while simultaneously being
too weak to invert the ATDP.

A näıve approach for B would be the one that immediately breaks the VUF,
by taking the VUF’s public key PK and a value x as input; it then would return
FO(SK , x). Of course, any VUF construction breaks down in the presence of
such oracle. So, it would remain to show that an ATDP is still secure in the
presence of such 〈O,B〉, which unfortunately is not the case. To see this, consider
the following VUF defined through KGO, FO, ΠO, V O (where ΠO(SK , ·) =
FO(SK , ·)): The KGO algorithm queries ek←g(td) on a random td ∈ {0, 1}λ
and sets PK = ek and SK = td. The function evaluation algorithm on input x

6 By 〈O,B〉 we mean that the algorithm A〈O,B〉 gets access to both oracles.



obtains y←d(td, x) and outputs y. V (PK , x, y) simply checks that e(ek, y) = x.
Observe that this construction is sound and unique (but trivially insecure). Now,
we construct an adversary A against the ATDP that exploits the above defined
B to invert the challenge (ek∗, b∗). This attacker inverts the challenge by simply
submitting (PK = ek∗, x = y∗) to B! This means that the oracle B that we
sketched before is too strong and reveals too much information.

As one can guess, the problem are those queries to B that are “danger-
ous” in the sense that they extract too much useful information to invert the
ATDP. Starting from this (toy) example we modify B to prevent such “danger-
ous queries”. The first important observation is that our adversary against the
unpredictability only needs to predict some value, rather than a specific one.
This means, the attacker only needs to find y∗ for a fresh x∗ ∈ {0, 1}n. There-
fore, our first modification consists of changing the input that is provided to B.
Basically, we let B choose x∗ on which it evaluates y∗←FO(SK , x∗). This new
definition of B still allows us to break the security of the VUF and it also avoids
direct inversion queries as the attack can no longer query x directly to B.

However, this modification is not sufficient to avoid that an ATDP adversary
exploits the access to B. The problem is that an attacker A might encode its
challenge (ek∗, b∗) into the public key PK . For instance, A could create and
submit a public key such that any function evaluation will require to invert b∗

according to the permutation e(ek∗, ·). We show how to prevent such queries
starting from the following basic intuition.

Assume that a value b ∈ {0, 1}λ is (somehow) encoded into the public key
PK and recall that we denote by x the input of FO(SK , ·). Then we have two
mutually exclusive cases:

1. FO(SK , ·) inverts b on a large fraction of the x’s;
2. FO(SK , ·) inverts b only on a negligible fraction of the x’s (even on no x in

the most extreme case).

Now, recall that a VUF attacker is allowed to query the function (and see the cor-
responding proofs) for inputs of her choice. Therefore, if A queries the function
oracles on a sufficiently large number of the x’s, then A will learn the inverses
of all the “frequent” b’s of type 1 with high probability. On the other hand, for
any b of type 2, the probability that running FO(SK , x) on a random x asks to
invert b is negligible.

Ensuring A has Access to the Function Oracles. The above intuition sug-
gests that any algorithm querying B must provide as additional input sufficiently
many triples (xi, yi, πi) such that πi is a valid proof for “FO(SK , xi) = yi”. This
way, if a ATDP adversary embeds a “type 1” b into PK , then it must know its
inverse in order to provide the above triples. Or, if a “type 2” b is encoded into
PK , then with high probability the attacker A will not gain any further infor-
mation on its inverse from seeing the evaluation of FO(SK , x∗) for a random
x∗.

Although such restriction seems to capture the right intuition, we observe
that it is not sufficient to prevent the adversary from exploiting B. To see this,



assume that A encodes its challenge (ek∗, b∗) into PK such that b∗ is of type
1, namely FO(SK , x) queries d(td∗, b∗) on a large fraction of the x’s. Then, if
the attacker A is allowed to choose the inputs x1, . . . , x` provided to B, then it
might take all of them from the small fraction that does not require to invert b∗.
In this case our previous argument would fail.

Therefore, in order to prevent these dangerous queries, we deny A choosing
the inputs x1, . . . , x`. That is, we define a two-steps oracle B = (B1,B2) where
B1 chooses ` random inputs, and B2 evaluates the VUF only if it gets as input
values and proofs for x’s that were chosen by B1. For this we will require that
B1 is essentially a random function that, given as input a VUF public key and
a collection of oracle circuits implementing a VUF, outputs ` random strings.

Furthermore, observe that this restriction is not a problem for the attacker
that we build against the VUF, because it has access to the function oracles,
F (SK , ·) and Π(SK , ·), that compute these values and proofs for her. On the
other hand, an ATDP adversary now has restricted power as it does not know
b∗’s inverse.

Avoiding Malicious Keys. Finally, the last type of dangerous queries that
we have to handle are those where the attacker A queries B on an “invalid”
public key PK . By “invalid” we mean that PK is not the output of an honest
execution of the key generation algorithm KGO(SK ). The problem is again
that an evaluation of FO(SK , x) can reveal “sensitive” informations about the
trapdoor permutation. Indeed, observe that an execution of FO must use the
d(·, ·) oracle in a significant way or the VUF cannot be secure.7 Thus, one may
think about designing B in such a way that it rejects any queries that involve
invalid public keys. However, this solution is still dangerous as B might be used
to test the validity of public keys. We solve the issue by defining B such that
it computes the answer using a different key SK ′ and a different oracle O′′ but
that the new function FO

′′
(SK ′, ·) behaves in almost all cases as the original one

FO(SK , ·). More precisely, the oracle B evaluates FO
′′
(SK ′, ·) using a key SK ′

(that is most likely different from SK ) and an oracle O′′ which is also different
from the real oracle O. The key SK ′ is computed such that it corresponds to
the “real” key PK under O′′ (i.e., PK←KGO′′(SK ′)). The idea is to construct
O′′ such that is close to O. Then we can show that evaluating FO

′′
(SK ′, x) is

basically the same as evaluating FO(SK , x).
The hope is thatO′′ differs fromO in the points that may represent dangerous

queries. If this is the case, then we are done as computing FO
′′
(SK ′, x) will

not reveal sensitive informations on the real ATDP. More precisely, our oracle
B selects uniformly at random a secret key SK ′ and an oracle O′′ such that
PK = KGO

′′
(SK ′) and O′′ agrees with O on those points that are already

known to the adversary.

Discovering all ATDP Public Keys. In order to correctly simulate a run of
FO

′′
it is important that our oracle has discovered all the ATDP public keys

7 For instance, if FO does not use the oracles, then an exponentially-strong adversary
could always evaluate the circuit associated to F .



ek that may be needed while running FO
′′
. More precisely it needs to know all

the public keys that were generated during the honest execution of KGO(SK ).
So, to discover these public keys we define B such that it runs V O on all the
received triples (xi, yi, πi) and collect all the queries made by the algorithm.
Since by Assumption 1, the algorithm KG generates at most q of such ek’s, it is
sufficient to repeat the above step on sufficiently many triples, say qc for some
constant c that we will specify later. This allows us to discover all the public
keys with high probability.

3.2 The Formal Separation Theorem

In this section we formalize the techniques that we use to prove our result. The
core of our proof is the description of two oracles O and B. The first oracle
O = (g, e, d) implements a perfectly random trapdoor permutation and it is
obvious that a secure ATDP exists relative to O (where the security follows from
the randomness of the function). Therefore, we follow the strategy of defining a
“weakening” oracle B whose main task is to break the security of a given VUF
construction. This approach is formalized in the following theorem:

Theorem 1 (formally restated). Let O = (g, e, d) be a random trapdoor per-
mutation oracle. Then, there exists an oracle B such that for every VUF con-
struction (KGO, FO, ΠO, V O) which is correct and unique we have:

(i) there is an adversary A such that A〈O,B〉 breaks the security of the VUF with
non-negligible probability;

(ii) there exists an ATDP construction (GO, EO, DO) relative to O such that no
adversary A〈O,B〉 can break its security with non-negligible probability.

We formally prove this theorem defining the oracles O and B in the following
paragraphs. Afterwards, we prove the theorem by stating two separate lemmata.
The first one, given in Section 4, shows the insecurity of the VUF, whereas the
second lemma (Section 5) proves the existence of a secure ATDP.

The Oracle O. We prove our separation in a relativized model where each
algorithm has access to a random trapdoor permutation oracle O = (g, e, d)
where g, e and d are sampled uniformly at random from the set of all functions
with the following conditions:

– g : {0, 1}λ → {0, 1}λ takes a trapdoor key td and outputs a public key ek.
– e : {0, 1}λ × {0, 1}λ → {0, 1}λ is a function that takes in input a public key
ek and a value a and outputs b. For every ek ∈ {0, 1}λ, e(ek, ·) is required
to be a permutation over {0, 1}λ.

– d : {0, 1}λ × {0, 1}λ → {0, 1}λ is a function that on input a pair (td, b)
outputs the unique a ∈ {0, 1}λ such that e(g(td), a) = b.

Since the permutation is defined over {0, 1}λ, it is easy to see that the oracle is
also an enhanced TDP.



Notation. We write AO to denote that an algorithm A is given access to
an oracle O. We will use square brackets to denote queries and mappings. For
instance, we write [e(ek, a)] to denote a query to e with input ek and a. Otherwise
e(ek, a) refers the actual value of the function e on the given input. We write
[e(ek, a) = b] to denote that there is a mapping between a and b in the function
e(ek, ·). Also, for ease of presentation, we will sometimes abuse the notation and
write O(α) to denote the answer of O on a query α which depends on the type
of α. For example if α = [e(ek, a)], then O(α) = e(ek, a).

Let Ok (with k ∈ {1, 2}) be a partial (aka suboracle) oracle. We define the
set of all public keys that are contained into the queries of Ok as

Z(Ok) = {ek : [g(·) = ek] ∈ Ok or [e(ek, ·) = ·] ∈ Ok}.

Suboracles. Let O1 and O2 be two (possibly partial) trapdoor permutation
oracles. We write O1 �c O2 to denote the oracle that answers with O1 only
if O2 is not defined. Otherwise, it answers with O2. If O1 = (g1, e1, d1) and
O2 = (g2, e2, d2) are two trapdoor permutation oracles as defined above, then
its composition is defined by composing each algorithm, namely:

O1 �c O2 = (g1 �c g2, e1 �c e2, d1 �c d2)

This definition needs some more explanation. We want that the oracle obtained
from the composition of two oracles preserves the properties of the two individual
oracles. In particular, we require that (e1 �c e2)(ek, ·) is a permutation for any
valid ek. The problem is that the permutations e1 and e2 may contain collisions,
namely there exist ek and two distinct values a, a′ ∈ {0, 1}λ such that e2(ek, a) =
e1(ek, a′). To handle such collisions we use the same technique suggested in [33].
We define e = e1 �c e2 as follows: let ek, a, b be values such that [e2(ek, a) = b] ∈
O2. We set e(ek, a) = b. If there exists a value a′ 6= a such that [e1(ek, a′) = b] ∈
O1, then let b′ = e1(ek, a) and set e(ek, a′) = b′. The composition d = d1 �c d2

is defined to be consistent with g and e.

VUF in the Presence of our Oracle. For a simpler exposition we make some
general assumptions on any VUF construction with access to the oracle O =
(g, e, d). First, we consider a slightly relaxed definition of the VUF algorithms
(KG,F,Π, V ) as follows. The algorithm KG(SK ) takes as input a secret key
SK ∈ {0, 1}n and outputs PK ∈ {0, 1}n. The input of F and Π are the secret
key SK and a value x ∈ {0, 1}n. The output of F is the function value y ∈ {0, 1}n,
whereas the output from Π is the corresponding π, respectively. Finally, V is
given in input the public key PK , an input x, an output y and a proof π and
outputs 1 if it accepts the proof, or 0 otherwise. In the above description n is a
function of the security parameter λ.

Recall that we assume towards contradiction that there exists a black-box
reduction of VUFs to ATDPs. Then we denote by (KGO, FO, ΠO, V O) the
corresponding VUF construction. According to our notation, each algorithm has
access to the (g, e, d) oracles and they have to use them in a “significant” way
to implement a secure primitive. Also, by definition of black-box reduction, this



construction is a correct VUF implementation, that satisfies completeness and
uniqueness according to Definition 1.

Assumption 1 For a simpler exposition, in our proofs we use the following
assumptions:

– each algorithm is unbounded, but makes at most q = poly(λ) oracle queries
during its execution;

– every query d(td, ·) is followed by a query g(td);
– the proof algorithm is deterministic;
– the verification algorithm is deterministic;
– the completeness of the VUF holds in a perfect sense.

Before proceeding with the description of the breaking oracle, we briefly justify
these assumptions. The first condition is reasonable because we consider only ef-
ficient constructions and moreover, it allows us to easily quantify the advantage
of our adversaries. The second one avoids queries of the adversary to d(·, ·) using
a trapdoor key without knowing the corresponding public key. This assumption
is also common and has been previously used in e.g., [23]. Assuming that the
proof algorithm is deterministic is not a restriction as we can turn any VRF
with a probabilistic proof algorithm into one having a deterministic algorithm
by applying a PRF to the input and the private seed of the VRF to derive the
randomness. Completeness and uniqueness follow easily from the VRF (note
that uniqueness only holds w.r.t. to the output of the function and not w.r.t. the
proof). The rest follows easily applying a standard hybrid argument. The as-
sumptions on deterministic verification and perfect completeness have already
been addressed in [17], hence we omit the discussion here.

A formal definition of B. Here, we provide a formal description of our oracle
B, which is composed by the following two algorithms (B1,B2):

Algorithm B1:
Input: A collection of oracle circuits V UFO = (KGO, FO, ΠO, V O) imple-

menting a VUF, and a VUF public key PK
Output: x1, . . . , x` ∈ {0, 1}n.
Computation: To each input (V UFO,PK ), the algorithm B1 associates

a random function f : {0, 1}n → {0, 1}n. For i = 1 to `, it computes
xi = f(i), and finally it returns x1, . . . , x`.

Algorithm B2:
Input: A collection of oracle circuits V UFO = (KGO, FO, ΠO, V O) imple-

menting a VUF, a VUF public key PK and a set {(xi, yi, πi)}`i=1 such
that xi ∈ {0, 1}n, yi ∈ {0, 1}m, and πi is in the range of Π(·, ·).

Output: x∗ ∈ {0, 1}n, y∗ ∈ {0, 1}m.
Computation: The oracle performs the following computation:

– Step 1: Invoke (x′1, . . . , x
′
`) ← B1(V UFO,PK ) and check that the

values x1, . . . , x` received as input are equal to (x′1, . . . , x
′
`) returned

by B1. Otherwise, output ⊥.



– Step 2: For all i = 1 to ` run the algorithm V O(PK , xi, yi, πi) and
collect into a partial oracle OQ all the queries that are made during
each run. If there is some j such that the verification algorithm does
not accept, stop and output ⊥.

– Step 3: Find a secret key SK ′ and a partial oracle O′ such that:
1. KGO

′
(SK ′) = PK , FO

′
(SK ′, xi) = yi and ΠO

′
(SK ′, xi) = πi.

2. O′ ⊇ OQ and |O′| ≤ |OQ|+ q where q is the same value defined
in Assumption 1.

– Step 4: Define O′′ = O �c O′
– Step 5: Choose x∗ uniformly at random in {0, 1}n such that x∗ 6= xi

for all i = 1 to `. Run y∗←FO′′(SK ′, x∗) and π∗←ΠO′′(SK ′, x∗).
– Step 6: Run V O

′′
(PK , x∗, y∗, π∗). If V O

′′
asks a query α such that

O′′(α) 6= O(α), then return ⊥. Otherwise output y∗.

Complexity of B. Based on Assumption 1, we evaluate the cost of each query
to B in terms of queries to the oracle O. Since the function f chosen by B1 is
completely independent of O, we do not count its cost. Instead a query to B2

counts `q+ 3q+ |O′| queries to O in total. This cost is obtained as follows: Step
2 makes `q queries as it evaluates V ` times, Step 3 is made offline, Step 4 counts
|O′| queries that are needed to perform the �c operation and finally Step 5 and
Step 6 require 2q and q queries respectively.

4 Insecurity of VUFs relative to our oracles

In this section we formally show that for every candidate black-box construction
(KGO, FO, ΠO, V O) of a VUF from ATDP there is an efficient adversary A that
breaks the unpredictability of the VUF with non-negligible probability 1− δ by
making a polynomial number of oracle queries to 〈O,B〉.

Let q be the maximum number of oracle queries that can be made by the
VUF algorithms (according to Assumption 1) and c ∈ N be a sufficiently large
constant specified below. Without loss of generality, in the following proof we
assume q ≥ 2 and we fix c such that δ ≤ 3

eqc−1 and our adversary has non-
negligible advantage at least 1− δ. Also we set ` = qc.

Our adversary A works as follows:

Input: A public key PK and access to the function oracles F (SK , ·), Π(SK , ·).
Output: x∗, y∗ ∈ {0, 1}n.
Algorithm: Our algorithm performs the following steps:

1. Query B1 on input (KGO, FO, ΠO, V O),PK and obtain x1, . . . , x`.
2. Query the VUF oracles F (SK , ·), Π(SK , ·) on xi for all i = 1 to `. Let
{y1, π1, . . . , y`, π`} be the values obtained from such queries.

3. Query B2 on input (KGO, FO, ΠO, V O),PK , {x1, y1, π1, . . . , x`, y`, π`}.
4. If B2 returns ⊥, then halt and fail. Otherwise, if B2 returns (x∗, y∗), then

output (x∗, y∗).

Then we are able to state the following lemma:



Lemma 1. The adversary A defined above with input PK and oracle access to
〈O,B〉 wins the unpredictability experiment with probability at least 1− 3

eqc−1 and
makes at most 2qc+1 + 4q oracle queries.

The proof is given in the full version [14].

5 Security of ATDPs relative to our oracles

In this section we show the existence of a trapdoor permutation (GO, EO, DO)
that is adaptively one-way even against adversaries that have access to B. The
construction is straightforward as each algorithm forwards its input to the corre-
sponding oracle, namely: GO(td) = g(td), EO(ek, a) = e(ek, a) and DO(td, b) =
d(td, b).

By the randomness of the oracle O, it is easy to see that the above construc-
tion is a secure ATDP when the adversary is given access only to O. Therefore, in
order to prove its security relative to the oracle B, we will show that B does not
help to break the one-wayness of (GO, EO, DO), namely that B can be simulated
to the adversary A. Now we can state the following lemma:

Lemma 2. Let (GO, EO, DO) be an adaptive trapdoor permutation where each
algorithm forwards its input to g, e, and d respectively. Then, for every adver-
sary A that has access to 〈O,B〉 and makes at most q oracle queries, there is
a sufficiently large λ such that the probability that A succeeds in the adaptive
one-wayness experiment against the above construction is at most negligible.

5.1 Defining the Simulator

Recall that the main idea is to show that A can simulate the oracle B locally. To
do so, we show that for every A, there exists a simulator S that gets the same
input as A, but which does not have access to B. We then show that the success
probability of S is close to that of A.

Intuition for the Simulator. In the first step, the simulator generates a ran-
dom trapdoor permutation oracle OS locally, except for the portion concerning
the permutation e(ek∗, ·). In particular OS is defined progressively by choosing
its answers uniformly at random. Moreover, we construct S such that it collects
into a partial oracle O∗ all the queries of the form [e(ek∗, ·)] that A makes dur-
ing the simulation. This way, S knows all the trapdoors of all the public keys
(but ek∗) and is therefore able to evaluate all inversion queries d(td, ·) where
g(td) 6= ek∗.

The first three steps of the algorithm B2 can easily be simulated as in the real
case. The first difference comes up into Step 4 where S has to define the oracle
O′′.The difficulty here is that the simulator does not know the entire O and thus
it cannot compute the composition O�cO′. We solve this problem using an idea
similar to the one used in [33]. Namely, we define O′′ such that it is consistent
with the partial oracles that are known to S so far (i.e., OS ,O∗ and O′) and



we forward all other queries to O. This solves most of the problematic cases due
to the fact that the adversary A only knows queried mappings (which are also
known to S since it has stored all of them).

One remaining issue are those queries [d(td′, b)] such that td′ is the trapdoor
that is “virtually” associated to ek∗ (i.e., [g(td′) = ek∗] ∈ O′) and there is no
known mapping [e(ek∗, ·) = b] in O∗. Indeed, recall that the simulator does not
know the real trapdoor td∗ such that [g(td∗) = ek∗] ∈ O, and also notice that
forwarding these unknown queries to O would inevitably lead to an inconsistent
mapping. Assume for example that α = [d(td′, b)] is answered with O(α) = a.
Then we have a mapping [e(ek∗, a) = b] ∈ O′′, but it is very unlikely that
[e(ek∗, a) = b] is in O. Such inconsistencies could potentially be discovered in
Step 6 which would cause the simulation to output ⊥ while it should not.

Fortunately, we show how to handle such queries by using the external in-
version oracle I(ek∗, ·). Finally, the last remaining problem is the query α =
[d(td′, b∗)]. We cannot answer this query correctly (at least as long as the inverse
of b∗ has not been discovered before), however we will show that this case only
happens with negligible probability. The main idea is that either A cannot pro-
vide an accepting input to B2 or (in the case that we have passed all the checks
and have reached Step 5) the probability that this query cannot be answered is
very small.

The full description of the simulator and the proof are provided in the full
version [14].
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