
Identifying Cheaters
Without an Honest Majority

Yuval Ishai ?1, Rafail Ostrovsky ??2, and Hakan Seyalioglu ? ? ?3

1 Department of Computer Science, Technion
2 Department of Computer Science and Department of Mathematics, UCLA

3 Department of Mathematics, UCLA

Abstract. Motivated by problems in secure multiparty computation
(MPC), we study a natural extension of identifiable secret sharing to
the case where an arbitrary number of players may be corrupted. An
identifiable secret sharing scheme is a secret sharing scheme in which the
reconstruction algorithm, after receiving shares from all players, either
outputs the correct secret or publicly identifies the set of all cheaters
(players who modified their original shares) with overwhelming success
probability. This property is impossible to achieve without an honest ma-
jority. Instead, we settle for having the reconstruction algorithm inform
each honest player of the correct set of cheaters. We show that this new
notion of secret sharing can be unconditionally realized in the presence
of arbitrarily many corrupted players. We demonstrate the usefulness
of this primitive by presenting several applications to MPC without an
honest majority.

– Complete primitives for MPC. We present the first unconditional con-
struction of a complete primitive for fully secure function evaluation
whose complexity does not grow with the complexity of the function
being evaluated. This can be used for realizing fully secure MPC
using small and stateless tamper-proof hardware. A previous com-
pleteness result of Gordon et al. (TCC 2010) required the use of
cryptographic signatures.

– Applications to partial fairness. We eliminate the use of cryptogra-
phy from the online phase of recent protocols for multiparty coin-
flipping and MPC with partial fairness (Beimel et al., Crypto 2010
and Crypto 2011). This is a corollary of a more general technique
for unconditionally upgrading security against fail-stop adversaries
with preprocessing to security against malicious adversaries.

? Work done in part while visiting UCLA. Supported by ERC Starting Grant 259426,
ISF grant 1361/10, and BSF grant 2008411.

?? Research supported in part by NSF grants 0830803, 09165174, 1065276, 1118126 and
1136174, US-Israel BSF grant 2008411, B. John Garrick Foundation, OKAWA Foun-
dation, IBM, Lockheed-Martin Corporation and the Defense Advanced Research
Projects Agency through the U.S. Office of Naval Research under Contract N00014-
11-1-0392. The views expressed are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

? ? ? Research supported by a NSF Graduate Research Fellowship.

Finally, we complement our positive results by a negative result on iden-
tifying cheaters in unconditionally secure MPC. It is known that MPC
without an honest majority can be realized unconditionally in the OT-
hybrid model, provided that one settles for “security with abort” (Kilian,
1988). That is, the adversary can decide whether to abort the protocol
after learning the outputs of corrupted players. We show that such pro-
tocols cannot be strengthened so that all honest players agree on the
identity of a corrupted player in the event that the protocol aborts, even
if a broadcast primitive can be used. This is contrasted with the compu-
tational setting, in which this stronger notion of security can be realized
under standard cryptographic assumptions (Goldreich et al., 1987).

1 Introduction

Consider a scenario in which n mutually distrustful clients wish to distribute
a long computation. Instead of directly interacting with each other, they rely
on a trusted external stateless server. In each invocation, the server receives a
share of the current state of computation (and possibly an additional input)
from each client, and returns a share of the new state (and possibly an output)
to each client. This scenario may apply to distributing sensitive computations
using servers in the cloud, where requiring servers to maintain state information
between different invocations is undesirable for security reasons.

The question we ask is what form of secret sharing is suitable for distributing
the joint state between the clients. Naturally, we do not want to assume that
a majority of the clients are honest (this rules out fair [8] or unconditionally
secure [6] solutions that use direct interaction between the clients and do not
employ the server). Additively sharing the state fails in protecting the correctness
of the computation, allowing each client to change the global state without being
detected. A better solution is to use robust secret sharing that can detect cheating
(cf. [29, 9] and references therein). When there are three or more clients, this too
has the disadvantage that it offers no strong deterrent against cheating: while
cheating does not go undetected, it disrupts the computation without identifying
a corrupted client. This motivates the use of identifiable secret sharing, where
a failure of the reconstruction algorithm results in identifying the clients who
modified their shares.

Identifiable secret sharing as above can be realized when a majority of the
clients are honest [22, 20, 7, 24]. But without an honest majority, there is no way
for the server to tell apart cheaters from honest clients. Indeed, n/2 cheaters can
simulate a consistent sharing of an incorrect secret, which makes it impossible for
the server to tell which of the two sets of consistent shares is correct. However,
this does not rule out the alternative of allowing the server to inform each client
(with negligible error probability) which shares have been modified assuming
that this client is honest. We refer to this as locally-identifiable secret sharing
(LISS). Note that except with negligible probability, each honest client will agree
on which clients are corrupted and should be disqualified. Thus use of LISS to
share the state minimizes the incentive to cheat and allows the honest clients

in the event of reconstruction failure to agree on a strict subset of the clients
that includes all honest clients. This subset has the option of restarting the
computation on their original inputs, using default values for the inputs of the
remaining clients, without losing in this process any of the honest clients.

Settling for computational security, LISS can be realized via the use of dig-
ital signatures: the sharing procedure distributes to all clients the same public
verification key vk, and gives to each client a signature of its additive share of
the secret using the corresponding secret key sk. Reconstruction proceeds by
letting each client send to the server its original share, vk, and the signature on
the share. The server can then identify definite cheaters as those who supply an
inconsistent triplet, and partition the remaining clients according to the value
of vk they provide. In fact, such a computationally secure LISS scheme was im-
plicitly used by Gordon et al. [13] in the context of defining a complete primitive
for MPC. The possibility of an unconditionally secure construction remained
open. This question is motivated not only by the goals of enhancing security
and eliminating assumptions, but also by the potential efficiency advantages
of information-theoretic techniques. This is especially significant in applications
(such as those discussed below) where the share generation process is distributed
between multiple players.

1.1 Our Results

Constructions. Our main result is an affirmative answer to the above question:
we present an unconditional construction of an n-out-of-n LISS scheme whose
security holds in the presence of an arbitrary number of corrupted players. More
generally, we show how to efficiently transform any secret sharing scheme into
one in which the reconstruction function reveals to every honest player of the
identity of all shares that have been tampered with. In particular, all honest
players agree on the same set of cheaters.

We also consider a weaker variant of LISS that we call unanimously iden-
tifiable secret sharing (UISS) in which only the latter agreement property is
required. That is, if reconstruction fails, all honest players should agree on the
same (non-empty) set of cheaters. This weaker primitive is easier to construct.
(In fact, a construction of UISS is implicit in [25].) In contrast to LISS, how-
ever, UISS does not guarantee that all cheaters are detected in the event that
reconstruction fails.

Applications. We present several applications of the above primitives in the
context of MPC without an honest majority. In the following, the term MPC
refers to the special case of secure function evaluation, namely MPC of non-
reactive (stateless) functionalities. We use poly and neg to represent polynomial
and negligible functions, respectively, and κ denote a statistical security param-
eter. While we mainly consider statistical security, our results are also useful in
the domain of computational security.

Complete primitives for MPC. It is well known that fully secure MPC
(with fairness and guaranteed output delivery) is impossible to achieve in general

without an honest majority [8]. This naturally raises the question of finding a
minimal complete primitive that can be used to get around this limitation. Such
a primitive is defined by a (stateless) deterministic functionality g mapping n
inputs to n outputs, such that any n-party functionality f can be realized using
a trusted instance of g initialized between every tuple of players that can supply
input to it. The first such results characterized complete boolean primitives for
MPC with security against a passive adversary [21, 19]. In the case of active
adversaries, Fitzi et al. [11] presented a complete primitive for fully secure MPC
whose computational complexity grows linearly with complexity of f . This left
open the question of finding a “simple” complete primitive, whose complexity
does not depend on the complexity of f . One such primitive was given by Gordon
et al. [13] using digital signatures. We use UISS to get an unconditional variant
of this result. In this variant, the complexity of g only grows with the output
length of f .

Theorem 1. There is a deterministic, polynomial-time computable functional-
ity g with input and output size poly(n, κ, β) such that any n-party function f
computed by a circuit of size σ and output length β can be realized with full
statistical security (and 2−κ simulation error) using poly(n, σ) calls to g.

This result has an interesting interpretation in the context of a recent line of
work on basing cryptography on tamper-proof hardware (see [17, 15] and refer-
ences therein). In this line of work, several impossibility results in cryptography
(including UC security, unconditional security, software protection and obfusca-
tion) were circumvented by using tamper-proof hardware tokens. These works
spent efforts on minimizing the size of the tokens, employing stateless (rather
than stateful) tokens, and minimizing or eliminating cryptographic assumptions.
The above result can be viewed as achieving all these goals simultaneously in the
context of another major impossibility result: the impossibility of fully secure
MPC without an honest majority. It implies that a small and stateless token,
connected via secure channels to the n players, suffices to unconditionally real-
ize fully secure MPC. We note that connecting the same token to all players is
necessary, as implied by the results of Fitzi et al. [11].

We also present other variants of the previous completeness theorem which
rely on computational assumptions but still avoid the use of cryptography in-
side the primitive. These variants have the advantage of requiring only a small
number of calls to the primitive (independently of the complexity of f).

Applications to partial fairness. A recent line of works studies the extent
to which partial fairness can be achieved in MPC without an honest majority.
Partial fairness can be defined by restricting the simulation error to be small
(e.g., inverse polynomial) but not negligible [14]. We show that in partially fair
protocols of Beimel et al.[2, 1] (extending previous two-party protocols of Moran
et al. [23] and Gordon and Katz [14]), the use of a digital signature scheme can be
replaced by a unanimously identifiable commitment scheme, a second primitive
we define that can be used as a substitute for LISS in certain applications. This
yields unconditional multiparty protocols for coin-flipping and MPC with partial

fairness in the preprocessing model, namely assuming that players have offline
access to correlated randomness. We note that trusted preprocessing does not
trivialize the problem, because the output needs to be unpredictable in the end
of the preprocessing phase. In fact, the negative results on achieving full fairness
apply to the preprocessing model as well. The preprocessing model does allow,
however, to eliminate the assumptions of secure channels and broadcast, which
can be implemented unconditionally in the preprocessing model [27].

The preprocessing phase can be realized either by a trusted offline dealer
or via a distributed protocol (possibly employing additional parties for uncon-
ditional security). Even if one relies on a computationally secure protocol for
distributing the preprocessing phase, the protocols we get have the advantage of
making only a black-box use of the underlying cryptographic primitives, whereas
the original protocols from [2, 1] make a non-black-box use of a one-way function.

In the case of coin-flipping, applying our primitive to the offline dealer pro-
tocol from [2] implies the following:

Theorem 2. Assume preprocessing by a trusted off-line dealer. Fix constants n
and t such that t < 2n/3. Then, for any r, there is an r-round n-party uncon-
ditionally secure coin-tossing protocol over point-to-point channels tolerating up
to t malicious players with bias O(1/r).

Our results on MPC with partial fairness are obtained via a general technique
for unconditionally upgrading security against fail-stop adversaries to security
against malicious adversaries where the messages sent by the players are deter-
mined in the preprocessing stage.

A negative result. It is known that MPC without an honest majority can be
realized unconditionally in the OT-hybrid model, provided that one settles for
“security with abort” [18, 16]. That is, the adversary can decide whether to abort
the protocol after learning the outputs of corrupted players but before the honest
players receive their output. We show that such protocols cannot be strengthened
so that all honest players agree on the identity of a corrupted player in the
event that the protocol aborts, even if a broadcast primitive and trusted access
to an arbitrary pairwise functionality is assumed. This is contrasted with the
computational setting, in which this stronger notion of security can be realized
under standard cryptographic assumptions [12]. Our negative result strengthens
a previous negative result from [11], which shows that pairwise functionalities
alone (without broadcast) are not sufficient in general for fully secure n-party
computation. For lack of space, the details of this result are deferred to the full
version.

2 Preliminaries

Our communication model allows for authenticated point to point and broadcast
channels unless specified otherwise. While we define our algorithms in terms of
finite sets (with fixed input size) and fixed error rate, they can be implemented
by uniform algorithms that are polynomial in the bit-length of the inputs, the

number of players, and the statistical security parameter κ guaranteeing δ = 2−κ

error. The latter is the default convention whenever no value of δ is specified.

We only consider non-adaptive adversaries but our secret sharing definitions
and proofs can easily be extended to the adaptive case. We denote the n players
by P = {P1, P2, . . . Pn} and will often identify a player with its index. A collec-
tion of subsets A of P will be called monotone if for any B ∈ A, if B ⊆ C ⊆ P
then, C ∈ A. We let [n] denote the set {1, . . . , n}. We use x

$←− X to denote a
uniform choice of x from a set X.

2.1 Secret Sharing

We briefly describe our notation for standard secret sharing schemes. A secret
sharing scheme is defined by a pair of algorithms (Share,Rec), where Share is a
randomized algorithm mapping a secret from S to the share space

∏n
i=1 Si, and

Rec is a deterministic reconstruction algorithm mapping the shares of a qualified
set of players (along with the identity of this set) to a secret from S. We will refer
to S as the secret space and to Si as the share space of Pi. An access structure is
a monotone collection of player sets. We say that a secret sharing scheme realizes
an access structure A if sets in A can reconstruct the secret s and others can
learn nothing about it. Throughout this work we define secret sharing schemes
to have perfect correctness (authorized sets always correctly reconstruct the
secret) and perfect secrecy (the shares of unauthorized sets reveal no information
about the secret). For all additional security guarantees we assume the adversary
knows the secret that is being shared; even if the secret is compromised, the
adversary should not be able to cause the reconstruction algorithm to behave
undesirably (e.g. by outputting an incorrect secret or implicating an honest
player of cheating), except with small probability.

As usual, we consider a single adversary who may corrupt one or more play-
ers. We distinguish between passive and active corruptions using the following
terminology.

Definition 1. (Tampering) A corrupted player is said to have tampered with
its share if it provides to the reconstruction algorithm a share different than the
one assigned by the distribution algorithm. Such a share is called a tampered
share and such a player is called a cheater.

Identifiable Secret Sharing. An identifiable secret sharing scheme is a secret
sharing scheme in which the reconstruction algorithm can identify all cheaters in
the event that it fails to reconstruct the secret. The above guarantee should hold
except with some failure probability δ as long as there are at most t cheaters
for an additional parameter t. In our definition we assume that the tampering
is done by a single adversary who can observe the shares of a set C of up to t
corrupted players and based on this information decide on how to tamper with
their shares.

Definition 2. (Identifiable Secret Sharing) A secret sharing scheme real-
izing A is (δ, t)-identifiable if for any (unbounded) adversary A and any s ∈ S,
the success probability of A in the following game is at most δ:

1. (s1, s2, . . . , sn)← Share(s);
2. A outputs a set C ⊂ [n] such that |C| ≤ t and receives (sj)j∈C ;
3. A outputs (B, (s′j)j∈C∩B) where B ∈ A;
4. Out← Rec(B, (tj)j∈B) where tj = s′j if j ∈ C and tj = sj otherwise.

A succeeds if for some j ∈ C ∩B, s′j 6= sj and Out 6= (⊥, {Pi ∈ C ∩B : s′i 6= si}).

The first work on identifiable secret sharing is due to McEliece and Sarwate
[22] who showed that Shamir’s k-threshold secret sharing scheme allows perfect
identification if k + 2t players of which at most t are cheaters are involved in
reconstruction. Several works consider various relaxations of identifiability [28,
3, 5] which suffice for some applications but are not suitable for MPC with a
dishonest majority. There is also substantial work on the efficiency of identifiable
secret sharing [20, 24, 7].

Identifiability is not possible with a dishonest majority for a simple reason:
If half of the participants are dishonest they can run the sharing algorithm
independently among themselves and return as their shares the output of the
second run of the algorithm. This strategy makes it impossible for Rec to identify
which half of the shares come from the first run of the Share algorithm and which
come from the second since they are run independently. This is captured by the
following theorem (see full version for proof):

Theorem 3. (No identifiability with a dishonest majority) For any t, n, S,A
with t ≥ n/2, |S| ≥ 2, A 6= ∅, there is no (1/4, t)-identifiable secret sharing
scheme with secret space S and access structure A.

3 Locally Identifiable Secret Sharing

We now give our relaxation of identifiable secret sharing that can be realized
when arbitrarily many players may be corrupted. Informally, the guarantee we
require is that if the reconstruction fails, the reconstruction algorithm outputs
a tuple of players to each player Pi with the guarantee that if Pi is honest, the
tuple returned to Pi is precisely the players that tampered with their shares.
While this is equivalent to identifiability from the point of view of the honest
players, it allows us to circumvent the impossibility result of Theorem 3. Note
that we define LISS as being a special type of secret sharing scheme, so the usual
correctness and secrecy requirements should hold in addition to the requirements
detailed below.

Definition 3. (Lists) Throughout this paper when we refer to a list L we refer
to a subset of the players in the protocol (L ⊂ {P1, P2, . . . , Pn}).

Definition 4. (LISS) A secret sharing scheme realizing A is locally δ-identifiable
if it satisfies the following requirements:

– Unanimity: For any adversary A and s ∈ S, the probability of A’s success
in the following game is at most δ:

1. (s1, s2, . . . , sn)← Share(s);
2. A outputs a set C ⊂ [n] to corrupt and then receives (si : i ∈ C);
3. A outputs (B, (s′j)j∈C∩B) such that B ∈ A and B 6⊂ C;
4. Out← Rec(B, (tj)j∈B) where tj = s′j if j ∈ C and tj = sj otherwise.

The adversary succeeds unless:

1. Reconstruction succeeds: Out = s or,
2. Each honest player’s list is the list of all cheaters: Out = (⊥, (Lj)j∈B)

where for all j ∈ B \ C, Lj = {Pi ∈ C ∩B : s′j 6= sj}.
– The scheme has Predictable Failures (Definition 5).

We briefly motivate the requirement of Predictable Failures before defining
it. The problem to address is that the additional outputs Lj , or even the event of
not reconstructing the secret, may leak some information concerning the secret
unless a separate guarantee is made. This can cause a problem in applications
and therefore we must have a way to simulate the actions of Rec in the case
of tampering. Note that this is a new issue not present in identifiable secret
sharing: As the Rec function does not simply output a list of tampering players,
there are no a-priori guarantees concerning the lists corresponding to dishonest
players and therefore we must make requirements on them separately.

Definition 5. (Predictable Failures) A secret sharing scheme has δ-Predictable
Failures if there is an algorithm SRec such that for any adversary A and s ∈ S,
the probability of success in the following game is less than δ:

1. (s1, s2, . . . , sn)← Share(s);
2. A outputs a set C ⊂ [n] to corrupt and receives (si)i∈C ;
3. A outputs (B, (s′j)j∈C∩B) such that B ∈ A and B 6⊂ C;
4. SOut← SRec(C,B, (si)i∈C , (s

′
i)i∈C∩B);

5. Out← Rec(B, (tj)j∈B) where tj = s′j if j ∈ C and tj = sj otherwise.

A succeeds unless:

1. SRec correctly predicts success: SOut = Success and Out = s or,
2. SRec predicts the output of Rec: SOut = Out 6= s.

3.1 Our Construction

Let (Sh,Rc) be a secret sharing scheme realizing access structure A with Sh :
S → Fn where F is a field. Let In×n and 0n×n denote the identity and all zero
matrix respectively. We use Fn×n to denote the set of all n × n matrices with
elements in F and GLn(F) to denote the set of all such invertible matrices. For
a matrix M we will use M(i, j) to denote the (i, j) entry of M . By default we

assume vectors to be column vectors, we will use the notation aT when referring
to a row vector. We use the notation F∗ to denote F \ {0}.

Share(s):

1. Generate (t1, t2, . . . , tn)← Sh(s), ui, vi
$←− F∗ for all i ∈ [n];

2. Define C0 ∈ Fn×n as

{
C0(i, j) = uj+1

i vi+1
j + uivj + 1 for i 6= j;

C0(i, i) = ti for i ∈ [n].

3. Define C blockwise as:

(
C0 In×n
In×n 0n×n

)
;

4. Generate B
$←− GL2n(F) and define A = CB−1;

5. Label row i of A as aTi and column j of B as bj ;
6. Return (si = (aTi , bi, ui, vi))i∈[n].

Rec(D, (si = (aTi , bi, ui, vi))i∈D) with D ∈ A, aTi , bi ∈ F2n, ui, vi ∈ F∗:

1. If for all i 6= j, aTi bj = uj+1
i vi+1

j + uivj + 1:

– Set aTi bi = ti for all i ∈ B;
– Return Rc(D, ti : i ∈ D).

2. Else, for all i ∈ D set:

Li = {Pj : aTi bj 6= uj+1
i vi+1

j + uivj + 1 or aTj bi 6= ui+1
j vj+1

i + ujvi + 1};

3. Return (⊥, (Li)i∈D.

Theorem 4. If δ > n2(n+ 1)/(|F| − 1), the scheme described above is a δ-LISS
scheme realizing A with secret space S and share space Si = F4n+2.

Corollary 1. Suppose there is a secret sharing scheme which realizes an n-party
access structure A with secret space S and share length β. Then, for any δ > 0
there is a δ-LISS with the same A and S whose share length is O(n log(n/δ)+nβ).

Outline of Security. A full proof of security is provided in the full version of
this paper but we provide a brief intuition in this section for self containment.
We first argue secrecy. Notice that the value ti is only used in generating the
row aTi , therefore any set of players E 6∈ A will have its shares generated using
only the ti values such that Pi ∈ E. The fact that the joint distribution of these
ti values do not depend on the underlying secret (due to the perfect secrecy of
(Sh, Rc)) implies secrecy.

Consider now an adversary that is attempting to tamper the share of some
Pi (and possibly others) - we will argue that any such attempt will cause the
check in Rec between Pi and any honest player Pj to fail with high probability.
Assume that the adversary is tampering bi → b′i, vi → v′i with one of these
values changed (a similar argument will hold if the adversary is tampering aTi

or ui). There are then two cases, either b′i is in Span({bi}i∈T) where T is the set
of corrupted players or it is linearly independent of these values. If b′i is linearly
independent it can be shown that aTj b

′
i is essentially uniformly distributed over F

conditioned on the view of the adversary even after uj is fixed and therefore the
probability that reconstruction succeeds will be very low (showing this statement
is non-trivial).

On the other hand, consider the case where b′i ∈ Span({bk}k∈T). Let b′i =∑
k∈T βkbk where βk ∈ F. Now, the check will succeed only if:

aTj
∑
k∈T

βkbk = ui+1
j v′

j+1
i + ujv

′
i + 1⇔

∑
k∈T

βk(uk+1
j vj+1

k + ujvk + 1) = ui+1
j v′

j+1
i + ujv

′
i + 1.

Similar to our argument of secrecy, the value uj is uniformly distributed con-
ditioned on every view of the adversary. Therefore, the check in Rec will succeed
only if the above equality is satisfied by a uniformly chosen uj ∈ F∗. This will
happen rarely unless the polynomials on the left and right of the equality (con-
sidered as a polynomial in uj) are equal. For this equality to hold, we must have
βk = 0 for all k 6= i since otherwise vk 6= 0 would make the polynomials different.
Next notice that we must have βi = 1 for the constant terms to match. Finally,
the ujvk term on the left implies that v′i = vi. Therefore, unless v′i = vi and
b′i = bi this equality will only occur with low probability, which implies that if
Pi tampers with either the vi or bi value, it will be detected and placed on Pj ’s
list with high probability for all honest Pj . A similar argument holds if either
the aTi or ui value is tampered since the method of generation is equivalent to
first generating A ∈ GL2n(F) and setting B = A−1C since C is always invertible.

Notice that we have actually argued that a dishonest player who modifies his
share will be on the list of every honest player and symmetrically that all honest
players will be on the list of such a dishonest player with high probability. This
implies Predictable Failures since an adversary can easily tell which dishonest
players will be on a given dishonest player’s list from the shares it has, as well
as whether or not the honest players will be on his list depending on whether or
not the player modifier his share.

4 Relaxing Local Identifiability

In this section we define a new commitment primitive, unanimously identifiable
commitments that can be used as a leaner substitute for LISS in certain appli-
cations. Additionally, we note that this commitment primitive implies a weaker
variant of LISS (called unanimously identificable secret sharing) that can also be
used in our applications to MPC.

4.1 Unanimously Identifiable Commitments

A unanimously identifiable commitment (UIC) scheme has a single player (called
the sender) committed to a value s ∈ S by having a trusted dealer send commit-
ments ci to all other players in the protocol and decommitment information d to
the sender such that any tampering of the d value will cause all honest players
to either reconstruct the original secret or fail reconstruction simultaneously. As
with standard commitments, (ci)i∈[n] should leak no information concerning s.

Definition 6. (Unanimously Identifiable Commitments) A δ-UIC scheme
consists of a randomized algorithm Offline and a deterministic algorithm Decom-
mit with the following syntax:

1. Offline: S → Cn×D. Takes as input a secret s ∈ S outputs n commitments
c1, c2, . . . , cn and decommitment information d.

2. Decommit: C × D → S ∪ {⊥}. Takes as input ci and the decommitment
information d and recreates the secret s or outputs ⊥ indicating failure.

Where the algorithms (Offline, Decommit) should satisfy:

– Completeness. For any s ∈ S, if Pr[Offline(s) = (c1, c2, . . . , cn, d)] > 0
then, Decommit(ci, d) = s for any i ∈ [n].

– Secrecy. The values c1, c2, . . . , cn reveal no information concerning s. For-
mally, for any c = (c1, c2, . . . , cn) and any s, s′ ∈ S, the probability that the
first n values of Offline(s) is c is equal to the probability that the first n
values of Offline(s′) is c.

We now present the final requirement placed on this primitive for use in our
applications. In the full version of this paper, we include further intuition to the
necessity of this condition but omit it here for space restrictions.

There exists simulators W1,W2 such that the two guarantees described below
hold with probability at least 1−δ for any A. Consider the following experiment:

1. The adversary, A outputs a set T ⊂ [n] ∪ {Q} of players to corrupt;
2. (c1, c2, . . . , cn, d)← Offline(s);
3. For all i ∈ T ∩ [n] send ci to the adversary, if Q ∈ T send d to the adversary;
4. If Q 6∈ T , set dec = d; otherwise, dec is output by A.
5. For all i ∈ T ∩ [n], A outputs (c′i, i), fake commitment information for Pi.

The guarantees around this experiment are as follows:

– Binding with Agreement on Abort. Decommit(ci, dec) = s for all Pi
uncorrupted or Decommit(ci, dec) = ⊥ for all Pi uncorrupted.

– Simulatable Abort. Let V be the view of A at the end of 5., then:
1. If A corrupted Q:
W1(V) correctly predicts if Decommit(ci, dec) =⊥ for all i ∈ [n].

2. Otherwise:
W2(V, c′i) correctly predicts if Decommit(c′i, d) =⊥ for each i ∈ T ∩ [n].

4.2 A Unanimously Identifiable Commitment Scheme

Let F be a field. We now give a simple construction of a δ-UIC scheme with
S = F, C = Fn+2 and D = F2.

Offline(s) :

1. Generate P (X), a random n+1 degree polynomial over F such that P (0) = s;

2. For all i ∈ [n] generate xi
$←− F and let yi = P (xi);

3. Set ci = (xi, yi) and d = P (X). Return ((ci)i∈[n], d).

Decommit(ci = (xi, yi), d = P (X) of degree n + 1) : If P (xi) 6= yi return ⊥.
Else, return P (0).

Theorem 5. Let |F| > (n+ 1)2δ−1 + 1. The scheme described above is a δ-UIC
with S = F, C = Fn+2 and D = F2.

Related Concepts. In our applications, we mainly use UIC as a substitute
for digital signatures. There are some other unconditional notions that have also
been introduced for similar purposes (such pseudosignatures [26], distributed
commitments [10] and IC signatures [25]). While the construction itself is not
novel (for example, it is used in [25]), the property that all of the honest players
accept or reject the same commitment is crucial to our applications and differs
from the guarantees placed on the other primitives.

4.3 Unanimously Identifiable Secret Sharing

We note that unanimously identifiable commitments actually imply a weaker
notion of LISS which we call unanimously Identifiable Secret Sharing (UISS).
The security requirements for a UISS scheme are identical to the requirements
to LISS except that the requirement:

• Each honest player’s list is the list of all cheaters:

is replaced by the requirement:

• Each honest player’s list is the same subset of corrupted players:

Out = (Lj)j∈B where for all j, j′ ∈ B \ T, Lj ⊂ T and Lj = Lj′ .

All other requirements remain unchanged, including the requirement of pre-
dictable failures. Implementing UISS for access structure A using a UIC scheme
is straightforward by having each user commit to its share. Note that for most
applications, UISS can take the role of LISS, at the cost of not necessarily iden-
tifying all tampered shares if reconstruction fails.

5 Applications

A secure multiparty computation (MPC) protocol allows a set of players to
compute a function evaluated on their individual inputs while revealing no in-
formation other than the output of the function. We assume familiarity with
(standalone) MPC throughout this section and refer the reader to [4] for formal
definitions.

5.1 Model of Computation

By default, we consider static, computationally unbounded adversaries who may
corrupt up to t of the n parties (t = n by default). We consider both active ad-
versaries, who may arbitrarily control the corrupted players, passive adversaries,
who can only observe the internal state of corrupted players, and fail stop ad-
versaries who behave like passive adversaries except that they make corrupted
players stop sending messages. Our network model is synchronous with point-
to-point channels and a broadcast channel.

The security of an MPC protocol with respect to an ideal functionality f is
defined by comparing a real world execution of the protocol to an ideal model
execution where a trusted party evaluates f . By default, we refer to statistical
security, where the statistical advantage of distinguishing between the real world
and the ideal model execution is bounded by 2−κ for a statistical security pa-
rameter κ. We will only consider the case of secure function evaluation, in which
f is stateless. We will mostly consider fully secure MPC in which the ideal model
adversary cannot prevent the trusted party from sending the outputs of f to the
honest players. Full security cannot be achieved even for simple functionalities
such as coin-flipping [8] without an honest majority or other assumptions we will
discuss. This impossibility holds even with trusted preprocessing; however, in the
latter model the assumptions of secure point-to-point channels and a broadcast
primitive are unnecessary as they can be implemented unconditionally [27].

5.2 Complete Primitives for MPC

An n-party functionality g is called a complete primitive for n-party MPC if it
is possible to securely realize any n-party functionality f in the g-hybrid model,
namely by using ideal calls to g. Here we consider security against an active
adversary who may corrupt an arbitrary number of players.

In prior works, such primitives either depend on the complexity of the func-
tion being evaluated [11] or rely on cryptographic assumptions [13]. It remained
open to construct an unconditionally complete primitive whose complexity is
independent of the complexity of the evaluated function f . In the following sec-
tion, we show how to construct such a primitive. Our contribution can be seen as
identifying a cryptographic LISS scheme implicitly present in the construction
of Gordon et al. [13] and replacing it with an unconditional construction. In fact,
it suffices for this purpose to rely on UISS rather than LISS. For simplicity, we

assume that the functionality f being evaluated using g delivers the same output
to all players; the general case is handled similarly.

Unconditional Primitive. The first primitive we present is complete for sta-
tistically secure MPC and its complexity depends only on the output length of
the evaluated functionality f . We give an informal description of the primitive
in this version and defer further details to the full version. For expository pur-
poses, we will describe three separate primitives that make up the three modes
of operation for the complete primitive.

– FCR1
1 - Takes as input a bit from a player, runs an n-out-of-n UISS sharing

algorithm on this bit and distributes the shares amongst all players.
– FCR1

2 - Takes as input two n-tuples of shares from the UISS scheme. Inter-
nally, the primitive reconstructs the underlying secrets of each, evaluates the
NAND of the two secrets, and re-shares the output using the UISS scheme.
If reconstruction fails, the functionality will use the lists Lj output by the
UISS scheme to partition the players: If any player is on his own list, the
functionality declares this player is disqualified and his input is replaced by
a default value by all players. If not, the functionality outputs a partition of
the players: Pi and Pj remain in the same partition if Lj = Li.

– FCR1
3 - Takes as input β separate n-tuples of UISS shares, where β is an

output length parameter. The functionality either reconstructs each secret
and broadcasts all the reconstructed bits, or, if some reconstruction fails,
partitions the players as in the previous mode using the first instance of
failed reconstruction.

Note that while the first two primitives are randomized, they can be made
deterministic by using a standard reduction: the internal randomness can be
securely emulated by taking the XOR of shares contributed by the n players.

Using the above primitive, one can securely evaluate any boolean circuit C,
which consists of NAND gates and has β output bits, in the following way. The
players first use FCR1

1 to share each of their input bits. After this phase is
completed, for each gate in C the players use FCR1

2 to evaluate shares of the
value of each internal value in C. Finally, the players feed the shares of the
output values to FCR1

3 and receive the outputs of C.
Notice that any deviation from the above protocol will result in all honest

players identifying the same set of cheaters, and therefore their lists Li will be
identical. In this case, they are partitioned and the protocol is re-started with
default values substituted for the inputs of the corrupted players. Due to the
guarantees of the UISS scheme, the partitions can be simulated given only the
views of the corrupted players. Defining the three modes of operation as one
primitive that can be called on only some partition of the players requires some
additional technical steps to fit in with our model of one trusted primitive. In
addition to the players declaring which mode they are using, the primitive should
also take as input from each player the set of players this player still trusts (as
in [13]), we detail this in the full version of this paper.

The above complete primitive yields the following theorem.

Theorem 6. There is a deterministic, polynomial-time computable functional-
ity g with input and output size poly(n, κ, β) such that any functionality f com-
puted by a circuit of size σ and output length β can be realized with full statistical
security (and 2−κ simulation error) using poly(n, σ) calls to g.

Reducing the Number of Calls. Our second primitive improves on efficiency
over the first by requiring fewer calls, but requires a preprocessing phase which
is implemented using an MPC with identifiability on aborts (in other words, if
the protocol fails then all honest players agree on the identity of a corrupted
player.) Settling for computational security, such a protocol can be based on the
existence of (two-party) oblivious transfer [12].

The protocol for f begins by the having the players run an MPC protocol as
above to compute UISS-shares of the output of f . In case the preliminary MPC
protocol fails, all players disqualify the player that caused the abort and restart
the protocol by using a default value as the input of disqualified players.

We now describe the second primitive which is used to complete the protocol.

– FCR2 takes as input an n-tuple of UISS shares for a β-bit secret and re-
constructs the secret. In case reconstruction succeeds the primitive returns
the reconstructed value to all players. If reconstruction fails, the primitive
outputs a partition of the players by the lists output by the UISS scheme as
in FCR1.

The protocol for f proceeds by repeatedly interleaving the preliminary (compu-
tational) MPC with calls to FCR2 until an output value is successfully recon-
structed by the latter. Each failure results in the honest players disqualifying at
least one corrupted player. As before, in each point of the protocol all honest
players agree on the identity of disqualified players.

Theorem 7. Suppose an oblivious transfer protocol exists with computational
security parameter λ. Then there is a deterministic, polynomial-time computable
n-party functionality g with input and output size poly(n, β, κ) such that any
polynomial-time computable f with output size β can be realized with full com-
putational security, up to neg(λ) + 2−κ simulation error, using at most n calls
to g.

In the full version we give two variants on the above theorem that eliminate
the dependence on the output length at the price of increased complexity of the
MPC phase, and reduce the number of calls to 1 at the price of increasing the
complexity of the primitive exponentially in n.

5.3 Partial Fairness with preprocessing

In this section we briefly sketch how the unanimously identifiable commitments
(UIC) primitive can be used with the partially fair MPC protocols of Beimel et
al. [2, 1] to eliminate the assumption of cryptographic signatures in the prepro-
cessing model.

Construction with an Off-Line Dealer. The MPC protocols from [2, 1]
achieve unconditional security against fail-stop adversaries (with a non-negligible
error 1/p) given a trusted preprocessing phase in which a dealer sends some se-
cret information to each player. This information contains the messages each
player should send during the protocol, but the choice of which message is sent
may depend on the (public) identity of the players that aborted up to this point.
To upgrade the security of such a protocol to hold against active adversaries,
Beimel et al. rely on digital signatures to ensure that players do not deviate from
their designated messages. Our observation is that one could instead rely on the
UIC primitive by having the dealer give to the player who should send a message
the decommitment information for this message and to all other players the cor-
responding commitments. Then, if a corrupted player attempts to modify this
decommitment information, all honest players will recognize this simultaneously
and continue the execution as if this player had aborted.

Note that when considering general MPC in this model (rather than coin-
flipping), it may be useful to allow the preprocessing stage to depend on the
players’ inputs. We refer to such a preprocessing phase as input dependent pre-
processing. Since we require the outputs of the protocol to be unpredictable in
the end of the preprocessing phase,4 input dependent preprocessing cannot be
used to trivially solve the problem by simply delivering the outputs of f to the
players.

Theorem 8. Let P be an r-round protocol with input dependent preprocessing,
which realizes F with ε-security against fail-stop adversaries who can corrupt
up to t players. Furthermore, suppose that the online phase of P has the fol-
lowing structure: in each round, each player sends a subset of the messages it
had received in the preprocessing phase, where the identity of this subset can be
computed publicly from the pattern of aborts up to this round. Then, there is a
protocol P ′ with the same features of P except that it is (ε+ 2−κ)-secure against
active adversaries.

In the case of randomized functionalities with no inputs, the above theorem
does not require the preprocessing to depend on any inputs. In particular, apply-
ing the above theorem to the coin-flipping protocol with preprocessing implicit
in the construction from [2], we get the following corollary.

Theorem 9. Assume preprocessing by a trusted off-line dealer. Fix constants n
and t such that t < 2n/3. Then, for any r, there is an r-round n-party uncon-
ditionally secure coin-flipping protocol over point-to-point channels tolerating up
to t malicious players with bias O(1/r).

In the full version we present a variant of our general UIC-based technique
which can make the preprocessing phase independent of the inputs. This variant
efficiently applies only when the number of players is constant and the input and

4 More precisely, security in the preprocessing model requires to simulate the adver-
sary’s view in the preprocessing phase before invoking the ideal functionality.

output domain of each player is polynomially bounded in the security parameter.
Applying this variant to general MPC protocols with 1/p-security from [1], we
obtain the following theorem.

Theorem 10. Assume preprocessing by a trusted off-line dealer. Let n and t be
constants such that n/2 ≤ t < 2n/3 and F be a deterministic n-party function-
ality with input domain bounded by a polynomial d(κ) for each player. Then, for
any polynomial p(κ), there is a polynomial-time r-round 1/p secure protocol for

F which tolerates up to t corrupt players with r = pdn·2
t

.

Acknowledgements. We would like to acknowledge the helpful comments
and suggestions of the anonymous TCC reviewers, and in particular for pointing
out the relevance of the notion of IC Signatures from [25].

References

1. A. Beimel, Y. Lindell, E. Omri, and I. Orlov. 1/p-secure multiparty computation
without honest majority and the best of both worlds. In Crypto ’11, pages 277–296.

2. A. Beimel, E. Omri, and I. Orlov. Protocols for multiparty coin toss with dishonest
majority. In Crypto ’10, pages 538–557.

3. E. F. Brickell and D. R. Stinson. The detection of cheaters in threshold schemes.
SIAM J. Discrete Math., 4(4):502–510, 1991.

4. R. Canetti. Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology, 13(1):143–202, 2000.

5. M. Carpentieri. A perfect threshold secret sharing scheme to identify cheaters.
Designs, Codes and Cryptography, 5(3):183–187, 1995.

6. B. Chor and E. Kushilevitz. A zero-one law for boolean privacy (extended ab-
stract). In STOC ’89, pages 62–72.

7. A. Choudhury. Simple and asymptotically optimal t-cheater identifiable secret
sharing scheme. IACR Cryptology ePrint Archive, 2011:330, 2011.

8. R. Cleve. Limits on the security of coin flips when half the processors are faulty
(extended abstract). In STOC ’86, pages 364–369. ACM.

9. R. Cramer, Y. Dodis, S. Fehr, C. Padro, and D. Wichs. Detection of algebraic
manipulation with applications to robust secret sharing and fuzzy extractors. In
EUROCRYPT ’08, pages 471–488.

10. S. Fehr and U. M. Maurer. Linear VSS and distributed commitments based on
secret sharing and pairwise checks. In Crypto ’02, pages 565–580, 2002.

11. M. Fitzi, J. A. Garay, U. M. Maurer, and R. Ostrovsky. Minimal complete primi-
tives for secure multi-party computation. J. Cryptology, 18(1):37–61, 2005.

12. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a
completeness theorem for protocols with honest majority. In STOC ’87, pages
218–229.

13. S. D. Gordon, Y. Ishai, T. Moran, R. Ostrovsky, and A. Sahai. On complete
primitives for fairness. In TCC ’10.

14. S. D. Gordon and J. Katz. Partial fairness in secure two-party computation. In
EUROCRYPT ’10, pages 157–176.

15. V. Goyal, Y. Ishai, M. Mahmoody, and A. Sahai. Interactive locking, zero-
knowledge PCPs, and unconditional cryptography. In Crypto ’10, pages 173–190.

16. Y. Ishai, M. Prabhakaran, and A. Sahai. Founding cryptography on oblivious
transfer - efficiently. In Crypto ’08, pages 572–591.

17. J. Katz. Universally composable multi-party computation using tamper-proof
hardware. In EUROCRYPT ’07, pages 115–128.

18. J. Kilian. Founding cryptography on oblivious transfer. In STOC ’88, pages 20–31.
ACM.

19. J. Kilian, E. Kushilevitz, S. Micali, and R. Ostrovsky. Reducibility and complete-
ness in private computations. SIAM J. Comput. ’00, 29(4):1189–1208.

20. K. Kurosawa, S. Obana, and W. Ogata. t-cheater identifiable (k, n) threshold
secret sharing schemes. In Crypto ’95, pages 410–423, 1995.

21. E. Kushilevitz, S. Micali, and R. Ostrovsky. Reducibility and completeness in
multi-party private computations. In FOCS ’94, pages 478–489.

22. R. J. McEliece and D. V. Sarwate. On sharing secrets and Reed-Solomon codes.
Commun. ACM ’81, 24(9):583–584.

23. T. Moran, M. Naor, and G. Segev. An optimally fair coin toss. In TCC ’09, pages
1–18.

24. S. Obana and T. Araki. Almost optimum secret sharing schemes secure against
cheating for arbitrary secret distribution. ASIACRYPT ’06, pages 364–379.

25. A. Patra, A. Choudhary, and C. Pandu Rangan. Round efficient unconditionally
secure multiparty computation protocol. In INDOCRYPT, pages 185–199, 2008.
Full version in eprint report 2008/399.

26. B. Pfitzmann and M. Waidner. Information-theoretic pseudosignatures and byzan-
tine agreement for t= n/3. IBM Research Report RZ ’96, 2882.

27. B. Pfitzmann and M. Waidner. Unconditional byzantine agreement for any number
of faulty processors. STACS ’92, pages 337–350.

28. T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In STOC ’89, pages 73–85.

29. P. Rogaway and M. Bellare. Robust computational secret sharing and a unified
account of classical secret-sharing goals. In CCS ’07, pages 172–184.

