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Abstract. A leakage resilient encryption scheme is one which stays se-
cure even against an attacker that obtains a bounded amount of side
information on the secret key (say λ bits of “leakage”). A fundamen-
tal question is whether parallel repetition amplifies leakage resilience.
Namely, if we secret share our message, and encrypt the shares under
two independent keys, will the resulting scheme be resilient to 2λ bits of
leakage?
Surprisingly, Lewko and Waters (FOCS 2010) showed that this is false.
They gave an example of a public-key encryption scheme that is (CPA)
resilient to λ bits of leakage, and yet its 2-repetition is not resilient to
even (1 + ε)λ bits of leakage. In their counter-example, the repeated
schemes share secretly generated public parameters.
In this work, we show that under a reasonable strengthening of the def-
inition of leakage resilience (one that captures known proof techniques
for achieving non-trivial leakage resilience), parallel repetition does in
fact amplify leakage (for CPA security). In particular, if fresh public
parameters are used for each copy of the Lewko-Waters scheme, then
their negative result does not hold, and leakage is amplified by parallel
repetition.
More generally, given t schemes that are resilient to λ1, . . . , λt bits of
leakage, respectfully, we show that their direct product is resilient to∑

(λi−1) bits. We present our amplification theorem in a general frame-
work that applies other cryptographic primitives as well.

1 Introduction

In recent years, motivated by a large variety of real-world physical attacks, there
has been a major effort by the cryptographic community to construct schemes
that are resilient to leakage from the secret keys. This successful line of work gave
rise to many constructions of leakage-resilient cryptographic primitives, including
stream ciphers [11, 19], signature schemes [15, 12], symmetric and public-key
encryption schemes [1, 18, 10, 9], as well as more complicated primitives.

A natural question to ask is: Does parallel repetition amplify leakage? More
concretely, suppose we are given a public-key encryption scheme E that remains
secure even if λ bits about the secret key are leaked. Is it possible to amplify the
leakage-resilience to tλ by taking t copies of E , and encrypting a message m by
secret sharing it, and encrypting the ith share using Ei (we denote the resulting



scheme by Et)? Using an appropriate definition of parallel repetition, a similar
question can be asked for signatures.

Alwen, Dodis, and Wichs [3] and Alwen, Dodis, Naor, Segev, Walfish and
Wichs [2] were able to amplify leakage resilience for particular schemes, using
the specific properties of these schemes. They raised the fundamental question of
whether leakage resilience can always be amplified by parallel repetition. They
predicted that such a result will be hard or even impossible to prove under the
known definitions.

Recently, Lewko and Waters [16] gave a striking negative result, giving an
example of a public-key encryption scheme that is resilient to λ bits of leakage
but whose 2 repetition is not resilient to even (1 + ε)λ bits. This was followed
by a work of Jain and Pietrzak [14] who presented a signature scheme where
increasing the number of repetitions does not improve the leakage resilience at
all. We elaborate on these negative results (and on how they go hand-in-hand
with our positive results) in Section 1.2.

1.1 Our Results

We give positive results, by proving direct product theorems for leakage re-
silience. In particular, we show that parallel repetition does amplify the leakage
resilience (almost) as expected.

The leakage model we consider is based on the “noisy leakage” model of Naor
and Segev [18].3 In this model, “legal” leakage functions are poly-size circuits
that reduce the min-entropy of the secret key by at most λ. A scheme is said
to be λ-leakage resilient if every ppt adversary, that asks for a “legal” leakage
function, breaks the scheme with only negligible probability.

In this work, we consider a slightly relaxed leakage model. Instead of requiring
the leakage function to always reduce the min-entropy of sk by at most λ, we
require that it should be hard to break the scheme on those leakage values that
do reduce the min-entropy by at most λ. In other words, we consider a point-wise
definition: We say that a scheme is point-wise λ-leakage resilient if for any ppt
adversary, that asks for a poly-size leakage function L, the probability that both
the leakage value y ← L(pk, sk) reduces the min-entropy of sk by at most λ,
and that A(pk, y) breaks the scheme, is negligible.

We believe that this leakage model is of independent interest, as it captures
our “intent” better: As long as the secret key is left with enough min-entropy,
the scheme is secure. Moreover, we note that all known constructions that are
λ-leakage resilient are also point-wise λ-leakage resilient (including [18, 15, 9, 5]).
We elaborate on this in Section 4.

At first it may seem that point-wise leakage is equivalent to noisy leakage.
However, the difficulty is that it may be hard to determine whether a leakage
value y ← L(pk, sk) indeed reduces the min-entropy of sk by at most λ. If this

3 While “entropic leakage” may be a more suitable name for this model, we stick with
the terminology of [18] for historic reasons.



was efficiently determined, then indeed we would have a reduction between the
two models.

For technical reasons (see Section 1.3), we need to further relax our leakage
model for our results to go through. We consider two (incomparable) relaxations.

First Relaxation: Almost λ-Leakage. In the first relaxation, instead of requiring
that sk has high min-entropy (given pk, y), we require that it is statistically close
to a random variable with high min-entropy. A scheme that is secure in this
model is said to be point-wise almost λ-leakage resilient. We can prove a direct
product theorem of any constant number of repetitions under this definition.

Theorem 1. Let c ∈ N be a constant, and for every i ∈ [c], let Ei be a point-wise
almost λi-leakage-resilient public-key encryption scheme. Then, E1 × . . .× Ec is
point-wise almost λ-leakage-resilient, where λ =

∑c
i=1(λi − 1).

We refer the reader to Section 1.3 and Section 5 for more details.

Second Relaxation: Leakage with Small Advice. In the second relaxation, we give
the adversary an additional logarithmic (in the security parameter) number of
bits of (possibly hard to compute) advice (quite surprisingly, we were unable to
reduce this model to the point-wise λ-leakage model). A scheme that is secure
in this model is said to be point-wise λ-leakage resilient with logarithmic advice.
We can prove a direct product theorem of any polynomial number of repetitions
under this definition.

We note that it is not clear what it means to have t different leakage resilient
schemes when t is super constant, since there is a different number of schemes
for each value of the security parameter. While one can come up with a proper
definition (involving a generation algorithm that, for every value of the security
parameter, gets i and implements Ei), for the sake of clarity, we choose to state
the theorem below only for parallel repetition of the same scheme.

Theorem 2. Let t = t(k) be a polynomial in the security parameter. Let E be
a public-key encryption scheme that is point-wise λ-leakage resilient with loga-
rithmic advice. Then Et is point-wise t(λ− 1)-leakage resilient with logarithmic
advice.

We refer the reader to Section 1.3 for an overview of the proof, and to Sec-
tion 6 for more details.

The Relation Between our Models. Interestingly, we are not able to show that
our relaxations are equivalent to one another, nor to show that they are implied
by (plain) point-wise leakage resilience. This is surprising since in the bounded
leakage model,4 a negligible change in the secret-key distribution, or adding a
logarithmic number of hard to compute bits, does not change the model. In

4 Where the leakage function’s output is required to be bounded by λ bits, as opposed
to our requirement that the secret key has high residual entropy.



a nutshell, the reason that this does not carry to our models, is that having
high min-entropy is not an efficiently verifiable condition, and that statistical
indistinguishability does not preserve min-entropy.

We are able to show, however, that point-wise λ-leakage resilience implies
λ-bounded leakage resilience (for the same value of λ), and thus in particular,
our relaxed models also imply bounded leakage resilience. We note that proving
the above is somewhat nontrivial since we do not want to suffer a degradation
in λ. We refer the reader to Section 3.3 for a formal presentation.

Our Models and Current Proof Techniques. We show that for essentially all
known schemes that are resilient to non-trivial leakage (i.e. super-logarithmic
in the hardness of the underlying problem), amplification of leakage resilience
via parallel repetition works. Specifically, this includes the Lewko-Waters coun-
terexample, if the public parameters are chosen independently for each copy of
the scheme. In order to do this, we identify a proof template that is used in all
leakage resilience proofs, and show that this template is strong enough to prove
point-wise leakage resilience, as well as our relaxed notions. See Section 4 for the
full details.

The Lewko-Waters counterexample uses its public parameters in a very par-
ticular way that makes the argument not go through (see below).

1.2 Prior Work

As we claimed above, all known leakage resilient schemes are proved using the
same proof template, and remain secure under our leakage models. This implies
that parallel repetition should amplify security for all known schemes, which
does not seem to coincide with the negative results of [16, 14]. We explain this
alleged discrepancy below.

The Lewko-Waters Counterexample. Lewko and Waters [16] construct a public
key encryption scheme that is resilient to non-trivial length-bounded leakage, and
prove that parallel repetition does not amplify its leakage resilience. However,
the copies of their encryption scheme share public parameters: They are all using
the same bilinear group. Their scheme, like all other schemes we are aware of,
is (computationally indistinguishable from) point-wise leakage resilient and our
theorems imply that parallel repetition does amplify its resilience to leakage.
This is true so long as the public parameters are generated anew for each copy
of the scheme: In our proof, we need to be able to sample key pairs for the
scheme in question. Lewko and Waters use the public parameters in an extremely
pathological (and clever!) way: The public parameters enable to generate keys for
their actual scheme, but not for the computationally indistinguishable scheme
where leakage resilience is actually proven. However, if we consider the generation
of public parameters as a part of the key generation process, then new key pairs
can always be generated, and parallel repetition works.



The Jain-Pietrzak Counterexample. Jain and Pietrzak [14] give a negative result
for signature schemes. They take any secure signature scheme and change it so
that if the message to be signed belongs to a set H, then the signature algorithm
simply outputs the entire secret key. The set H is computationally hard to hit
(given only the public key), and thus the scheme remains secure. It follows that
the scheme remains secure also given leakage of length O(log k), where k is the
security parameter (more generally, if the underlying problem is 2λ hard, then
the scheme is resilient to ∼ λ bits of leakage).

They prove that parallel repetition fails, by proving that if the scheme is
repeated t times, for some large enough t, then the leakage can in fact give
enough information to find a message m that belongs to all the sets Hi, and
thus break security completely. They start with a result that relies on common
public parameters: a common (seeded) hash function. Then, they suggest to
remove this public parameter by replacing the seeded hash function with an
explicit hash function, such as SHA256. However, this explicit hash function is
also, in some sense, a joint non-uniform public parameter.

This counterexample heavily relies on the “help” of the signing oracle when
breaking the repeated scheme. The paper also presents a construction of a CCA
encryption scheme, where they use the decryption oracle to break the parallel
repetition system.

In general, signature schemes are not covered by our amplification theorems.
Our theorems (and proofs) only cover public key primitives where the challenger
in the security game does not need to know the secret key (beyond providing
the adversary with the leakage value). Our results do extend to schemes such as
signature schemes or CCA encryption schemes, if they have the property that
the challenger (i.e., the signing oracle or the decryption oracle) can be efficiently
simulated given only the public key (or given very little information about the
secret key), in a way that is computationally indistinguishable even given the
leakage. For example, the signature scheme of Katz and Vaikuntanathan [15]
has this property, and thus its leakage resilience is amplified by parallel repeti-
tion. Whether our techniques can be applied to other leakage resilient signature
schemes (e.g. [4, 17, 13]) is an interesting question that we leave for further
research.

1.3 Overview of Our Techniques

In what follows we give a high-level overview of our proofs. For the sake of
simplicity, we focus on the case of two-fold parallel repetition. Let E be any
λ-leakage resilient encryption scheme. Our goal is to prove that the scheme E2
is 2λ-leakage resilient. For technical reasons, in our actual proof, we manage to
show that E2 is (2λ− 1)-leakage resilient (in both our leakage models).

Our proof is by reduction: Suppose there exists an adversary B for the parallel
repetition scheme E2 that leaks L(pk1, pk2, sk1, sk2), where L reduces the min-
entropy of (sk1, sk2) by at most 2λ − 1. We construct an adversary A, that
uses B to break security of E , and uses a leakage function L′ that reduces the
min-entropy of the secret key by at most λ.



Intuitively (and, as we will show, falsely), it does not seem too hard to show
such a reduction. It only makes sense that when the pair (sk1, sk2) looses 2λ bits
of entropy, then at least one of the secret keys sk1, sk2 “loses” at most λ bits
(otherwise the total loss should be more than 2λ). Therefore the adversary A
can sample a key pair by itself and “plant” it either as (pk1, sk1) or as (pk2, sk2)
(at random). Namely, A will sample a random i ∈ {1, 2}, and uniformly sample
(pki, ski), the key pair of the scheme we actually wish to attack will play the role
of (pk3−i, sk3−i). Upon receiving a leakage function L(·) from B, the adversary
A will plug the known (pki, ski) into the function and thus obtain L′ to be sent
to the challenger. Upon receiving a response from the challenger, it is forwarded
back to B, which can then break security with noticeable probability. Notice that
B’s view in the game is identical to its view in the repeated game against E2,
and thus it still breaks the security with the same probability. The only worry
is whether the function L′ only reduces the key entropy by the allowed amount,
which is unfortunately not the case. Assume that L leaks some 2λ bits on the
bit-wise XOR sk1 ⊕ sk2. Then when plugging in a known ski, the resulting L′

still leaks 2λ bits on sk3−i.

To solve this problem, we must prevent A from knowing ski. This is achieved
by having the key pair (pki, ski) sampled by the leakage function L′, rather than
by A. Namely, L′(pk, sk) is now defined as follows: First, sample (pki, ski) and
set (pk3−i, sk3−i) = (pk, sk). Then run y←L(pk1, pk2, sk1, sk2) to obtain the
leakage value. Lastly, output (y, pk1, pk2). Given the output of L′, the adversary
A can forward the value y to B, that uses it to break the scheme, all without
ever being exposed to the value of ski.

This seems to give A the least amount of information possible, so we should
hope that now we can prove that the entropy of sk is reduced by at most λ.
However, again, this is not true. Suppose that with probability 1/2, the leakage
function L outputs 2λ bits about sk1 and with probability 1/2 it outputs 2λ
bits about sk2. In this case, L indeed reduces the min-entropy of (sk1, sk2) by
2λ, and yet for every i ∈ {1, 2} the leakage function L′(pk, sk) reduces the min-
entropy of sk by essentially 2λ as well, and thus is not a valid leakage function
for the one shot game.

This abnormality results, to some extent, from using min-entropy (as opposed
to Shannon entropy) as our entropy measure: If L′(pk, sk) outputs both y =
L(pk1, pk2, sk1, sk2) and sk3−i, then it would indeed leak at most λ bits on sk
(with probability 1/2). The fact that we have less information, namely ski is
not known, might actually decrease the min-entropy of the key.

We arrive at a conflict: On one hand, knowing ski is a problem, but on the
other, not knowing it seems to also be a problem. We show that revealing ski
only in some cases, enables to prove parallel repetition. We use a simple lemma
(Lemma A.1), which essentially shows how to “split-up” the joint min-entropy
of two random variables. More precisely, it says that there is a subset S of all
possible secret keys sk1, such that for every sk1 ∈ S, the the random variable
sk2|sk1 has high min-entropy. Moreover, given the additional bit of information



that sk1 /∈ S, causes sk1 to have high min-entropy (which decreases as the size
of S shrinks).

We proceed by a specific analysis for each of our two relaxed models. For
explanatory reasons, we first discuss leakage with advice (our second relaxation)
and then go back to the almost leakage resilience model (our first relaxation).

Point-Wise λ-Leakage with Advice. In this model, the adversary A will leak
L′(pk, sk), which is a randomized leakage function, defined by choosing a random
τ ∈ {1, 2}, setting (skτ , pkτ ) = (sk, pk), choosing a new fresh key pair (ski, pki),
where i = 3 − τ , and outputting L(pk1, pk2, sk1, sk2). In addition, it will use
one bit of advice which is whether ski ∈ S. If so, the leakage function L′(pk, sk)
outputs ski in addition to L(pk1, pk2, sk1, sk2), and otherwise it outputs only
L(pk1, pk2, sk1, sk2). Now we can prove that indeed, for many pairs (pk, sk),
the leakage L′(pk, sk) leaks at most λ bits about sk (and B breaks E2 on the
corresponding keys).

Note that the leakage function L′ sometimes leaks more than it should.
Namely, in some cases the value y ← L′(pk, sk) reduces the min-entropy of
sk by λ; but in other cases it reduces the min-entropy of sk by more than λ,5

and in these cases it is an invalid leakage function. For this reason, we need to
consider the point-wise λ-leakage definition. In addition, note that L′ used only
one bit of additional advice. Therefore when going from E to Et the reduction
uses log t bits of advice.

Point-Wise Almost λ-Leakage. In this model, the idea of the reduction is the
following: The adversary A will leak L′(sk, pk), which is a randomized leakage
function, defined by choosing a random τ ∈ {1, 2}, setting (skτ , pkτ ) = (sk, pk),
choosing a new fresh key pair (ski, pki), where i = 3 − τ , and outputting
L(pk1, pk2, sk1, sk2), and in addition with probability 1/2 outputting ski.

As in the model with advice, the leakage function L′ might leak more than
λ bits about sk, and thus we use the point-wise definition. In the analysis, we
distinguish between the case that the set S is noticeable and the case that it
is negligible. In the former, with non-negligible probability the leakage function
L′ will sample ski ∈ S and will output it. In this case the leakage function is
legal. If the set S is negligible, we claim the distribution of the secret key skτ
is statistically close to the distribution of skτ conditioned on the event that
ski /∈ S (as this event happens only with negligible probability). Therefore, if
L′ did not output the secret key ski, the secret key skτ is statistically close to
a distribution with high enough min-entropy. Due to this analysis, we need to
relax our leakage model almost λ-leakage resilient.

Since the analysis in this model is asymptotic, we are not able to extend it
beyond a constant number of repetitions. See discussion in Section 5.

5 This happens when the set S is very small, yet skτ ∈ S.



1.4 Paper Organization

We define our generalized notion of public-key primitives in Section 2, where we
also define parallel repetition and leakage attacks on such primitives. Our model
of point-wise leakage resilience is presented in Section 3. In Section 4 we explain
why all known leakage resilient schemes are also point-wise leakage-resilient.

Our parallel repetition theorems for a constant number of repetitions and for
a polynomial number of repetitions are presented in Sections 5 and 6, respec-
tively. In Section 7 we discuss what our theorems imply for schemes that are only
computationally indistinguishable from being secure in our model. Appendix A
contains the min-entropy splitting lemma that is used for all our proofs.

Due to space limitations, some proofs are omitted from this extended abstract
and can be found in the full version [6].

2 Public-Key Primitives, Parallel-Repetition, Leakage
Attacks

In this section we give a definition of a public key primitive which generalizes one-
way relations and public-key encryption under chosen plaintext attack (CPA).
We then show how to define parallel repetition with respect to public-key primi-
tives in a way that, again, generalizes the intuitive notions of parallel repetition
for either one-way relations or public-key encryption.

2.1 A Unified Framework for Public-Key Primitives

We use the following formalization that generalizes both one-way relations and
public-key encryption.

Definition 2.1 (public-key primitive). A public-key primitive E = (G,V ) is
a pair of ppt algorithms such that

– The key generator G generates a pair of secret and public keys: (sk, pk)←G(1k).
– The verifier V is an oracle machine such that V O(pk)(pk) either accepts or

rejects.

Definition 2.2 (secure public-key primitive). A public-key primitive E =
(G,V ) is secure if for any ppt oracle break, it holds that

Pr
(sk,pk)←G(1k)

[V break(pk)(pk)] = negl(k) .

To be concrete, for one-way relations, the breaker needs to send a candidate
secret key sk (= inversion of the public key), and the verifier runs the relation’s
verification procedure. To see why public key encryption can be stated in these
terms, requires some work. The reason it is not immediate is that typically, we
would consider the interaction between the verifier and the breaker, to be the
following: The verifier gives the breaker a challenge ciphertext Encpk(b), and he



accepts if the breaker succeeds in guessing b. However, the breaker can clearly
cause the verifier to accept with probability 1/2, where we need to ensure that
the breaker succeeds only with negligible probability. This technical annoyance
can be fixed by considering the game where the verifier sends poly(k) challenge
ciphertexts to the breaker, each encrypting a random bit. The breaker succeeds
if it succeeded in guessing significantly more than 1/2 of the bits encrypted. The
formal definition and precise analysis are much more cumbersome. The proof
appears in the full version [6].

Note that our verifier (which corresponds to the challenger in “security game”
based definitions) only gets the public key as input and not the secret key. If
the secret key was also given, then all public-key encryption schemes, signature
schemes, and one-way relations, would trivially fit into this framework. However,
in this work, we only consider primitives where the verifier V does not use the
secret key sk to verify, but uses only the public key pk. An example of such a
primitive is public-key encryption (under CPA). However, signature schemes or
CCA secure encryption schemes do not fall into this category, since for these
primitives the verifier in the definition above does need to know the secret key
sk in order to simulate the signing oracle, in the case of signature schemes, and
to simulate the decryption oracle, in the case of CCA encryption schemes.

2.2 Parallel Repetition

Definition 2.3 (t-parallel repetition). For any public-key primitive E =
(G,V ) and any t ∈ N, its t-parallel repetition, denoted Et = (Gt, V t), is in itself
a public-key primitive defined as follows

– The key generator (skt, pkt)←Gt(1k) generates (ski, pki)←G(1k) for all i ∈
[t] and outputs skt , (sk1, . . . , skt), pk

t , (pk1, . . . , pkt).

– The verifier (V t)
O(pkt)

(pkt), runs V O(pkt,i)(pki) for all i ∈ [t], and accepts
if and only if they all accept.

A direct product of t schemes E1 × · · · × Et is defined similarly.

While it is straightforward that our definition captures the notion of parallel
repetition for one-way relations (where the goal is to find legal pre-images for all
input public-keys), let us be a little more explicit about how the above captures
parallel repetition for public-key encryption.

Lemma 2.4. Let E = (G,V ) be a public-key primitive that represents a public-
key encryption scheme and let t ∈ N. Then there exists a public key encryption
scheme that is represented by Et.

Moreover, this scheme is obtained by secret sharing the message into t shares
and encrypting share i with pki. To decrypt, decrypt all shares and restore the
message.

The proof is straightforward and is omitted.



2.3 Leakage Attacks

In this section, we generalize the notion of leakage attacks to our public-key
primitive framework. Note that we do not define what it means for a scheme to
be secure, only present a model for an attack.

Definition 2.5 (leakage attack). We consider adversaries of the form A =
(leakA, breakA), where leakA, breakA are (possibly randomized) functions. We
refer to leakA as the leakage function and to breakA as the breaker.

A leakage attack of an adversary A = (leakA, breakA) on a public-key primi-
tive E = (G,V ) (with security parameter k) is the following process.

– Initialize: Generate a key pair (sk, pk)
$← G(1k).

– Leak: Apply the leakage function on the key pair to obtain the leakage value
y←leakA(pk, sk).

– Break: A succeeds if V break(pk,y)(pk) accepts.

3 Point-Wise Leakage Resilience

In this work, we consider “noisy leakage” functions, which are only allowed to
reduce the (average) min-entropy of the secret key by a bounded amount. How-
ever, we relax the min-entropy restriction, and consider a point-wise definition,
where we require that the specific leakage value is legal (as opposed to requiring
that the leakage function is always legal).

We define our new model below. Then, in Sections 3.1, 3.2, we present two
relaxed versions of point-wise leakage resilience that we need in order to prove
our parallel repetition theorems. Finally, in Section 3.3 we show that all of these
notions are strictly stronger than the old bounded-leakage model of [1]. Namely,
security w.r.t. to our definitions imply, as a special case, security w.r.t. bounded
leakage.

Definition 3.1 (point-wise λ-leakage). Let E = (G,V ) be a public key primi-
tive. A possibly randomized leakage function leak is λ-leaky at point (pk, y), where
pk is a public key and y is a leakage value (in the image of leak), if

H∞(Spk,y) ≥ H∞(Spk)− λ ,

where Spk is the distribution of secret keys conditioned on the public key being
pk, and Spk,y is the distribution of secret keys conditioned on both the public key
being pk and on leak(pk, sk) = y.

Definition 3.2 (point-wise λ-leakage resilience). A public-key primitive
E = (G,V ) is point-wise λ-leakage-resilient if for any ppt adversary A, where
A = (leakA, breakA), it holds that

AdvE,λ[A] , Pr [(leakA is λ-leaky at (pk, y)) ∧ (A(pk, y) succeeds)] = negl(k) ,

where the probability is taken over (sk, pk)← G(1k), over the random coin tosses
of A = (leakA, breakA), and over the random coin tosses of the verifier in the
verification game.



In order to obtain our direct product theorems for leakage resilience, we relax
the point-wise leakage resilience definition in two (incomparable) ways.

3.1 First Relaxation: Almost Leakage Resilience

In this relaxation, instead of requiring that sk has high min-entropy conditioned
on pk and y = leak(pk, sk), we require that the distribution of sk (conditioned
on pk, y) is statistically close to one that has high min-entropy.

Definition 3.3 (close to λ-leaky). A leakage function leak is µ-close to λ-
leaky at point (pk, y) if there exists a distribution S̃pk,y that is µ-close to Spk,y
and

H∞(S̃pk,y) ≥ H∞(Spk)− λ .

Definition 3.4 (resilience to almost λ-leakage). E = (G,V ) is point-wise
almost λ-leakage-resilient if for any ppt adversary A = (leakA, breakA) and for
any negligible function µ, it holds that

AdvE,λ,µ[A] , Pr [(leakA is µ-close to λ-leaky at (pk, y)) ∧ (A(pk, y) succeeds)]

= negl(k) .

where the probability is taken over (sk, pk)← G(1k), over the random coin tosses
of A = (leakA, breakA), and over the random coin tosses of the verifier in the
verification game.

Under this definition we obtain a direct-product theorem for constant number
of repetitions.

3.2 Second Relaxation: Leakage Resilience with Advice

To obtain a direct-product theorem for a super-constant number of repetitions,
we use a slightly different (and incomparable) model, where we do not allow
statistical closeness, but rather allow the attacker to get a logarithmic number
of bits of (possibly inefficient) advice.

Definition 3.5 (ppt-a). We say that a function f is ppt-a computable if the
function f-a, defined below, is ppt computable. The function f-a is identical to
f , except that the last a bits of its output are truncated.

We say that an adversary A = (leakA, breakA) is a ppt-a adversary if leakA
is ppt-a computable and breakA is ppt computable.

Definition 3.6 (point-wise λ-leakage with advice). A public-key primitive
E = (G,V ) is resilient to point-wise λ-leakage and logarithmic advice if for any
ppt-O(log k) adversary A = (leakA, breakA) it holds that

AdvE,λ[A] , Pr [(leakA is λ-leaky at (pk, y)) ∧ (A(pk, y) succeeds)] = negl(k) ,

where the probability is taken over (sk, pk)← G(1k), over the random coin tosses
of A = (leakA, breakA), and over the random coin tosses of the verifier in the
verification game.



3.3 Relation to Bounded Leakage

To conclude, we prove that point-wise λ-leakage resilience implies the basic form
of λ-bounded leakage. A proof sketch appears in the full version [6].

Definition 3.7 ([1]). A public-key primitive E = (G,V ) is λ-bounded leakage
resilient if any ppt adversary A = (leakA, breakA) for which the output of leakA
is at most λ bits, succeeds with negligible probability.

Lemma 3.8. If E = (G,V ) is point-wise λ-leakage resilient then it is also λ-
bounded leakage resilient.

We note that point-wise almost λ-leakage resilience, and λ-leakage resilience
with logarithmic advice, are stronger notions of security (they give the adversary
more power) and thus the above immediately applies to these notions as well.

4 Why Known Schemes are Point-Wise Leakage Resilient

In this section, we show that leakage resilience is amplified by parallel repetition
for, essentially, all known schemes that are resilient to non-trivial (i.e. super-
logarithmic) leakage. To show this, we sketch a proof template that is shared
among all (non trivial) leakage resilient results, and we show that this proof
template proves security also w.r.t. our leakage models (the point-wise almost
λ-leakage model, and the point-wise λ-leakage with logarithmic advice model).

The Proof Template. The proof template for proving leakage resilience is very
simple, and works in two hybrid steps. Recall that the adversary first gets a pair
(pk, y = L(pk, sk)), where L is a poly-size leakage function chosen by A. Then it
chooses messages m0,m1 and gets a challenge ciphertext cb ← Encpk(mb). The
adversary wins if it guesses the bit b correctly.

The first step in the template is to replace the challenge cb with an “illegally”

generated ciphertext c∗b , such that (sk, pk, cb)
c
≈ (sk, pk, c∗b) (and it is efficient to

generate c∗b given sk, pk, b). Due to computational indistinguishability, the ad-
versary’s success probability should remain unchanged. We note that there is no
entropy involved in this part, only a requirement that L is efficiently computable.

The second step is completely information theoretic: It is proven that if the
distribution of the secret key conditioned on pk, y, which we denote by Spk,y, has
sufficient min-entropy, then c∗b carries no information on b (or, more precisely,
that conditioned on the view of the adversary, b is statistically close to uniform).
Therefore, no adversary can guess its value with non-negligible advantage.

Point-Wise Leakage Resilience. The above proof template also proves point-wise
leakage resilience. The second step of the hybrid works in a point-wise manner
and therefore we only need to worry about the first step. In the first step, clearly
computational indistinguishability still holds, but proving that the point-wise
advantage remains unchanged is a bit harder, since we cannot efficiently check



the point-wise advantage. Nevertheless, we argue that if the advantage of A is
non-negligible, then it drops by a factor of at most two. Such a claim is sufficient
for the next level of the template.

To see why this is the case, consider an adversary A that has non-negligible
point-wise advantage ε when given (pk, y, cb), but less than ε/2 when given
(pk, y, c∗b). Recall that the advantage measures the probability of both A suc-
ceeding (in the verification game) and pk, y being point-wise λ-leaky. It follows
that with non-negligible probability over pk, y, the conditional success probabil-
ity of A, conditioned on pk, y, drops by at least ε/4 (otherwise the advantage,
which measures over a subset of the pk, y, couldn’t have dropped).

A distinguisher B(sk, pk, cb/c
∗
b) is defined as follows: First, compute the leak-

age y:=L(sk, pk). Then generate many samples of cb/c
∗
b and use them to evaluate

the success probability of A conditioned on pk, y in the two cases. If indeed pk, y
are such that the success probability drops, use A to distinguish between the
two cases. If no noticeable change in the success probability was noticed, then
output a random guess. Putting it all together, we get a polynomial distinguisher
between (pk, y, cb) and (pk, y, c∗b), in contradiction to the hardness assumption.

We note that this is true even if y is not fully known to the distinguisher:
say O(log k) bits of y are not known, the distinguisher can still try all options
and check if for either one the success probability changes by ε/4.

Our Relaxed Models of Point-Wise Leakage Resilience. Our first relaxation, of
allowing the secret key to be statistically close to λ-leakage resilient, only effects
the second step of the template. We can still argue that b is statistically close
to uniform by adding another hybrid where the conditional distribution Spk,y is

replaced with a statistically indistinguishable S̃pk,y that has high min-entropy.
Our second relaxation, of allowing logarithmic advice, goes into the first step

(this is the only step where we care about the complexity of L). As we explained
above, our argument works even if a logarithmic part of the leakage value is not
known. Therefore we will use only the efficient part of the leakage function and
computational indistinguishability will still hold.

Computationally Indistinguishable Schemes. For some schemes, such as [1, 16],
leakage resilient is proven by showing that they are computationally indistin-
guishable from another scheme which, in turn, is proven leakage resilient using
the template. We show in Section 7 that this still implies that parallel repetition
amplifies leakage.

5 Direct-Product Theorem for a Constant Number of
Repetitions

In this section, we prove a direct-product theorem for a constant number of
repetitions, w.r.t. point-wise almost leakage-resilience as defined in Section 3.1.



Theorem 5.1. Let c ∈ N be a constant, and for every i ∈ [c], let Ei = (Gi, Vi) be
a point-wise almost λi-leakage-resilient public-key primitive. Then, E1 × . . .×Ec
is point-wise almost λ-leakage-resilient, where λ =

∑c
i=1(λi − 1).

It suffices to prove this theorem for c = 2, and apply it successively. In order
to simplify notation, we prove it for the case of parallel repetition, where E1 = E2,
the proof extends readily to the case of direct product.

Lemma 5.2. Let E = (G,V ) be a point-wise almost λ-leakage-resilient public-
key primitive. Then E2 is point-wise almost (2λ− 1)-leakage-resilient.

Before we present the outline of the proof, let us make a few remarks.

1. Note that there is a loss of one bit in the amplification. Namely, we go from λ
to (2λ−1) instead of just 2λ. While some loss in the parameters is implied by
our techniques, more detailed analysis can show that the composed scheme
is in fact (2λ − δ)-leakage resilient for any δ(k) = 1/poly(k). Thus the loss
incurred is less than a single bit. As our result is qualitative in nature, we
chose not to overload with the additional complication.

2. While at first glance one could imagine that Theorem 5.1 should extend
beyond constant c, we were unable to prove such an argument. The reason is
that super-constant repetition gives a different scheme for each value of the
security parameter. This means that we cannot use Theorem 5.1 as black-
box. More importantly, our proof techniques rely on the asymptotic behavior
of the scheme so we were not able to even change the proof to apply for a
super-constant number of repetitions.
A result for the more general case of any polynomial number of repetitions
is presented, in the slightly different and incomparable “advice” model, in
Section 6.
Finally, we remark that known negative results for security of parallel rep-
etition are already effective for a constant number of repetitions. Thus our
result contrasts them even for this case.

Proof overview of Lemma 5.2. We consider an adversary B that succeeds in
the parallel repetition game, and construct an adversary A that succeeds in the
single instance game. The straightforward proof strategy would be to “plant”
the “real” key pair, that is given as input to A, as one of the key pairs that
are input to B, and sample the other pair uniformly.6 In such case, the input
to B is distributed identically to the parallel repetition case and indeed B will
succeed with noticeable probability. However, we may no longer be able to claim
that our leakage leaves sufficient entropy in the secret key. We are guaranteed
by the functionality of B that the key pair (sk1, sk2) is left with sufficient min-
entropy but it is still possible that neither sk1 nor sk2 have any min-entropy by
themselves.

6 We note that even this step is impossible when relying on “secretly generated” public
parameters as in the scheme presented in [16] (or rather, the scheme that is compu-
tationally indistinguishable to theirs and actually has entropic leakage resilient).



To solve the above we use Lemma A.1, which essentially says how to split-up
the joint entropy of two random variables. Specifically it says that either sk1 or
sk2|sk1 will have sufficient min-entropy, depending on whether sk1 belongs to a
hard-to-recognize set R, and conditioned on the knowledge of whether sk1 ∈ R.
Namely, either sk1|1sk1∈R or sk2|(sk1,1sk1∈R) have high min-entropy. If we
could compute the bit 1sk1∈R, we would have been done (and indeed if we are
allowed one bit of inefficient leakage, an easier proof follows, see Section 6). Since
this is impossible, we turn to case analysis:

Obviously, if Pr[sk1 ∈ R] = negl(k), then we can always guess that 1sk1∈R =
0 and be right almost always. This implies that in such case sk2|sk1 is statistically
indistinguishable from having high min-entropy, as we wanted.

For the second case, if Pr[sk1 ∈ R] ≥ 1/poly(k), then sk2|(sk1,1sk1∈R) will
have high min-entropy for a noticeable part of the time. To complete the analysis
here, we notice that

H∞(sk2|(sk1,1sk1∈R)) = H∞(sk2|sk1).

This is because R is a well defined set and thus 1sk1∈R is a deterministic (though
hard to compute) function of sk1. It follows that sk2|sk1 will have high min-
entropy for a noticeable fraction of the time, which completes the proof.

For the formal proof, see the full version [6].

6 Direct-Product Theorem for Polynomially Many
Repetitions

In this section we present a direct product theorem that applies to any polyno-
mial number of repetitions. This theorem is relative to the advice model defined
in Section 3.2. For the sake of simplicity, we will assume that the number of
repetitions is a power of 2, although the same techniques can be used for any
number.

Theorem 6.1. Let E = (G,V ) be a public-key primitive that is resilient to point-
wise λ-leakage and logarithmic advice. Let t = t(k) be a polynomially bounded
function of the security parameter such that t(k) is always a power of 2. Then
Et is resilient to point-wise t(λ− 1)-leakage and logarithmic adivce.

Towards proving the theorem, we present the following lemma, which is a pa-
rameterized special case of the above theorem, and will imply the theorem by
successive applications.

Lemma 6.2. For any public-key primitive E = (G,V ) and any ppt-a adversary
B = (leakB, breakB) for E2, there exists a ppt-(a+1) adversary A = (leakA, breakA)
for E, such that for all k,

AdvE,λ[A] ≥ (1/4) ·AdvE2,(2λ−1)[B] .

The theorem immediately follows by applying the lemma log t times. See proofs
in the full version [6].



7 Leakage from Computationally Indistinguishable
Schemes

Our definition of point-wise leakage resilience is based on the residual min-
entropy of the secret key, conditioned on the leakage value. In the literature,
starting with [18], this is referred to as “resilience to noisy leakage”. It is self ev-
ident that schemes where the public key is an injective function of the secret key
cannot be proven leakage resilient in this respect. This is because even leaking
the secret key in its entirety, which obviously breaks security, does not reduce its
min entropy conditioned on the public key (the conditional min-entropy is 0 to
begin with, and it stays 0 after the leakage). We do know, however, of such injec-
tive public-key encryption schemes that are proven to be leakage resilient with
respect to the weaker notion of “length bounded leakage”. There, the restriction
on the leakage function is that it has bounded length. Notable examples are the
scheme of [1] and the scheme of [16] (which was introduced as a counterexam-
ple for parallel repetition of length-bounded leakage resilience, see Section 1.2).
While at first glance it may seem that our result is completely powerless with
regards to such schemes, we show in this section that for all known schemes, and
specifically for the schemes of [1, 16], our theorem in fact does imply parallel
repetition.

The key observation upon revisiting the proofs of security of [1, 16], is that
in both cases, the proof is by presenting a second scheme in which the key
distribution is computationally indistinguishable from the original scheme (but
may have undesired features such as worse efficiency of key generation), and
proving that this second scheme is resilient to leakage of bounded length. This
implies that the original scheme is resilient to bounded leakage as well (since
otherwise one can distinguish the key generation processes). The second scheme,
in these two cases, is in fact resilient to noisy leakage. Furthermore, the second
scheme in the two cases adheres to our notion of point-wise leakage resilience.

In light of the above, we put forth the following corollary of Theorems 5.1
and 6.1.

Corollary 7.1. Let E = (G,V ) be a public-key primitive, and let G′ be such

that G(1k)
c
≈ G′(1k). Then:

1. If E ′ = (G′, V ) is point-wise almost λ-leakage resilient, then Et is t · (λ− 1)-
bounded leakage resilient for any constant t ∈ N.

2. If E ′ = (G′, V ) is point-wise λ-leakage resilient with logarithmic advice, then
Et is t · (λ− 1)-bounded leakage resilient for any polynomial t = t(k).

Proof. The proof of the two parts is almost identical: We use either Theorem 5.1
or Theorem 6.1 to show that (E ′)t is point-wise almost t ·(λ−1)-leakage resilient,
or, respectively, leakage resilient with logarithmic advice. By Lemma 3.8, this
means that (E ′)t is t · (λ− 1)-bounded leakage resilient.



By a hybrid argument (G′)t(1k)
c
≈ Gt(1k).7 Therefore, it must be that Et

is also t · (λ − 1)-bounded leakage resilient (otherwise there is a distinguisher
between the key generators). This completes the proof.

Using Corollary 7.1, we can show that t-parallel repetition of the schemes
of [1, 16] indeed amplifies their leakage resilience.
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A How to Split Min-Entropy

We present a lemma that shows that the joint min-entropy of two random vari-
ables can be split between them under some condition. Variants of this lemma
appeared in previous works (e.g. [8, 20]), this formulation is from [7].

Lemma A.1 (min-entropy split). Let X,Y be such that H∞(X,Y ) ≥ a+ b,
for a, b > 0. Then there exists a set RX , which is a subset of the support of X
such that both:

1. For all x ∈ RX , it holds that H∞(Y |X = x) ≥ b.
2. H∞(X|X 6∈ RX) ≥ a− log(1/ε), where ε , Pr[X 6∈ RX ].

Proof. Define
RX , {x : Pr[X = x] ≥ 2−a} .

Then for all x ∈ RX and for all y, it holds that Pr[Y = y|X = x] ≤ 2−b, and
thus H∞(Y |X = x) ≥ b. In addition, H∞(X|X 6∈ RX) ≥ a + log Pr[X 6∈ RX ],
i.e. H∞(X|X 6∈ RX) ≥ a− log(1/ε).


