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Abstract. We introduce a natural cryptographic functionality called
functional re-encryption. Informally, this functionality, for a public-key
encryption scheme and a function F with n possible outputs, transforms
(“re-encrypts”) an encryption of a message m under an “input public
key” pk into an encryption of the same message m under one of the n
“output public keys”, namely the public key indexed by F (m).
In many settings, one might require that the program implementing the
functional re-encryption functionality should reveal nothing about both
the input secret key sk as well as the function F . As an example, consider
a user Alice who wants her email server to share her incoming mail with
one of a set of n recipients according to an access policy specified by
her function F , but who wants to keep this access policy private from
the server. Furthermore, in this setting, we would ideally obtain an even
stronger guarantee: that this information remains hidden even when some
of the n recipients may be corrupted.
To formalize these issues, we introduce the notion of collusion-resistant
obfuscation and define this notion with respect to average-case secure
obfuscation (Hohenberger et al. - TCC 2007). We then provide a con-
struction of a functional re-encryption scheme for any function F with a
polynomial-size domain and show that it satisfies this notion of collusion-
resistant obfuscation. We note that collusion-resistant security can be
viewed as a special case of dependent auxiliary input security (a setting
where virtually no positive results are known), and this notion may be
of independent interest.
Finally, we show that collusion-resistant obfuscation of functional re-
encryption for a function F gives a way to obfuscate F in the sense of
Barak et al. (CRYPTO 2001), indicating that this task is impossible for
arbitrary (polynomial-time computable) functions F .

1 Introduction

Informally, a program obfuscator is an algorithm that transforms a program into
another, functionally equivalent program whose inner workings are “completely
unintelligible”. Starting from the formalization of program obfuscation in the
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work of Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan and Yang [3], the
problem has received considerable attention in the cryptographic community. A
method of obfuscating programs is an exceedingly valuable tool, both in theory
and practice.

Despite its potential for far-reaching applications, the area of program obfus-
cation is wrought with impossibility results. The seminal work of Barak et al. [3]
demonstrated a class of circuits which cannot be obfuscated even under a weak
notion of obfuscation, thereby diminishing the hope of achieving general-purpose
obfuscation. Further impossibility results for obfuscation of more natural func-
tionalities were shown in [14, 27, 18, 4]. Positive results for obfuscation, on the
other hand, have been largely limited to relatively simple classes of functions
such as point functions [7, 9, 21, 27, 14, 8], proximity testing [12], encrypted per-
mutations [1] and more recently, testing hyperplane membership [10].

In one of the few exceptions to this trend, Hohenberger et al. [19] showed how
to obfuscate a complex cryptographic functionality called re-encryption [5, 2].
Informally, a re-encryption program associated with two public keys transforms
an encryption of a message m under the first of these keys to an encryption
of the same message m under the second public key. Hohenberger et al. (and
independently, [18]) also introduce a strong definition of (average-case) secure
obfuscation which we will use and build on in this work. Following [19], Hada [17]
showed how to securely obfuscate an encrypted signature functionality.

Despite the slow and steady stream of positive results for obfuscation, we
have relatively few techniques and paradigms for obfuscation. In particular,

– The key point that enables obfuscation in both [19] and [17] is that they
obfuscate functionalities that compute a function “inside a ciphertext”. For
example, in [19], this is the decryption function and in [17], it is the signature
function. Not surprisingly, it has been noted that given a fully homomorphic
encryption scheme [22, 13], the functionalities of [19, 17] can be easily obfus-
cated. Thus, we would like to find other paradigms for obfuscating complex
functionalities.

– Both re-encryption and obfuscated signatures can be thought of as access
control mechanisms. The catch, though, is that both of them embody an “all-
or-nothing” form of access control – for example, in the case of re-encryption,
neither the re-encryptor nor the recipient alone can decrypt a ciphertext
created by the initiator although together, the two of them can learn the
entire contents of the ciphertext. We would like to consider functionalities
that capture a finer grained delegation of access.

– An issue that is important in both theory and practice is the presence of
auxiliary inputs. Most positive results on obfuscation (including [19, 17], but
also others) do not achieve any form of security against auxiliary inputs that
depend on the function being obfuscated. Indeed, this task seems quite hard,
as indicated by impossibility results of [14] (for some limited positive results
against auxiliary inputs, see [4]). Can we achieve obfuscation against a large,
meaningful class of auxiliary inputs?



In this work, we make progress on the above lines of inquiry. Firstly, we
relax (somewhat) the definition of secure obfuscation in the presence of auxiliary
inputs, and introduce the notion of collusion resistant obfuscation. Secondly,
we show how to obfuscate a natural and complex cryptographic functionality
called functional re-encryption in a way that satisfies this notion of security.
This functionality captures a finer grained delegation of access, and also protects
against collusion between various participating parties.

1.1 Collusion Resistant Obfuscation

Consider the following scenario. A department would like to create a login pro-
gram that will grant access to several users - say, Alice, Bob, and Carol, who
have different passwords. The department would like to obfuscate this program
and give it to the server that will run it. Now, we would like to guarantee that
this obfuscation remains secure even if, for example, Alice were to collude with
the server. One can view Alice’s password as being specific auxiliary information
that an adversary obtains about the program. Note that this is a restricted form
of auxiliary information as we do not allow an adversary to learn, say specific
bits of Bob or Carol’s passwords. In this work, we are interested in the notion of
average-case secure obfuscation (as defined by [19, 18]) and hence in the above
example we assume that all passwords are chosen uniformly at random.

One can generalize the above functionality and obtain a general definition
of collusion resistant obfuscation. We would like to obfuscate a function family
{Cλ} that has the following form. Any CK ∈ Cλ is parameterized by a set of
“secret” keys K = {k1, k2, · · · , k`} (in addition to any other parameters that the
circuit might take) that are chosen at random from some specified distribution.
Now, define a subset of keys represented through a set of indices T ⊆ [`]. ([`]
denotes the set {1, 2, · · · , `}.) We would like to construct an obfuscation of the
circuit, denoted by Obf(CK), so that Obf(CK) is a “secure obfuscation” of CK (in
the sense of [19]) even against an adversary that knows the set of keys {ki}i∈T .

1.2 Functional Re-encryption

Functional re-encryption is an expressive generalization of re-encryption [5, 2].
A functional re-encryption functionality is parameterized by a policy function
F : D → [n] (i.e, F has domain D and has n possible outputs) chosen from
some class of functions, an input public key pk, and n output public keys. The
functionality receives as input a ciphertext of message m with “identity” id under
the input public key pk. 3 It decrypts the ciphertext using the secret key sk to
get m and id, and then re-encrypts m under the “appropriate” output public

3 This is a slight generalization of the description given earlier in the abstract where
the function F is applied to the entire message. We choose to view the message as an
identity on which the function F is applied, and a separate “payload” for conceptual
cleanliness.



key p̂kF (id). Following our desiderata from before, one could think of functional
re-encryption as a form of fine-grained delegation of access.

To motivate the functional re-encryption functionality, consider the following
scenario: Alice wishes to have her e-mail server “route” her incoming mail to
one of a set of n recipients. The particular recipient to which the ciphertext
should be routed depends on both the contents of the ciphertext – essentially,
the identity id – as well as Alice’s access policy encoded by her function F . The
e-mail server does this by “re-encrypting” the contents of the ciphertext under
the appropriate public key. The minimal requirement from such a system is that
the “re-encryption mechanism” hide both the message and Alice’s access policy
– it should merely provide a means for the server to do the appropriate routing. 4

One (not particularly appealing) way for Alice to do this would be to give
the e-mail server her secret key and her access policy; this lets the server decrypt
all incoming messages and determine where to route them. Unfortunately, this
“solution” completely fails this minimum requirement. Ideally, Alice would like
to “obfuscate” the trivial functional re-encryption program above and give it to
the server. We show how to securely obfuscate functional re-encryption which,
informally speaking, guarantees that any “attack” that the server can carry out
given the obfuscated functional re-encryption program, could also be carried out
given only oracle access to the functional re-encryption program (which is no
power at all!)

Furthermore, in reality we could reasonably expect the server to collude with
some of the recipients to learn additional information about messages or about
Alice’s access policy function F . Clearly, collusion helps the server – he can use a
recipient’s decryption key together with the re-encryption program to learn the
output of F on certain inputs. If we consider the auxiliary input to be the secret
keys of the colluding recipients, then our strong notion of collusion-resistant
secure obfuscation guarantees that this is the only information that the server
could possibly learn by colluding.

Selectively delegating access is also the central theme of a recently introduced
notion of predicate encryption [20, 25] (which can be viewed as attribute based
encryption in which ciphertexts hide their attributes). In fact, (predicate-hiding,
public key) predicate encryption schemes can potentially be used to solve Alice’s
dilemma. This is done by completely ignoring the email server and giving each
of the recipients a “little secret key” that is just powerful enough to decrypt the
appropriate ciphertexts (dictated by the access policy). Aside from the fact that
there are no known public-key predicate hiding encryption schemes (nor even
good definitions of them), this solution has two drawbacks – first, there is no
way to revoke access from a recipient other than by having Alice choose a fresh
key for herself (which could be quite expensive). Second, this solution requires
all recipients to be aware of the existence of an access policy, while the solution
based on functional re-encryption is completely invisible to the recipients – they

4 Of course, since the e-mail server does not know who the recipient is, it either sends
the resulting ciphertext to all the recipients or publishes it on a bulletin board from
which the intended recipient can then access it.



continue using their already registered public keys, and they do not even have
to know of the existence of the functional re-encryption mechanism.

1.3 Overview of Results and Techniques

Collusion resistant obfuscation. We define the notion of collusion resistant obfus-
cation which guarantees security against a natural form of auxiliary inputs. This
notion of auxiliary input security might be realizable (without random oracles)
for many common cryptographic tasks.

Functional Re-encryption. We show, informally:

Theorem 1 (Informal). Under the Symmetric External Diffie-Hellman as-
sumption there exists an encryption scheme such that for any function F : D →
R with polynomial-sized domain D, there is a collusion-resistant average-case
secure obfuscation of the functional re-encryption program w.r.t. F . The size of
the input ciphertext in the encryption scheme is O(|D| · poly(λ)), and the size
of the output ciphertext is O(poly(λ)) (i.e., independent of the domain and the
range of F ).

We now present the ideas behind our construction at a very high level. One
can think of a functional re-encryption program as a program that must achieve
two goals - a) it must “hide” the policy function F , and b) it must also “hide”
the input secret key (that it uses to decrypt the input ciphertext). These two
goals must simultaneously be achieved while maintaining the right functionality.
Informally, the main innovation in our work is a technique to hide the policy
function - this combined with techniques from [19] allows us to achieve both
goals simultaneously. We shall now describe this first technique in more detail.

Let G,H,GT be groups such that there is a bilinear map e : G×H→ GT . Let
a1, · · · ,ad ∈ Zdq be vectors that denote elements in the domain D of function F
and let â1, · · · , ân ∈ Zq denote elements in the range R of F . Now consider a
function OF that maps elements in Gd to elements in GT in the following way.
OF is parameterized by random generators g ∈ G and h ∈ H. On input gai , OF
outputs e(g, h)âF (i) . We shall now informally sketch how to publish a program
that achieves the functionality provided by OF, but at the same time hides F .

The program computes a vector α ∈ Zdq such that the inner product 〈ai,α〉 =
âF (i) for all i. Note that this is indeed possible as α is a solution to a system of d
equations in d variables. The program description simply contains hα. (This can
be computed given only hâF (i) and ai for all i, so we do not actually need the
recipient secret keys âF (i).) On input gai , the program computes and outputs∏d
j=1 e(g

aij , hαj ) = e(g, h)〈ai,α〉 = e(g, h)âF (i) , which is the output as desired.
Unfortunately, this solution does not completely hide the function. Note that

if F (1) = F (2) (say), then an adversary can learn this by simply running the
above program and checking if the output is the same on both the inputs. To
get around this problem, we modify the program in the following way. The
program picks random wi, for all i, and computes two vectors α,β ∈ Zdq such
that the inner product 〈ai,α〉 =wiâF (i) and 〈ai,β〉 =wi, for all i (in our actual
solution we require the R.H.S of the second equation to be wi − 1 instead of



wi, but we will ignore that for now). The program description now contains

hα, hβ. On input gai , the program computes and outputs
∏d
j=1 e(g

aij , hαj ) =

e(g, h)wiâF (i) , as well as
∏d
j=1 e(g

aij , hβj ) = e(g, h)wi . Now, on two different
inputs (of F ) that have the same output, the above program outputs elements
of the form (e(g, h)xa, e(g, h)x) and (e(g, h)ya, e(g, h)y), for random a, x and y.
However, these tuples are indistinguishable from random, even given e(g, h) and
e(g, h)a, (by DDH) and hence an adversary cannot tell if F (1) = F (2). This
construction now ensures that F is completely hidden.

Now, note that if we let {gai}, 1 ≤ i ≤ d be the input public key and e(g, h)âj

be the output public key, then one can potentially use the above construction to
build a scheme that converts an encryption of message m under gai to one under
e(g, h)âF (i) . This is precisely what we do. Our encryption schemes are ElGamal-
like, the input encryption key contains a set of vectors gai , · · · , gad , and an input
encryption of message m with identity i uses the key gai . Finally, in order to
obtain a secure obfuscation, we apply techniques from [19] to re-randomize the
ciphertexts.

Obfuscating Functional Re-encryption for Arbitrary Policy Functions? A natu-
ral question raised by our result is whether it is possible to achieve collusion-
resistant obfuscation of functional re-encryption for arbitrary (polynomial-time
computable) policy functions F (in particular, functions F with domains of
super-polynomial size). We show that this goal is impossible to achieve. In par-
ticular, we show that a collusion-resistant obfuscation with respect to a policy
function F already contains within it a [3]-style obfuscation (a so-called “pred-
icate obfuscation”) of the policy function F . In some sense, this is not entirely
surprising, and corresponds to the intuition that a collusion-resistant obfusca-
tion of functional re-encryption allows computation of the function F 5, and yet
hides all internal details of F except the input-output behavior. Together with
the impossibility result of [3] for obfuscating general (families of) functions, this
shows that there are classes of (polynomial-time computable) policy functions for
which it is impossible to construct collusion-resistant secure obfuscation of func-
tional re-encryption. See the full version of the paper [11] for a formal statement
and proof of this result. The next question to ask is whether there is any non-
trivial policy function (with a domain of super-polynomial size) for which this
goal can be achieved. We informally argue that this may require some new inno-
vation on the question of constructing public-key predicate encryption schemes
which satisfy a strong security notion called predicate-hiding. Predicate encryp-
tion schemes were defined by Katz, Sahai and Waters [20], following [23, 15] (in
particular, the predicate-hiding property was defined in the work of Shi, Shen
and Waters [25]). Constructions of predicate encryption schemes (even ones that

5 A collusion-resistant obfuscation of functional re-encryption allows computation of
the function F since given an output secret key ŝki and the re-encryption program,
one can test if F (id) = i for any id in the domain of F . Simply encrypt a random
message with identity id, run it through the re-encryption program and decrypt it
using ŝki. If this returns the same message that was encrypted, then conclude that
F (id) = i.



do not achieve predicate-hiding) are known only for simple classes of functions
such as inner products [20]. Moreover, in the public-key setting, we do not know
how to achieve (any reasonable definition of) predicate-hiding, even for simple
functions. Since collusion-resistant obfuscation of functional re-encryption seems
to have the same flavor in functionality as predicate-hiding public-key predicate
encryption, advancements in the class of policy functions that these primitives
can handle seem to be correlated.

2 Collusion Resistant Secure Obfuscation

2.1 Average-case Secure Obfuscation

Throughout this paper, we will implicitly assume that the adversary (as well as
simulator) can obtain arbitrary polynomial-size independent auxiliary input z.
We remark that our construction is secure even against the presence of such aux-
iliary information. We now recall the notion of average-case secure obfuscation
introduced in [19] below.

Definition 1. An efficient algorithm Obf that takes as input a (probabilistic)
circuit C from the family {Cλ} and outputs a new (probabilistic) circuit, is an
average-case secure obfuscator, if it satisfies the following properties:

- Preserving functionality: With overwhelming probability Obf(C) behaves “al-
most identically” to C on all inputs. Formally, there exists a negligible func-
tion neg(λ), such that for any input length λ and any C ∈ Cλ:

Pr
coins of Obf

[∃x ∈ {0, 1}λ : C ′ ← Obf(C); SD(C ′(x), C(x)) ≥ neg(λ)] ≤ neg(λ)

where SD(X ,Y) denotes the statistical distance between two distributions X
and Y.

- Polynomial slowdown: There exists a polynomial p(λ) such that for suffi-
ciently large input lengths λ, for any C ∈ Cλ, the obfuscator Obf only en-
larges C by a factor of p. That is, |Obf(C)| ≤ p(|C|).

- Average-case Virtual Black-Boxness: There exists an efficient simulator S
and a negligible function neg(λ), such that for every efficient distinguisher
D, and for every input length λ:

|Pr[C ← Cλ : DC(Obf(C)) = 1]− Pr[C ← Cλ : DC(SC(1λ)) = 1]| ≤ neg(λ)

The probability is over the selection of a random circuit C from Cλ, and the
coins of the distinguisher, the simulator, the oracle, and the obfuscator. 6

2.2 Average-case secure obfuscation with collusion

Consider the case where we would like to obfuscate a function family {Cλ} that
has the following particular form. Any CK ∈ Cλ is parameterized by a set of

6 This is the definition in [19] but with a dummy adversary. The authors of that paper
note that this is equivalent to the definition they give.



“secret” keys K = {k1, k2, · · · , k`} (in addition to any other parameters that the
circuit might take) that are chosen at random from some specified distribution.
Now, define a (non-adaptively chosen) subset of keys represented through a set of
indices T ⊆ [`], where [`] denotes the set {1, 2, · · · , `}. We would like to construct
an obfuscation of the circuit, denoted by Obf(CK), so that Obf(CK) is a “secure
obfuscation” of CK (in the sense of [19]) even against an adversary that knows
the set of keys {ki}i∈T .

We accomplish this using a definition that is similar in spirit to the notion of
obfuscation against dependent auxiliary inputs [14]. More precisely, in addition
to their usual inputs and oracles, we give both the adversary and the simulator
access to a (non-adaptively chosen) subset {ki}i∈T ⊆ K of the keys. This can be
seen as auxiliary information about the circuit CK ← Cλ. The formal definition
of collusion-resistant secure obfuscation is as follows.

Definition 2. An efficient algorithm Obf that takes as input a (probabilistic)
circuit and outputs a new (probabilistic) circuit, is a collusion-resistant (average-
case) secure obfuscator for the family {Cλ} if it satisfies the following properties:

- “ Preserving functionality” and “ Polynomial Slowdown”, as in Definition 1.
- Average-case Virtual Black-Boxness against Collusion: There exists an effi-

cient simulator S, and a negligible function neg(λ), such that for every input
length λ, every efficient distinguisher D, and any subset T ⊆ [`]:∣∣∣Pr[CK ← Cλ : DCK(Obf(CK), {ki}i∈T ) = 1]−

Pr[CK ← Cλ : DCK(SCK(1λ, {ki}i∈T ), {ki}i∈T ) = 1]
∣∣∣ ≤ neg(λ)

The probability is over the selection of a random circuit CK from Cλ, and
the coins of the distinguisher, the simulator, the oracle, and the obfuscator.

Remarks on the Definition. An even stronger attack model allows the adversary
to obtain an obfuscation of a circuit CK where some of the keys in {ki}i∈T are
adversarially chosen. Furthermore, one could allow the adversary to select the
set T adaptively, after seeing the public keys and/or the obfuscated program.
We postpone a full treatment of these issues to future work.

2.3 Securely obfuscating Functional Re-encryption

We would like to obtain a collusion-resistant average-case obfuscator for the func-
tional re-encryption functionality. A Functional Re-encryption (FR) functional-
ity associated to function F : D → R, input public/secret key pair (pk, sk),

and output public keys p̂k1, . . . , p̂k|R|
7 is a functionality that takes as input

a ciphertext c = I-Enc(pk, id,m) and re-encrypts m under the output public

key p̂kF (id). More precisely, for a given function F : D → R, we are inter-
ested in the family of circuits FRF,D,R = {FRλ,F,D,R}λ>0 where each circuit

7 Without loss of generality, and for simplicity of notation, throughout the paper we
will often assume that the domain D = {1, 2, . . . , d} and the range R = {1, 2, . . . , n}.



Cpk,sk,p̂k1,...,p̂k|R|
∈ FRλ,F,D,R is a probabilistic circuit indexed by a key pair

(pk, sk) ← I-Gen(1λ), and public keys (p̂ki, ?) ← O-Gen(1λ), and works as fol-
lows:

Cpk,sk,p̂k1,...,p̂k|R|
, on input c :

Computes (id,m)← I-Dec(sk, c), and outputs ĉ← O-Enc(p̂kF (id),m).

If I-Dec(sk, c) returns ⊥ then outputs random elements in the format of ĉ.
Cpk,sk,p̂k1,...,p̂k|R|

, on a special input keys:

Outputs pk, p̂k1, . . . , p̂k|R|.

Now, for a class of functions, F , we say that a re-encryption program securely
obfuscates re-encryption for F , if there exists a simulator S that satisfies the
collusion resistant obfuscation property w.r.t. FRF,D,R for all F : D → R ∈ F .

In other words, all public keys in the circuit Cpk,sk,p̂k1,...,p̂k|R|
are considered

public knowledge; the only pieces of information we are interested in protecting
are the input secret key sk and the function F . Also, note that we are interested
in guaranteeing security for arbitrarily chosen F , not F chosen at random.

The set of secret keys that will parameterize a functional re-encryption func-
tionality is K = {ŝk1, · · · , ŝk|R|}. The definition of collusion-resistant average-
case secure obfuscation guarantees security against an adversary who not only
knows the re-encryption program, but also has access to a subset {ŝki}i∈T ⊆ K
of the output secret keys. This scenario endows the adversary with considerable
power and knowledge. For instance,

– The adversary will inevitably be able to decrypt all ciphertexts c =
I-Enc(pk, id,m), where F (id) ∈ T , simply by using the re-encryption pro-
gram to convert the ciphertext c into an encryption of m under the output

public key p̂kF (id), and then decrypting it using ŝkF (id).

– Moreover, the power to selectively decrypt a subset of the input ciphertexts
gives the adversary information about the access policy function F itself.
For instance, the adversary can determine if F (id) = i whenever i ∈ T .

– Finally, we remark that the definition of obfuscation for functional re-
encryption by itself does not guarantee the semantic security of the input
and output encryption schemes. We define these separately and prove the
security of the encryption schemes (even in the presence of the re-encryption
program). In more detail, we will require the semantic security of the input
encryption scheme, on messages encrypted with an identity id∗, whenever
F (id∗) /∈ T , even when the adversary is given access to a re-encryption or-
acle. We will similarly require that the input ciphertext hides the identity
id∗, under which the message is encrypted. The security of the output en-
cryption scheme will be that of standard semantic security. Since we wish
to hide everything about the function F , we will also require the output
encryption scheme to be key private; i.e., an encryption under public key

p̂ki will be indistinguishable from an encryption under public key p̂kj . For
formal definitions and proofs of these properties, see the full version [11].



3 Preliminaries

We let λ be the security parameter throughout this paper. By neg(λ) we denote
some negligible function, namely a function µ such that for all c > 0 and all suf-

ficiently large λ, µ(λ) < 1/λc. For two distributions D1 and D2, D1
c
≈ D2 means

that they are computationally indistinguishable (to be precise, this statement
holds for ensembles of distributions).

We let [`] denote the set {1, · · · , `}. We denote vectors by bold-face letters,
e.g., a. Let G be a group of prime order q. For a vector a = (a1, a2, · · · , a`) ∈ Z`q
and group element g ∈ G, we write ga to mean the vector (ga1 , ga2 , · · · , ga`).
For two vectors a and b where a and b are either both in Z`q or both in G`,
we write ab to denote their component-wise product and a/b to denote their
component-wise division. In case b ∈ Z`q, we let ab denote their component-wise

exponentiation. For a vector a and scalar x, xa = ab,a/x = a/b, and ax = ab,
where b = (x, x, · · · , x) of dimension `.

Assumptions. We assume the existence of families of groups {G(λ)}λ>0,

{H(λ)}λ>0 and {G(λ)
T }λ>0 with prime order q = q(λ), endowed with a bilin-

ear map eλ : G(λ) × H(λ) → G(λ)
T . When clear from the context, we omit the

superscript that refers to the security parameter from all these quantities. The
mapping is efficiently computable, and is bilinear – namely, for any generators
g ∈ G and h ∈ H, and a, b ∈ Zq, e(ga, hb) = e(g, h)ab. We also require the bilin-
ear map to be non-degenerate, in the sense that if g ∈ G, h ∈ H generate G and
H respectively, then e(g, h) 6= 1.

We assume the Symmetric External Diffie-Hellman Assumption (SXDH)),
which says that the decisional Diffie-Hellman (DDH) problem is hard in both
of the groups G and H. That is, when (q,G,H,GT , e) ← BilinSetup(1λ); g ←
G; a, b, c← Zq, the following two ensembles are indistinguishable:

{(q,G,H,GT , e, g, ga, gb, gab)}
c
≈ {(q,G,H,GT , e, g, ga, gb, gc)}

and a similar statement when g ∈ G is replaced with h ∈ H. In contrast, the
assumption that DDH is hard in one of the two groups G or H is simply called
the external Diffie-Hellman assumption (XDH). These assumptions were first
proposed and used in various works, including [26, 6, 24, 16]. In this work, we use
the SXDH assumption.

4 Collusion-Resistant Functional Re-encryption

We are now ready to present our construction of a functional re-encryption
scheme from the symmetric external Diffie-Hellman (SXDH) assumption. We
first construct our basic encryption schemes in Section 4.1. In Section 4.2, we
describe a program that implements the functional re-encryption scheme. Finally,
in Section 4.3, we prove that our functional re-encryption program satisfies the
notion of collusion-resistant average-case secure obfuscation.



4.1 Construction of the Encryption Schemes

A functional re-encryption scheme transforms a ciphertext under an input public
key into a ciphertext of the same message under one of many output public keys.
In our construction, the input and the output ciphertexts have different shapes
– namely, the input ciphertext lives in the “source group” G whereas the output
ciphertext lives in the “target group” GT . We now proceed to describe our
input and output encryption schemes which are both variants of the ElGamal
encryption scheme.

Parameters. The public parameters for both the input and the output encryption
scheme consist of the description of three groups G, H and GT of prime order
q = q(λ), with a bilinear map e : G × H → GT . Also included in the public
parameters are two generators – g ∈ G and h ∈ H. Let M = M(λ) ⊆ G
denote the message space of both the input and output encryption schemes. We
assume that |M| is polynomial in λ. The construction of our output encryption
scheme requires this to be the case; however, one can encrypt longer messages by
breaking the message into smaller blocks and encrypting the blocks separately.

The Input Encryption Scheme. We first construct the input encryption scheme,
which is parameterized by d = d(λ) which is an upper bound on the size of
the domain of the policy function that we intend to support. We will also use
a NIZK proof system; we note that [16] provides an efficient scheme for the
type of statements we use, which is perfectly sound and computationally zero-
knowledge based on SXDH. We remark that, while the semantic security of
the input encryption scheme does not require this NIZK proof, the obfuscation
guarantee provided by our construction relies on it; if, for example the adversary
were to provide an invalid ciphertext as input to the re-encryption program (e.g.
by combining 2 valid ciphertexts with different i’s), the program might output
some group elements that are distinguishable from random to an adversary that
possesses some of the recipient secret keys.

The input encryption scheme is as follows:

1. I-Gen(1λ, 1d): Pick random vectors a1, · · · ,ad from Zdq that are linearly
independent. We also generate crs, a common reference string (abbreviated
CRS) for the NIZK proof system. Output pk = (crs, g, ga1 , · · · , gad), and
sk = (a1, · · · ,ad). We remark that the public key pk can be viewed as being
made up of d public keys pki = (g, gai) of a simpler scheme.

2. I-Enc(pk, i ∈ [d],m): To encrypt a message m ∈M, with “identity” i ∈ [d],
choose random exponents r and r′ from Zq, and compute:
(a) C = grai ; D = grm, and
(b) C′ = gr

′ai ; D′ = gr
′

(c) π, a proof that these values are correctly formed, i.e. that they correspond
to one of the vectors gai contained in the public key.

Output the ciphertext (E,E′, π) where E = (C, D) and E′ = (C′, D′).
(Looking ahead, we remark that E looks like an encryption of message m
under pki, while E′ looks like an encryption of 1G under pki. E′ is primarily
used by the re-encryption program for input re-randomization, and is not



required if the encryption scheme is used stand-alone without the functional
re-encryption program.)

3. I-Dec(sk, (E,E′)): If any of the components of the ciphertext E′ is 1G or if the
proof π does not verify, output ⊥.8 Ignore E′, π subsequently, and parse E as
(C, D). Check that for some i ∈ [d] and m ∈M, D·(C1/ai)−1 = (m, · · · ,m).
If yes, output (i,m). Otherwise output ⊥.

The Output Encryption scheme. We now describe the output encryption scheme.

1. O-Gen(1λ): Pick â← Zq. Let p̂k = hâ and ŝk = â.

2. O-Enc(p̂k,m): To encrypt a message m ∈M ⊂ G,

– Choose random number r ← Zq.
– Compute Ŷ = (hâ)r and Ŵ = hr.

– Output the ciphertext as
[
F̂ , Ĝ

]
:=
[
e(g, Ŷ ), e(g, Ŵ ) · e(m,h)

]
.

3. O-Dec(ŝk = â, (F̂ , Ĝ)): The decryption algorithm does the following:

– Compute Q̂ = Ĝ · F̂−1/â.
– For each m ∈ M, test if e(m,h) = Q̂. If so, output m and halt. (Note

that if e(m,h) are precomputed for all m ∈ M, then this step can be
implemented with a table lookup.)

4.2 Obfuscation for Functional Re-encryption

We now describe our scheme for securely obfuscating the functional re-encryption
functionality for the input and output encryption schemes described above.

The Functional Re-encryption Key. The obfuscator gets an input secret key sk,

the n output public keys p̂ki, and the description of a function F : [d]→ [n]. It
outputs a functional re-encryption key which is a description of a program that
takes as input a ciphertext of message m ∈M and identity i ∈ [d] under public

key pk, and outputs a ciphertext of m under p̂kF (i).
The obfuscator does the following:

1. Pick wi ← Zq for all i ∈ [d] uniformly at random.
2. Solve for α = (α1, . . . , αd) and β = (β1, . . . , βd) such that for all i ∈ [d]:

〈ai,α〉 = wi · âF (i) and 〈ai,β〉 = wi − 1

The re-encryption key consists of the tuple (A,B) where A = hα and B = hβ.
We remark that computing the re-encryption key does not require knowledge
of the output secret keys. To compute hα, one can take the output public keys
hâ1 , · · · , hâd , and with the knowledge of the input secret keys {a1, · · · ,ad} and
random values w1, . . . , wd, one can solve the set of equations h〈ai,α〉 = hwi·âF (i) ,
for all i ∈ [d], to obtain hα. hβ can be computed in a similar manner.

8 This “sanity check” is to ensure the correctness of the re-encryption program. Note
that if (E,E′) is honestly generated, this event happens only with negligible proba-
bility.



The Functional Re-encryption Program. Given the functional re-encryption key
(A,B) and an input ciphertext (E,E′) where E = (C, D) and E′ = (C′, D′),
the functional re-encryption program performs the following steps:

1. Sanity Check: If any of the components of the input ciphertext E′ is 1G or
if the proof π does not verify, output (F̂ , Ĝ) for random F̂ , Ĝ ∈ GT . The
sanity check is to ensure that the next step – namely, input re-randomization
– randomizes the ciphertext E.

2. Input Re-Randomization: Pick a random exponent t ← Zq and compute

Ĉ = C(C′)t and D̂ = D(D′)t.
Note that the random exponent t is used to re-randomize the encryption of
1G, and this re-randomized encryption of 1G is multiplied with the encryption
of m to get a re-randomized encryption of m.

3. The main Re-encryption step: Write Ĉ := (Ĉ1, . . . , Ĉd), A := (A1, . . . , Ad)
and B := (B1, . . . , Bd). Compute

F̂ =

d∏
j=1

e(Ĉj , Aj) and Ĝ =

d∏
j=1

e(Ĉj , Bj) · e(D̂, h)

Output the ciphertext (F̂ , Ĝ).

Preserving functionality. Let the input ciphertext be (C, D,C′, D′, π). Given
that π verifies, we know these values will be of the form C = grai , D = grm and
C′ = gr

′ai , D = gr
′
. (If π does not verify, then both the functionality and the

above program will output random group elements.) Let the re-encryption key
be (A,B) where A = hα and B = hβ.

– First, the input re-randomization step computes Ĉ = C(C′)t =

g(r+tr′)ai=gr̂ai and D̂ = D(D′)t = gr+tr
′
m = gr̂m, where we defined

r̂
∆
= r + tr′.

– Second, the main re-encryption step computes F̂ =
∏d
j=1 e(Ĉj , Aj) =

e(g, h)r̂〈ai,α〉 = e(g, h)r̂wiâF (i) and

Ĝ =

d∏
j=1

e(Ĉj , Bj) · e(D̂, h)

= e(g, h)r̂〈ai,β〉 · e(gr̂m,h) = e(g, h)r̂(wi−1) · e(gr̂, h) · e(m,h)

= e(g, h)r̂wi · e(m,h)

– Now the ciphertext looks like F̂ = e(g, hâF (i)ρ), Ĝ = e(g, hρ) · e(m,h), where
ρ = r̂wi is uniformly random in Zq, even given all the randomness in the
input ciphertext. The claim about ρ being uniformly random crucially relies
on the “sanity check” step in the re-encryption program (in particular, since
r′ 6= 0).

Thus, the final ciphertext is distributed exactly like the output of

O-Enc(p̂kF (i),m).



Semantic security of encryption schemes. We show that the input and output
encryption schemes are semantically secure (in particular, the input scheme hides
both the message and the “identity”, and the output scheme is also key-private)
under the DDH assumption over different groups, even given the re-encryption
program. We present a detailed proof in the full version [11].

Remark. Note that if d = n = 1, then our construction (with the removal of
certain now unnecessary parts, such as the NIZK proof) reduces to something
very similar to that of [19]. Also, note that if the function F were to have
larger (super-polynomial) domain, then our solution would satisfy the property
of polynomial slowdown only if F were represented as a truth table. If F has
large domain but a concise representation, then this property no longer holds.

4.3 Proof of Collusion-resistant Secure Obfuscation

We show that our construction is a collusion-resistant average-case secure obfus-
cator for the functional re-encryption functionality. In order to satisfy collusion-
resistance, the encryption as well as the obfuscation scheme have to be modified
somewhat. The modifications do not affect the functionality or the security of the
scheme, and are merely artifacts that seem necessary to show that our functional
re-encryption scheme meets the rigorous demands of being a secure obfuscation.

A necessary modification to the encryption and obfuscation schemes. Consider
the case where a corrupt recipient that holds secret key ŝkj colludes with the
re-encryption program. Now, essentially, this recipient has access to a program
that selectively decrypts input ciphertexts that are encrypted with an identity
i such that F (i) = j. However, the simulator only has oracle access to such a
program and must yet produce a “fake” re-encryption program, that on input a
ciphertext of message m with identity id, outputs a correct ciphertext of m under

p̂kj . Hence, in order to put the simulator on an equal footing with the adversary
we need to give the simulator the power to produce an explicit program which
can selectively decrypt input ciphertexts. One way to do this is to cheat and give
the simulator the vector ai, for all i such that F (i) = j, in our construction,
which we will refer to as ski. (Note that ski is a secret key that allows for the
selective decryption of ciphertexts with identity i, but not any other ciphertext.).
For ease of exposition, we shall for now assume that the simulator obtains ski for
all i such that F (i) ∈ T . However, we would not like to resort to this cheat — we
show in the full version [11] how this can be avoided. In other words, we first show
the security of our scheme in the modified model where the simulator obtains
the ski values for all i such that F (i) ∈ T . Next (in the full version [11]), we show
that if the scheme is secure in this model, then it can be easily transformed into
a scheme that is secure in the standard model where the simulator, like the real
world adversary, only gets ŝkj values for j ∈ T . We will now focus on proving the
former statement. Towards showing that our obfuscation satisfies the collusion-
resistant secure obfuscation definition in the model where the simulator obtains
the ski values for all i such that F (i) ∈ T , we first construct a simulator.



Simulator. Let C ← FRλ,F,d,n be a functional re-encryption circuit for the func-
tion F : [d]→ [n], parameterized by the input keys (pk, sk) and the output keys

(p̂kj , ŝkj) for all j ∈ [n]. Let T ⊆ [n] be a set of corrupted receivers. We construct

a simulator S that gets as input the secret keys ŝkj of all the corrupted receivers
(where j ∈ T ) and the secret keys ski such that F (i) ∈ T , and has oracle access
to the functionality C.

First, consider the case where none of the receivers is corrupted. Then, the
simulator works as follows. Recall that the obfuscated re-encryption program
consists of the tuple (h, hα, hβ) where and α and β are solutions to some linear
equations involving the input and output secret keys. The simulator, instead,
simply picks α and β uniformly at random (with no relation to the input or the
output keys). It then runs the adversary on this “junk functional re-encryption
program” (along with the secret keys of the corrupted receivers). Under the
SXDH assumption, we manage to show that this is indistinguishable from the
obfuscated program that the adversary expects to get (even if the adversary is
also given oracle access to the real re-encryption circuit C).

If some of the receivers are corrupted, the simulator cannot choose α and β
at random any more. Indeed, since the distinguisher has the corrupted output
keys, it can check if the α and β (in the exponent) satisfy the equations involving

the corrupted keys, namely {ŝkj}j∈T . Thus, the simulator has to choose α and
β as uniformly random solutions to a set of equations that involve the corrupted
keys. It turns out that this can be done efficiently since the simulator knows the
keys of the corrupted receivers as well.

Without further ado, let us present the simulator
SC(1λ, T , {ŝki}i∈T , {skj}j∈F−1(T )) that works as follows:
1. Query the oracle C on input the string “keys” to get all the public keys,

including the input public key pk = (g, ga1 , · · · , gad); and the output public

keys p̂k1 = (h, hâ1), · · · , p̂kn = (h, hân).
2. Sample random w1, . . . , wd from Zq. Sample random α,β from Zdq such that

∀i s.t. F (i) ∈ T : 〈ai,α〉 = wiâF (i) and 〈ai,β〉 = wi − 1

Note that this can be done efficiently using the knowledge of the vectors ai
that we obtained in {skj}j∈F−1(T ), as well as the âF (i) values which are part

of the corrupted secret keys. Compute A = hα, and B = hβ . Output the
tuple (A,B) as the re-encryption key.
We now show that the output of the simulator described above is indistin-

guishable from an obfuscation of the re-encryption functionality (given in Sec-
tion 4.2), even to a distinguisher that has the corrupted receivers’ secret keys
and oracle access to the re-encryption functionality. This proves that the obfus-
cation scheme we constructed in section 4.2 is a collusion-resistant average-case
secure obfuscation satisfying Definition 2. More formally, we show:

Theorem 2. Under SXDH, for any ppt distinguisher D and corrupt set T ⊆ [n],

DC
[
Obf(C), T , {ŝkj}j∈T , {skj}j∈F−1(T )

]
c
≈

DC
[
SC(1λ, T , {ŝkj}j∈T , {skj}j∈F−1(T )), {ŝkj}j∈T , {skj}j∈F−1(T )

]



for obfuscator Obf, where C ← FRλ,F,d,n is a uniformly random re-encryption

circuit parameterized by (pk, sk)← I-Gen(1λ) and (p̂ki, ŝki)← O-Gen(1λ).

From the above theorem, our main theorem (which we stated informally as
Theorem 1) follows after making the necessary modifications to the construction
outlined earlier. We now describe a sketch of the proof of Theorem 2. For the
formal proof, see the full version [11].

Proof. (sketch.) At a high level, the proof will go through the following steps:
– Step 1: For simplicity, let us first consider the case when there is no collusion

– that is, neither the distinguisher nor the simulator has access to any of the
output secret keys. Later, we will point out the necessary modifications to
achieve collusion-resistance.
We first show that the re-encryption key is indistinguishable from random
group elements to any distinguisher D who is given the public keys for the
input and output encryption scheme (but no oracle access). In other words,
we will show that constructing a re-encryption key (A,B) where A = hα

and B = hβ with α,β being solutions to the equations

〈ai,α〉 = wiâF (i) and 〈ai,β〉 = wi − 1 for all i ∈ [d] (1)

is indistinguishable from constructing a re-encryption key with uniformly
random α and β. This follows from two ideas – first, under the DDH as-
sumption in group H, it is hard to distinguish between (h, hα, hβ) where α
and β are solutions to Equations 1, from the case where they are solutions
to the same set of equations with the right-hand sides replaced by uniformly
random elements in Z∗q . 9 Next, we note that choosing α,β as a solution
to a set of equations with uniformly random right-hand side is equivalent
to simply choosing random α,β. This completes the first step - in the full
version [11] we show that this generalizes to the case where T is non-empty,
and the simulator’s α,β are chosen as a random solution to the resulting
underconstrained set of equations.

– Step 2: Next, we will provide our distinguisher D with oracle access to
a random oracle that simply returns random group elements of the same
format as the output ciphertext of the re-encryption program. (The only
exception is that, when it receives a ciphertext encrypted under id such that
F (id) ∈ T , it honestly performs the re-encryption.) We then show that the
re-encryption key is indistinguishable from random group elements to this
distinguisher DRO as well.
This follows from Step 1 fairly easily once we note that the distinguisher in
Step 1 could easily simulate this random oracle itself.

– Step 3: Next, we will provide our distinguisher D with oracle access to either
the re-encryption oracle or the random oracle, and argue that D will not be
able to determine which oracle it is given, even if it is also given the real
re-encryption key.

9 Note that the right-hand sides of Equation 1 are not random as such – for example,
consider the case where F (1) = F (2) = 1. Then, the right-hand sides of the four
equations corresponding to i = 1 and i = 2 are w1â1, w1− 1, w2â1, w2− 1, which are
clearly correlated.



The main intuition behind this proof is that, based on SXDH, we can show
that honestly generated outputs ciphertexts are indistinguishable from ran-
dom tuples. This is fairly easy to see: consider public key hâ, and the fol-
lowing tuple

[
e(g, hw), e(g, hr) · e(m,h)

]
for random â, r ∈ Zq. If w = âr,

this is a valid encryption of m, if w is a random element of Zq, then this is
a random tuple from GT ×GT .
A fairly straightforward hybrid argument then shows that a real encryption

oracle for public keys p̂k1, . . . , p̂kn is indistinguishable from a random oracle

which only produces valid ciphertexts for p̂ki with i ∈ T (even when the

distinguisher is given ŝki for i ∈ T ).
Now, we note that we can generate a real re-encryption key and perfectly
simulate either the real re-encryption oracle or the random re-encryption

oracle given only p̂k1, . . . , p̂kn, and either the encryption oracle or the random
oracle described above. We conclude that the real re-encryption oracle and
random re-encryption oracle are indistinguishable even given the real re-
encryption key (and ŝki for i ∈ T ).

– Step 4: Finally, we will again provide our distinguisher D with oracle access
to either the re-encryption oracle or the random oracle and argue that it will
not be able to determine which oracle it is given, this time when given the
simulated re-encryption key instead.
Again, this follows from Step 3, when we note that the distinguisher in Step
3 could easily ignore the re-encryption key it is given and instead run the
simulator to generate a simulated one.

We have argued that the distinguisher has the same behavior given the real
re-encryption key and real re-encryption oracle or the real re-encryption key and
random oracle (Step 3), that it has the same behavior given the real re-encryption
key and random oracle or the simulated re-encryption key and random oracle
(Step 2), and that it has the same behavior given the simulated re-encryption key
and random oracle or the simulated re-encryption key and real re-encryption ora-
cle (Step 4). Putting everything together, we conclude that the real re-encryption
key and simulated re-encryption key are indistinguishable, even given access to
the real re-encryption oracle. Thus, we obtain the proof of Theorem 2.
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