
Leakage-Tolerant Interactive Protocols?

Nir Bitansky1,2, Ran Canetti1,2, and Shai Halevi3

1 Tel Aviv University
2 Boston University

3 IBM T.J. Watson Research Center

Abstract. We put forth a framework for expressing security require-
ments from interactive protocols in the presence of arbitrary leakage.
This allows capturing different levels of leakage-tolerance of protocols,
namely the preservation (or degradation) of security, under coordinated
attacks that include various forms of leakage from the secret states of
participating components. The framework extends the universally com-
posable (UC) security framework. We also prove a variant of the UC
theorem that enables modular design and analysis of protocols even in
face of general, non-modular leakage.
We then construct leakage-tolerant protocols for basic tasks, such as se-
cure message transmission, message authentication, commitment, obliv-
ious transfer and zero-knowledge. A central component in several of our
constructions is the observation that resilience to adaptive party corrup-
tions (in some strong sense) implies leakage-tolerance in an essentially
optimal way.

1 Introduction

Traditionally, cryptographic protocols are studied in a model where participants
have a secret state that is assumed to be completely inaccessible by the adversary.
In this model, the adversary can only influence the system via anticipated inter-
faces (such as, the communication among parties). These interfaces are crossed
only when the adversary manages to fully corrupt a party, thus gaining access
to its entire inner state.

In reality, an intermediate setting often emerges, when the adversary manages
to gain some partial information on the secret state of uncorrupted parties. This
information, termed leakage, can be obtained by a variety of side channels attacks
that bypass the usual interfaces and are often undetectable. Known examples
include: timing, power, EM-emission, and cache attacks (see [Sta09] for a survey).

The threat of leakage gained much attention in the past few years, giving
rise to an impressive array of leakage-resilient schemes for basic cryptographic
tasks such as encryption and signatures, as well as general non-interactive cir-
cuits (e.g., [DP08, AGV09, ADW09, DKL09, Pie09, NS09, ADN+10, BKKV10,

? Supported by the Check Point Institute for Information Security. The first two au-
thors are also supported by Marie Curie grant PIRG03-GA-2008-230640, and ISF
grant 0603805843.



DHLAW10b, DHLAW10a, BSW11]). Most of the work concentrates on preserv-
ing, in the presence of leakage, the same functionality and security guarantees
that the original primitives guarantee in a leak-free setting. Such strong leakage-
resilience is typically guaranteed only when the leakage is restricted in some
ways. Examples include: assuming bounded amounts of leakage, assuming that
leakage only occurs in specific times (e.g., prior to encryption), or assuming that
leakage is limited to specific parts of the state, such as the active parts in the
only computation leaks model [MR04].

However, in many cases maintaining the same level of security as in a leak-
free setting may be too costly, or even outright impossible. To exemplify this,
consider the task of secure message transmission (SMT), where a sender wishes
to transmit a (secret) message m to a receiver, so that the contents of m remain
completely hidden from any adversary witnessing the communication. In the
leak-free setting, the problem is easily solved using standard semantically secure
encryption; however, in the presence of leakage, this is no longer the case. In
fact, semantic security is not achievable at all: an adversary that can get even
one bit of arbitrary leakage, from either party, can certainly learn any bit of the
message, since this bit must reside in the party’s leaky memory at some point.

Nevertheless, this inherent difficulty does not imply that we should give up
on security altogether, but rather that we should somehow meaningfully relax
the security requirements from protocols in the presence of leakage. Concretely,
in the above example, we would like to design schemes in which one-bit of leakage
on the message does not compromise the security of the entire message. More
generally, we would like to establish a framework that will allow to express and
analyze security of general cryptographic tasks in the presence of general (non-
restricted) leakage, where the level of security may gracefully degrade according
to the amount of leakage (that might develop over time). A first step in this
direction was taken by Halevi and Lin [HL11] in the context of encryption.

Another intriguing question is what are the composability properties of re-
silience to leakage. Can one combine two or more schemes and deduce leakage-
resilience of the combined system based only on the leakage-resilience proper-
ties of the individual schemes? If so, constructs with various levels of leakage-
resilience may be composed to obtain new systems that enjoy improved such
resilience properties. Some specific examples where this is the case have been
recently exhibited [BCG+11, BGK11, GJS11]. What can we say in general?

1.1 Our Contribution

We propose a new approach for defining leakage-resilience, or rather leakage-
tolerance, properties of cryptographic protocols. The approach is based on the
ideal model paradigm and, specifically, on the UC framework. The approach
allows formulating relaxed security properties of protocols in face of leakage
and, in particular, allows specifying how the security of protocols degrades with
leakage. It also allows specifying leakage-tolerant variants of interactive, multi-
party protocols for general cryptographic tasks. In this context, the new modeling



also captures attacks that combine leakage with other “network based” attacks
such as controlling the communication and corrupting parties. In addition:

– We prove a general security-preserving composition theorem with respect to
the proposed notion. This allows constructing and analyzing protocols in a
modular way while preserving leakage-tolerance properties. This is a powerful
tool, given the inherently modularity-breaking nature of leakage attacks.

– We describe a methodology for constructing leakage-tolerant protocols in
this framework. Essentially, we show that any protocol that is secure against
adaptive party corruptions (in some strong sense) is already leakage-tolerant.

– Using the above methodology and other techniques, we construct composable
leakage-tolerant protocols for secure channels, commitment, zero-knowledge,
and honest-but-curious oblivious transfer. (commitment and zero-knowledge
are realized in the common reference string model.)

Below we describe these contributions in more detail.

Leakage-tolerant security within the ideal model paradigm. Following the ideal
model paradigm, we define security by requiring that the protocol π at hand
provides the same security properties as in an “ideal world” where processing is
done by a trusted party running some functionality F . Specifically, in the UC
framework, a protocol π UC-realizes a functionality F if for any adversary A
there exists a simulator S such that no environment Z can tell whether it is
interacting with A and π or with S and F .

We consider a “real world” where the adversary can get leakage on the state
of any party at any time. As we argued above, such attacks may unavoidably
degrade the security properties of the protocols at hand and to account for this
degradation we also allow leakage from the trusted party in the ideal world.
Specifically, the functionality F defines the “ideal local state” for each party
and the party’s behavior (and degradation in security) after leakage. (Typically,
we will be interested in functionalities where the ideal local state includes the
party’s inputs and outputs, but weaker functionalities that allow joint leakage
on the inputs of several parties can also be considered.) When A performs a
leakage measurement L on the state of some party in the real protocol π, the
simulator S is entitled to a leakage measurement L′ on the ideal local state of
that party in the ideal protocol. We allow the simulator to choose any function
L′, so long that its output length is the same as that of L.

For example, we allow our leaky SMT functionality to leak bits from message
that it sends and require that a real world attacker that gets ` bits of leakage
from the state of the implementation can be simulated by a simulator that learns
only ` bits about the message. Our model also allows the functionality to react
to leakage, in order to handle situations where security is only maintained as
long as not too much leakage occurred. (For example, an authenticated channels
functionality may allow forgeries once the attacker gets more bits of leakage than
the security parameter, but not before that.)



Leakage vs. adaptive corruptions for secure channels. Consider trying to realize
leaky SMT in our model using standard encryption; namely, the receiver sends its
public key to the sender, who sends back an encryption of m. In the ideal world,
the simulator does not witness any communication (and has no information
about the message), so it can simulate the cipher by encrypting say the all-zero
string, which should be indistinguishable from an encryption ofm. However, after
seeing the ciphertext the adversary A can ask for a leakage query specifying (say)
the entire secret decryption key and the first bit of m. Although the simulator
can now ask for many bits of leakage on m, it can no longer modify the ciphertext
that it sent before and therefore cannot maintain a consistent simulation.

A similar problem arises in the well studied setting of adaptive corruption
(with non-erasing parties), where the adversary can adaptively corrupt parties
throughout the protocol and learn their entire state. Also there, the simulator
needs to first generate some messages (e.g., the ciphertext) without knowing the
inputs of the parties (e.g., the message m), and later it learns the inputs and has
to come up with an internal state that explains the previously-generated mes-
sages in terms of these inputs. Indeed, it turns out that techniques for handling
adaptive corruptions can be used to get leakage-tolerance.

In fact, the problem of secure leaky channels can be solved simply by plugging
in non-committing encryption (NCE) [CFGN96], which was developed for adap-
tively secure communication. Recall that an NCE scheme allows generating a
“fake” equivocal ciphertext c̃ that can later be “opened” as an encryption of any
string of a predefined length `. Namely, c̃ is generated together with a poly-size
equivocation circuit E, such that, given any message m ∈ {0, 1}`, E(m) gener-
ates randomness (r̃mS , r̃

m
R ), for both the sender and the receiver, that “explains”

c̃ as an encryption of m.
To obtain leakage-tolerant secure message transmission, we can simply en-

crypt the message using an NCE scheme. The simulator can now generate the
fake ciphertext c̃ with the associated equivocation circuit E and can then trans-
late any c-dependent leakage function on the entire state (plaintext and random-
ness) into a leakage function on the plaintext only, which can be queried to the
leaky SMT functionality. When leakage on P ∈ {S,R} occurs, the simulator S
translates the leakage function L(m, rP ) into L′(m) = L(m,E(m)) = L(m, r̃mP ).
Indeed, this idea was used in [BCG+11] in the context of a specific protocol.

The general case. The above example can be made general. Specifically, we
show that, with some limitations, any protocol that realizes a functionality F
under adaptive corruptions also realizes a leaky variant F+lk under leakage. The
“leaky variant” is a natural adaptation that allows leakage on the state of F ,
just like the leaky SMT allow leakage on the transmitted message. This variant,
denoted F+lk, is identical to F except that F+lk allows the simulator to apply
arbitrary leakage functions to the ideal local state (which is the same as the state
defined in a semi-honest corruption). When such leakage occurs the environment
is reported on the identity of the leaking party and the number of bits leaked.
(This makes sure that the simulator can only leak the same number of bits as
in the protocol execution.) After such a leakage event, F+lk behaves in the same



way that F behaves after a semi-honest corruption of that party. That is, if
F modifies its overall behavior following the corruption of a party, then F+lk

modifies its behavior in the same way. (In the applications considered in this
work, we will consider functionalities that do not change their behavior after
semi-honest corruptions, see Section 5.)

A limitation of this result is that it only holds when the given proof of
security uses a restricted type of simulators, namely ones that work “obliviously”
of the state that they learn when corrupting a player. We call such simulators
corruption-oblivious. We have:

Theorem 1.1 (informal). If protocol π realizes F under adaptive corruptions
(either semi-honest or Byzantine) with a corruption-oblivious simulator, then it
also realizes F+lk under arbitrary leakage (and the same type of corruptions).

Composable leakage-tolerance. An important property of ideal model based no-
tions of security is that they enable modularity, since the guarantees that they
provide are preserved even under (universal) composition of protocols. That is, if
a protocol π realizes an ideal functionality F , the security properties of F carry
over to any environment where π is used.

To achieve such modularity, common models of composable security rely
crucially on viewing different sub-modules of a large system as autonomous small
systems, each with its own local state and well-defined interfaces to the rest of
the system. Unfortunately, extending this “modular security” paradigm to the
leaky world is problematic: real world leakage is inherently non-modular, in that
the adversary can obtain leakage from the joint state of an entire physical device
and is not bound by our modular separation to logical modules of the software
running on the device. In fact, it is not even clear how to express joint leakage
from the state of different modules within standard models, let alone how to
argue about preservation of security properties.

We extend the UC security framework [Can01] to allow expressing leakage
attacks from physical devices that span multiple logical modules. We first allow
the protocol analyzer to delineate sets of “jointly leakable modules” (roughly
corresponding to physical machines). Then, we introduce a new entity, called an
aggregator, that has access to the internal states of all the modules in each set.

To get leakage from the joint state of the modules in a set P , the adversary
sends the leakage function L to the aggregator, who applies L to the combined
state and returns the result to the adversary. The same mechanism is used to
obtain leakage from ideal functionalities, except that here the ideal functionality
F hands the aggregator some “ideal local state” that F associated with the set
P . We stress again that our model considers a strong adversary that obtains
leakage information in a non-modular way from multiple subroutines that reside
on a common device, this makes positive results in this model quite strong.

Having extended the model of protocol execution to capture leakage attacks,
we would like to re-assert the composability property described above, i.e., to
re-prove the UC composition theorem from [Can01] in our setting. However, that



theorem was only proved for systems that behave in a “modular way”, and the
proof no longer holds in the presence of our modularity-breaking aggregator.

Still, we manage to salvage much of the spirit of the UC theorem, as follows.
We formulate a more stringent variant of UC security by putting some technical
restrictions on the simulator and then re-assert the UC theorem with respect to
this varaint. Similarly to the case of corruption-oblivious simulators, here too we
require that the simulator S handles leakage queries “obliviously”.

Roughly, S has a “query-independent” way of translating, via a state-translation
function, real world leakage queries L(stateπ) to ideal world leakage queries
L′(stateF ). Furthermore, it ignores the leakage-results in the rest of the sim-
ulation. We call such simulators leakage-oblivious and show:

Theorem 1.2 (UC-composition with leakage, informal). Let ρF be a pro-
tocol that invokes F as a sub-routine. Let π be a protocol that UC-emulates F
with a leakage-oblivious simulator. Then the composed protocol ρπ/F (where each
call to F is replaced with a call for π) UC-emulates ρF in face of leakage. Fur-
thermore, it does so with a leakage-oblivious simulator.

Theorem 1.2 provides a powerful tool in the design of leakage-resilient proto-
cols. In particular, we later use it to (a) combine any leakage-resilient protocol
that assumes authenticated communication with a leakage-resilient authentica-
tion protocol into a leakage-resilient protocol over unauthenticated channels, and
(b) to combine any leakage-resilient zero-knowledge protocol that assumes ideal
commitment with leakage-resilient commitment protocols to obtain a composite
leakage-resilient zero-knowledge protocol.

Leakage-tolerant protocols. We construct leakage-tolerant protocols for a num-
ber of basic cryptographic tasks. We first observe that the general result regard-
ing the leakage-tolerance of adaptively secure protocols (Theorem 1.1) in fact
guarantees UC security with leakage-oblivious simulators. We then observe that
existing adaptively secure protocols for secure channels, UC commitment and
UC semi-honest oblivious transfer already have corruption-oblivious simulators;
hence, we immediately get:

– Assume authenticated communication. Then, any non-committing encryp-
tion scheme UC-realizes F+lk

SMT in the presence of arbitrary leakage using a
leakage-oblivious simulator.

– In the CRS model, the UC commitment protocols of Canetti and Fischlin
[CF01] and Canetti, Lindell, Ostrovsky and Sahai [CLOS02], UC-realize
F+lk

MCOM (the leaky version of the multi-instance commitment functionality)
in the presence of arbitrary leakage. Furthermore, they do so with leakage-
oblivious simulators.

– Also in the CRS model, the UC (non-interactive) zero-knowledge protocol
of Groth, Ostrovsky and Sahai[GOS06] realize F+lk

ZK under arbitrary leakage.
– The semi-honest oblivious transfer protocol of [CLOS02] for adaptive cor-

ruptions UC-realizes F+lk
OT (the leaky version of the ideal oblivious transfer

functionality in the presence of arbitrary leakage). Furthermore, it does so
with leakage-oblivious simulators.



In this work, we do not consider the generation of a CRS in the presence of
leakage; rather, we treat the CRS as an external entity that can be generated in
a physically separate location. As in other settings, here too it is interesting to
find ways to reduce the setup requirements.

Finally, we note that for certain functionalities F , applying Theorem 1.1 alone
may still not give an adequate level of leakage-resilience. Indeed, while the leaky
adaptation F+lk assures graceful degradation of privacy, it may not account for
correctness (or soundness) aspects in the face of leakage. In such cases, we may
need to further strengthen F+lk. One such example is message authentication.
Indeed, F+lk

AUTH gives essentially no security guarantees: as soon as even a single

bit of information is leaked from the sender, F+lk
AUTH behaves as if the sender

is fully corrupted, in which case forgery of messages is allowed. We thus first
formulate a variant of FAUTH that guarantees authenticity as long as the number
of bits leaked is less than some threshold B. We then realize this functionality,
denoted F+B

AUTH, assuming an initial k-bit shared secret key between the parties
and as long as at most B = O(k) bits leak between each two consecutive message
transmissions. Furthermore, we do this with a leakage-oblivious simulator. The
techniques used to realize F+B

AUTH include information-theoretic leakage-resilient
message authentication codes, as well as NCE schemes.

We note that the techniques here borrow strongly from the techniques used in
[BCG+11] for the related goal of authentication within the context of obfuscation
with leaky hardware. That work, however, analyzed these tools in an ad-hoc
manner, and the results there apply only to that specific context.

In contrast, using the above UC theorem with leakage, we can combine the
above authentication protocol with any protocol that assumes ideally authenti-
cated communication to obtain composite leakage-tolerant protocols that with-
stand unauthenticated communication.

Finally, we address the task of obtaining zero-knowledge from ideal leaky
commitment F+lk

MCOM (the adaptive NIZK protocol of [GOS06] is obtained from
specific number-theoretic assumptions on bilinear groups). At first it may seem
that, as in the case of commitment, existing protocols for UC-realizing the ideal
zero-knowledge functionality, FZK, would work also in the case of leakage. How-
ever, this turns out not to be the case. In particular, while the protocol of [CF01]
for UC-realizing FZK:R, for some relation R, given FMCOM is indeed secure against
adaptive corruptions, the simulator turns out not to be corruption-oblivious and
Theorem 1.1 does not apply.

Instead, we settle for UC-realizing, in the presence of leakage, a weaker vari-
ant of F+lk

ZK:R. This weaker variant permits violation of the soundness require-
ments if too many bits were leaked from the verifier. We denote this weaker
version by F+B

ZK:R, where B is the leakage threshold for the verifier. We show how

to UC-realize F+B
ZK:R for B = k − ω(log k) (where k is the security parameter),

given access to F+lk
MCOM. Using the (leaky) universal composition theorem and

the protocol for realizing FMCOM (mentioned above), we obtain a protocol for
UC-realizing F+B

ZK:R in the CRS model.



Concurrent work. Garg, Jain, and Sahai [GJS11] also investigate zero-knowledge
in the presence of leakage, albeit not in the UC setting. Instead, they consider a
stand-alone definition with a rewinding simulator (where a CRS is not needed).
Some of the difficulties that emerge in standard 3-round zero-knowledge pro-
tocols, as well as the suggestion to overcome them using the Goldriech-Kahn
paradigm, were communicated to us by Amit Sahai.

Damg̊ard, Hazay, and Arpita [DHP11] consider leakage-resilient two-party
protocols. Their definition of security, which is also ideal-model based, accounts
also for noisy leakage (namely leakage that might not be length-restricted, but is
somewhat entropy preserving). They achieve leakage-resilience (or tolerance) for
NC1 functions in a setting where one party is statically and passively corrupted
and the other party is leaky. The result, however, only applies in the ”only
computation leaks” (OCL) model of [MR04] (and with some extra technical
limitations). They also prove a security preserving composition theorem, but
their modeling considers only separate leakage from each module (rather than
overall leakage as considered here). They also construct a leakage-tolerant OT
protocol for sufficiently entropic inputs distributions, but only in the OCL model
and under a relatively strong hardness assumption; in terms of communication,
however, their protocol is more efficient than ours. Finally, we remark that the
setting where one party is statically passively corrupted can be seen as a special
case of a weak leakage-tolerance model, where the ideal world simulator is allowed
to jointly leak from all the parties. See further discussion in Section 5.3.

2 Modeling Leakage in the UC Framework

This section defines the new model of UC security with leakage. Here we provide
a high-level overview, the full details can be found in the full version of this
work [BCH11]. Recall that the basic UC framework considers realization of an
“ideal specification” F by a “real implementation” π. (Formally both F and
π are just protocols, we call them by different names to guide the intuition.)
The realization requirement is that for any “real world attacker” A against the
implementation π there exists another adversary S (called a simulator) against
the specification F , such that an “environment” Z that interacts with S,F has
essentially the same view as in an interaction with A, π.

The basic UC execution model lets the environment Z determine the inputs
to the parties running the protocol and see the outputs generated by these parties
and also allows free communication between the environment and the adversary.
The adversary, typically, has full control over the communication between parties
and the ability to “corrupt” parties in various ways. Corruption is modeled as
just another interface available to the adversary, where it can send a message
“you are corrupted” to any party. (In the case of standard passive corruption,
the party responds to this message by handing its entire internal state to the
adversary. To model Byzantine corruption, the party also changes the program
that it is running from then on.)



A crucial aspect of the UC framework is its modularity, where programs can
call subroutines, and these subroutines are treated as separate entities that can
be analyzed separately for security properties. Importantly, local randomness
and secrets that are used by a subroutine should typically not be visible to the
calling routine or to other components in the system.

A useful technicality in the UC framework, is that it is sufficient to prove
security only with respect to the dummy real world adversary D. This is the
adversary that simply reports all the information it receives to the environment
and follows all the instructions of the environment regarding sending messages
to parties and ideal functionalities. Relying on the fact that any adversary can
be emulated by the environment itself, it is easy to show that simulation of the
dummy adversary D implies simulation for any adversary.

Leaky UC. A natural approach to modeling leakage within the UC framework
is to view it as a weak form of corruption, where the adversary gets some in-
formation about the internal state of the leaky party but perhaps not all of it.
Also, leakage resembles “semi-honest” corruption more than “malicious”, in that
leaky parties keep following the same protocol and do not change their behavior
following a leakage event. Thus we could provide yet another interface to the
adversary where it can send a “leak L” message to a party (where L is some
function) and have that party reply with L(s) where s is its internal state.

The leakage aggregator. A serious shortcoming of the modeling approach in
the previous paragraphs is that it only lets the adversary obtain leakage on indi-
vidual processes (or subroutines). In contrast, real life leakage usually provides
information that depends on the entire state of a physical device, including all
the processes that are currently running on it. To account for this inherently
non-modular property of real life leakage, we introduce to the model a new
“global entity” that we call the leakage aggregator. The aggregator G can access
the entire internal state of all the components in the system. A leakage query
specifies a leakage function L and a set of processes P = {p1, . . . , pt}. This query
is forwarded to the aggregator, who evaluates L(s1, . . . , st) and returns the result
to the adversary. Some important technicalities regarding the working of G are
the following:

– A convention should be set for how to specify the sets of processes and ensure
that this is a “legitimate set” for joint leakage. We assume that processes
are tagged with “party identifiers” pid (roughly corresponding to physical
machines), and joint leakage is allowed only from a set of processes that all
have the same pid.

– As done for corruptions, here too the identity of the leaky processes and the
amount of leakage needs to be reported to the environment. This forces the
simulator, in the ideal world, to use the same amount of leakage from the
same processes as in the real world.

– Since ideal functionalities represent idealized constructs that do not necessar-
ily run on physical devices, they are often associated with more than one pid.
Thus care should be taken when deciding how an ideal functionality reacts



to leakage queries w.r.t. one of its pid’s. (For example, the secure-channels
functionality runs on behalf of both the sender and the receiver, and would
typically react differently to sender-leakage than to receiver-leakage queries.)
We let the ideal functionality itself decide how to reply when G asks it for
the state corresponding to any of its pid’s. (This is the same convention as
used for corruption, where the functionality gets to decide what to reveal
to the adversary when one of its pid’s is corrupted.) Typically, the “state”
associated with a certain pid will be just the inputs that were received from
that pid and the outputs it receives.

– To allow functionalities to react to leakage situations, we have G, upon ac-
cessing the state of a module, report to that module the output size of the
leakage function L. Typically, “real world implementations” ignore this re-
port (since we assume that real world leakage is undetectable), but “ideal
functionalities” may use it to change their behavior (e.g., reduce the security
guarantee if too much leakage occurred).

With these conventions in place, a leakage operation is handled as follows: first,
the adversary sends a query (leak, L, pid) to G, where L is the leakage function
and pid is the leaking party ID. Then, G obtains statepid, the total state of party
pid, applies L to statepid, and returns the result to A. Finally, G reports the
output length of the function L to all the processes whose state is included in
statepid and reports pid and the output length to the environment

We note that the security guarantee provided by this model may be weaker
than one could desire, as the number of leaked bits is reported to each one of
the processes (or functionalities). This means that when a domain leaks ` bits,
each one of its components behaves as if the ` bits leaked entirely from this
component. While this is a relatively weak leakage-resilience guarantee, it seems
unavoidable in any general model with modularity-breaking leakage.

Leakage-oblivious simulation. Following the approach of basic UC security, the
definition of protocol emulation requires that for any adversary A that attacks
the implementation π there exists a simulator S that attacks the specification
F so that no environment can distinguish between an interaction with A and
π, and an interaction with S and F . In particular, S must provide an overall
transformation from one interaction scenario to the other, including among oth-
ers the leakage queries made by A to the parties (via the aggregator). As noted
above, an equivalent requirement considers, instead of any adversary A, only
the dummy adversary, D, that merely passes messages between the environment
and the protocol’s parties.

This natural requirement, however, has (seemingly inherent) difficulties when
considering composition of protocols. In particular, we were not able to prove
a general composition theorem in this model (see details in Section 3). Conse-
quently, we consider a more restricted notion of protocol emulation, which we
term emulation with leakage-oblivious simulators.

To simplify the exposition, we describe here leakage-oblivious simulation only
with respect to the dummy adversary D. A leakage-oblivious simulator S for the



dummy adversary has a special form: specifically, S has a separate subroutine S̃
for handling leakage. When S receives from the environment a request to apply
a leakage function L to a set P of processes, S̃ is invoked to produce a “state
translation” function T . This function is meant to transform the internal state of
P in the specification F into “the actual state” in the implementation π. Once T
is produced, the aggregator is given the composed leakage function L◦T . Finally,
when the leakage-result is returned, it is forwarded directly to the environment
and S returns to its state prior to the leakage event.

The subroutine S̃ should operate independently of the leakage function
L, its only input is the state of S (prior to the leakage query) and a party
identifier pid. Also, the leakage operation has no side effects on S. That is,
following the leakage event S return to the state that it had before that event.

3 Universal Composition of Leaky Protocols

We now state the universal composition theorem for leaky protocols and leakage-
oblivious simulators (as defined in Section 2). Let π be an implementation and F
be a specification. (As mentioned earlier, formally these are just two protocols,
and the different names are meant only to help the intuition.) Also let ρ = ρ[π]
be a protocol that includes subroutine calls to π. Below we denote by ρπ the
system where the subroutine calls to π are actually processed by π and by ρF/π

the system where these subroutine calls are processed by F .
The UC theorem [Can01] states that if π UC-realizes F , then ρπ UC-realizes

ρF/π; however, that theorem does not hold in the presence of the modularity-
breaking aggregator G. The proof of the UC-theorem in [Can01] relies on all the
processes being “modular”; namely, a process can only interact with its caller
and its subroutines (and the adversary).4

As we have seen, modularity is incompatible with the definition of leaky
protocols; indeed, all processes are required to interact with the aggregator,
which is neither their caller nor their subroutine (nor an adversarial entity).
Still, if π realizes F with a leakage-oblivious simulator, we can recover the same
result. Below we call a protocol “modular up to leakage” if it only interacts with
its caller, its subroutines, the adversary, and the aggregator.

Theorem 3.1 (UC-composition with leakage). Let ρ, π,F be protocols as
above, all modular up to leakage, such that π UC-emulates F with a leakage-
oblivious simulator. Then ρπ UC-emulates ρF/π. Furthermore, it does so with a
leakage-oblivious simulator.

Proof overview. The proof follows the outline of the proof of the basic UC
theorem; here, we focus on the required adjustments due the leakage. For sake
of simplicity, in this overview we assume that ρ invokes only a single instance of
the sub-protocol π.

4 Such protocols are also called “subroutine respecting”.



Recall that we need to construct a leakage-oblivious simulator Sρ such that no
environment can tell whether it is interacting with ρπ and the dummy adversary
D, or with ρF/π and Sρ. The construction of Sρ is naturally based on the leakage-
oblivious simulator Sπ as guaranteed by the premise. That is, Sρ runs a copy
of Sπ; as in the basic UC theorem, the interaction between Z and the parties
is separated into two parts. The interaction with π is dealt with by Sπ, which
generates messages for the corresponding sub-parties and handles incoming mes-
sages from these parties. The effect of the environment on rest of the system, is
handled by direct interaction with the external parties running ρ.

Leakage queries are handled by way of a subroutine S̃ρ that generates a
state translation Tρ, as needed for leakage-oblivious simulation. Recall that the
leakage function L that Sρ receives from the environment was designed to be
applied to a “real protocol state” in ρπ (and since ρ runs a single copy of π then
this state is of the form (stateρ, stateπ)). The simulator Sρ, on the other hand,
can only ask the aggregator for leakage on the state of ρF , which is of the form
(stateρ, stateF ). To bridge this gap, S̃ρ runs the “state translation subroutine”

S̃π. (This can be done since Sρ has the entire current state of Sπ.) Once S̃π
produces a state translation function Tπ, S̃ρ generates its own state translation
function Tρ (stateρ, stateF ) = (stateρ, Tπ (stateF )) and sends to the aggregator a
leakage function L′, where

L′ (stateρ, stateF ) = L (Tρ (stateρ, stateF )) = L (stateρ, Tπ (stateF )) .

Observe that already at this stage we rely crucially on Sπ being leakage-oblivious:
if Sπ was expecting to see a leakage function Lπ (stateπ) before producing the
translation, then we could not use it (since Sρ does not know the state stateρ, and
therefore cannot write the description of the induced function Lstateρ (stateπ) =
L (stateρ, stateπ)). Once the aggregator returns an answer, Sρ passes it to the
environment and returns to its previous state (including the previous state of
the sub-simulator Sπ).

It is clear from the description that Sρ is leakage-oblivious. The validity of
Sρ is shown by reduction to the validity of Sπ. That is, given an environment
Zρ that distinguishes an execution of (ρπ,D) from an execution of (ρF/π,Sρ),
we construct an environment Zπ that distinguishes an execution of (π,D) from
an execution of (F ,Sπ). The environment Zπ simulates an execution of (Zρ, ρ)
“in its head”, except that all messages corresponding to π are forwarded to the
external execution. Indeed, leakage queries aside, we have: (a) if the external
execution consists of Sπ and F , then the entire (composed) execution amounts
to running Zρ with Sρ and ρF ; (b) if the external execution consists of D and
π, then the entire (composed) execution amounts to running Zρ with D and ρπ.

Extending this argument to include leakage, the environment Zπ acts as
follows. When Zρ produces a leakage query L to be evaluated on stateρ, stateπ,
Zπ computes the simulated state stateρ and computes the restricted leakage
function Lstateρ (stateπ) = L (stateρ, stateπ), which should be evaluated only on
stateπ. Note that since Sπ is leakage-oblivious, the state-translation function that
it outputs when run as a subroutine of Sρ is the same as the state-translation



function that it outputs when run with the environment Zπ. The rest of the
argument remains unchanged.

The actual proof also deals with the case where multiple instances of the sub-
routine π are invoked and can be found in the full version of this work [BCH11].

4 From Adaptive Security to Leakage-Tolerance

Recall that the adversary in the UC framework can adaptively corrupt parties
during protocol execution, thereby learning their entire internal state. If the cor-
ruption is passive (semi-honest), the party keeps following the same program as
it did before the corruption, and if it is Byzantine (malicious), then the adversary
also gains control of the program that the party runs from now on.

As already pointed out, leakage can be thought of as a form of corruption,
where the adversary gains partial information on the inner state of a party.
The converse is also true, passive corruption can be viewed simply as leaking
the entire internal state. The challenges in simulation are also similar: for both
corruption and leakage the simulator must translate some “ideal state” that it
gets from the functionality into a “real state” that it can show the environment,
and do it in a way that is consistent with the transcript so far. Below we for-
malize this similarity, showing that “in principle” a protocol that realizes some
functionality F in the presence of passive adaptive corruptions also realizes it
in the presence of leakage. There are considerable restrictions, however. Most
importantly, the implication holds only for corruption-oblivious simulators (see
below). Also, F must be adapted to handle leakage queries, and we prove the
implication for a particular (natural) way of doing this adaptation.

Adapting functionalities to leakage. Let F be functionality that was designed
for a leakage-free model with corruptions. This means that F already has some
mechanism to reply to messages from the adversary about corruptions of players.
We now need to adapt it by explaining how it reacts to leakage queries from
the aggregator G. The adaptation is natural: whenever G asks for the state of
party pid for the purpose of leakage, the functionality replies with exactly the
same thing that it would have given the adversary if pid was passively corrupted
at this time. Then, once G reports the number of leakage bits, the functionality
forwards this number on the I/O lines of party pid.5 Thereafter, the functionality
behaves just as if party pid was passively corrupted. We denote the resulting
functionality by F+lk. We stress that if F was designed to react differently to
passive and Byzantine corruptions, then it uses the passive corruption mode to
handle leakage.

Note the implication of viewing leakage as corruption: in principle, reaction
to leakage could be gradual - a functionality F can change its behavior propor-
tionally to the amount of leakage, or to have a leakage threshold up to which it
does one thing and after which it does another. However, the reaction of F to

5 This number-reporting action is meant to allow the environment to do its leakage
bookkeeping, and for ideal functionalities to be able to react to leakage.



(passive) corruption is typically “all or nothing”, it is either not affected or it
completely “gives up”. Using our convention from above, this “all or nothing”
reaction is carried over to F+lk. For example, if F is an authenticated channels
functionality, then F+lk will permit forgery as soon as even a single bit is leaked.
On the other hand, if F is a commitment functionality then leakage events have
no effect on the subsequent behavior of F+lk. Although the transformation that
we prove below works for every functionality F , its usefulness depends crucially
on the way F handles passive corruptions.

Corruption-oblivious simulators. The intuition for why adaptive corruption im-
plies leakage-tolerance is that if we can simulate the entire state of an adaptively
corrupted party, then we should also be able to simulate only parts of its state
(according to a particular leakage function). The problem with this intuition,
however, is that future behavior of the simulator may depend on the entire state
learned during corruption, which is not available to the leakage simulator.

We thus restrict our attention to special simulators that are oblivious of the
state learned during corruption (similarly to the leakage-oblivious simulators
from Section 2). As for leakage, we only define corruption-oblivious simulators
for the dummy adversary D (which is sufficient). The simulator S for D should
have a special subroutine S̃ for handling passive corruptions. When S receives
from the environment a request (passive corrupt, pid) to passively corrupt a party
pid, S invokes S̃ to produce a state translation function T . T is used to transform
the “internal state” that F (or the hybrid-world protocol) returns for party pid
into a state of the “real world” implementation protocol π for this party. Then,
S sends a passive corrupt message to pid, obtains the corresponding state (from
F or the hybrid-world instance), applies to it the transformation T and returns
the result stateπ = T (state) to the environment. After the result is forwarded to
the environment, S returns to its state prior to the time it invoked S̃.

Note that since this is passive corruption, then party pid can keep evolving its
state after the initial corruption, and the environment can ask to see the updated
state from time to time. S handles each such update request as a new passive
corruption query, invoking S̃ again to get state-translation function, calling the
functionality again, etc. (We note that there is no restriction on the way that S
handles Byzantine corruptions.)

We stress that S does not make any direct use of the state of the corrupted
parties. In particular, the future operation of S, when simulating the messages
generated by corrupted parties, is done independently of their secret local states.
As seen in subsequent sections, in some cases this turns out to be a strong
restriction (see Example 5.1 in Section 5). We are now ready to state the main
result of this section. The proof is provided in the full version [BCH11].

Theorem 4.1. Let π be a protocol that UC-realizes an ideal functionality F in
the presence of passive adaptive corruptions (but no leakage), with a corruption-
oblivious simulator. Then π also UC-realizes F+lk with a leakage-oblivious sim-
ulator in the UC model with leakage.



Composition of corruption-oblivious simulators. We note that, viewing corruption-
oblivious simulators as a special case of leakage-oblivious simulators (for leak-
ing the identity function), the proof of the leaky UC Theorem 3.1 implies that
corruption-oblivious simulation is preserved under universal composition:

Corollary 4.1 (of Theorem 3.1). Let ρ, π,F be protocols that are modular
up to leakage, such that π UC-emulates F with a corruption-oblivious simulator.
Then ρπ UC-emulates ρF/π with a corruption-oblivious simulator.

5 Realizing Leaky Adaptations of Basic Interactive Tasks

This section describes the construction of leakage-tolerant protocols for for sev-
eral interactive tasks. We describe constructions for secure message transmis-
sion, (semi-honest) oblivious transfer, commitment and zero-knowledge. These
constructions all assume ideal authenticated channels. We then present a con-
struction of leakage-resilient authenticated channels. All of our constructions
are composable. We conclude the section with a discussion on the difficulties in
obtaining general leakage-tolerant multi party computation.

The bulk of this section is omitted. It can be found in the full version of this
work [BCH11]. Here, we only sketch the constructions for the last two tasks.

5.1 Zero-knowledge from Ideal Leaky Commitments

We adapt the zero-knowledge ideal functionality to tolerate leakage and demon-
strate a protocol that realizes the adapted functionality in the presence of leak-
age. Recall that FZK:R, for a relation R, takes from the prover P an input (x,w),
and outputs x to the verifier V only if R(x,w) holds. This formulation guarantees
to P perfect secrecy of w. It also guarantees perfect soundness to V .

Adapting FZK to leakage, we can ideally hope to realize a functionality with
optimal tolerance, such as F+lk

ZK , which can “gracefully” tolerate arbitrary leak-
age from the prover, and in addition does not give up on soundness even in face
of arbitrary leakage on the verifier. However, we could not manage to realize
such a functionality. Instead, we consider an adaptation that can tolerate arbi-
trary leakage from the prover, but only a bounded amount of leakage from the
verifier before soundness breaks. Before presenting our eventual adaptation and
implementation, we briefly sketch the difficulties which prevent us from achieving
optimal leakage-tolerance.

As shown in [CF01, CLOS02], the parallel repetition of classic 3-round zero-
knowledge protocols, such as Blum’s Hamiltonian cycle [Blu86], and GMW’s
3-coloring [GMW91], UC-realizes the basic (non-leaky) FZK, given access to
(non-leaky) ideal commitment. Moreover, they do so even in the presence of
adaptive corruptions. However, the proofs of security of these protocols do not
yield corruption-oblivious simulation. Thus, we cannot conclude that these pro-
tocols UC-realize F+lk

ZK under leakage.
In fact, without any modifications, these protocols seem inherently impossi-

ble to simulate in the face of leakage. To demonstrate this, let us recall GMW’s



3-coloring protocol. Here, the prover, who possesses a 3-coloring c, chooses a
random permutation σ of the three colors and commits to the permuted color-
ing σ(c). The verifier then requires that the prover opens the colors of a random
edge and checks that its endpoints are indeed colored differently. Now, consider
a (Byzantinely) corrupted verifier V ∗ that also obtains leakage on the prover’s
coloring during the protocol. This verifier can leak, for example, the secret per-
mutation σ and then ask the (honest) prover to open the colors σ(c(i)), σ(c(j))
of some random edge (i, j). Finally, it can leak again the true colors c(i), c(j).
Simulating such a behavior seems impossible (assuming 3COL /∈ BPP). Indeed,
once the simulator simulates σ for the first leakage, it essentially becomes com-
mitted to it for the rest of the protocol. Then, when it is required to simulate
the opening of σ(c(i)), σ(c(j)), it essentially has no information on c, and hence,
if it can consistently simulate the second leakage query, then essentially it must
“know” a proper coloring of the entire graph.6 We stress that this inherent dif-
ficulty also fails simulators that are not leakage-oblivious (and are thus allowed
to depend on both the leakage function and the leakage-result).

To overcome the above problem, we require that at the beginning of the
protocol, the verifier commits to all its challenges. This already allows the sim-
ulation to go through; now the simulator can first extract the challenge edge
(i, j), choose random colors for it c′(i), c′(j), and then have the leakage return a
permutation mapping the real c(i), c(j) to c′(i), c′(j). In fact, we show that this
adjustment is enough for simulating any malicious verifier.

This adjustment comes, however, at a price: unlike the original protocols,
where the verifier was of the public coins type (and had no secret state), now
the verifier commits to its challenges, and the secrecy of these challenges is crucial
for the protocol’s soundness. Hence, we cannot hope that in such a protocol the
verifier will be able to withstand arbitrary amounts of leakage; in particular,
once the prover leaks all of the verifier’s challenge, soundness is doomed.

Consequently, we only realize a weaker adaptation, where the verifier can only
tolerate a bounded amount of leakage. (The prover can still tolerate arbitrary
leakage.) More specifically, we can tolerate arbitrary leakage on the verifier’s ran-
domness so long that a super-logarithmic amount of min-entropy is maintained.

5.2 Authenticated Channels

We construct a protocol for realizing leaky authenticated channels with bounded
leakage-resilience. More specifically, the protocol UC-realizes an ideal function-
ality F+B

Auth that guarantees authenticated communication as long as the overall
leakage between any two transmissions of some messages does not exceed a pre-
specified bound B.

The protocol we present uses two main building blocks: (a) non-committing
encryption (NCE) (b) information theoretic c-time message authentication codes
(MACs) that are resilient to a constant leakage rate from the secret key. The

6 This intuition can be made formal; namely, given such a simulator we can construct
an algorithm for 3-coloring arbitrary graphs.



idea behind the protocol is simple. The parties initially share a (leaky) secret
key K1. Then the protocol proceeds inductively; at each round, a current au-
thentication key Ki is used to authenticate the i-th message, mi. In addition,
a fresh key Ki+1 is generated and transmitted using non-committing encryp-
tion. These transmitted ciphers are also authenticated using Ki. To allow the
authentication to go through, we need our underlying leaky MAC scheme to
allow authentication of messages that are polynomially longer than the secret
key. This is achieved using universal hashing. Concretely, the protocol we present
tolerates, between each two transmissions, roughly k/10 bits of leakage on the
k-long secret key. Similar techniques are used for a related goal in [BCG+11].
However, the security analysis there is different than the one here.

The protocol we construct admits leakage-oblivious simulation and is thus
composable. We can, therefore, use it as a basic building block supporting any
protocol that requires authenticated channels, when ideally authenticated chan-
nels are unavailable. We stress, however, that when doing so the leakage-tolerance
of the higher-level protocol, naturally degrades to that of the authentication pro-
tocol.

5.3 On the Difficulty in Achieving General Leakage-Tolerant MPC

Equipped with Theorem 4.1, we may hope that, similarly to the tasks consid-
ered above, general leakage-tolerant multi-party computation (MPC) would also
follow from known results on adaptively secure MPC (such as, [CLOS02]). Un-
fortunately, known results do not admit corruption-oblivious simulation and are
in fact far from being leakage-tolerant. We exemplify the relevant difficulties by
giving a protocol that is adaptively secure but not leakage-tolerant. Although
seemingly contrived, the protocol suffers from the same caveats that fail known
adaptively secure protocols from achieving leakage-tolerance.

Example 5.1. Let F be a standard corruption functionality that takes n-bit in-
puts from two parties, P0 and P1, and outputs nothing. As soon as party Pi
provides input xi, the virtual local state of Pi is set to xi. Now, consider the fol-
lowing protocol π: first, the parties give their inputs to some trusted party that
returns a random bi to Pi such that b0 + b1 = 〈x0, x1〉 where 〈, 〉 denotes inner-
product in F2. (The inner product can be replaced by any two-source extractor.)
Next, the parties output nothing and halt.

It can be seen that π securely realizes F with respect to adaptive corruptions.
This is so since, once the first party Pi is corrupted, the simulator learns xi and
can give xi to the adversary, plus a random bit instead of bi. Now, when P1−i
is corrupted, the simulator learns x1−i and can determine the bit b1−i so that
b0 + b1 = 〈x0, x1〉. However, notice that here the simulator is not corruption-
oblivious: the handling of the second corruption depends on the input value xi
of the first corrupted party. Indeed, π does not realize F+lk with even one bit
of leakage from each party: the adversary can ask to leak bi from Pi and thus
learn 〈x0, x1〉. However, in the ideal model for F+lk, assuming x0, x1 are long
random strings, the simulator has no hope of learning 〈x0, x1〉. This is so since



in the ideal model, the simulator can only perform one-bit leakage on x0 and x1
separately, and hence it can not guess 〈x0, x1〉 with non-negligible advantage.

Indeed, the same problem would arise in GMW-based protocols, where the value
of each wire is secret-shared between the parties in a non leakage-resilient manner
as above. This is actually also the case for YAO-based adaptively secure protocols
(for NC1 functions); there also (although not explicitly), the value of each wire
is effectively secret-shared between the parties in a non leakage-resilient way.

Weak (joint-state) leakage-tolerance Vs. Strong (separate-state) leakage-tolerance.
Note that, had we modified F+lk in the above example so that the virtual local
state of each party includes both inputs, the above protocol would UC-realize
F+lk with leakage. More generally, if we settle for a weaker leakage-tolerance
guarantee where the ideal world simulator can jointly leak from the inputs and
outputs of all parties (and not only separately from the inputs and outputs of
each leaking party alone), then leakage-tolerance can already be achieved. In
fact, combining our leakage-tolerant OT protocol with an adaptively secure pro-
tocol, such as GMW, it is easy to obtain semi-honest MPC for general functions.
(We note that this, in particular, concerns the two party setting where one party
is statically corrupted considered by [DHP11], which can be seen as a special
case of weak leakage-tolerance.)

However, in a setting where real world adversaries are restricted to sepa-
rate leakage from each party, an ideal process that allows joint leakage from
the internal states of the parties is somewhat unsatisfactory. Achieving strong
(separate-state) leakage-tolerant MPC in general (without preprocessing or lim-
itations on the number of honest parties) remains an interesting open question.

Acknowledgments. We thank Amit Sahai for telling us about the problems with
proving leakage-tolerance of the standard three round zero-knowledge protocols
and about the way this problem is solved in [GJS11].

References

[ADN+10] Joël Alwen, Yevgeniy Dodis, Moni Naor, Gil Segev, Shabsi Walfish, and
Daniel Wichs, Public-key encryption in the bounded-retrieval model,
EUROCRYPT, 2010, pp. 113–134.

[ADW09] Joël Alwen, Yevgeniy Dodis, and Daniel Wichs, Survey: Leakage Re-
silience and the Bounded Retrieval Model, Information Theoretic Secu-
rity - ICITS 2009 (Kaoru Kurosawa, ed.), 2009, pp. 1–18.

[AGV09] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan, Simulta-
neous hardcore bits and cryptography against memory attacks, TCC,
2009, pp. 474–495.

[BCG+11] Nir Bitansky, Ran Canetti, Shafi Goldwasser, Shai Halevi, Yael Tau-
man Kalai, and Guy N. Rothblum, Program obfuscation with leaky
hardware, ASIACRYPT, 2011, pp. 722–739.

[BCH11] Nir Bitansky, Ran Canetti, and Shai Halevi, Leakage-tolerant inter-
active protocols, 2011, Full version available at http://eprint.iacr.

org/2011/204.

http://eprint.iacr.org/2011/204
http://eprint.iacr.org/2011/204


[BGK11] Elette Boyle, Shafi Goldwasser, and Yael Tauman Kalai, Leakage-
resilient coin tossing, DISC, 2011, available at http://eprint.iacr.

org/2011/291, pp. 181–196.
[BKKV10] Zvika Brakerski, Yael Tauman Kalai, Jonathan Katz, and Vinod

Vaikuntanathan, Overcoming the hole in the bucket: Public-key cryptog-
raphy resilient to continual memory leakage, FOCS, 2010, pp. 501–510.

[Blu86] Manuel Blum, How to prove a theorem so no one else can claim it,
1986, International Congress of Mathematicians, pp. 444–451.

[BSW11] Elette Boyle, Gil Segev, and Daniel Wichs, Fully leakage-resilient sig-
natures, EUROCRYPT, 2011, pp. 89–108.

[Can01] Ran Canetti, Universally composable security: A new paradigm for
cryptographic protocols, FOCS, 2001, pp. 136–145.

[CF01] Ran Canetti and Marc Fischlin, Universally composable commitments,
CRYPTO, vol. 2139, 2001, pp. 19–40.

[CFGN96] Ran Canetti, Uri Feige, Oded Goldreich, and Moni Naor, Adaptively
secure multi-party computation, STOC, 1996, pp. 639–648.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai,
Universally composable two-party and multi-party secure computation,
STOC, 2002, pp. 494–503.

[DHLAW10a] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and
Daniel Wichs, Cryptography against continuous memory attacks,
FOCS, 2010, pp. 511–520.

[DHLAW10b] , Efficient public-key cryptography in the presence of key leakage,
ASIACRYPT, 2010, pp. 613–631.

[DHP11] Ivan Damg̊ard, Carmit Hazay, and Arpita Patra, Leakage resilient se-
cure two-party computation, IACR Cryptology ePrint Archive (2011),
256, http://eprint.iacr.org/2011/256.

[DKL09] Yevgeniy Dodis, Yael Tauman Kalai, and Shachar Lovett, On cryptog-
raphy with auxiliary input, STOC, 2009, pp. 621–630.

[DP08] Stefan Dziembowski and Krzysztof Pietrzak, Leakage-resilient cryptog-
raphy, FOCS, IEEE Computer Society, 2008, pp. 293–302.

[GJS11] Sanjam Garg, Abhishek Jain, and Amit Sahai, Leakage-resilient zero
knowledge, CRYPTO, 2011, pp. 297–315.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson, Proofs that yield
nothing but their validity for all languages in np have zero-knowledge
proof systems, J. ACM 38 (1991), no. 3, 691–729.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai, Non-interactive zaps
and new techniques for nizk, CRYPTO, 2006, pp. 97–111.

[HL11] Shai Halevi and Huijia Lin, After-the-fact leakage in public-key encryp-
tion, TCC (Yuval Ishai, ed.), 2011, pp. 107–124.

[MR04] Silvio Micali and Leonid Reyzin, Physically observable cryptography,
TCC, 2004, pp. 278–296.

[NS09] Moni Naor and Gil Segev, Public-key cryptosystems resilient to key
leakage, CRYPTO, 2009, pp. 18–35.

[Pie09] Krzysztof Pietrzak, A leakage-resilient mode of operation, EURO-
CRYPT, 2009, pp. 462–482.

[Sta09] Francois-Xavier Standaert, Introduction to side-channel attacks, Se-
cure Integrated Circuits and Systems (Ingrid M.R. Verbauwhede, ed.),
Springer, 2009, pp. 27–44.

http://eprint.iacr.org/2011/291
http://eprint.iacr.org/2011/291
http://eprint.iacr.org/2011/256

	Leakage-Tolerant Interactive Protocols

