
Computational Extractors and
Pseudorandomness

Dana Dachman-Soled1, Rosario Gennaro2, Hugo Krawczyk2, and Tal Malkin3

1 Microsoft Research New England
dadachma@microsoft.com

2 IBM Research
rosario@us.ibm.com, hugo@ee.technion.ac.il

3 Columbia University
tal@cs.columbia.edu

Abstract. Computational extractors are efficient procedures that map a
source of sufficiently high min-entropy to an output that is computation-
ally indistinguishable from uniform. By relaxing the statistical closeness
property of traditional randomness extractors one hopes to improve the
efficiency and entropy parameters of these extractors, while keeping their
utility for cryptographic applications. In this work we investigate com-
putational extractors and consider questions of existence and inherent
complexity from the theoretical and practical angles, with particular fo-
cus on the relationship to pseudorandomness.
An obvious way to build a computational extractor is via the “extract-
then-prg” method: apply a statistical extractor and use its output to
seed a PRG. This approach carries with it the entropy cost inherent to
implementing statistical extractors, namely, the source entropy needs to
be substantially higher than the PRG’s seed length. It also requires a
PRG and thus relies on one-way functions.
We study the necessity of one-way functions in the construction of com-
putational extractors and determine matching lower and upper bounds
on the “black-box efficiency” of generic constructions of computational
extractors that use a one-way permutation as an oracle. Under this effi-
ciency measure we prove a direct correspondence between the complex-
ity of computational extractors and that of pseudorandom generators,
showing the optimality of the extract-then-prg approach for generic con-
structions of computational extractors and confirming the intuition that
to build a computational extractor via a PRG one needs to make up for
the entropy gap intrinsic to statistical extractors.
On the other hand, we show that with stronger cryptographic primitives
one can have more entropy- and computationally-efficient constructions.
In particular, we show a construction of a very practical computational
extractor from any weak PRF without resorting to statistical extractors.

See [DGKM11] for the full version of this paper.

1 Introduction

Randomness extractors (or simply ‘extractors’) are algorithms that map sources
of sufficient min-entropy to outputs that are statistically close to uniform. Ran-
domness extraction has become a central and ubiquitous notion in complexity
theory and theoretical computer science with innumerable applications and sur-
prising connections to other notions. Cryptography, too, has greatly benefited
from this notion. Cryptographic applications of randomness extractors range
from the construction of pseudorandom generators from one-way functions to
the design of cryptographic functionalities from noisy and weak sources (in-
cluding applications to quantum cryptography) to the more recent advances in
areas such as leakage- and exposure-resilient cryptography, circular encryption,
lattice-based cryptosystems, and more. Randomness extractors have also found
important uses in practical applications, particularly for the construction of key
derivation functions. In many of these cryptographic applications, the defining
property of randomness extractors, namely, statistical closeness of their output
to a uniform distribution, can often be relaxed and replaced with computational
indistinguishability. Extractors that provide this relaxed guarantee are called
computational extractors, and they are the main object studied in this paper.

Let us review informally some basic facts about statistical extractors and the
associated parameters n,m, k, δ. A function Ext : {0, 1}n × {0, 1}` → {0, 1}m
is a (k, 2−δ)-statistical extractor if for any distribution X on {0, 1}n with min-
entropy k, the statistical distance between Ext(X,U`) and Um is at most 2−δ,
where U`, Um denote the uniform distribution over {0, 1}`, {0, 1}m, respectively.
Note that extractors are randomized via the second argument called a seed or
key (in our actual definitions we require the seed to be output, i.e., the so called
strong extractor). We are interested in extractors where the values k and 2−δ

are as small as possible (i.e., we want to minimize the entropy requirement
from the source and get as small as possible statistical distance of the output
to uniform). It is known how to construct statistical extractors that achieve
δ = (k + ` −m)/2 [NZ96,HILL99]. Radhakrishnan and Ta-Shma [RTS00] show
that this bound on δ is optimal, by showing how to build, for every extractor
with parameters as above, a source distribution of min-entropy k for which the
output of the extractor is 2−δ-far from uniform for δ = (k + ` −m)/2. In the
sequel we refer to this as the RT bound.

A major motivation to study computational extractors is that they allow
us to go beyond the RT bound by replacing statistical closeness to uniform
with computational indistinguishability. Indeed, an obvious way to do so is to
first use a statistical extractor applied to the source distribution to obtain a
short statistically close-to-uniform string and then use this string as a seed to a
pseudorandom generator (PRG) to obtain more bits that are indistinguishable
from uniform. We will refer to this as the extract-then-prg approach.

While the latter is a natural way to build computational extractors, it is not
the only one or necessarily the best one, especially when implemented in practi-
cal settings. In particular, this approach carries with it the entropy limitations
of statistical extractors as set by the RT bound, a serious concern in cases where

the entropy of the source is too small to produce (via the statistical extractor)
a sufficiently long key for the PRG. For example, consider the use of an extrac-
tor to convert a 160-bit elliptic curve Diffie-Hellman value (which by the DDH
assumption has 160 bits of computational min-entropy) into a 128-bit seed for
an AES-based PRG. Applying a statistical extractor to the DH value only guar-
antees a poor indistinguishability bound of 2−16 (i.e., δ = (160− 128)/2). If we
wanted to preserve, say, 100-bit security we would need δ = 100 bringing the
required source entropy to 328 (= 128 + 2 · 100).

One way around this problem is to build dedicated computational extractors
based on cryptographic functions. Such an approach is taken in [Kra10,DGH+04],
where computational extractors are built using specific schemes (HMAC and
CBC) under assumptions that are specific to these schemes (and directed to
the use of these extractors in the context of key derivation functions) includ-
ing random-oracle type assumptions. On the other hand, the recent results of
[BDK+11] show that for some key derivation applications one may relax the
entropy requirements dictated by the RT bound (see more discussion on these
issues in Section 7).

In this work, we further investigate computational extractors and consider
questions of existence and inherent complexity from the theoretical and prac-
tical angles, with particular focus on the relationship to pseudorandomness. In
particular, we ask how intrinsic is the use of pseudorandomness in constructing
computational extractors, to what extent can we build computational extractors
without resorting to a statistical extractor, and whether the “entropy penalty”
of the extract-then-prg approach is avoidable.

Our Results

On the existence of computational extractors. The most basic question with
respect to computational extractors is whether they exist at all and if they do
under what (if any) assumption. The trivial answer is affirmative: statistical
extractors are also computational. But we are interested in non-trivial computa-
tional extractors that output “more bits” than a statistical one. To capture this,
we define the notion of stretch. For a security parameter p consider an extractor
acting on a k(p)-entropy source: its stretch σ is the difference between the extrac-
tor’s output length and its input’s min-entropy, i.e., σ(p) = m(p)− k(p)− `(p).
Computational extractors with negative stretches of the form1 −ω(log p) exist
unconditionally since a statistical extractor (that matches the RT bound) gener-
ates an output that is 2−ω(log p)-close to uniform and therefore is computationally
indistinguishable from uniform. Thus, non-trivial computational extractors are
those for which the stretch is at least −O(log p): we call such stretches and their
associated extractors proper. The fact that proper computational extractors can
be built on the basis of one-way functions via the extract-then-prg approach,
raises the fundamental question: Are one-way functions necessary for building
proper computational extractors? One would expect the answer to be “of course

1 ω(·) stands for any superlinear function (i.e., one that grows faster than any linear
function of its argument).

they are!”. However, we can only provide a partial answer: We can show this
to be the case for proper extractors of positive stretch. But for stretches in the
range between −O(log p) and 0 the question remains open. Interestingly, how-
ever, we can provide an affirmative answer under the assumption that the RT
bound applies to efficiently samplable distributions. We refer to this as the SRT
Assumption (see details in Section 3):

Samplable RT (SRT) Assumption. Let Ext : {0, 1}n × {0, 1}` → {0, 1}m
be a poly-time computable statistical extractor. Then, for k < n there exists a
poly-time samplable source X of min-entropy k such that the statistical distance
between the distributions Ext(X,U`) and Um is at least 2−O(k+`−m).

In other words, the SRT assumption strengthens the RT bound by requiring
it to hold even if we restrict our attention to efficiently samplable distributions.
On the other hand, it weakens the RT bound by only requiring it to hold for
efficient extractors and by reducing the lower bound requirement to 2−c·(k+`−m)

for any constant c (in the RT bound, c = 1/2). To the best of our knowledge, the
validity of this assumption has not been settled. Interestingly, given our results,
any resolution of the assumption will have significant consequences. Disproving
the assumption would open the door to the possibility of more effective statistical
extractors for applications that are only concerned with efficient sources; e.g.,
it would mean that extractors based on the Leftover Hash Lemma may not
be the best in practice (a surprising conclusion that may actually indicate the
plausibility that the SRT does hold). And if the SRT assumption does hold, then
our work settles affirmatively the question of existential equivalence of proper
computational extractors and one-way functions.

Black-box constructions of proper extractors from OWPs. After investigating
the relationship between proper extractors and one-way functions, we examine
the question of whether we can have black-box constructions of proper extrac-
tors from OWPs that are more efficient than going through the extract-then-
prg approach. As the measure of efficiency we use “OWP-complexity”, namely,
the number of invocations to the OWP in a black-box construction, follow-
ing [GGKT05]. We prove a lower bound on the OWP-complexity of black-box
constructions of proper extractors from OWPs. We show that, under the SRT
assumption, the OWP-complexity of the extract-then-prg construction is opti-
mal by showing a tight lower bound on the number of invocations to the OWP
for any black-box construction of proper extractors from OWPs. Interestingly,
this result confirms the intuition that in order to build a proper computational
extractor one needs to make up for the entropy gap intrinsic to the RT bound
(as explained above).

The above result applies to any black-box construction of a proper extractor
that has oracle access to a OWP and it puts no restriction on the security reduc-
tion (which efficiently transforms an extractor-attacker into a OWP-attacker).
A more restricted form of black-box constructions, known as fully black-box, also
requires that the reduction between attackers be black-box (i.e., the reduction
cannot access the code of the extractor-attacker). Interestingly, we prove a sim-
ilar bound for fully black-box constructions, but unconditionally, i.e. without a

need for the SRT assumption. Thus, we trade the more restricted form of black-
box reduction for a lower bound that fully dispenses with the SRT assumption.
(For a thorough treatment of the semi- and fully-black-box notions and their
meanings and implications please refer to [RTV04].)

Constructions based on Stronger Primitives. Next, we investigate the possibility
of avoiding the intrinsic entropy loss in the generic extract-then-prg construction
by assuming stronger primitives as the basis for the construction.

Our first result in this direction shows that given an exponentially-hard OWP,
one can build a proper computational extractor where the OWP is applied di-
rectly to the high-entropy source without having to go through an initial extrac-
tion phase, hence avoiding the need to compensate for the entropy gap of the
extractor. In order to achieve this result we replace the standard extract-then-
prg approach with a dual prg-then-extract scheme that exploits the exponential
hardness of the OWP to build a PRG that uses as its seed the very input from
the high-entropy source.2

A practical computational extractor based on wPRF. We show a very simple
construction of computational extractors based on weak pseudorandom functions
(i.e., PRFs whose output is indistinguishable from uniform by adversaries that
only see values of the function computed on random independent inputs). For
this we resort to a lemma by Pietrzak [Pie09] showing that weak PRFs retain
some of their security even when the keys are chosen from an imperfect source.
More specifically, [Pie09] shows that if the original keys are of length n but they
are chosen from a source with min-entropy k ≤ n then their security degrades
roughly by an (optimal) factor of 2−(n−k). This allows us to construct (strong)
computational extractors where the source distribution is used to sample a key
for the PRF and the extractor’s random seed is used as an input to the PRF. This
results in a very practical construction of computational extractors that fully
dispenses with statistical extractors and perfectly fits the needs of randomness
extraction in the context of key derivation functions (KDF) as studied in [Kra10]
and as extensively used in real-world applications. In particular, one obtains a
very practical KDF for cases where the input to the KDF (the source of key
material) is at most of the size of the wPRF key. The security of the scheme
solely depends on the security of the underlying (weak) PRF and it implies
meaningful security bounds even in constrained cases where the entropy-output
gap is small (or even negative). See Section 7 for details.

Relations to work on statistical extractors. While a main theme of our work
is the role of pseudorandom generators in the construction of computational ex-
tractors, it is interesting to point out that pseudorandomness also plays a funda-
mental role in the development of statistical extractors. Starting with the work of
Trevisan [Tre01] it has been realized that constructions of “non-cryptographic”
pseudorandom generators such as [NW88,IW97] can lead to efficient statistical

2 This construction is somewhat reminiscent of the techniques used by Kalai et al.
in [KLR09] for building two-source or network extractors, though the context and
goals of these constructions are different.

extractors. The notion of pseudorandomness in these works is usually weaker
than the traditional cryptographic notion (that we use in our definition of com-
putational extractors), e.g., they allow for super-polynomial (on the seed length)
running time or consider more limited adversaries. Also the focus on efficiency in
statistical extractors has traditionally been geared towards minimizing the size
of the random seed as this determines the utility of these extractors in deran-
domization applications. See [Sha02] for a survey of results in this area. It would
be very interesting to find closer relations between results in the above area and
the questions raised by our work. In particular, in spite of the large body of work
on statistical extraction, there seems to be little work that investigates statis-
tical extractors against (efficiently) samplable sources. The only paper on the
subject that we are aware of is by Trevisan and Vadhan [TV00] who show that if
we only care about samplable distributions we can use deterministic extractors;
however, this only works as long as the sampler of the source is computation-
ally weaker than the extractor itself. Indeed, [TV00] shows that if we allow the
source to depend on the extractor and to have higher computational complexity
then deterministic extraction is not possible. In terms of our SRT assumption,
what this shows is that the SRT does apply to deterministic extractors (for each
such extractor there is a samplable source where the extractor fails). For all we
know, the seemingly fundamental question of the entropy bounds that apply to
statistical extractors when acting on samplable sources has not been studied.
We hope that our work will provide motivation to investigate this question.

2 Proper Computational Extractors

We recall the definitions of statistical extractors, define proper computational
extractors and give some of their basic properties. All extractor definitions pre-
sented here are stated in an asymptotic setting; in Section 5 we provide defini-
tions in a concrete-complexity framework.

2.1 Preliminaries

Terminology. A probability ensemble X is an infinite sequence of proba-
bility distributions {Xp} indexed by a parameter p. We usually assume that
for all p, Xp has support in {0, 1}n(p) where n(·) is a polynomially bounded
function. For any integer t we use the symbol Ut to denote the uniform dis-
tribution on {0, 1}t. The statistical distance between two probability ensem-
bles X,Y with common support ensemble {0, 1}n(p) is defined as the function
∆X,Y (p) = maxT⊆{0,1}n(p) |Pr[Xp ∈ T]− Pr[Yp ∈ T]|. We say that a distribu-
tion X has min-entropy k(p) if for all x in the support of Xp it holds that
PrXp

[x] ≤ 2−k(p). For simplicity, in what follows we assume that the entropies
denoted k(p) are positive integers (in case k(p) is not an integer, our results hold
by replacing it with dk(p)e).

Definition 1. An extractor family (or simply extractor) is an infinite family
E = {Ep}, indexed by a parameter p, of the form Ep : {0, 1}n(p) × {0, 1}`(p) →

{0, 1}m(p) where the functions n(p), `(p),m(p), are all polynomial in p. The ex-
tractor family E is called (k(p), ε(p))-statistical if for any probability ensemble
X with support in {0, 1}n(p) and min-entropy k(p), it holds that the statistical
distance between 〈U`(p), Ep(Xp, U`(p))〉 and U`(p)+m(p) is at most ε(p).

The probability distribution from which the first input is taken is called the
source and the second input is the seed. This definition of an extractor, requiring
the joint distribution of output and seed to be ε statistically-close to uniform, is
sometimes referred to in the literature as a strong extractor. A weaker flavor of
this definition, referred to as a weak extractor, is one where one only considers the
distance between the output Ep(Xp, U`(p)) and the uniform distribution Um(p)

(without the seed, which may remain hidden). In this paper, unless otherwise
noted, an “extractor” refers to a strong extractor.

Intuitively, the goal of an extractor is to extract close-to-uniform bits out of
a source with sufficiently high min-entropy, using a “short” uniformly random
seed. We require that the output is longer than the seed,3 specifically thatm(p) >
`(p) + 1.

Ideally, we’d like to extract all the randomness from the input, getting m =
k + ` truly uniform bits (with ε = 0). However, this is impossible in general.
From the results of [RTS00,NZ96,HILL99] we have the following lemma (which
holds even for weak extractors) showing a tight relationship between how much
of the input entropy k + ` can be extracted, and the distance ε from uniform.

Lemma 1 (RT Bound [RTS00]). Let E be a (k(p), ε(p))-statistical extractor
with parameters n(p), `(p),m(p) where k(p) < n(p) − O(1)4 and ε(p) < 1/2.

Then ε(p) ≥ 2−
k(p)+`(p)−m(p)+O(1)

2 . That is, for every such E there is a probability
ensemble X with min-entropy k(p) for which Ep(Xp, U`(p)) has statistical dis-

tance min{ 12 , 2
− k(p)+`(p)−m(p)

2 } from Um(p). This bound is tight and achieved, in
particular, by statistical extractors implemented via pairwise independent hash
functions.

2.2 Proper Computational Extractors and Proper Stretch

We start by defining computational extractors, which differ from statistical ones
in that the output is only required to be computationally indistinguishable from
uniform rather than statistically close, the extractor itself needs to be efficient,
and it is only required to work on efficiently samplable distributions.

Definition 2. A family E of extractors is called k(p)-computational if Ep is
polynomial-time computable, and for all efficiently-samplable probability ensem-
bles X with min-entropy k(p), the joint distribution (U`(p), Ep(Xp, U`(p))) is com-
putationally indistinguishable from U`(p)+m(p).

3 Without this condition, the trivial extractor that outputs its seed works for any
source (even with 0 entropy).

4 The symbol O(1) represents a specific constant calculated in [RTS00].

In this definition “efficiently samplable” means samplable by a polynomial-time
algorithm and “computationally indistinguishable” refers to the regular notion
of negligible advantage for all polynomial-time distinguishers. In a non-uniform
setting, polynomial-time is be replaced by poly-size circuits.

Discussion: The defined notion corresponds to a strong extractor (see Sec-
tion 2.1). A weak computational extractor is defined similarly but only requiring
that the output Ep(Xp, U`(p))) (without the seed) is indistinguishable from uni-
form. Although our lower bounds hold even for weak extractors, we focus our
treatment on strong extractors, because in the computational setting, weak ex-
tractors are not very interesting. Indeed, any PRF is, by definition, a weak
computational extractor that works for any source distribution.

We require the output of the computational extractor to be pseudorandom
only when the input is an efficiently samplable distribution. Indeed, for com-
putational uses (where we model feasible computation as polynomial-time) a
hard-to-sample distribution is of little interest. In particular, we would not want
to disqualify a good computational extractor just because it fails on a hard to
compute source. Also, samplable sources allow to use the same seed – as long
as it has been chosen at random and independently of the source – with mul-
tiple samples (this is crucial in some applications, including key derivation as
discussed in Section 7).

At the same time, it is worth noting that we could consider a flavor of our
definition where efficient samplability is replaced with oracle access (for the
attacker) to an arbitrary distribution. The lower-bound results from Sections
3 and 4 hold for this definition, while the upper bound from Lemma 7 holds
as long as the OWP is secure against non-uniform attackers (non-uniformity is
necessary to argue that access to a hard-to-compute distribution does not help
the attacker break the OWP or other primitives such as a PRG). Finally, we
note that for our results on fully black-box reductions from Section 5, we do
consider the latter setting, namely, arbitrary distributions to which the attacker
gets oracle access.

It is clear that any efficient (k(p), ε(p))-statistical extractor for a negligible
ε(p), is also a k(p)-computational extractor. Thus, the upper bound of Lemma
1 implies the following.

Lemma 2. There exist extractors with parameters n(p), `(p),m(p) that are k(p)-
computational for any k(p) < n(p)−O(1) such that

k(p) = m(p)− `(p) + ω(log p) (1)

Note that the Lemma is unconditional, i.e., computational extractors with
parameters as in (1) exist unconditionally. In this sense, non-trivial computa-
tional extractors are those whose parameters beat (1), and in particular have
an output that is (indistinguishable from but) statistically far from uniform. We
call such extractors proper, defined as follows.

Definition 3. The stretch σ(p) of a k(p)-computational extractor with param-
eters n(p), `(p),m(p)is defined as σ(p) = m(p) − k(p) − `(p). The stretch σ(p)

is proper if σ(p) ≥ −O(log p) (i.e., there exists a constant c such that σ(p) ≥
−c log p for all p). A k(p)-computational extractor is proper if its stretch is
proper.

Note that the stretch does not only depend on the extractor but also on the
input entropy k(p) (though, for simplicity, we sometimes omit the explicit k(p)
notation when talking about proper extractors). Since, for simplicity, we have
assumed that k(p) is integer (or else we consider dk(p)e) then the stretch is
integer and can be negative, zero, or positive. Hereafter, when we say “proper
extractor” we mean “proper computational extractor.”

3 The Equivalence of Proper Extractors and One-Way
Functions

Note that statistical extractors have statistical distance from uniform of at least
ε(p) = 2−

k(p)+`(p)−m(p)
2 which is 1/poly(p) (hence non-negligible) in the case of

proper extractors. Thus, statistical extractors do not immediately yield proper
computational extractors.

This raises the question: Do proper computational extractors exist? The fol-
lowing Lemma answers this in the affirmative, assuming one-way functions exist.

Lemma 3. If one-way functions exist then strong proper computational extrac-
tors exist too.

Proof sketch: Let E = {Ep} be a k(p)-computational extractor with parame-
ters n(p), `(p),m(p) for which equation (1) holds (such an extractor exists for any
functions m(p), k(p) as in Lemma 2). Also assume ω(log p) ≤ p. Let {Gp} be a
pseudorandom generator with seed length m(p) and output length k(p)+`(p) (as-
suming OWFs, PRGs exist for some function m(p) and output length m(p)+p).
Construct extractor E′ that first applies E and uses the output to seed the PRG.
It is easy to see that E has parameters n(p), `(p),m′(p) = k(p) + `(p) and its
output is indistinguishable from Um′(p). But m′(p) = k(p) + `(p), thus E′ is
proper.

Somewhat surprisingly we can’t immediately prove equivalence between proper
extractors and one-way functions. The opposite direction of Lemma 3 can be
easily proven only for proper computational extractors with positive stretch as
shown in the following Lemma.

Lemma 4. From any (even weak) computational extractor with positive stretch
one can build a pseudorandom generator.

Proof sketch: Let E be a k(p)-computational extractor with parameters n(p),
`(p), m(p) and positive stretch σ(p), i.e. m(p) > k(p) + `(p). We build a PRG G
with random seeds of length s(p) = k(p) + `(p) and output length m(p) > s(p).
G partitions its seed into a k(p)-long value x and an `(p)-long value y, and calls
E on (x′, y) where x′ consists of x padded with n(p) − k(p) zeros. Clearly, the

input distribution to E has entropy k(p), hence its output is pseudorandom.
Since G outputs more bits than its seed then G is a pseudorandom generator.

The last two lemmas leave the following question: Does the existence of proper
computational extractors, even those with non-positive proper stretch imply the
existence of one-way functions? In particular, is this the case for computational
extractors of stretch 0? To provide an affirmative answer we need to resort to an
additional assumption about the RT bound.

Samplable RT (SRT) Assumption. For every polynomial-time computable
extractor E with parameters n(p), `(p),m(p) and every function k such that
k(p) < n(p) − O(1), there exists a poly-time samplable probability ensemble
X of min-entropy k such that the statistical distance between the distributions
Ep(Xp, U`(p)) and Um(p) is at least min{ 12 , 2

−O(k(p)+`(p)−m(p))}.
In other words, we are assuming that if we restrict attention to efficiently

samplable sources then the RT bound still applies. More accurately, we as-
sume a weaker bound where the RT bound 2−

1
2 (k(p)+`(p)−m(p)) is replaced with

2−c·(k(p)+`(p)−m(p)) for any constant c, possibly much larger than 1/2. In addi-
tion, we assume this to be the case only for efficient extractors5. This assumption
is not implied by the proof in [RTS00] which builds a source on which the extrac-
tor incurs the claimed bound but this source may not be efficiently samplable.
Quite interestingly, the question raised by this conjecture does not seem to have
been widely researched. Any answer to it, positive or negative, would be of in-
terest. If true it implies the equivalence of proper computational extractors and
pseudorandom generators (see Theorem 1). If disproven it would open the possi-
bility of building efficient extractors that beat the RT and Leftover-Hash-Lemma
bounds on efficient sources.

Lemma 5. Under the SRT assumption, the existence of a proper extractor im-
plies the existence of a OWF.

Proof sketch: Let E be a proper k(p)-computational extractor and let X be
a polynomial-time samplable ensemble of min-entropy k(p), then the output
of E on X induces a polynomial-time samplable distribution that is statisti-
cally far from uniform but computationally indistinguishable. Thus, the pair
of distributions (EP (XP , U`(p)), Um(p)) are efficiently samplable, have statistical
distance greater than 1/poly(p) for some polynomial and are computationally
indistinguishable. Using the results of [Gol90,HILL99], constructing such a pair
of distributions is sufficient to construct pseudorandom generators (PRG). This
in turn implies the existence of OWF.

From Lemmas 3 and 5 we get:

Theorem 1. Under the SRT assumption, proper computational extractors exist
if and only if one-way functions exist.

5 It is most likely (using a counting argument) that the conjecture does not hold for
super-polynomial extractors, namely, there may be inefficient extractors that beat
the RT bound on all efficiently samplable distributions.

4 The Cost of Black-Box Constructions of Proper
Extractors from OWPs

In this section we follow the methodology from [GGKT05] for quantifying the
cost, as a number of OWP invocations, of (semi) black-box constructions of
proper computational extractors from OWPs. We show a lower bound on the
number of calls to the OWP that depends on the strength of the OWP and
the stretch of the extractor. This result reflects the intuition that in order to
build a computational extractor one needs to first make up for the entropy gap
intrinsic to the RT bound. Indeed, the result shows that it is not enough to call
the OWP just to generate as many bits as the extractor’s stretch but one needs
to generate ω(log p) additional bits to cover for the loss of entropy. Comparing
with the corresponding results of [GGKT05] about pseudorandom generators, we
see that making up for this entropy gap is the only intrinsic difference between
proper extractors and PRGs (under this black-box complexity measure). We also
prove that the lower bound is tight.

Remark: Our lower bounds deal with constructions of computational extrac-
tors from one-way permutations. However, we note that our results extend to
the case of one-way functions since our lower bounds are proven using random
permutations which are not efficiently distinguishable from one-way functions.
However we do not know if for the case of OWF our bounds are tight (i.e. the
currently known constructions based on OWF have a larger number of queries).

In Section 3 we showed that proper extractors are equivalent to one-way func-
tions. Here we formalize a notion of black-box constructions for computational
extractors: such constructions access a one-way function as an oracle, rather
than having access to the code of an algorithm computing it.

We start by developing an analogue of the treatment from [GGKT05] to the
asymptotic setting of our analysis. For any integers t, n, t ≤ n, we denote by Πn

the set of all permutations over {0, 1}n and by Πt,n the set of permutations in
Πn that arbitrarily permute the first t bits of input while leaving the remaining
n− t bits fixed.

For a security parameter p denote with n(p), k(p), `(p),m(p) and t(p) integer
functions that grow polynomially in p. Assume also that t(p) ≤ n(p) and k(p) ≤
n(p)− O(1) for all p. Consider an infinite family of permutations Π = {πp}∞p=1

where πp is chosen in Πn(p). We say that Π is T (p)-hard if for sufficiently large p,
any attacker running in time T (p) succeeds in inverting πp with probability less
than 1/T (p). We say that Π is one-way if it is T (p)-hard for every polynomial
T (·).

With Π∗ we denote such a family Π∗ = {π∗p}∞p=1 where each permutation
π∗p is chosen at random from the set Πt(p),n(p). The following Lemma (based on
[IR89]) proves that for any hardness T (p), if we choose t(p) = 3 log T (p) (and an
additional technical condition that t(p) ≥ 6 log p), then this family is T (p)-hard
with probability 1.

Lemma 6. Let t(p) ≥ 6 log p. Then with probability 1, Π∗ constructed as above
is T (p)-hard for T (p) = 2t(p)/3.

Proof. Let A be an adversary that runs time T (p) and attempts to invert Π∗.
On expectation, over the choice of π∗p , A succeeds in inverting with probability

T (p)/2t(p) = 1/T 2(p), namely:

Eπ∼Πt(p),n(p)
[Pr
x∼Un(p)

[A(π(x)) = x]] = 1/T 2(p).

Using Markov’s inequality we have that the probability over the choice of π∗p
that A inverts successfully with probability better than T (p) ·1/T 2(p) is at most
1/T (p):

Pr
π∼Πt(p),n(p)

[Pr
x∼Un(p)

[A(π(x)) = x] ≥ T (p) · 1/T 2(p)] ≤ 1/T (p). (2)

Since by choice of t(p) ≥ 6 log p we have 1/T (p) ≤ 1/p2 we get that the sum∑
p→∞ 1/T (p) is finite. The convergence of this sum allows us to apply the Borel-

Cantelli Lemma to (2) which implies that with probability 1 over the choice of
Π∗ the inequality Prx∼Un(p)

[A(π∗p(x)) = x] < 1/T (p) (where A is assumed to
run time T (p)) holds for all but a finite number of p’s. In other words, with
probability 1 over the choice of Π∗, the resultant family Π∗ is T (p)-hard.

Definition 4. An oracle extractor construction (from a one-way permutation)

is a family of oracle procedures E(·) = {E(·)
p : {0, 1}n(p)×{0, 1}`(p) → {0, 1}m(p)}

such that E
(·)
p expects as an oracle a permutation πp ∈ Πn(p) and E

(·)
p is com-

putable in time polynomial in p. We say that E(·) has black-box access to a family

Π = {πp}∞p=1 (and denote it as E(Π)) if E
(·)
p uses πp ∈ Π as its oracle.

We say that E(·) is a k(p)-computational oracle extractor if for every one-
way family Π the family E(Π) is a k(p)-computational extractor according to
Definition 2

Another way to restate the above definition is that there must be an effi-
cient reduction from distinguishing the output of the extractor from uniform to
inverting the permutation family. In other words, any distinguishing adversary
can be used to construct an inverter for the permutation family. Note that the
above definition formalizes the notion of semi black-box construction in which the
construction (the extractor) has oracle access to the underlying primitive (the
one-way permutation), but no restriction is made on the reduction (in particu-
lar, the reduction might be able to access the code of the adversary). The more
restricted notion of fully black-box constructions (in which additionally the secu-
rity reduction only has oracle access to the adversary breaking the construction)
will be discussed in Section 5.

We now state the main theorem in this section. It shows that under the SRT
assumption, proving a semi-black-box construction of a computational extractor
for which q(p) · t(p)− σ(p) = O(log p) is at least as hard as proving that OWFs
exist (or, equivalently, proving such a construction is at least as hard as proving
that the SRT assumption implies OWF).

Theorem 2. Let E(·) be a proper k(p)-computational oracle extractor according
to Definition 4, which has access to a T (p)-hard family where T (p) is super-
polynomial. Let t(p) = 3 log T (p) = ω(log p). Assuming SRT, if E

πp
p has proper

stretch σ(p) and it calls the oracle πp a total of q(p) times, then q(p)·t(p)−σ(p) =
ω(log p) or else one-way functions exist. This lower bound on q(p) is tight.

Proof. Let E(·) be a proper k(p)-computational oracle extractor with param-
eters (n(p), `(p),m(p)) and proper stretch σ(p) = m(p) − k(p) − `(p). By as-
sumption EΠ is k(p)-computational whenever the oracle Π is implemented with
one-way permutation family, i.e. Π is T (p)-hard where T (p) is a function grow-
ing faster than any polynomial. In particular, by Lemma 6 this is the case
(with probability 1) when Π is implemented by the family Π∗ with parame-
ter t(p) = 3 log T (p) = ω(log p). We will show that if E

πp
p calls πp ∈ Π∗ a total

of q(p) times, we can construct a computational extractor E′p with parameters
(n(p), `′(p) = `(p) + q(p)t(p),m(p)) (and no oracle calls) such that for any dis-
tribution Xp with min-entropy k(p), the output distributions E′p(Xp, U`′(p)) and

E
π∗p
p (Xp, U`(p)) are q2(p)/2t(p)-statistically close, and since the latter distribu-

tion is pseudorandom so is the former (here we use the fact that q(p)/2t(p) is
negligible since q(p) is polynomial and 2t(p) = T 3(p) super-polynomial).

More specifically, we construct E′p : {0, 1}n(p) × {0, 1}`′(p) → {0, 1}m(p),
where `′(p) = `(p) + q(p) · t(p), in the following way: Let x, z′ denote the in-
put to E′p. The string x and the first `(p) bits of z′ are used by E′p to define

the input (x, z) to E
(·)
p and the remaining bits of z′ are used to select q(p) dis-

tinct elements y1, . . . , yq(p) ∈ {0, 1}t(p). We then define: E′p(x, z, y1, . . . , yq(p))
def
=

E
y1,...,yq(p)
p (x, z), namely, when E

(·)
p presents its i-th query to its oracle, call it

wi, we return as response the string yi followed by the last n(p)− t(p) bits of wi.
Note that as long as all the yi’s are different the output distributions

E′p(Xp, U`′(p)) and E
π∗p
p (Xp, U`(p)) are identical. The probability of a repeated

yi is q2(p)/2t(p) and therefore the actual statistical distance between these dis-
tributions is negligible. In particular, we have that the output from E′p is indis-
tinguishable from random and therefore E′p is a k(p)-computational extractor
which makes no oracle calls. Moreover, its stretch σ′(p) equals

σ′(p) = m(p)− k(p)− `′(p) = m(p)− k(p)− `(p)− q(p)t(p) = σ(p)− q(p)t(p).

If, for the sake of contradiction, we assume that q(p)t(p) ≤ σ(p) + c log p for
some constant c then we would get σ′(p) ≥ −c log p meaning that E′p is a regular
(non-oracle) proper computational extractor from which, using Lemma 5 and the
SRT assumption, we can construct a one-way function. This proves the theorem
(the tightness of the bound on q(p) is proven in Lemma 7 below).

Lemma 7. The bound of Theorem 2 is tight: For any function σ(p), polynomial
in p, and any function W (p) that grows as ω(log p) there is a black-box construc-
tion of a strong proper extractor from OWP that attains stretch σ(p) and calls
the OWP q(p) times such that q(p)t(p) ≤ σ(p) +W (p).

Proof sketch: We start by noting that there are black-box constructions of
pseudorandom generators from OWPs that for any PRG-stretch function σ′(p)
(defined as the length of the PRG output less the length of PRG seed) call the
OWP σ′(p)/t(p) times where t(p) is defined as in Theorem 2. This is the case,
in particular, for the Blum-Micali construction using Goldreich-Levin hard-core
bits. Therefore, to prove the Lemma it suffices to show how to build a proper
extractor of stretch σ(p) using a PRG of stretch σ(p) +W (p) for any W (p) that
grow as ω(log p).

Let G = {Gp}p be a PRG family, indexed by a parameter p, with seed length
s(p) and output size r(p) = s(p) + σ(p) + W (p), for a given (polynomial in
p) function σ(p). Assume G is (T (p), ε(p))-secure (where ε(p) is negligible in
p). Let E be a strong statistical extractor (e.g., based on pairwise independent
hash functions) with parameters n(p), `(p),m(p) = s(p) + `(p) that on input

distributions of min-entropy k(p) outputs a distribution that is 2−
k(p)−s(p)

2 -close
to Um(p). Using both G and E we build a proper computational extractor E′

with parameters n(p), `(p),m′(p) = r(p) + `(p). On input (x, z), E′ calls E on
(x, z) and uses the s(p)-bit output from E as the seed to G to produce an output
of bit length r(p) = s(p) + σ(p) + W (p). This, plus the `(p)-bit input salt, are
the outputs from E′.

Note that on distributions of min-entropy k(p) = r(p)− σ(p), E′ has stretch
σ(p); moreover, we claim that the output from E′ is (T (p), ε′(p))-indistinguishable
from uniform where ε′(p) equals ε(p) plus a negligible term 2−W (p)/2 = 2−ω(log p).
Indeed, the only loss of security with respect to G is in the derivation of the
seed z ∈ {0, 1}s(p) that is chosen from a distribution that is 2−(k(p)−s(p))/2 =
2−W (p)/2 = 2−ω(log p)-close to Us(p). Thus E′ is a proper computational extractor
with stretch σ(p) built on the basis of a PRG of stretch σ(p) +W (p) which, as
said, implies the tightness of the bound.

Note. The Blum-Micali construction with a randomized hardcore like Goldreich-
Levin [GL], requires extra perfect but non-secret randomness. Hence this auxil-
iary randomness can be supplied by the extractor’s seed and be output as part
of the strong extractor’s output.

5 Unconditional Fully Black-Box Lower Bound

Next, we pose the question of what can be shown without assuming SRT. We
show that by restricting our attention to fully black box constructions, not only
can we get rid of the SRT but actually can show an unconditional lower bound
on the number of OWP invocations.

We first show an analogous lower bound to the semi black-box case (though
unconditional) in the asymptotic, uniform setting. We then show a tighter concrete-
complexity result in the non-uniform setting.

To begin, we review the notion of fully black box construction/reduction.

Definition 5. A fully black-box reduction from a primitive Q to a primitive P
is a pair of oracle PPT Turing machines (G(·), S(·,·)) such that the following two
properties hold:

Correctness: For every implementation f of primitive P , g = Gf implements Q.

Security: For every implementation f of primitive P , and every adversary A,
if A breaks Gf (as an implementation of Q) then SA,f breaks f . (Thus, if f is
“secure”, then so is Gf .)

Notice that in a full black-box reduction, the adversary is only accessed as an
oracle. One consequence of this fact is that the adversary does not have to
be efficient. We remark that an implementation of a primitive is any specific
scheme that meets the requirements of that primitive (e.g., an implementation
of a public-key encryption scheme provides samplability of key pairs, encryption
with the public-key, and decryption with the private key).

5.1 Unconditional Lower Bound in the Asymptotic, Uniform
Setting

In this section we show an analogue of the lower bound in Theorem 2 for the
fully black-box setting. While the bound on the number of queries is the same as
in Theorem 2, this result can be proven unconditionally (i.e., without requiring
the SRT and without concluding that a construction that violates the bound
implies a proof of the existence of one-way functions). However, Theorem 3
holds only when we consider a slightly modified definition of computational
extractors where the output of the extractor is required to be computationally
indistinguishable from uniform for every input probability ensemble X of min-
entropy k. Observe that the construction outlined in Lemma 7 satisfies this
stronger notion of security.

Theorem 3. Let E(·) be a proper k(p)-computational fully black box extrac-
tor construction, which has access to a T (p)-hard family where T (p) is super-
polynomial. Further assume that such extractor remains proper k(p)-computational
on any k(p)-entropy source, including those that are not efficiently samplable.
Let t(p) = 3 log T (p) = ω(log p). If E

πp
p has proper stretch σ(p) and it calls the

oracle πp a total of q(p) times, then q(p) · t(p)− σ(p) = ω(log p).

Proof. See full version [DGKM11].

Next, we present a stronger version of this result. It will be a tighter con-
crete (rather than asymptotic) lower bound, for non-uniform fully black-box
constructions of proper extractors from OWP. In order to do that, we need to
revisit definitions and preliminary Lemmas in a concrete, non-uniform context.

5.2 Unconditional Lower Bounds in the Concrete, Non-Uniform
Setting

We start by adapting the definition of (oracle) computational extractors to the
non-uniform and concrete (i.e., non-asymptotic) complexity setting.

We say that a permutation π over {0, 1}n is S-hard if no circuit of size ≤ S
and oracle access to π can invert π with probability better than 1/S. Addition-
ally, we say that two distributions are (S, ε)-indistinguishable if no circuit of size
≤ S can distinguish between them with probability better than ε.

Definition 6. E : {0, 1}n × {0, 1}` → {0, 1}m is a (k, S, 2−δ)-computational
extractor (CompEXT) if for any distribution X on {0, 1}n with H∞(X) ≥ k,
we have that (E(X,U`), U`) and Um+` are (S, 2−δ)-indistinguishable (where in-
distinguishability holds even for circuits given oracle access to a Sampler which
samples from distribution X).

Definition 7. An oracle computational extractor (OCompEXT) construction
(from a one-way permutation) is an oracle procedure E(·) : {0, 1}n × {0, 1}` →
{0, 1}m that expects as an oracle a permutation π ∈ Πn. We are interested in
constructions where E(·) is computable in time polynomial in n.

We say that E(·) is is an (k, Sπ, SE , 2
−δ)-OCompEXT construction from

OWP if for every permutation π that is Sπ-hard, Eπ is an (k, SE , 2
−δ)-secure

CompEXT (where indistinguishability holds even for circuits given oracle access
to both Sampler and π).

Using a standard averaging argument, the existence of a non-uniform at-
tacker that succeeds in inverting a OWP with the help of such an oracle implies
the existence of another attacker (of slightly larger size) that inverts the OWP
without access to the oracle (just wire-in into the attacker circuit the source
samples that maximize the attacker’s inverting probability).

We now restate the lower bound of Radhakrishnan and Ta-Shma [RTS00]
regarding the efficiency of statistical extractors (which was given in Lemma 1
for the asymptotic, uniform setting).

Lemma 8. Let E′ : {0, 1}n×{0, 1}`′ → {0, 1}m be a statistical extractor. Then,
for any k < n− C ′ there exists a distribution X of min-entropy k such that the
two distributions E′(X,U`′) and Um are statistically min{ 12 , 2

−((k+`′−m+C)/2)}-
far, where C and C ′ are universal constants.

We are now ready to state our main result in this section, namely, a lower
bound on the number of queries to the OWP by a fully black box construction
of a computational extractor.

Theorem 4. Let E(·) be a fully black-box construction of a (k, Sπ, SE , 2
−δ)

proper oracle extractor which expects an Sπ-hard one-way permutation π over
n bits. Assume that E(·) makes q ≤ Sπ queries to its oracle and that SE ≤ Sπ
and 2−δ ≥ 1/Sπ. If E(·) has proper stretch σ then E(·) must call the one-way
permutation q times, where q ≥ (2δ + σ − C)/(5 logSπ) for some constant C.

Proof. See full version [DGKM11].

6 Construction from Exponentially-Hard One-Way
Permutations

The results from Sections 4 and 5 indicate the optimality of the “extract-then-
prg” approach when all we are interested in is minimizing the number of calls to
a OWP in a black-box construction. However, a significant cost of this approach
is that in order to use an n-bit OWP we need to start with an input distribution
whose entropy is noticeably larger than n so we can apply the extraction part of
the construction to it and still get n bits that are close to uniform and serve as
input to the OWP. Here we show that one can make up for the entropy gap if the
OWP has exponential hardness. In this case, we show a black-box construction
based on such a OWP where one applies the OWP directly on the entropy source
without an intermediate extractor step. For this we reverse the extract-then-prg
approach and use instead an “prg-then-extract” construction where the OWP
is applied first to expand (pseudo) entropy and then a statistical extractor is
applied on this expanded entropy to generate a close-to-uniform output.6

The Construction. Given an (Sπ, 2
−δ/2n−k)-hard OWP, π, we present a con-

struction of a k-entropy strong computational extractor

F : {0, 1}n × {0, 1}(2δ+σ)·n+` → {0, 1}k+(2δ+σ)·n+`+σ

with proper stretch σ in Figure 1.

On input (x, z′ = (r0, . . . , r2δ+σ−1, z)), where x ∈ {0, 1}n, ri ∈ {0, 1}n, z ∈ {0, 1}`,
the extractor F does the following:

Step 1:
– Compute (w1, w2) =((

π2δ+σ(x), 〈r2δ+σ−1, π
2δ+σ−1(x)〉, . . . , 〈r0, x〉

)
, (r2δ+σ−1, . . . , r0)

)
Step 2:

– Let F ′ : {0, 1}n+2δ+σ×{0, 1}` → {0, 1}k+`+σ be a statistical (k+2δ+σ, 2−δ)
strong extractor.

– Compute (v, z) = F ′(w1, z).
Step 3: F outputs (v, z, w2) ∈ {0, 1}k+(2δ+σ)·n+`+σ.

Fig. 1. Strong Computational Extractor from Exponentially-Hard OWP

The proof of Lemma 10 that F is indeed a strong extractor when π is
an exponentially-hard OWP is based on the following lemma showing that
exponentially-hard OWP’s are “hard to invert” on arbitrary distributions of suf-
ficiently high min-entropy.

6 [BDK+11] also uses the prg-then-extract approach for constructing an extractor; in
their case, however, the prg is used to expand the seed rather than for increasing
the computational entropy of the source as in our case.

Lemma 9. Let π : {0, 1}n → {0, 1}n be an (S, ε)-one way permutation and let
X be a distribution over {0, 1}n of min-entropy k where k = n−α. Then for all
adversaries A of size at most S it is the case that:

Pr
x∼X

[A(π(x)) = x] ≤ ε · 2α.

Lemma 10. The construction of F from Figure 1 is a black-box construction of
a (k, Sπ/poly(n),poly(n) · 2−O(δ))-strong CompEXT with proper stretch σ from
any (Sπ, 2

−δ/2n−k)-OWP π.

Proof. See full version [DGKM11].

7 Practical Computational Extractors from Weak PRF

In this section we explore a connection between computational extractors and
pseudo-random functions. We show a very efficient construction of a strong com-
putational extractor using any PRF, and demonstrate its practical utility in the
context of key derivation functions. Actually, we do not need the full security of
a PRF; it suffices that the PRF is secure against attackers that do not choose
inputs to the function but only see pairs of (input, output) where the inputs are
chosen uniformly at random. Such PRFs are referred to as weak PRF (wPRF)
(note that in our application ‘weak’ is stronger). The proof of our scheme follows
directly from recent results by Pietrzak [Pie09] about leakage-resilient wPRFs.

Weak PRF. A pseudo-random function family is a family of functions F =
{fa : {0, 1}` → {0, 1}m}a∈{0,1}n with the property that if a is chosen uniformly
at random in {0, 1}n, then the function fa is computationally indistinguishable
from a random function from {0, 1}` to {0, 1}m. More specifically, no efficient
algorithm which has oracle access to either fa or to a random function, can
decide which is the case. If the oracle access is restricted to query the function
on randomly chosen inputs, one obtains the notion of weak PRF (wPRF). We
quantify this notion by saying that F is a (S, q, ε)-wPRF family if no circuit
of size S can distinguish between fa (for a chosen uniformly at random) and
a random function with advantage better than ε when seeing the value of the
function on q random inputs.

The main contribution in this section is in presenting the following construc-
tion of a simple computational extractor from any wPRF and demonstrating its
practical security.

wPRF-based computational extractor. Let F = {fa : {0, 1}` → {0, 1}m}a∈{0,1}n
be a wPRF family. We define the extractor F : {0, 1}n × {0, 1}` → {0, 1}m+` as
F (a, s) = (fa(s), s).

Theorem 5. If F = {fa : {0, 1}` → {0, 1}m}a∈{0,1}n is (S, q, ε)-weak PRF with

q2 < ε2`+1, then for k ≤ n the extractor F defined above is a (k, S′, ε′) strong
(and proper7) computational extractor with ε′ ≈ ε · 2n−k and S′ ≈ S · ε′.

Proof. See full version [DGKM11].

7.1 Application to Key Derivation

A main application of a strong computational extractor in cryptography is for
key derivation [Kra10]. In this case, the source distribution is some key material,
derived from some statistical process or a key agreement protocol, that has some
significant amount of min-entropy but is not uniformly random as needed to key
cryptographic functions. Thus, we need a way to produce a cryptographic key
(random or pseudorandom) out of this key material. This is where our compu-
tational extractor is useful. One restriction is that if we use a wPRF whose key
size is n we need to consider sources of key material whose length is at most
n. In this case, we simply use the key material (without any processing, except
maybe for padding to n bits) as the key to the wPRF and choose as the input
to the wPRF a random value of length `. The latter is the seed of the extractor
and is assumed that the application provides such random but public “salt” (see
[Kra10] for discussions on this issue). Next we show concrete examples of the ap-
plicability of this method when the key material is derived from a Diffie-Hellman
value (as is common in the settings of key exchange and ElGamal encryption).

We are given (S, q, ε)-wPRF and consider the ratio S/ε as its measure of
security (here S is a function of ε and q). Assume that the wPRF has full
security, i.e. for a key of size n we have S/ε ≈ 2n. In this case, Theorem 5
guarantees that the extractor F (the KDF in our application) has parameters
(S′, ε′) such that:

ε′ ≈ ε · 2n−k and S′ ≈ S · ε′ = 2n · ε · ε′ ≈ 2kε′2

As a concrete example, consider the case of a wPRF with a 256-bit key and
security S/ε = 2256 (this would apply, given current knowledge, to a PRF based
on SHA-256, especially that we only consider attacks where the attacker cannot
chose any inputs – it only sees the function applied to a set of random values).
Assume now that the key, instead of being sampled uniformly at random, follows
a distribution with min-entropy k = 160; this is the case, for example, when the
key material is a Diffie-Hellman value computed over an elliptic curve of size
2160 [GKR04]. In this case we have that to distinguish the 256-bit output of
the extractor from random with advantage ε′ ≈ 2−40 we must invest S′ ≈ 280.
If we want to double the advantage ε′ we need to invest four times more work
(circuit size). For example, to obtain ε′ = 2−20 we need to work S′ = 2120 and
for ε′ = 0.001 one needs S′ = 2140. Even if we consider a less-perfect function,

7 We assume m ≥ n; if this is not the case in the given family F we can achieve it
using standard range expansion techniques to increase m, possibly at the cost of
somewhat strengthening the weak PRF requirement.

say S/ε = 2200 one still gets S′ = 264 for ε′ = 2−20 and S′ = 284 for ε′ = 0.001.
Note that in all these cases we are outputting more pseudorandom bits (256)
than the source entropy (160).

In comparison, if we were applying a statistical extractor to the key material
of min-entropy 160 to obtain a key of size 256, we could not claim any security
at all (this is the case even if we only needed a 160-bit of output, and we would
get security of only 2−16 if were outputting a 128-bit key). In comparing with
statistical extractors another main advantage of our PRF-based computational
extractor is the fact that PRFs are already available in practical cryptographic
protocols for other uses (including key expansion as often needed in the context
of key derivation) and hence do not require of additional mechanisms such as a
statistical extractor.

Related Schemes. It is worth noting the duality between the above KDF con-
struction and the HKDF scheme from [Kra10]. In our case, the imperfect key
material is used to key the (weak) PRF and the seed is used as an input to
the KDF. In HKDF these roles are reversed. This gives HKDF the advantage of
being appropriate for input distributions of arbitrary length while in our scheme
we are limited to the key size. On the other hand, the very non-standard use of
a known value (the seed) as a key to a PRF in the HKDF scheme, makes the lat-
ter much more restricted on the type of PRFs one can use (actually, the known
analysis of HKDF is for particular PRFs, mainly HMAC, and under dedicated
assumptions). In contrast, our scheme can use any PRF and even any wPRF.

The recent work of Barak et al. [BDK+11] builds a computational extractor in
the traditional way, namely, using a statistical extractor to get a close-to-uniform
key and using a PRG or PRF to get additional pseudorandom bits as needed.
The novelty of that work, however, is that they show that if the output from the
statistical extractor (implemented via a suitable hash function) is used as a key
to a wPRF and this wPRF is applied to a random point then the best possible
distinguishing advantage against the output of this scheme is the wPRF’s best
distinguishing advantage plus 2−(k−m). This is an improvement over the generic
analysis using statistical extractors where the latter term would be 2−(k−m)/2.
This relaxes the entropy requirement from the source and is significant in cases
as those considered above (e.g. when generating keys from Diffie-Hellman pro-
tocols of relative small order). Moreover, depending on the security parameters,
the analysis from [BDK+11] can sometimes be used, as in our case, to generate
keys that are even larger than the available entropy. The crucial difference with
our construction, however, is that [BDK+11] requires the implementation of a
statistical extractor (with its corresponding seed) in addition to the wPRF. In
contrast, our scheme re-uses the PRF already available in most cryptographic
implementations without requiring extra machinery (which may seem a minor
issue considering the relative simplicity of statistical extractors but represents
a significant barrier for adoption into standardized protocols, particularly those
requiring hardware support). On the downside, our scheme is limited to situa-
tions where the source of key material produces values that are no longer than
the key of the wPRF, while [BDK+11,Kra10] have no such length restrictions.

References

[BDK+11] Boaz Barak, Yevgeniy Dodis, Hugo Krawczyk, Olivier Pereira, Krzysztof
Pietrzak, François-Xavier Standaert, and Yu Yu. Leftover hash lemma,
revisited. In CRYPTO, volume 6841 of Lect. Notes in Comp. Sci., pages
1–20, 2011.

[DGH+04] Yevgeniy Dodis, Rosario Gennaro, Johan H̊astad, Hugo Krawczyk, and Tal
Rabin. Randomness extraction and key derivation using the cbc, cascade
and hmac modes. In CRYPTO, pages 494–510, 2004.

[DGKM11] Dana Dachman-Soled, Rosario Gennaro, Hugo Krawczyk, and Tal Malkin.
Computational extractors and pseudorandomness, 2011. Full version of this
paper. Available from eprint.iacr.org/2011/708.

[GGKT05] Rosario Gennaro, Yael Gertner, Jonathan Katz, and Luca Trevisan.
Bounds on the efficiency of generic cryptographic constructions. SIAM
J. Comput., 35(1):217–246, 2005.

[GKR04] Rosario Gennaro, Hugo Krawczyk, and Tal Rabin. Secure Hashed Diffie-
Hellman over Non-DDH Groups. In EUROCRYPT, volume 3027 of Lect.
Notes in Comp. Sci., pages 361–381, 2004.

[Gol90] Oded Goldreich. A note on computational indistinguishability. Inf. Process.
Lett., 34(6):277–281, 1990.

[HILL99] J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby. A pseudorandom gen-
erator from any one-way function. SIAM J. on Computing, 28(4), 1999.

[IR89] R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-
way permutations. In Proc. 21st Annual ACM Symposium on Theory of
Computing (STOC), pages 44–61, 1989.

[IW97] R. Impagliazzo and A. Widgerson. P = bpp unless e has subexponential
circuits: derandomizing the xor lemma. In Proceedings of the Twenty-Ninth
Annual Symposium on Theory of Computing, pages 220–229, 1997.

[KLR09] Yael Tauman Kalai, Xin Li, and Anup Rao. 2-source extractors under
computational assumptions and cryptography with defective randomness.
In FOCS, pages 617–626, 2009.

[Kra10] Hugo Krawczyk. Cryptographic extraction and key derivation: The HKDF
scheme. In CRYPTO, pages 631–648, 2010.

[NW88] Noam Nisan and Avi Wigderson. Hardness vs. randomness. In Proc. 29th
IEEE Symposium on Foundations of Computer Science (FOCS), pages 2–
11. IEEE Computer Society Press, 1988.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. J.
Comput. Syst. Sci., 52(1):43–52, 1996.

[Pie09] Krzysztof Pietrzak. A leakage-resilient mode of operation. In EURO-
CRYPT, pages 462–482, 2009.

[RTS00] Jaikumar Radhakrishnan and Amnon Ta-Shma. Bounds for dispersers,
extractors, and depth-two superconcentrators. SIAM J. Discrete Math.,
13(1):2–24, 2000.

[RTV04] Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility
between cryptographic primitives. In TCC, pages 1–20, 2004.

[Sha02] Ronen Shaltiel. Recent developments in explicit constructions of extractors.
Bulletin of the EATCS, 77:67–95, 2002.

[Tre01] Luca Trevisan. Extractors and pseudorandom generators. Journal of the
ACM, 48(4):860–879, July 2001.

[TV00] Luca Trevisan and Salil P. Vadhan. Extracting randomness from samplable
distributions. In FOCS, pages 32–42, 2000.

